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Abstract

To reduce operating costs and membrane fouling of conventional membrane bioreactors
(cMBR), a novel MBR using a non-woven fabric membrane (nMBR) was constructed and the
performance of the two MBRs was compared for anaerobic ammonium oxidation (anammox)
cultivation. The results showed that the start-up period for the nMBR (44 days) was notably
shorter than that for the cMBR (56 days), meanwhile the nMBR achieved a 2-times higher
nitrogen removal rate (231.5 mg N per L per d) compared to the cMBR (112.3 mg N per L
per d). [lumina MiSeq sequencing showed that Candidatus Kuenenia
and Candidatus Jettenia were the main distinguished anammox bacteria. FISH analysis
revealed that anammox bacteria predominated in both reactors, especially in the nMBR
(58%) corresponding to a qPCR analysis of 1.07 x 10’ copies per mL (day 120). N,O
emission analysis confirmed the advantage of the nMBR in N,O reduction to reduce the
influence of greenhouse gas emission while treating identical nitrogen. These results clearly
demonstrated that nMBRs could be a prospective choice for anammox start-up and

performance enhancement.



1. Introduction

Anaerobic ammonium oxidation (anammox) is a promising biotechnology to treat
ammonium-containing wastewater, especially with low biological degradable carbon.'? In
this process, anammox bacteria, namely Planctomycetales, convert ammonium to dinitrogen
using nitrite as an electron acceptor under strict anaerobic conditions (eqn (1)). Anammox has
been implemented in various full-scale applications for treating ammonium-rich wastewater,
such as sludge digestion water and industrial wastewater.” As an efficient and economical
alternative to traditional nitrification and denitrification processes, the anammox process
avoids the addition of external carbon and aeration, resulting in remarkable savings of

operation cost associated with higher nitrogen removal rates (NRR).*

NH; + 1.32NO; + 0.06HCO; + 0.13H" — 1.02N,+ 0.26NO; + 0.066CH,00 5N 5 +
2.03H,0

However, the start-up of the anammox process is mainly affected by the availability
of anammox biomass due to its slow-growing rate (0.072 per d measured at 32 °C).”® Even a
quite unimpressive biomass loss via the effluent or another approach may impede the start-up
of the anammox process severely because of the deficient biomass. Moreover, the severe
sludge washout caused by granule floatation could lead to instability or even system
collapses, particularly at high nitrogen loading.” Thus, an efficient system or operation

strategy is required in order to minimize biomass run off with effluent.

Massive efforts towards reducing biomass loss via the choice of suitable reactor
configurations have been made by researchers. Conventional membrane bioreactors (cMBRs)
using hollow fiber modules have been regarded as suitable reactors to start up the anammox
process as they can achieve high biomass retention.'™'' Several studies have proved that
submerged MBRs are excellent tools for enriching slow-growing
microorganisms,'? especially anammox bacteria.'' In MBRs, membrane modules can not
only function as biofilters, but also as biofilm carriers,'® which is beneficial to the formation
of biomass aggregates, attached biofilms and granular sludge. With higher biomass density,
these sludge forms are more efficient to deal with high load nitrogen pollutants than

flocculated sludge.'*'*"

Considering the cost of hollow fiber membranes, MBRs using non-woven fabric
(nMBRs) have attracted increasing interest in biofilm formation and biomass retention. Non-

woven fabric membranes are porous with abundant small hollow areas, which are efficient in



attaching anammox biomass, leading to enhanced anammox reactor performance.'>'®!” With
larger pore size compared to hollow fiber membrane, the separation mode of nMBRs is
broadly categorized as macro-filtration, while that of cMBRs is categorized as micro-
filtration. Therefore, the operating transmembrane pressures (TMPs) of cMBRs (the TMP of
micro-filtration <100-200 kPa) are generally higher than those of nMBRs (the TMP of
macro-filtration <25 kPa).'"®2° Based on the low TMP which is employed for monitoring
membrane fouling, the membrane fouling of non-woven fabric including membrane pore

blocking, cake formation and biofouling could also be alleviated to some extent."”

Many researchers have explored the feasibility of anammox start-up with submerged
anaerobic ¢cMBRs.'*'""'*?! However, there are few studies devoted to using nMBRs to
cultivate anammox bacteria. Meng et al."> employed a nMBR to evaluate the performance of
a novel anammox biofilm process using anammox sludge as seed sludge. The results showed
that NRR of about 1.6 kg N per m® per d could be achieved. The non-woven modules as well
as the attached biofilm also prevented the loss of free bacteria effectively. Although they
analyzed the composition of the bacterial community in the reactor, the definite enumeration
of anammox bacteria was not reported. Therefore, further investigation of the components
and amount of biocenosis during the anammox start-up period using mixed sludge is needed.
In another aspect, Meng et al."” laid emphasis on investigating the nitrogen removal limit of
non-woven modules with seeding mature anammox bacteria, while more attention was paid
to explore a program with more potential for municipal and industrial applications using
mixed sludge with few anammox bacteria in this research. The concentration and load of

nitrogen pollutant also were set to a scale nearing reality.

This study focuses on comparing the anammox performance of two submerged
MBRs, namely a cMBR and a nMBR. Both reactors were inoculated with the same type of
seed sludge for anammox start-up. Start-up time and nitrogen removal performance were
compared between these two reactors. Furthermore, high-throughput sequencing (Illumina
MiSeq sequencing), fluorescence in situ hybridization (FISH) and real-time quantitative PCR
(qPCR) were employed to investigate the composition and quantities of the bacterial
communities in the reactors. The variation of N,O emission was also examined during the
entire anammox cultivation process. Since the analysis of the bacterial community in a
nMBR has not been explored in previous research, it could provide valuable information for

quick start-up of the anammox process and its application.



2. Materials and methods
2.1. Experimental set-up

The configuration of the submerged MBR in this study is depicted in Fig. 1, which shows a
double-walled cylindrical column with an inner diameter of 14 cm and a height of 50 cm. The
only difference between the two MBRs was the selection of membrane modules (Fig. 1(5),
c¢cMBR: hollow fiber membrane and nMBR: non-woven fabric). The hollow fiber membrane
module (absolute pore size: 0.1 pm) consisted of 100 tubes (diameterca. 1 mm,
length ca. 300 mm) and the non-woven fabric module (a pore size of 0.1 mm approximately)
was composed of two same rectangular modules (24 cm % 10 cm). The filtration area of both

2
membrane modules was around 0.01 m”.

The peristaltic influent pump (BT100-2J, LongerPump, China) was used to adjust the influent
rate for controlling the hydraulic retention time (HRT). A liquid level sensor was placed at a
height of 39 cm in the reactor to maintain an effective volume of 6 L. A level-controlled
peristaltic effluent pump (BT300-2J, LongerPump, China) was used for drainage. The TMP
of the membrane module was monitored by a vacuum gauge connected with an effluent
pump. A thermostatic bath was connected to the double wall of the reactor to maintain the

temperature at 33 °C. Both MBR reactors were also covered with tinfoil for light avoidance.

Fig. 1 Schematic diagram of the reactor system for anammox enrichment. (1) Influent tank,
(2) influent pump, (3) stirrer, (4) argon, (5) membrane module, (6) vacuum gauge, (7) gas
outlet, (8) level sensor, (9) effluent pump, (10) effluent tank.



2.2. Operational strategy

The seed sludge was a mixture of 1/4 anammox sludge and 3/4 anaerobic granular sludge.
Anammox sludge was taken from a lab-scale UASB reactor which was used for anammox
process start-up”” and the anaerobic sludge was obtained from a running UASB reactor. 4 L
mixed sludge was divided equally to control the initial mixed liquor suspended solids

(MLSS) at 4000 + 50 mg L™ in cMBR and nMBR.

The composition of synthetic wastewater for anammox bacteria enrichment is shown
in Table 1 and the trace elements were composed of EDTA: 20.0 g L', FeSO,: 5.0 g L™,
ZnSO,4 7H0: 0.43 g L', CoCly-6H,0: 0.24 g L', MnCl,-4H,0: 0.99 g L', CuSO4-5H,0:
0.25 g L', Na;M00O4-2H,0: 0.22 g L', NiCl,-6H,0: 0.19 g L', Na,SeO4-10H,0: 0.21 g
L' and H3BO4: 0.014 g L™'. The ratio of ammonium to nitrite concentration in synthetic
wastewater was set to 1:1.20. In order to maintain anaerobic conditions in each reactor, the
synthetic wastewater was fed to the reactor after deoxygenation by flushing with argon gas.
The pH of the influent varied in the range of 7.5-8.0 without intended control. The injection
rate was adjusted to maintain the initial HRT at 48 h (the first 10 days was set to 96 h for
anammox bacteria in seed sludge to adapt to the new environment), and then the HRT was
shortened by increasing the injection rate when the removal of ammonium and nitrite was
effective (>90%) and stable. The membrane module was replaced or cleaned chemically

when the TMP reached up to 45 kPa to prevent the membrane fouling.

Table 1 Composition of synthetic wastewater for enrichment

Substance Concentration Unit

(NH4),SO0,4 594 mg L™
NaNO, 746 mg L™
KHCO; 500 mg L™
CaCl,2H,0 180 mg L™
MgS0,-7H,0 120 mg L™
KH,PO, 27 mg L™
Trace elements 1 mL L™




2.3. Chemical analyses

The concentrations of ammonium, nitrite and nitrate were measured according to standard
APHA method after filtering samples through a 0.45 um syringe filter. The MLSS of sludge
and suspended solids (SS) of effluent were also determined according to standard
methods.” A digital portable DO meter (HQ40d, Hach, America) and a microelectrode
(5307, Unisense, Denmark) were employed to detect DO level and N,O emission in liquid,

respectively.

2.4. DNA extraction and Illumina MiSeq sequencing

A 1 mL biomass sample from each reactor was collected and harvested by centrifugation for
DNA extraction on days 60 and 120 using a PowerSoil™ DNA Isolation Kit (MO BIO
Laboratories, USA) according to the manufacturer’s protocol. Based on the main existing
form of sludge, the biomass sample in cMBR was collected from suspended sludge while

cake layer biofilm was employed for nMBR.

Agarose gel electrophoresis (1%), staining with ethidium bromide solution, was
adopted to assess extracted DNA quality. The following PCR reactions were processed on an
ABI GeneAmp® 9700 (Applied Biosystems, USA) and the PCR product was gel purified.
Afterwards, [llumina MiSeq sequencing was carried out by Shanghai Majorbio Bio-pharm

Technology Co., Ltd (Shanghai, China) using DNA samples on day 120.

2.5. Fluorescence in situ hybridization (FISH)

FISH analysis was applied to verify the existence and distribution of anammox bacteria in
mature sludge. The sludge samples were collected from both reactors on day 120. The
EUB338Mix (EUB338, EUB338-11 and EUB338-IIl) probe (FITC-labeled) was used to
monitor almost all bacteria (green) while anammox bacteria (red) were targeted using an
AMXS820 probe (Cy3-labeled). An Olympus BX53 confocal scanning laser microscope
(Olympus, Japan) was employed for image acquisitions. Fluorescence images obtained were
also processed in a semi-quantitative analysis using the software Image-Pro Plus 6.0. The

concrete steps of FISH were conducted as described elsewhere.**

2.6. Real-time quantitative PCR (qPCR)



Amx809F and Amx1066R (Table 2) were used as the primer set to target the 16S rRNA gene
for quantifying anammox bacteria.” The concrete steps of qPCR were carried out according

to the previous study? and the relevant curves were added as ESI (Fig. S1 and S27).

Table 2 List of PCR primers used in this study

Primer name Target Sequence (5'-3") Target site Annealing temperature
0

Amx809F Anammox GCCGTAAACGATGGGCACT 809-826 60

Amx1066R Anammox AACGTCTCACGACACGAGCTG  1047-1066 60

3. Results and discussion

3.1. Enrichment and reactor performance

The initial nitrogen loading rate (NLR) which was applied in the cMBR was 67.5 mg N per L
per d and the influent ammonium and nitrite concentrations were maintained around 123.3 +
4.0 and 152.4 + 3.7 mg L' respectively as shown in Fig. 2. During days 0 to 12, the input
ammonium was barely consumed while much more nitrite was consumed, indicating no
significant anammox phenomenon was detected. The effluent nitrate concentration ranged
from 0 to 5 mg L™, which might be attributed to endogenous denitrification since no organics
were fed as in other relevant research.’®?” After 30 days, the removal efficiencies of
ammonium and nitrite were about 44.8 = 0.7% and 52.8 = 1.0%, leading to a NRR of about
63 mg N per L per d. The occurrence of the anammox process could be confirmed by
ammonium (removal efficiency varied between 44.8 and 87.6%) and nitrite (removal
efficiency varied between 52.7 and 91.0%) being consumed synchronously in conjunction
with nitrate production in the range of 9.0-35.8 mg N per L. The increasing ammonium and
nitrite removal efficiencies reflected a tendency toward gradual increase in anammox

activity.

During days 56 to 60, both ammonium and nitrite removal efficiencies were above
90%, suggesting a successful anammox start-up. However when the NLR was further
increased to 203.2 mg N per L per d from days 64 to 72, the nitrogen removal performance
suddenly decreased to 66.0 + 4.8% and 60.4 = 9.1% for ammonium and nitrite respectively.
Literature shows that a residual nitrite concentration of 50 mg L™ could inhibit anammox
bacteria partially while a 100 mg L' concentration could inactivate anammox bacteria

completely.”® As the cMBR did not present the capacity for accommodating higher nitrogen



concentrations of nMBR, the NLR was adjusted back to 137.2 mg N per L per d again
through regulating the HRT to the initial 48 h to avoid damage by nitrite. After that, the
performance of cMBR improved gradually again. On day 108, the ammonium and nitrite
removal efficiencies were steadily maintained at 94.0 = 1.5% indicating the success of

anammox activity recovery.
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Fig. 2 The nitrogen removal performance of the cMBR and nMBR.



The initial nitrogen compound concentrations together with the NLR of nMBR were
set to the same values as those for cMBR while endogenous denitrification was also found
during days 0 to 12 which led to low ammonium and high nitrite removal efficiencies. From
days 16 to 28, the removal of ammonium and nitrite improved rapidly to 64.8 + 20.2% and
79.6 £ 12.0% respectively, revealing significant evidence of anammox activity, and then
nMBR achieved stable ammonium and nitrite nitrogen removal above 90% on day 44.
Similarly, in order to supply efficient nutrients and increase anammox growth capacity, the
NLR was also increased to 203.2 mg N per L per d on day 64. On the following day, the
nitrite concentration of the effluent increased to 38.4 mg N per L and the total nitrogen
removal efficiency dropped to 67.7%, which was consistent with the phenomenon observed
by Isaka et al. * However, unlike the inferior performance of cMBR, after accommodation for
a few days, anammox removal in nMBR rose significantly again. During days 84 to 100, the
nitrite removal efficiency remained close to 100%, while ammonium removal efficiency

varied from 88% to 95%.

No inhibition of nitrogen removal was observed in nMBR until the NLR was
increased by 2 times (from around 141.7 to the maximum 283.3 mg N per L per d) on day
104, when the ammonium and nitrite removal efficiencies speedily declined to 29.9 £ 1.2%
and 39.7 + 0.8% respectively. Afterwards, the anammox activity in the system was recovered
within 4 days. On day 128, the nMBR exhibited 2-times the NRR (nMBR: 245.4 mg N per L
per d, cMBR: 122.6 mg N per L per d), showing the enormous advantage of adopting a non-
woven fabric for improving the NRR. Compared with other relevant research demonstrated
in Table 3 (start up from activated or anoxic sludge), the nMBR could accomplish the start-up
of the anammox process successfully in a shorter time with a higher NRR and nitrogen
removal efficiency. In addition, inoculation with mixed sludge rather than the total anammox
sludge used in many other studies would decrease the financial pressure during start-up and

operation due to the scarcity and rarity of anammox sludge.

Fig. 3 illustrates the values of consumed nitrite/ammonium ratio and produced nitrate/
consumed ammonium ratio. The values of consumed nitrite/ammonium ratio in the two
reactors during the anammox stage varied from 1.20 to 1.30, which was a little lower than the
theoretical value of 1.32 as described in eqn (1). This could partly be attributed to the influent
nitrite/ammonium ratio of 1.20 aimed at avoiding the damage of high residual nitrite on
anammox bacteria. The existence of nitrification and denitrification also contributed to this

phenomenon. The values of the produced nitrate/consumed ammonium ratio in the two



reactors during the anammox stage also varied in a normal range of 0.24 to 0.29, approaching
the theoretical value of 0.26. Corresponding with the lower nitrogen removal efficiency in
cMBR from day 64, the values of nitrite removal/ammonium removal in cMBR also were
lower than those in nMBR, particularly during days 64 to 92. Such long-term different

nitrogen loading might further lead to an effect on biomass or microorganism growth.

Table 3 Comparison of different MBR anammox reactors

Reactor Source Membrane Start-up conditions Maximal Ammonium Nitrite Start- Reference
type sludge module NRR removal removal  up
Ammonium Nitrite (mgN/L efficiency efficiency time
(mg/L) (mg/L) /d) (%) (%) (day)
nMBR  Activated Non-woven 40 53 1047.5 90.9 95.0 64 17
sludge fabric”
nMBR  Anammox Non-woven 25 25 1600 >80 >90 — 13
sludge fabric
MBR Activated  Hollow 50 50 80 >90 >90 50 10
sludge fiber
membrane”
MBR Activated  Hollow 50 50 345.2¢ ~100 ~100 59 10
sludge fiber
membrane
MBR Anoxic Hollow 25 25 218.5 >95 >95 25¢ 21
sludge fiber sheet
MBR Anammox Hollow 1680 1680 1600 — >99 — 11
sludge fiber
membrane
MSBR  Anammox Hollow 75.3 83.7 710 >80 >90° — 14
sludge fiber
membrane
¢cMBR  Mixed Hollow 126 151.3 124.2 >95 >95 56 This study
sludge fiber
membrane
nMBR  Mixed Non-woven 126 151.3 245.4 >95 >95 44 This study
sludge fabric

a A non-woven fabric membrane was used as the external membrane module in this study.
b A hollow fiber membrane module was employed as the curtain shape in this study.
¢ NRR was considered as the removal of ammonium and nitrite in this study.

d Start-up date was defined as the end of the unstable phase in this study.e The average total nitrogen removal
efficiency in the stable stage was 73.6% in this study and the MSBR was a membrane sequencing batch reactor
with a submerged hollow fiber membrane module for biomass retention.
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Fig. 3 The values of nitrite removal/ammonium removal in cMBR (m) and nMBR
(®) and the values of nitrate production/ammonium removal in cMBR (0) and nMBR
(o) from days 32 to 130

3.2. Biomass growth and retention

The main purpose for adopting a MBR configuration was to minimize the loss of biomass
through effluent flow. During the whole experiment, the effluent SS from the cMBR was less
than 15 mg L™', whereas nMBR showed a higher biomass loss (25-35 mg L™"). On day 60,
the effluent SS in nMBR dropped below 19 mg L' because the suspended sludge turned into
attached biofilm moderately, preserving more precious anammox bacteria, and was

maintained at less than 13 mg L' from day 90 (Fig. S3).

Apart from the function of membrane-like separation, the non-woven fabric modules
also served as biofilm carriers. Thus, anammox bacteria in the suspended sludge were
attached to the non-woven fabric due to the significant attachment propensity of anammox
bacteria."” The shear stress, which generated from water flow crossing the flat non-woven
membrane, also directed biomass to approach the fabric and finally attach on the membrane
loosely.*® With the extension of this process, the loose biofilm structure became denser. The

suction from the effluent pump might also facilitate this phenomenon.
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After 130 days of operation, nearly all biomass in cMBR existed in the form of
suspended sludge with a little sludge adhering on the membrane surface, and the MLSS in
c¢MBR gradually climbed to over 6650 + 50 mg L', On the other hand, the biomass in nMBR
mainly presented as attached biofilm on the non-woven fabric while a small number of
residual free living bacteria were observed, resulting in a difficulty in MLSS evaluation. At
the end of the operating stage, a dry weight of 46.48 g of dominant attached growth biomass
and 254 + 20 mg L' of MLSS were detected, representing approximately 8000 + 20 mg
L " of total MLSS in nMBR. In addition, the attached biomass on the non-woven membrane
could act as a permeable reactive barrier for nitrogen removal and ammonium-rich
wastewater would be disposed of again by the microorganisms in the cake layer before being
discharged. Analysis of the nitrogen concentration showed that around half of the ammonium
(ca. 49%) and nitrite (ca. 53%) in the sludge mixture of nMBR were removed during their

transport to the effluent through the biofilm.

3.3. Illumina MiSeq sequencing analysis

The pyrosequencing-based analysis of 16S rRNA genes was used to assess the compositions
of the bacterial communities. Good’s coverage values were 91.34% and 91.60% for cMBR
and nMBR, respectively, which indicated that the number of sequences was sufficient to
characterize the microbial communities. The composition of bacterial communities at the
phylum level in both reactors is shown in Fig. 4(a). The top 9 phyla observed in cMBR and
nMBR were Actinobacteria, Armatimonadetes, Bacteroidetes, Chlorobi, Chloroflexi,

GOUTAA4, Nitrospirae, Planctomycetes and Proteobacteria.

Planctomycetes was the most important division (Fig. 4(b)), comprising
approximately 14.5% (4189 reads) in cMBR and 11.8% (4755 reads) in nMBR. Anammox

bacteria are mainly identified as Planctomycetes.*'

However, with regard to species,
Illumina MiSeq sequencing analysis cannot indicate specifically what these microorganisms
are, as most of them are unclassified Planctomycetes. Only two of the 102
detected Planctomycetes operational taxonomic units (OTUs) were identified to be the
recognized anammox bacteria species (CandidatusKuenenia and Candidatus Jettenia). In
addition, not all the detected Planctomycetes could be defined as anammox bacteria, and thus

anammox bacteria as Planctomycetes had a quite lower abundance than expected.

12
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. - 3234
Similar to previous findings,™

there were some other phyla in the reactors
coexisting with anammox bacteria (i.e. Planctomycetes). The most abundant phylum
was Proteobacteria whose relative abundances were 18.0% (5147 reads) in cMBR and 21.5%
(8971 reads) in nMBR. Previous studies indicated that several species of f-

Proteobacteria (38 OTUs, 3233 reads in cMBR; 54 OTUs, 5530 reads in nMBR) could
13



embody low anammox activity to convert ammonium and nitrite to N, using nitrogen dioxide
as an electron acceptor, for instance autotrophic aerobic ammonium-oxidizing bacteria
(AAOB), especially Nitrosomonas eutropha and N. europaea.**>* Another abundant phylum
was Chloroflexi bacteria (4416, 9641 reads in cMBR, nMBR respectively), which has been
found frequently in anammox reactors, playing an important role in sludge granulation and
biofilm formation.">”** The numbers of Chloroflexi bacteria coincided well with
experimental results of significant biofilm formation in nMBR while such a phenomenon in

c¢MBR was not clear.

Fig. 5 depicts the phylogenetic tree based on 16S rRNA gene fragments of almost all
bacteria in cMBR and nMBR. As part of the Illumina MiSeq sequencing analysis, the
phylogenetic tree reflects the main bacteria communities and their relatives in public
databases. Bootstrap values (>50%) are indicated at branch points. The number 0.01 is the
scale bar, which represents 0.01 nucleotide substitutions per nucleotide
position. Candidatus Kuenenia (7, 2 reads in cMBR, nMBR respectively)
and Candidatus Jettenia (9, 86 reads in cMBR, nMBR respectively) were the only definitely
detected anammox bacteria genera, which showed a relatively high genetic similarity with
the Blastocatella genus, which is affiliated to Actinobacteria as one of the dominant bacterial
communities in soil. Overall, these results suggest that [llumina MiSeq sequencing, used with
the aim of detecting the categories and quantities of universal bacteria based on 16S rRNA,
was not effective or sensitive enough for this anammox culture.*>*® This might be attributed
to sensitive anammox genes being mainly 250 bp whilst [llumina MiSeq sequencing mainly
focuses on genes of about 300—400 bp. Therefore, FISH and qPCR analysis were adopted for
further detection of the proportion and quantity of anammox bacteria to improve the

sensitivity and specificity.

14
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Fig. S Phylogenetic tree of clones obtained from DNA samples of cMBR and nMBR used in
[llumina MiSeq sequencing analysis.

3.4. FISH analysis

Sludge samples were collected from cMBR (suspended growth sludge) and nMBR (attached-
growth biofilm) on day 120 for FISH analysis to investigate the spatial distribution and
proportion of anammox bacteria. As shown in Fig. S4,1 the red color, which represents
anammox bacteria, was observed in both sludge samples. Through relative abundance
analysis using Image-Pro Plus 6.0, the results also revealed that anammox bacteria accounted

for about 58% of the total bacteria in nMBR which was significantly higher than those (51%)
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in cMBR. Although the results are estimated values with certain limitations, they showed that
anammox bacteria had been the dominant community in the reactors and that non-woven
fabric is more adaptable for the proliferation of anammox bacteria. The observations, together
with the findings of qPCR analysis, corresponded well to the performance of nitrogen

removal in reactors: the more anammox bacteria, the higher the nitrogen removal efficiency.

3.5. qPCR analysis

To further investigate the benefit of non-woven fabric in terms of proliferating anammox
bacteria, qQPCR analysis was performed to enumerate anammox bacteria precisely. The qPCR
enumeration results on day 60 demonstrated improved proliferation for nMBR with more
preferable anammox cells enumeration of 1.24 x 107 copies per mL compared to cMBR (6.79
x 10° copies per mL). In the e of assuming all nitrogen was removed by anammox bacteria,
the estimated per cell nitrogen removal rate in cMBR was also much higher than that in
nMBR due to the orders of magnitude difference in cell enumeration. In other words, the low
per cell nitrogen removal rate in nMBR indicated that nMBR had higher potential for
improving nitrogen removal by anammox bacteria, which could be attributed to the use of the

non-woven fabric membrane.

Afterwards, the numbers of anammox bacteria continued to ascend speedily and
reached 5.32 x 10® copies per mL in cMBR and 1.07 x 10’ copies per mL in nMBR on day
120. Nevertheless, the estimated per cell nitrogen removal rate declined again considering the
change in the orders of magnitude. Variation in the activity of anammox bacteria is a
common phenomenon in the stationary phase of bacteria community growth,’” meaning that
insufficient substrate supply could become the main restriction factor. Once higher nitrogen
concentration was employed to satisfy the need of anammox bacteria, a higher NRR and

more anammox bacteria could be obtained.

3.6. N,O emission

Considering the existence of nitrifying bacteria and denitrifying bacteria in the seed sludge,
N0, which is a typical by-product of nitrification and denitrification, could still be produced
in the reactors during the cultivation of anammox bacteria. The initial liquid N,O emissions
from cMBR and nMBR were measured as about 56.8 and 58.0 pumol L' (F ig. 6(a)),

respectively, which could be attributed to endogenous denitrification consuming the bacteria
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themselves as a carbon source as well as using the nitrite/nitrate existing in the influent or
transformation by the anammox process.***’ Many studies also found that anammox bacteria
(affiliated to Planctomycetes, 4189 and 4755 reads in cMBR and nMBR respectively),
nitrifying and denitrifying bacteria (affiliated to Proteobacteria, 5147 and 8971 reads in
¢cMBR and nMBR respectively) coexist in anammox reactors.”>”* Hence, the occurrence of

denitrification was entirely possible.
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Fig. 6 (a) The total liquid N,O emission in cMBR and nMBR; (b) the liquid N>,O emission
per consumed NRR (1 mg N per L per d) in cMBR and nMBR.
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During the 60 day period the emission of liquid N,O in nMBR fell from 58.0 to 41.6
umol L' gradually. Meanwhile, the emission in ¢cMBR also declined, but significantly less
(46.1 umol L"), suggesting that anammox bacteria replaced the nitrifying and denitrifying
bacteria to become the dominant bacteria in the two MBRs with more significant tendency in
nMBR. From day 70, the HRT of nMBR moderately was shortened to 12 h, resulting in the
NLR doubling to 283.3 mg N per L per d approximately. As a result, liquid N,O emission in
nMBR increased dramatically to 60.5 pmol L' on day 120 associated with a transient
decrease of anammox activity to accommodate the new conditions, as excess nitrogen was
provided to residual nitrifying bacteria and denitrifying bacteria. The results could also be
proved by the presence ofProteobacteria, 18.0% of relative abundance (5147 reads) in cMBR
and 21.5% (8971 reads) in nMBR, such as Nitrosococcus oceani and Nitrosococcus

halophilus (y-Proteobacteria), Nitrosomonas and Nitrosospira (f-Proteobacteria).”®

The arithmetical unit was changed to umol d per g N (N,O emission/NRR) (Fig. 6(b))
to compare the N,O emission in cMBR and nMBR for treating commensurate nitrogen. The
downward trend in both two reactors during the whole cultivation demonstrated the gradual
purified anammox process and strengthened anammox activity. Being consistent with the
performance of nitrogen removal, the N,O emission indexes of nMBR were lower than those

of cMBR, reflecting the diminishment of N,O emission being superior to that in cMBR.

3.7. Membrane fouling

During the entire operation period, the hollow fiber module in cMBR was replaced once on
day 80 when the TMP reached 45 kPa (Fig. 7), whereas the TMP development of the non-
woven module in nMBR was only 25 kPa and the module was not replaced or cleaned during
the 128 days of operation, indicating less serious membrane fouling. Some researchers have
reported that a bigger pore size filter could cause more membrane fouling issues, particularly
pore blocking in micro-filtration in terms of the same biomass concentration in
MBRs. %4 Nevertheless, the different separation modes of hollow fiber membrane (micro-
filtration) and non-woven fabric (macro-filtration) meant the discipline was not appropriate in
this situation. Such a distinction was also the main reason for the large TMP gap. As the
practical pore sizes of the hollow fiber membrane and non-woven fabric decreased gradually
with the formation of a loose cake layer, especially in nMBR, the increasing trend of
membrane fouling corresponding with TMP became lower and lower (Fig. 7). With a lower

MLSS of suspended sludge (e.g. cMBR: 6650 + 50 mg L', nMBR: 254 + 20 mg L' on day

18



130), the TMP in nMBR was lower than that in cMBR during the whole cultivation. The
TMP growth rate of nMBR also slowed down gradually while the decrease rate of suspended
sludge slowed down. Thus, the use of a non-woven module could mitigate membrane fouling,

indicating notable lower operation cost and competitive advantage compared to polymer

membranes.
80
70 —/— cMBR
—{3—nMBR
60 |

TMP (kPa)

R | 1 | | 1 1 | 1 1 | 1

0 10 20 30 40 50 60 70 80 90 100 110 120 130

Time (days)

Fig. 7 The variation of TMP in cMBR and nMBR

4. Conclusions

This study compared the performance of two MBRs during anammox bacteria cultivation.
Compared to cMBR, nMBR exhibited the advantage of accelerating the start-up of the
anammox process corresponding to a higher NRR of approximately 245.3 mg N per L per d.
The non-woven membrane was beneficial to the formation of biofilm, which contributed to
anammox bacteria proliferation, leading to a gPCR enumeration result of 1.07 x 10’ copies
per mL. The reduction of N,O emission was also observed during the period of operation.
Moreover, nMBR could lead to less serious membrane fouling due to less TMP development.
Overall, nMBR could be a promising, labor-saving and money-saving technology for
anammox process start-up. In view of the start-up time and engineering cost, the method of
this paper might be a more suitable choice for further municipal and industrial applications of

anammox technology.
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