
© 2015 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained 
for all other uses, in any current or future media, including reprinting/republishing this material 
for advertising or promotional purposes, creating new collective works, for resale or 
redistribution to servers or lists, or reuse of any copyrighted component of this work in other 
works. 



  

4 

Abstract— An electroencephalography (EEG)-based 
classification system could be used as a tool for detecting 
cognitive fatigue from demanding computer tasks.  The most 
widely used feature extractor in EEG-based fatigue 
classification is power spectral density (PSD). This paper 
investigates PSD and three alternative feature extraction 
methods, in order to find the best feature extractor for the 
classification of cognitive fatigue during cognitively demanding 
tasks. These compared methods are power spectral entropy 
(PSE), wavelet, and autoregressive (AR). Bayesian neural 
network was selected as the classifier in this study. The results 
showed that the use of PSD and PSE methods provide an 
average accuracy of 60% for each computer task. This finding 
is slightly improved using the wavelet method which has an 
average accuracy of 61%. The AR method is the best feature 
extractor compared with the PSD, PSE and wavelet in this 
study with accuracy of 75.95% in AX-continuous performance 
test (AX-CPT), 75.23% in psychomotor vigilance test (PVT) 
and 76.02% in Stroop task (p-value < 0.05).  
 

I. INTRODUCTION 

Cognitive fatigue refers to a psychobiological state, 
characterised by feelings of tiredness and discomfort from 
demanding tasks or exercise. Indeed, recent research has 
shown there is an impairment to exercise performance 
following cognitively demanding computer tasks [1, 2]. The 
computer task used to induce cognitive fatigue in the 
aforementioned research was the AX-continuous 
performance test (AX-CPT). Other tasks such as the 
psychomotor vigilance test (PVT) and the Stroop task may 
also induce fatigue and impair performance [3]. The AX-CPT 
demands vigilance, working memory and response inhibition, 
and requires participants to respond to a string of letters by 
pressing one of two buttons. The PVT is based on a simple 
visual reaction time to the stimuli presented at random 
intervals of time. The Stroop task requires response inhibition 
and sustained attention on controlled processes as 
participants respond to the colours of words rather than the 
meaning of the words. As a result, a practical tool for 
measuring and detecting cognitive fatigue measurement and 
detection is required. 

The most common tools used to assess cognitive fatigue 
are the individual-report scaling questionnaires [1]. Whilst 
these tools are simple to use, they are indirect assessments of 
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cognitive activity and may lack the sensitivity required to 
detect small but important changes in cognitive fatigue. 
Moreover, it may not able to detect the onset of the fatigue if 
the cognitive fatigue occurred before the questionnaire had 
been recorded. Other tools which can be used for fatigue 
measurement include capturing eye movements using camera 
systems or electroocolugraphy (EOG), detecting the heart 
rate variability using electrocardiography (ECG) and via 
brain activity using electroencephalography (EEG) [4].  EEG 
is considered a promising method of cognitive fatigue 
detection, as previous research has revealed an influence of 
fatigue on brain activity [5]. The EEG has also been widely 
used in sleep stage analysis [6]. As a result, this paper 
explores the use of computational intelligence with different 
types of feature extractors for EEG-based detection of 
cognitive fatigue induced by demanding computer tasks. 

The most common feature extraction method for fatigue 
study using EEG is power spectral density (PSD). This 
converts the time domain data into frequency domain and 
groups data into EEG bands (delta, theta, alpha and beta) [7]. 
Other feature extraction methods in other EEG applications 
such as brain computer interface (BCI) include power 
spectral entropy (PSE) [8], wavelet as the time-frequency 
method [9] and autoregressive (AR) as the parametric method  
[10]. Linear and non-linear classifiers are the common 
classification method for biomedical applications [11]. Since 
the EEG signal is a non-linear and multi-dimensional signal, 
this paper uses Bayesian neural network as a classifier [12]. 
For practical application, a configuration with fewer EEG 
channels is preferable as it is time consuming to set up the 
system, if many channels are included. A recent study shows 
an association of cognitive fatigue with the frontal area in 
cognitively demanding tasks [13].   

This paper investigates the classification of cognitive 
fatigue against alert states from experiments of demanding 
computer tasks by using different feature extraction 
algorithms including PSD, PSE, wavelet and AR methods 
with only two EEG channels used on frontal sites (F3 and 
F4). For the classifier, the Bayesian neural network is used in 
this paper which is capable of improving the generalization 
of neural network [12]. 

II. METHODOLOGY 

A. Data Collection 

Fourteen participants aged between 18 and 30 years 
participated in three cognitively demanding computer tasks 
which were approved by the University Research Ethics 
Committee. Each experimental session had duration of 45 
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minutes and sessions were conducted on separate days. The 
three computer tasks were: PVT, AX-CPT and Stroop task. 
The PVT task is used for testing of visual reaction time. In 
this task, a counter appeared in the centre of the screen until 
a button was pressed by the participants which stopped the 
counter to display the reaction time (RT). If the counter 
reached 500 ms without a response, the message ‘missed’ 
was displayed. If the response button was pressed before or 
within the first 100ms of the timer being displayed, an error 
was signaled by a beep sound with the displaying of a ‘false 
start’ message. In the AX-CPT task, sequences of letters 
were continuously presented one at a time on a computer 
screen. Participants were required to press one button for a 
target trial and a separate button for a non-target trial. A 
beep sound was elicited for any missed or incorrect response 
as a prompt to increase speed and accuracy. In the Stroop 
task, coloured words (red, blue, green, yellow) were 
presented one at a time and participants were required to 
indicate the colour of a word (not the word’s meaning) by 
pressing a button on the response box corresponding to the 
colour of the word displayed on the screen.  

 

Figure 1.  Two EEG channels data collection. 
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Figure 2.  Effect of cognitive tasks on cognitive fatigue based on the VAS 

An EEG system (Flexcomp Infinity, Thought 
Technology) was used for the recording of brain activity 
with the two channels positioned at frontal areas (F3 and F4) 
of the international 10-20 system. Brain activity was 
recorded at a sampling rate of 256 Hz with the signal as 
shown in Fig. 1. Subjective fatigue was also measured using 
visual analogue scales (VAS). Both EEG and VAS were 
measured before, and every 10 min following treatment 
(post-treatment) up to 60min. In each EEG measurement, a 
sample with duration of 3 minutes was recorded. The EEG 
data was divided into alert and fatigue groups. The first 
3min from the pre-treatment was used for the alert group. 
For the fatigue group, it was taken from the EEG data of 
10min post treatment of each task.  Fig.2 shows the plot of 

effects of cognitive tasks on cognitive fatigue using the VAS 
values. This validates occurrence of fatigue at post-treatment 
at ‘0 min’ and ’10 min’ of the post treatment sessions.    

B. Pre-Processing and Feature Extraction 

The raw EEG data contained some artifacts such as the 
noise signal from the eyes, heart and muscles; as a result, the 
raw EEG data was imported to EEGLAB [14] for visual 
inspection and rejection of artifacts. The 3 min data from the 
pre-treatment (alert) group and from each of the 10 min 
post-treatment (fatigue) groups were segmented by using 2 
seconds moving windows with overlapping of half of a 
second. This resulted in 357 segments from each 3 min of 
data, with 4998 data point of alert state and another 4998 
data point for fatigue state of each task (AX-CPT, PVT and 
Stroop tasks) for 14 participants. A number of feature 
extraction algorithms were used to extract the features of 
these data. In this study, four feature extraction algorithms 
were used for comparison and best algorithm in term of 
accuracy could be found. The feature extractors for the 
comparison were PSD, PSE, Wavelet and AR. 

The PSD is the most popular method in EEG analysis of 
fatigue research which is based on frequency analysis [5, 7]. 
In this paper, the Welch spectrum of the PSD was used. This 
can be calculated using the Fast Fourier transform (FFT) 
method. The PSD of the Welch spectrum is given by: 
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where the ˆ ( )wP f denotes the Welch PSD estimation, 

ˆ ( )lP f denotes the periodogram estimate of lth segment and 

S denotes the number of segments. The time domain EEG 
data is converted into the frequency domain covering the 
four EEG bands which include delta bands (0.5-3Hz), theta 
(3.5-7.5Hz), alpha (8-13Hz) and beta (13.5-30Hz). The total 
power for each band was used for the features which were 
calculated using the numerical integration of trapezoidal 
method. 

 The PSE can be calculated based on the PSD value which 
is given by: 

1

1
( ) ln( )

ln( )

N

i i
i

H f p p
N 

    (2)

where pi denotes the spectral amplitudes of frequency bin i 
which can be calculated as the normalized PSD at each 
frequency bin, N denotes the number of the frequency bin. 
The PSE resulted in the same size of the matrix features as 
the PSD. 

The wavelet is the time-frequency-based feature 
extraction method which has been use in the brain-computer 
interface (BCI) as in other EEG-based studies [9] [15]. This 
study used discrete wavelet transform (DWT) with 
Daubenchies as the mother wavelet. With EEG sampling 
frequency 256 Hz, a total of 5 levels of the wavelet 



  

decompositions are needed for constructing of the delta, 
theta, alpha and beta bands.  

The AR modeling is a parametric method of feature 
extraction which has been used in another application  of 
EEG-based system  [10] with the calculation as follows: 
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where x(m) represents the signal at time m, P is the order of 
the AR,  a(k) represents the AR coefficients and e(m) 
represents the white noise  with zero means error and finite 
variance. The order of AR was set at 4 in this study. Each of 
the feature extractors (PSD, PSE, wavelet and AR) resulted 
in 4 units of features in each EEG channels or 8 units for 
two EEG channels. 

C. Classification 

Bayesian neural network was used in this application. 
This has been identified as a useful approach to handle non-
linear classification problems [12]. The structure of the 
Bayesian neural network is shown in Fig. 3, which is a three 
layered feed-forward structure and modeled by: 
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where f(.) is the transfer functions which uses the hyperbolic 
tangent function for this paper, m is the input nodes number 
(i=1, 2, …, m), l is the hidden nodes number (j=1, 2, …, l), p 
is the number of output (k=1, 2, …, p), wji is the weight to 
the hidden unit yj from input unit xi, wkj is the weights to 
output (zk) from hidden unit (yj), bj and bk are the biases. To 
improve the generalization and to avoid the over-fitting of 
the neural network, the Bayesian framework was applied, 
which is able to adjust the hyper-parameters to the most 
probable value given by training  the dataset during the 
process of the Bayesian neural network learning [12] [16]. 

 
Figure 3.  The structure of neural network for fatigue vs alert classification 

Based on the Bayesian inference, the posterior 
distribution of the weight vector w of neural network given a 
dataset D is given by: 
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where ( | )p w   denotes the weight prior determined using 

the theory of prior, ( | , )p w D  is the dataset likelihood, α is 
the normalization factor which is usually ignored since it is 
irrelevant to the first level inference, ( | )p D   is the 
evidence for α. In Bayesian neural networks, the optimal 

weights should maximize the weight posterior distribution 
which is equivalent of minimising the total error function. 
The optimal selection corresponds to the highest logarithm of 
the evidence. 

III. RESULTS 

The matrix size of the features is 8 × 4998 units for the 
alert task and another matrix with the size of 8 × 4998 units 
for the fatigue task. The overall matrix size of the 
combination dataset is 8 × 9996 units. The training sets are 
taken from 50% of overall sets and the remaining datasets 
were taken for testing sets. The Bayesian framework is 
applied to determine the best suitable neural network for 
each demanding computer task (AX-CPT, PVT and Stroop) 
by estimating the evidence of a set of neural network with 
different hidden nodes. For the performance measurement, 
the value of sensitivity, specificity and accuracy are used. 

TABLE I.  RESULTS OF  FATIGUE FROM POST-TREATMENT VS. ALERT 
FROM PRE-TREATMENT OF TWO EEG CHANNELS FROM 14 PARTICIPANTS. 

Method 

Cognitively 
Demanding 
Computer 

Tasks 

Correctly Identified
Accuracy 

(%) 
Fatigue Alert 

Sensitivity 
(%) 

Specificity
(%) 

(i) Power Spectral 
Density (PSD) 

AX-CPT 59.02 60.35 60.18 

PVT 60.42 59.88 60.15 

Stroop 61.47 59.75 60.61 

(ii) Power Spectral 
Entropy (PSE) 

AX-CPT 62.37 59.08 60.73 

PVT 60.36 59.95 60.15 

Stroop 60.49 61.69 61.09 

(iii) Wavelet 

AX-CPT 62.59 60.95 61.77 

PVT 61.40 61.55 61.45 

Stroop 63.91 60.10 62.01 

(iv) Autoregressive
(AR) 

AX-CPT 76.20 75.69 75.95 

PVT 76.11 74.35 75.23 

Stroop 79.11 73.77 76.02 

 

Table I shows the results of the classification between 
fatigue state (from post-treatment of the computer tasks) and 
alert state (from pre-treatment of the computer tasks) using 
two EEG channels with three cognitively demanding 
computer tasks (AX-CPT, PVT and Stroop). The results 
from four feature extraction methods are presented for 
comparison (PSD, PSE, Wavelet and AR) with Bayesian 
neural networks.  

Using the PSD feature extractor, the sensitivity of each 
computer task is between 59% and 62%, the specificity of 
each computer task is between 59% and 61% and the 
accuracy of each computer task is around 60%. Using the 
PSE as the feature extractor, the sensitivity, specificity and 
accuracy were similar compared to the PSD feature extractor 
as follows:  the sensitivity of each task is between 60% and 
63%, the specificity of each task is between 59% and 62% 
and the accuracy of each task is between 60% and 61%. 
Using the wavelet as the feature extractor, the sensitivity, 
specificity and accuracy are slightly improved compared to 
the PSD and PSE feature extractor as follows: the sensitivity 



  

of each task is between 61% and 64%, the specificity of 
each task is between 60% and 62% and the value of 
accuracy is between 61% and 62%. Using the AR, the 
sensitivity, specificity and accuracy are improved 
significantly compared with the PSD, PSE and wavelet 
methods to: the sensitivity of each task is between 76% and 
80%, the specificity of each task was between 73% and 76% 
and the accuracy of each task is between 75% and 76%. As 
a result, the AR is the best feature extractor in this study 
which provided accuracy of 75.95% for AX-CPT task, 
75.23% for PVT task and 76.02% for Stroop task.   

The plots of the log evidence against the optimum number 
of hidden neurons of the Bayesian neural network training 
from each feature extractor are shown in Fig. 4. For PSD 
and AR feature extractors, the network with nine hidden 
nodes has the highest evidence. For PSE and wavelet feature 
extractors the network with ten hidden nodes has the highest 
evidence. 

 
Figure 4.  Log evidence vs. number of hidden nodes for each feature 

extractor (PSD, PSE, Wavelet and AR) from the Bayesian neural nework 
training 

A statistical significance test was carried out in each 
computer task between the overall accuracy between AR 
feature extractor compared to PSD, PSE and wavelet feature 
extractors with p-value less than 0.05. The results showed 
that the performance of the classification using the AR 
feature extractor is significantly better than other feature 
extractors (PSD, PSE and wavelet) with a 95% confidence 
level. 

IV. CONCLUSION 

In this paper, four feature extraction methods (PSD, PSE, 
wavelet and AR) were investigated  to find the best feature 
extractor for the classification of fatigue and alert from three 
cognitively demanding computer tasks (AX-CPT, PVT and 
Stroop), using two EEG channels of frontal location (F3 and 
F4). Bayesian neural networks were used for the classifier. 
The result shows that using PSD and PSE feature extractors, 
the average accuracy was 60%. This accuracy was improved 
by using the wavelet method of feature extraction with an 

accuracy of approximately 61% for each computer task. A 
further improvement was found by using AR as it is shown 
to be the best feature extractor in each task compared to the 
PSD, PSE and wavelet methods with accuracy of 75.95% in 
the AX-CPT task, 75.23% in the PVT task and 76.02% in 
the Stroop task. The p-value between the AR method 
compared to PSD, PSE and wavelet is less than 0.05 or 95% 
confidence level. Such an improvement in accuracy using 
the AR method may lead to the automatic cognitive fatigue 
detection using the fewer EEG channels. Therefore it is 
recommended that this approach be used to detect fatigue 
during cognitively demanding computer tasks. 
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