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ABSTRACT

Target tracking is a well established field with over fifty years of intense research. 
While in its core, it deals with estimating targets dynamic states, it is also a 
critical component of all ” Situation Awareness” and threat assessment systems. 
These higher layer applications take decisions on important questions like num­
ber of targets, positions of them, the instant and position of their initiation, 
the instant and position of their maneuvers and above all, which of them are 
threatening and/or friendly. The lower level target tracking algorithms feed the 
necessary information to these decision taking systems.

There are a number of target tracking algorithms to cater for the need of 
such systems. Most of these available algorithms are based on filtering theory. 
But it is established that smoothing increases the accuracy of the systems at 
the expense of a slight lag between the instant of estimation and the instant 
at which the parameter of interest is being estimated. Hence smoothing is not 
widely used for practical target tracking applications.

However, the situation awareness system is expected to perform better if 
more precise information is obtained about initiation and termination of the 
targets along with improved discrimination of true/false targets.

This thesis addresses the problem of improved track initiation and main­
tenance with the smoothing framework to provide better information. It first 
reviews target tracking and filtering literature. It introduces the concept of 
random set smoother and derives the IPDA smoother under linear Gaussian 
assumption. IPDA smoother is also derived by extending the PDA smoother. 
Finally a theoretical link is established between Random Set smoothing and 
IPDA smoothing framework. To extend the domain into multiple sensor sce­
nario, the problem of out-of-sequence measurements is also addressed in this 
thesis under target existence uncertainty.

Several realistic scenarios are simulated and the results are verified.





1. INTRODUCTION

1.1 Background

Multi-target tracking is one of the fundamental problems of all surveillance 
and monitoring problems with applications to homeland security, defense and 
others. Target tracking problems include, track initiation, maintenance, state 
estimation, merging, joining and termination. Solving these problems under 
difficult dynamic environmental conditions using sensors of limited capability 
poses a significant challenge. The problems are interrelated and errors in one 
stage have the potential to impact the errors in the other stages. For example, 
if a track was not properly initiated, it will not be confirmed and will lead to 
missed tracks. If a track is not terminated at the appropriate time, it leads 
to false estimates of the number of objects in the area of surveillance. These 
challenging problems have attracted a number of researchers over the last 2 
decades to dedicate significant efforts to solve them. This thesis summarises 
the efforts to explore and address some of these challenges by developing new 
smoothing algorithms and demonstrating their performance in realistic target 
tracking scenarios.

1.2 Target Tracking

The target tracking can be defined as the problem of finding the “best guess" 
about the dynamic state of the target based on the observations received by 
a sensor within its surveillance region. The dynamic state of the target may 
consist of position, velocity, acceleration or any other parameter of interest. In 
its simplest form, a sensor observes a single non-maneuvering target and receives 
noisy measurements from it. The target tracker algorithm estimates the target’s 
dynamic state which is the ’’best guess” based on all observations.

In practice, the sensor may not only receive target originated measurements, 
but also may receive measurements from uninteresting objects sharing the same 
surveillance space. Sometimes the actual target may even go undetected. The 
tracker needs to distinguish between the target originated measurements and 
those originated from ’’clutter” (the unwanted sources).

Moreover, the targets may maneuver (accelerate) at any random point of 
time which is unknown a-priori. Thus the tracker needs to determine the active
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dynamic model that the target is following.
Lastly even the assumption of existence of any target needs to be solved. The 

question of any target’s presence within the sensor range is an uncertain event 
itself. Based on the observations received, a complete automatic tracker first 
needs to resolve this existence uncertainty. In these cases algorithms are to start 
without any prior knowledge of any track and ’’automatically” has to decide 
about the presence of any number of possible targets and then maintain them. 
This type of algorithms have been made to develop such complete algorithms.

The discussion above identifies the key issues of a typical target tracking 
problem. The different levels of uncertainties involved in the scenario are as 
follows:

• Sensor observations inherently contain random noises

• The number of received measurements may change from scan to scan 
because of the presence of ’’clutters”

• The sensor may miss true target altogether in some scans

• The target may maneuver at random instants

• The total number of targets within the surveillance region is unknown a 
priori

• Each target’s initiation, confirmation or termination time are random and 
need to be estimated

The critical task of an automatic target tracker is to reduce uncertainties, 
mentioned above, by ’’suitably minimizing” certain cost functions. Significant 
research has been conducted in this field for more than five decades and several 
algorithms have been proposed in incremental manner to resolve each of the 
scenarios.

1.3 Scope and organization of the thesis

The thesis takes Bayesian approach as its basis for developing target tracking 
algorithm. Research has been carried out to devise algorithms to handle uncer­
tainties and/or randomness of various levels. These can be brought under the 
same framework of Bayesian estimation, [20]. The thesis re-derives the estab­
lished algorithms purely from Bayes’ theorem as an illustration of the validity 
of the idea of taking the theorem as the fundamental one to attack, a target 
tracking problem. In the process the thesis also establishes the approach of 
augmented state as a valid and robust platform for extending the established 
algorithms into smoothing under Bayesian formulation.
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The available literature deals with deriving filter algorithms to handle the 
tracking related issues. In 1960 the filter proposed by R.E Kalman, [39, 40], 
which is now widely known as Kalman Filter, introduced a tool for engineers to 
deal with random uncertainty in real time. It is readily accepted as a core for 
target tracking algorithm. Later filter algorithms to deal with measurement ori­
gin uncertainty were proposed in the form of ’’Nearest Neighbor Filter” (NNF), 
[68, 71, 70] and Probabilistic Data Association Filter (PDAF), [10]. Among 
these PDAF proved to be the most effective one. The solution to target exis­
tence uncertainty was first proposed as a Markovian two-model (’’observable” 
and ’’not observable”) interacting algorithms in [5]. This approach was adopted 
due to the success of similar multiple model algorithm, Interacting Multiple 
Model Filter (IMMF) designed for maneuvering targets, [18]. Later a simpler 
algorithm of Integrated Probabilistic Data Association Filter (IPDAF) was pro­
posed, [61, 59, 60]. It was an extension of PDAF for target existence uncertainty 
with probabilistic techniques to maintain tracks.

Smoothing, as opposed to filter algorithms, uses more observation and there­
fore provides better estimation. While the extension of basic filters like KF into 
smoothing was carried out within 1970, [52, 54, 55, 13, 53], serious research 
effort, addressing the tracking issues, was not present due to more computation 
and memory requirement for smoothing (than filters). Later in 1990, the pop­
ular PDAF was extended to smoothing in [45]. The well established IMMPDA 
was also extended to smoothing for improved maneuvering target tracking in 
clutter, [31, 75, 30, 32, 27, 26].

Smoothing improves estimation compared to filtering simply because of using 
more observation (or information) but at the cost of a time delay. In such a case, 
the improvements in estimating continuous variables like target dynamic state 
may not be that effective in decision taking application like ’’Situation Aware­
ness” or ” threat assessment”. These higher level applications may improve their 
efficiency if a more accurate picture of the actual field scenario is provided to 
them. In that case, parameters representing the overall scenario, like number 
of targets, their initiation/termination instants and locations - may prove to be 
very useful ones for these applications. An effective smoothing algorithm can 
result in a better estimation of these ’’track maintenance” parameters and thus 
help increase the effectiveness of the critical applications like situation/threat 
awareness. In literature, even though filter algorithms are already available for 
automatic track maintenance, smoothing algorithms for the same purpose have 
not been investigated yet.

The scenario is even more critical when there are number of targets present 
and even more so when the dynamics of the targets are co-related. This gives 
rise to Random Set based tracking. Finite State Statistics (FISST), [50, 49, 48, 
46], provides the basics for calculating such scenario under Bayesian recursion.
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But again, while a Random Set based filter is available in the literature, the 
framework has not been extended to smoothing.

The thesis aims to develop a novel Bayesian smoothing algorithm for im­
proving automatic target initiation, tracking and maintenance. The complete 
framework is developed using both the Bayesian and Random Set formalism. 
The associated modeling and assumptions (where applicable) are proposed and 
justified. The assumptions of the problems addressed in this thesis include:

• Both the sensor measurements and the target dynamics are subject to 
random noise

• The target (s) is (are) non-maneuvering

• The sensor receives ’’clutter” originated measurements along with the tar­
get originated measurements. The number of received measurements at 
any certain scan is randomly varying.

• The sensor may miss the target on some scan.

• The existence of the target is not known a priori.

Under the above mentioned conditions of single target tracking, IPDA al­
gorithm has been proved to be the most successful and well established in lit­
erature. Therefore this thesis takes IPDA filter a,s the base and extends it to 
smoothing algorithm. The development of the random set smoother also builds 
a generalized platform which can be extended into smoothing for multiple target 
tracking scenario.

The thesis looks at the comprehensive formulation of the Bayesian smooth­
ing methodologies for automatic target maintenance in clutter with the aim 
of extending to multiple target tracking environment. The thesis also investi­
gates the improvement introduced by the application of the proposed algorithm 
compared to the standard filter algorithm. The improvement in the track main­
tenance parameters along with target dynamic states strengthens the usage of 
such algorithms and makes a significant difference for the decision layer appli­
cations like situation awareness and threat assessment. Thus the contribution 
of the thesis can be summarized as the development of a generic smoothing 
framework for automatic track maintenance (in clutter) and also establishing 
such a framework as the most suitable one by studying the improvement it pro­
vides in estimating several important performance parameters like number of 
targets, distinguishing true and false targets, deciding targets’ termination time 
along with more accuracy in estimating the targets’ dynamic state. The original 
contributions that this thesis make are as follows

• Derivation of an original augmented state IPDA smoother for scenario 
involving target existence uncertainty
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• Formulation of a generalized random set smoother

• Proposing a random set smoother for target existence uncertainty

• Proving a theoretical connection between IPDA smoother and random set 
smoother

• Implementing the proposed smoothers and compare them against the filter 
algorithm

• Designing a flow for the proposed algorithm and simulating it for realistic 
scenarios

• Proposing a theoretical Bayesian modeling for out of sequence measure­
ment problem under target existence uncertainty scenario and the devel­
oped smoothing algorithm as a solution to it. The corresponding model­
ings for IPDA algorithm and random set are also derived.

The thesis is organized as follows. In chapter 2, the general Bayesian ap­
proach for estimation along with smoothing will be outlined. Kalman Filter 
will be derived from Bayesian formulation. The Bayesian modeling will also 
be extended to smoothing and implemented via the demonstration of deriving 
Augmented state KF from the same Bayesian recursion.

Chapter 3 introduces the problem of measurement origin uncertainty. The 
corresponding Bayesian modeling to handle measurement origin uncertainty is 
investigated in this chapter. The model is also shown to reduce to PDAF, 
[10], (as an approximation) which is an effective algorithm for such scenario. 
Augmented state PDAF (AS-PDAF), [22], which is an extension to standard 
PDAF into smoothing estimation, has also been derived in the chapter from 
Bayesian modeling as as illustration.

In chapter 4, the original derivation of augmented state IPDA smoothing 
algorithm is carried out. First the problem of automatic track maintenance is 
introduced and Bayes’ formulation for the scenario is proposed. The standard 
IPDA filter is also derived from the general Bayesian framework. The extension 
of the original Bayesian modeling to smoothing is then fully carried out in step 
by step manner. The necessary assumptions and models are mentioned in the 
course of deriving recursive update equations.

In chapter 5, the generalized random set smoother is derived. The target 
dynamic model and sensor model under the set formalism are proposed in this 
chapter. The belief mass functions for global transition densities and likelihood 
densities are also derived and the Bayesian recursive update for global target 
densities are calculated in the chapter. The specific scenario of target exis­
tence uncertainty is also addressed in the chapter and a resulting random set 
smoother for the specific scenario is formulated from the generalized version.
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IPDA filer and the proposed AS-IPDA smoother are seen to be special cases of 
the generalized random set smoother.

In chapter 6, the issue of out of sequence measurement is modeled for au­
tomatic track initiation scenario. The generalized Bayesian model is first pro­
posed in the chapter. The corresponding target dynamic motion model and 
sensor observation model to cater for delayed measurements (out of sequence 
measurements) for an automatic track maintenance algorithm is detailed in this 
chapter both for IPDA and random set formalism. The model is also shown 
to be following the principle of AS-IPDA and random set smoothing algorithm 
proposed in chapters (4) and (5) respectively.

In chapter 7, the proposed smoothers are then simulated under realistic and 
benchmark tracking environment and compared against established filter algo­
rithms. The comparison has been carried out based on RMS error in target 
state estimation and various track maintenance statistics parameters like num­
ber of confirmed false/true targets, time of termination of a true target and etc. 
The implication of the achieved performance is also explained in the chapter. 
Finally conclusions of the work done so far in this thesis and future direction of 
research are pointed out in chapter 8.

1.4 Conclusion

In this chapter, a brief overview of general target tracking problems has been 
provided. A review of the literature and major milestones in the research of 
target tracking has been outlined. In the light of the literature review, the 
smoothing framework for a particular scenario has been identified as a valid 
significant and potential research area. The scope of the addressed problem of 
the thesis is also outlined in section 1.3. The original contributions of this thesis 
are also clearly defined the section 1.3. Then the organization of thesis is stated 
to clarify the systematic steps taken in the rest of the chapters to reach the 
solution of defined problem theoretically and validated.



2. INTRODUCTION TO BAYESIAN FILTERING AND
SMOOTHING

2.1 Introduction

This chapter provides the theoretical background for estimation and smoothing 
algorithms from Bayesian perspective. It will formulate the problem of target 
tracking within the Bayesian reasoning framework. The well known Kalman 
Filter (KF) will also be derived from the Bayesian approach. The model will be 
extended to simple smoothing and Augmented State KF will be derived as an 
illustration of the validity of the model.

2.2 Background

Handling uncertainty has always been a challenging field. Any physical sys­
tem inherently has random parameters and results in uncertainty. Probability 
theory is a powerful mathematical tool devised to handle such inherent random­
ness in systems. The most useful theorem put forward to resolve the problem 
of uncertainty is the one by Thomas Bayes, [12], and which is well known as 
Bayes’ Theorem. Mathematicians, like Gauss, Legendre, then provided decision 
taking criterion based on probabilistic approach. Maximum likelihood(ML), 
Least square (LS) method, Maximum a posteriori (MAP) method and Mini­
mum mean square error (MMSE) techniques - are statistical decision making 
mechanism to handle uncertainty based on various optimization criterion. The 
history of understanding the uncertainty in system started back in eighteenth 
century by Bayes and started to be more specific in nineteenth century when 
Gauss and others dealt with estimation of positions of heavenly bodies in sky.

Even though the probabilistic theory was well established, applying those 
into real time processing did not prove to be straightforward. The attempt 
posed problems like computational complexity, memory requirement and etc. 
Therefore even though the same technique like Least square or Minimum mean 
square estimation could be applied by Gauss to predict the position of heavenly 
bodies in an offline fashion, it could not be applied to a faster and real time 
engineering problems until around the mid twentieth century when computers 
were first used. Only then scientists and engineers saw a real opportunity to ap­
ply the classical statistical tools into more computationally extensive problems.
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In his pioneering papers in 1960, R.E Kalman, and later in 1961 with R.S Bucy, 
[39, 40], proposed a linear filtering theory which is now well known as Kalman 
Filter and widely used in almost every engineering estimation problem. This 
new technique was welcomed by the engineers almost instantly because of the 
following reasons:

• the filter was recursive

• it was not computationally extensive

• it was optimal in the sense that it minimises mean squared estimator

Later in 1970, a discussion paper by H.W Sorenson, [73], illustrated that 
Kalman filter closely follows the same least square estimation technique intro­
duced by Gauss back in eighteenth century. Due to its simplicity and accuracy, 
backed by the then recent development in electronics, Kalman filter grew in 
popularity among the engineers and mathematicians. It was later shown that 
Kalman filter could be obtained using Bayesian approach of stochastic estima­
tion, [34]. By the end of 1970, the Kalman filter framework was extended to 
smoothing technique also, [52, 53, 54, 55]. For lion-linear problem the Kalman 
filter was modified and named Extended Kalman filter (EKF) which was a sub- 
optimal solution. The other types of filters, presented in literature, that solve 
the basic problem of estimating target state from noisy measurements, are Par­
ticle filter (PF), Unscented Kalman filter (IJKF), Point Mass filter (PMF) etc.

The following sections will introduce the Bayesian approach of target track­
ing from the basic Bayes5 theorem and demonstrate the logical development 
of the theorem culminating into Kalman filter (KF) for linear Gaussian sys­
tems. The application of Bayes5 theorem in smoothing perspective will also be 
illustrated through the development of augmented state KF.

Introduced by Thomas Bayes5 in 1763, [12], this theorem incorporates the neces­
sary mathematical base to reconcile the prior knowledge and the present infor­
mation into the estimation of a parameter which is co-related to the information. 
This philosophy consists a very suitable platform for solving any estimation in­
cluding target tracking problem.

By definition, the Bayes5 theorem calculates the probability of occurance of 
an event A with the condition that another correlated event B has occurred. 
Mathematically, this is expressed as

2.3 Bayesian Estimation and Target Tracking

2.3.1 Bayes5 Theorem

(2.1)
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where

• p(A, B) is the joint probability of the events A and B.

• p(B) is the probability of event B alone

Similarly, the reciprocal conditional probability of p(B\A) can be given as

P(B\A) = (2-2)

If the event A is the one of interest, a more useful form of Bayes’ theorem can 
be derived using (2.1) and (2.2). This form is given by

MB) - r^yA) (2.3)

The expression in (2.3) is of particular importance for basic estimation prob­
lem. Starting with prior knowledge for the event A, which is captured in p(A), 
(2.3) provides the probability of event A utilizing information from another cor­
related event B. This simple encapsulation of correlation between two events 
can be extended to complex problems like target tracking. This is discussed in 
the next section (section 2.3.2).

2.3.2 Bayes’ Theorem and Target Tracking

In the context of target tracking, the problem lies in estimating the target state 
based on the sensor observations. If the composite target state is denoted by 
Sk~N at time t = k — TV and the set of observations till time t = k is denoted 
by yk, the Bayes theorem proposes a solution to the estimation problem in 
probabilistic sense. If the events A and B in (2.3) are replaced by Sk~N and 
yk, the posterior knowledge about the state can be summarized as

p(Sk-N\yk) p(ijk\Sk-N).p{Sk~N) 
p(yk)

(2.4)

The state of the target, which is a random variable, can be estimated from 
the posterior density of (2.4). In (2.4), TV = 0 for filtering, TV > 0 for smoothing 
and TV < 0 for prediction type of estimation. These three types of estimators 
are schematically illustrated in figure 2.1.

The thesis focuses on smoothing and therefore the types of smoothers are 
briefly revisited here

• Fixed Lag Smoothing ’’Fixed Lag Smoother” estimates the past state 
which lags by a fixed amount.
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Filter:
State Estimated 

at

Smoother:
State Estimated at 

t=k-d
1

t=k
Predictor.

State Estimated at 
t=k+d

t
1

A ------►
Time (t)

Measurement 
collected till 

t=k

Fig. 2.1: Estimation : Filtering, Smoothing, Prediction

Time

fcstimate at t=k-d Measurement at t=k

Fig. 2.2: Fixed Lag Smoothing

• Fixed Interval Smoothing In "Fixed Interval Smoothing”, the states within 
time interval from t = k — N tot = k are estimated using the measurements 
within the window of the same interval from t = k — N to t = k. The 
continuous smoothing is carried out by sliding the window while keeping 
the interval N fixed.

« Fixed Point Smoothing "Fixed Point Smoothing" estimates a state at par­
ticular point of time in the past. This is carried out generally to improve 
the system initial conditions.
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Measurement ►

------►
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Fig. 2.3: Fixed Interval Smoothing

Measurement
Estimate at a t=k
fixed point in time
t=d

Fig. 2.4: Fixed Point Smoothing

2.3.3 Recursive Bayes’ Estimation

The real time problem of target tracking demands the state estimation be a 
recursive process. From expression in (2.4), it is not evident that Bayes’ theo­
rem can provide a recursive estimation formula. But a careful observation and 
manipulation can result in a truly real time implementable recursive Bayesian 
formulation for estimation. The steps are described here in details.

The observation set yk can be expanded as yk.y1^^1 where denotes the 
observation at time t = k only. Therefore the term p(yk\Sk) on the right hand 
side of (2.4) can be expanded as

p(yk\Sk) = p{yk,yk-l\Sk)

= p{yk\yk-\Sk).p{yk-l\Sk) (2.5)

Hence using (2.5), the density in (2.4) can be formulated as

p(yk)
piVkly1"-1 ,Sk).p(yk~1\Sk).p(Sk) 

p{yk-yfc_1)

p(Sk\yk)
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p{yk\yk 1,Sk).p(yk 1\Sk).p(Sk) 
p{yk\yk~1)-p{yk~1)

p{yk\yk~1,Sk) p(yk~1\Sk).p(Sk)
p{yk\yk~l) ' p{yk~1)

(2.6)

In (2.6), the term p(Sk\yk :) is the posterior PDF value of the target state
for measurements upto time t = k and through (2.6) it is incorporated with the 
new observation made at time t = k while the state estimated is updated. Thus 
the relation in (2.6) gives a proper recursive estimation approach in Bayesian 
framework. This recursive method is useful in real time for its robustness and 
lies in the heart of every target tracking algorithm.

The discussion in section 2.3.3 establishes that the classical Bayes’ theorem 
provides a recursive estimator which can be implemented in solving the real 
time estimation problems. The state of interest can be continuous, i.e target 
dynamics etc., or discontinuous, i.e. the number of targets, the maneuvering 
model of the target, etc.. Thus any possible uncertainty related to the target 
tracking can be resolved using Bayesian approach with the full functionality 
retained in recursive nature of it.

2.4 Application of Bayes' Theorem To Target Tracking

Even though the theory suggests that the Bayes’ theorem can solve target track­
ing problem, its practical applicability is not straightforward. In this section, 
several assumptions and prerequisites for the application of the theorem in tar­
get tracking will be discussed. The expression (2.6) will also be revisited to 
conceptualize the essence of target tracking.

As a first step, the composite target state and observation set can be ex­
panded as

2.3.4 Discussion on Bayes’ Theorem

• Sk = {Sk,Sk-i,...,S0} = {Sk,Sk~1}

• yk = {yk,yk-1, • • • ,yo} = {y*:,?/-1}

The expression of (2.6) can be re-written as
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= V-)
(2.7)

To resolve (2.7) into more compact form, the following assumptions are 
made.

1. Under white noise assumption, measurements at a particular time t = k 
depends only on the target state of interest Sk- Due to this, the term 
p(yk\yk~1, Sk> Sk~ls) can be reduced to p(yk\Sk)- On the other hand the 
term p{yk\yk~l) can be expanded through the total probability theorem 
as

p(vk\vk~1)= j p{yk\Sk,yk-l)-p{Sk\yk-l)dSk (2.8)
Sk

2. Target state transition is assumed to be Markov. Hence the termp(Sk\Sk~1, yk~1) 
can be reduced to

p(Sfc|Sfc_i,...,S0,yfc~1)=p(Sfc|Sfc-i) (2.9)

As a result the expression in (2.7) can be further simplified as

p($V) = |Sfc -1 )p(Sfc-V1) (2-10)

For tracking a target, the state Sk at a particular time t = k is more im­
portant than the composite state estimation of Sk~1. Therefore the expression 
p(Sk-i\yk) is more relevant to the solution of the problem. This can be ob­
tained by integrating p(Sk~l) with respect to the states at other times. The 
relationship can be given as

p(Sk\yk) = J ... jp(Sk-1\yk)dS0...dSk-1 (2.11)
Sfc-1 So

With the result obtained from (2.10), the definition in (2.11) is given by

p(Sk\yk)

Sk-i So

= pS^) J P(5fc|5fc-j) J ...Jp(Sk-1\yk~l)dSo...dSk-1
' sk-1 Sfc_ 2 So

(2.12)
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According to the definition of (2.11), the integration series in (2.12) is re­
duced to

J ... j p(Sk-1\yk-1)dS0...dSk-2=p(Sk-1\yk-1) (2.13)
Sk - 2 So

Replacing the expression in (2.12) by that in (2.13), the Bayesian estimation 
can be achieved. This is given by the density

p(Sk\yk)

= / p(s*\s*-i) * piSk-^y^dSk-i

' Sk-1
(2.14)

- (2I5)

The forms derived in (2.14) or (2.15) are the ones used for standard target 
tracking application. It is also to be noted that (2.14) retains the recursive 
nature of the original approach. The density at time t = k — 1, denoted by 
p(Sk-i \yk~1), is the a priori knowledge of the target state and is used to estimate 
the state at time t = k.

In literature, three terms in (2.15) are referred to with specific names. Those 
are

• p(yk\Sk) is called Likelihood.

• p(Sk\yk~1) is called Prediction.

• p(yk\yk~l) is called Normalization density

Modeling the state Sk as an augmentation of past states from time t = k — N 
to t = k solves the smoothing estimation problem with the same Bayesian 
generalized framework given in (2.15).

In this way, a true recursive form of Bayes’ theorem is achieved. The task 
of the target tracker is to calculate the above mentioned terms to solve the es­
timation problem. For these parameters to be evaluated, the algorithm needs 
to know specifically the target dynamic model and sensor model. In the next 
section this aspect will be described along with its relevance with the terms 
mentioned above. Consequently it will be shown that under linear Gaussian as­
sumption the Bayesian approach results into Kalman Filter (KF) and eventually 
Augmented State KF (AS-KF).
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2.4.1 Target Dynamic Model

The target dynamic model specifies the nature of the target state transition 
along the time. This model is necessary to determine the Prediction term stated 
in section 2.4. In general the target dynamic model is given by

Sk = f(k,Sk-i,u(k)) +v(k) (2.16)

where

• /(.) represents a generalized transition function. The function may be 
linear as well as non-linear.

• Sn refers to the target state at time t = n

• u(k) denotes a particular input which indicates any maneuver of the target

• v(k) is a random noise (generally called as “process noise”) term. This 
term captures the naturally occuring random disturbances or uncertainty 
in the modelling itself.

1. The random noise is drawn from a normally distribution that has 
a mean of zero and variance Qk- In other words E{v(k)} = 0 and 
Qk = E{v(k)v(k)T}.

2. The noise is not correlated in time. Mathematically E{v(i)v(j)T] = 
0 where i ^ j. (which means Qk E{v(i)v(j)T} is satisfied only 
when i = j = k)

3. The noise is also independent of state, E{Stv(j)T} = 0 for any i < j.

The prediction term of (2.15) can be expanded applying the total probability 
theorem as (and as shown in (2.14))

p{Sk\yk~l) = I p(Sk\Sk-i) xp(5fc_i|yfc_1)dS’fc_1 (2.17) 

sic-1

The term p(Sk\Sk-i) of (2.15) denotes the transition in time and this distri­
bution is given by the dynamic model of (2.16) (the exact procedure may vary 
due to the fact whether the function in non-linear or linear).

2.4.2 Sensor Observation Model

The sensor model captures what aspect of the target state is observed by the 
sensor along with its uncertainty level. It is dependent on the sensor type and 
working principle and therefore the model is said to be ”sensor model”. In 
general this is given by
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yk = h(k, Sk) + w(k) (2.18)

where

• h(.) is the state to observation transition function. It can be linear or non­
linear depending on the type of sensor and also which aspect of target is 
observed.

• yn and Sn refer to the measurement and target state respectively at time 
t = n

• w(k) is the random measurement noise. This noise is assumed to have 
several properties as stated below

1. The noise is normally distributed with mean zero and variance Rk. 
In other words, E{w(k)} = 0 and Rk = E{w(k)w(k)T}.

2. The noise is also not correlated in time, E{(w(i)w(j)T)} = 0 for 
each i j (which means Rk = E{w(k)w(k)T} is satisfied only when 
i = j -k)

3. The noise is also independent of state as well as observation. These 
can be mathematically states as E{y(i)w(j)T} — 0, E{Sxw(j)7 } = 0 
for any i < j.

4. The measurement noise is also statistically independent of the process 
noise. Mathematically E{w(i)v(j)T} = 0 for any i and j.

The likelihood term of (2.15) can be expanded as

The second term within the integral is obtained from the target dynamic 
model while the first term within the integral is given by the sensor model (the 
exact derivation though may vary depending on the system).

The derivations of KF and AS-KF are presented next as an illustration of 
Bayesian approach to estimation.

(2.19)

2.5 The Kalman Filter

Kalman filter, the simplest of target trackers, deals with the estimation of target 
dynamic state from a set of noisy measurements. Attempts to establish con­
nection between KF and Bayesian filter started by Ho and Lee, [34|. Finally
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Koks and Challa, [43], completed the effort by solving each densities of like­
lihood, prediction and normalization under Gaussian assumption and showing 
that the resultant posterior density is achieved by the same equations of KF. 
The following derivation is the summary of that effort.

KF assumes linear target dynamics and sensor model given respectively by

xk = Fxk_i + v(k) (2.20)
yk = Hxk + w(k) (2.21)

where

• xk denote the target state of interest at time k.

• F and v(k) are the target transition matrix and process vectors respec­
tively. The noises are samples drawn from the normal distribution with 
mean zero and variance Qk.

• H models the sensor and w(k) denotes sensor noise vectors respectively. 
The sensor noises are also drawn from a normal distribution with mean 
zero and variance Rk.

All other assumptions mentioned in section 2.4.1 and section 2.4.2 hold. KF 
starts with a priori density p(xk-i\yk~l) and assumes a normal distribution 
with mean Xk-i\k-i and variance Pk-i\k-i- The model specifications will be 
used to calculate prediction, likelihood and normalization terms which gives the 
recursive update of the state.

2.5.1 Prediction

The prediction term, p(xk\yk~1) is expanded as in (2.17)using the total proba­
bility theorem.

p{xk\yk 1) = j p(xk\xk-1,yk~1)p(xkyyk-1)dxk-1 (2.22)
Xk- 1

The integration on the right hand side of (2.22) is Chapman-Kolmogorov 
equation. Following target dynamic model (2.20), Xk depends on Xk-i and 
not on past measurements. Therefore p(xk\xk^i,yk~1) reduces to p(xk\xk-i). 
Under Gaussian assumption, the density can be calculated as

p{xk\xk-i) = M(xk\Fxk_i,Qk) (2.23)

(using the target dynamic model) where A/"(a; 6, c) denotes normal pdf of 
random variable a with mean b and variance c.



2. Introduction to Bayesian Filtering and Smoothing 20

Now the second term of the integration in (2.22) is the previous estimation of 
the state and is given by N(xk-i\ xk-i\k-i, Pk-i\k-i)- Therefore the prediction 
term reduces to Chapman-Kolmogorov equation

p(xfc|yfc_1) = J N‘(xk;Fxk-uQk)N'{3;k--i;Xk-i\k-\,Pk-i\k-i)dxk - 1

Xk-I

. (2.24)

The solution to the integration 2.24 (see [43, 36]) is a normal density given 
by

p{xk\yk~l) = M{xk\xk\k-\,Pk\k-\)- (2.25)

where

%k\k—\ 1* J'k — l\k — 1 (2.26)
Pk\k-1 — FPk-Mk-iFT -f Qk (2.27)

2.5.2 Likelihood

The likelihood term, p(yk\xk) is obtained directly from the sensor model. The 
resultant density is normal given by

p(yk\xk) = Af(yk;Hxk,Rk) (2.28)

2.5.3 Normalization

Normalization density p(yk\yk~1) is expanded as below in terms of prediction 
and likelihood terms.

p(yk\yk 1

where,

p(yk\xk-,yk 1)p(xk\yk J)
xk

JN(yk\ Hxk, Rk)M(xk\ Pk\k-i)dxk

Xk
Ar(yk\yk,S) (2.29)

yk = Hxk\k_i

S = HPk\k.1HT + Rk

(the full derivation is available in [43]).

(2.30)
(2.31)
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2.5.4 Posterior Density Calculation 

The calculation of posterior density is carried out by evaluating (2.15).

p(xk\yk) = N{jjk i riXfc, Pk)N {x k , Xk^fc — 1, Pk\k — 1)

N{yk\yk,S)
(2.32)

It is shown by Challa in [43] that the expression in (2.32) reduces to a normal 
distribution given by

P(xk\yk) = N(xk\xk\k,Pk\k) (2-33)

where

Xk\k = Xk\k-1 + K{yk - yk) (2.34)
Pk\k = (2.35)

where

K = Pk\k_1HTS~1 (2.36)

The state update and associated co-variance are obtained from (2.34) and
(2.35) respectively. Expressions (2.26), (2.27), (2.30),(2.31), (2.36), (2.34) and
(2.35) are the steps of one iteration of KF.

2.5.5 The KF Equations

In summary, Kalman filter follows the following steps in one iteration.

%k\k — l FXk—l\k — l

Pk\k-1 = FPk;-l\k-lFT + Qk

i)k FI Xk\k — 1

S = HPk\k^HT + Rk 

K = Pk\k^HTS~l 
xk\k = Xk[k-i + K{yk-yk) 

Pk\k = (/ - KH)Pk\k_x

It can also be mentioned here that KF follows a prediction-correction working 
principle as summarized in the figure 2.5.
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Prior State Density

Prediction

j
Predicted State Density

I
Correction/Update ^------- Measurement

Posterior State Density

Fig. 2.5: KF Working Algorithm

2.6 The Kalman Smoother

Modeling the state vector Sk in (2.15) as the augmentation of past states from 
time t = k — N to t — k provides the basic definition of smoothing within itself. 
As there is no restriction of the value of TV, by setting TV > 0 the said expression 
will yield the smoothed estimation of the states Sk-i through to Sk-N as well 
the filtered estimation of state Sk based on the measurement received up to time 
t — k. In [36], it was noted that augmenting the state vector with past states 
builds a practical framework to implement the Bayesian smoothing in the same 
process as a standard filter.

This approach of augmenting the state vector is an easy appraoch to design 
a Bayesian smoothing. In the next section, first the Bayesian recursion model 
for augmented state approach will be proposed along with the demonstration 
that this approach follows the same densities as a standard Bayesian filter does 
with the minimal change of state vectors.

In the augmented state approach, the target dynamic state is re-modeled as

which is basically the augmentation of state vectors of past time instants.
With the redefinition of target dynamic state, both the target dynamic model 

and sensor model need to be modified as

2.6.1 Augmented State Approach

(2.37)
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Sk = f(fc,Sfc,u(AO)+v(fc) (2.38)
Yfc =h((k,Sk)+w(k)) (2.39)

Therefore, for augmented state model, the Bayesian formulation of (2.15) 
results in

p(Sk\Yk) = x MSfclY*-1) (2.40)

It is evident from (2.40) that by introducing the state vector as an augmented 
one, the Bayesian formulation for estimating the target state has remained same 
as in standard filter. But in the process, the states S'/c,S'/c_i,... ,Sk~d also get 
updated through the measurement at time t = k. Therefore, while Sk is the 
filtered estimate, the rest of the state vector elements are smoothed. Thus this 
approach gives a very rigorous mathematical formulation for smoothing while 
maintaining the basic filter algorithms almost unchanged. For the illustration 
purpose, a linear model for target dynamics and sensor model will be assumed 
for the derivation of AS-KF.

2.6.2 Augmented State Kalman Filter (AS-KF)

The linear target dynamics and sensor model are given by

Xk = FXjt-j -f V(k) 
Vk — HX/- T Wk

(2.41)
(2.42)

where

• Xk = 1^ Xk %k-i ••• tCk-N j and Xk denote the target state of interest 
at time k.

• F is the state transition matrix given by

F

“ F 0 0 0
I 0 0 0
0/00

0 ... / 0

• V(k) is process noise vector given by

Vfc = [ v(k) 0 0
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• Qk is the noise covariance matrix

Qk

Qk 0 ... o

0 0 ... 0

0 : : 

0 ... 0 0

H

H
0

0

(2.43)

• Wk is the sensor noise vector. The sensor noises are drawn from a normal 
distribution with mean zero and variance Rk.

(where xk, Fk, v(k), Qk are as defined in section 2.5 and 0’s and I's refer to 
zero and identity matrix respectively with

All other assumptions mentioned in section 2.4.1 and section 2.4.2 hold. 
Under the linear Gaussian assumption, the conditional mean of the distri­

bution p(yik\yk) is the posterior density for the state X^. Starting from a 
prior knowledge of the state estimate 'Kk-i\k-i and associated error covariance 
Pk-i\k-i at time t = k — 1 , a Kalman filter will calculate the desired conditional 
mean. It has been shown in [22] that the basic Kalman filter steps hold also 
for augmented state case. Therefore target state estimate X^. can be achieved 
through following steps :

11

P
hII

1 (2.44)

Pfcifc-! =FP,_1|fc_1FT + Qfc (2.45)

fjk = FXk\k-l (2.46)
S = HP fc|fc_1HT +fc (2.47)
K = Pfc,fc_1HTS-1 (2.48)
Xfcjfc = Xfcjfc_! + K(yk - yk) (2.49)

Pfc|fc = (I — KH)Pfc|fc_! (2.50)

Relations (2.49) and (2.50) are the recursive update equation of the Kalman 
filter. It is very much evident that the algorithm goes through the standard 
Kalman filter equations with the single state vector replaced by the augmented 
state one. The joint density update of p(X.k\yk) also smooths the past states of
[ xk-1 xk — 2 • • • Xk-N ] •
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2.6.3 Discussion on Augmented State modeling approach

The steps of AS-KF are identical to what standard KF follows. In the later 
chapters, tracking in clutter scenario will be modeled using Bayesian approach 
and its extension into smoothing through augmentation of state vectors will 
be derived. The similarity will be evident in those derivations also. Therefore 
augmentation of states provides an easy, but mathematically sound, platform for 
smoothing establishing it to be a powerful tool to develop smoothing algorithms. 
Introduction of additional state vectors, add to the memory requirement of the 
system.

2.7 Conclusion

In this chapter, the basic theories of estimation are pointed out. The fundamen­
tal definitions and how they relate to each other as well as target tracking theory 
are also described. Also in this chapter, the Bayes’ theorem is introduced. The 
systematic reformulation of the theorem for target tracking application is de­
tailed and derived. The iterative form of Bayes’ theorem, which is the basis of 
every tracking algorithm, has been shown here. Derivation of standard KF from 
Bayes’ theorem is given as an illustration of Bayesian approach. It is also shown 
that Bayesian modeling can be extended to smoothing and its implementation 
is performed through augmentation of states. As a part of extension AS-KF is 
also derived using the same approach.



3. BAYESIAN TRACKING IN CLUTTER

3.1 Introduction

This chapter focuses on the target tracking problem where the origin of measure­
ment is uncertain. It is well known that under measurement origin uncertainty 
simple filters like KF will not perform well. The Bayesian definition of such 
problems and associated models are described in this chapter. It is also shown 
that the solution of Bayesian approach leads to Probabilistic Data Association 
Filter (PDAF). PDAF is a computationally efficient approximation of optimal 
Bayesian solution. The same Bayesian modeling can also be applied to an aug­
mented state approach for smoothing. The effort results in Augmented State 
PDAF which is also shown to follow the standard PDAF steps. Therefore the 
validity of Bayesian modeling to handle measurement origin uncertainty is es­
tablished in this chapter.

3.2 The problem of Tracking in Clutter

Kalman filter, presented in chapter 2. updates previous state estimate in a 
recursive way after the current measurement is available. In that process, it is 
presumed that in each sensor scan the tracker receives one measurement from 
the target. But in practice, in each scan a random number of measurements 
is gathered. The sources of the unwanted measurements (not originating from 
true targets) are called "clutters”. These may be terrain, clouds or even thermal 
sources (present in the sensor surveillance region), electromagnetic disturbances 
and etc. The simple Kalman filter is not applicable under this scenario simply 
because of the problem of deciding which measurement to use for the state 
update in (2.34). The situation can be illustrated by figure 3.1.

Clutter received introduces the problem of "data association”, the technique 
to associate obtained measurements to the target. In early 70’s, Singer, Sea and 
Stein introduced Nearest Neighbor filter (NNF),[68, 70, 71]. NNF was a good 
technique to solve the "data association" problem. It takes the measurement, 
closest to the predicted one, as the valid measurement to update the state 
estimate using basic Kalman filter. Instead of taking one measurement, the need
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X

Fig. 3.1: Problems of Clutter

of taking all measurements in the ” neighborhood” of the predicted measurement 
was first pointed out by Bar-Shalom and Jaffer, [7, 8]. Later in 1975, Bar-Shalom 
and Tse finally proposed a Probabilistic Data Association filter (PDAF), [10]. 
This filter validates a set of measurements and assigns a probability of it being 
”associated to the actual target”. Finally PDAF updates the state by combining 
the validated measurements according to the weight given by the association 
probability. The method is approximately 1.5-2 times more computationally 
intensive than NNF, however it handles clutter much better than NNF.

PDAF is proved to be most computationally efficient algorithm to solve 
data association problem in cluttered environment. In the remaining sections 
of this chapter, the optimal Bayesian modeling of clutter will be discussed. The 
PDAF will be derived from the Bayesian model as a suboptimal algorithm. The 
augmented state PDAF will also be derived to demonstrate the application of 
Bayesian modeling into smoothing estimation.

3.3 Bayesian Modeling for Tracking in Clutter

At any given instant, the sensor gathers more than one measurement. The 
number of received measurement varies randomly from one scan to another. 
Therefore the measurement set in Bayesian model needs to cater for that pos­
sibility. In each scan, the measurement yk is given by

Vk = {j/fc(1), 3/fc (2),..., 2/fc(m)} (3.1)
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where yk (n) denotes n — th measurement received at time t = k and m is the 
total number of measurements received by the sensor. The posterior density 
of state is not only conditioned on the observations themselves, but also on 
the number of observations received. Therefore Bayesian recursion of (2.15) is 
modified to cater for ’’clutter” measurements as following:

where mn is the collection of all the measurements at every time instant till 
t = n and mn is the number of measurements at time t = n.

The formulation in (3.2) is similar to standard Bayesian filter in (2.15). 
The difference is in likelihood and normalization which are joint densities of 
all the observations and the number of received measurements. Under linear 
Gaussian model assumption of the system, the Bayesian filter reduces to PDA. 
The derivation will be discussed in the next section.

Probabilistic data association filter (PDAF), follows the Bayesian modeling of 
target tracking in clutter for linear Gaussian system. The PDAF is a suboptimal 
implementation of standard Bayesian recursion presented in section 3.3. The 
sub-optimality is associated with the approximation of Gaussian mixtures to a 
single Gaussian.

The measurement validation process starts with previous state estimate 
Xk-i\k-i and associated covariance matrix Pk~i\k~i- The standard KF pre­
diction steps are then followed to derive the densities of predicted state and 
measurement. Based on the predicted measurement yk and associated covari­
ance Sk (from KF step (2.30) and (2.31) respectively of section 2.5.3), each 
obtained measurement undergoes a test given by

The chi-square test threshold A is chosen to ensure a certain required prob­
ability of target originated measurement to be within the validation gate. This 
probability is called ’’gating probability” and is given by Pq. The region where 
the test is satisfied is called ’’validation region” or ’’gate”. Under Gaussian 
assumption, theoretically this ellipsoidal region has a volume Vk and is given by

p(xk\yk,mk)

(3.2)

3.4 PDA Filter

[:Vkin) - yk]Tsk 1\yk{n) - yk\ < 7 (3.3)

,|7 V\slw1/2 (3.4)
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where nz is the dimension of the measurement and c7lz is the volume nz 
dimensional unit hypersphere (c\ = 1,C2 = n. 03 = 4^, etc.). The measurements 
that satisfy the test, or in other words are within the gate, are considered as 
’’valid” measurements and are used for state update. Therefore out of m received 
measurement ra& number of valid measurements are chosen. The scenario is 
depicted in figure 3.2.

Measurements 
outside validation gate

Measurements 
within Validation Gate

Predicted 
State \

Estimate : t=k-1
Validation
gate

X

Fig. 3.2: Measurement Validation Process

This subset of mie measurements are used for Bayesian recursion that result 
into PDA formulation of target tracking in clutter. This is given by

p(xk\yk,mk) p(Vk,mk\xk,yk \mk , ,
p{yk,mk\yk-\mk-k) P[XkW mk-1

(3.5)

Bayes’ theorem applied on (3.5) provides the framework based on which 
the steps of PDAF can be derived. Expanding the expression provides familiar 
Bayesian recursion formula

p{xk\yk,mk,yk 1,mk x) 
p{yk,mk\xk,yk-1,mk-1)p(xk\yk-1,mk-1)

p(yfc,TO/fc|2/fc_1,fnfc-1)
Likelihood x Prediction ^

N ormalization
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Starting with previous state estimate Xk-i\k-i and associated covariance 
solution of each of the terms - Likelihood, Prediction and Normaliza­

tion - under linear Gaussian assumption of the system models (same as (2.20), 
(2.21) given in section 2.5) and their resultant density according to (3.6) com­
pletes the tracking in clutter problem. Here these densities will be revisited 
from Bayesian perspective.

3.4.1 PDAF Prediction

The predicted state does not depend on the number of the measurements re­
ceived. Therefore, the predicted density p(xk\yk~1, mk~1) is equivalent top(xk\yk~1) 
and its is same as standard Bayesian filter. It reduces to KF prediction steps for 
linear Gaussian systems. The resultant estimates are deduced in section 2.5.1 
and mentioned here for clarity.

p{xk\yk~x) = N{xk\Xk\k-i,Pk\k-i) (3.7)

where

^h\k — l P^k — 1 \k — 1 (3-8)
Pk\k-1 — FPk-l\k-lFT + Qk (3-9)

3.4.2 PDAF Likelihood

For every one of the validated measurements an association event 0k(.) is defined 
as :

1. 0k(i) : i — th validated measurement is target originated and rest of them 
are from clutter, where i — 1,2,..., m^.

2. 0fc(O) : no measurement within the gate is target originated.

These association events 0fc(i), i = 0,1, 2,..., nik are mutually exclusive 
by definition. Using total probability theorem, the likelihood density can be 
expanded as

p{yk,mk\xk,yk 1,mk :)
mk

= T2p^yk’°k^tmk\xk,yk~l ,mk~l)
i=0
mk

= 'SL2ptyk\xk-0k{i),mk,yk~1,mk~l)
i=0

xP(ek{i)\xk,mk,yk l,mk x) (3.10)
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(capital P(.) is used to denote probability of discrete random variable)
Due to white noise assumption, the first term within summation reduces to

p{yk\xk,Qk{i),mk) (3.11)

Since Gk{i) is the association event and P(6k(i)\xk, is the
probability of such event, it depends only the number of validated measure­
ments. The definition of such an event is legitimate only if there exists a target. 
In other words, if there is no validated measurement, it is meaningless to asso­
ciate the events to the target state. Therefore the explicit conditioning of the 
association probability on target state is not required. As a result, the second 
term within the summation reduces to

P(0k(i)\xk,mk,yk ~\mk~1) = P{0k{i)\mk) (3.12)

The likelihood density is then expressed as

p(yk, mk\xk,yk 1, mk J)

7Uk
= ^2p(yk\xk,8k{i),mk) x P{dk(i)\mk,yk~^, wifc_1)

i=0

(3.13)

The first term within the summation is the probability that yki})-th mea­
surement is the target originated and the rest of them are from clutter. In­
corporating the validation region of volume \4 and gating probability Pq and 
assuming the clutter to be uniformly and independently distributed over the 
validation region, this probability can be easily evaluated as

p{yk\xk,Ok(i),m,k)

vk' lPG P(Vk{i)\xk)
{i)mk

1,2
i = 0

(3-14)

Now the second term within the summation in (3.13), P(0k(i)\rrik), is given 
by (see appendix D.4 in [6])

P{Ok(i)\mk)
' PPdPg[PdPg + U-PdPg)1^^Y1 i= 1,2,... 

^ (1-PdPg)7^Y[PdPg + (1-PdPg)7^}I)Y1 i = 0
,mk

(3.15)
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where pF^k) is the probability mass function (PMF) of the number of 
false measurements and Pd is the probability of detection of target originated 
measurement (probability that a correct measurement is available at all).

There are two models for PMF of number of false measurements. These are

1. Parametric Model : A Poisson density given by

lJ-F{mk) exv* (A Vk)m> 
mk\ mk = 0,1,2,mk (3.16)

where

A is average number of false measurements per unit volume (A 14 is the 
average number of false measurements within gate).

2. Nonparametric Model

Mf(^/c)
1

TV rrik — 0,1,2,..., TV — 1

The association probability for prior becomes

(3.17)

P((>k(i)\mk)
_ _ _ _ _ _ _ _ _ PnPa_ _ _ _ _ _ _ _ _

—PdPg)^% 
(l-PDPG)XVk 

PDPGmk + (l-PDPG)\Vk

1 = 1,2,... ,mk 
i = 0

and the same for nonparametric model is

(3.18)

P{0k(i)\mk)
( EaPgJ rnk
1 1 -PdPg

1,2,..., mk

i = 0
(3.19)

Moreover, according to the linear Gaussian sensor model (2.21), the mea­
surement density p{yk(i)\'Xk) is N(yk(i)\Pxk, Pk)- The likelihood density is 
therefore given by

p(yk,mk\xk,y"-1 m*"1)

= (t7" )mfc
Vk

mk
P(ek(0)\mk) + V— r^P^AfiVk^Hx^R^Piekii^m

r-r Vk

where P{6(.)\m,k) is either (3.18) or (3.19) depending non the choice between 
parametric and nonparametric model respectively for false measurement PMF.



3. Bayesian Bracking In Clutter 33

3.4.3 PDAF Normalization

The normalization density p(yk, rnkly^1, mk~l) can be expanded in terms of 
likelihood and prediction using total probability theorem.

p(yk,mk\yk~1,mk~1)

= J p{yk,mk\xk,yk~1 ,mk~1)p{xk\yk~1 ,mk~1)dxk
Xk

/" 1 ~
( )^P(ekmmk) + Y;PGM{yk{i)-,Hxk,Rk)P{ek{i)\mk)

** k 1=1 J 

X^V(;T£ i %k\k — 1 i Pk\k — 1 'jd'Xk
1 mfe

= (y^)mkP^k(0)\mk) + ^2P(0k(i)\mk)
i— 1

)<tefc] | (3.21)

The term within integration results (excluding the constant Pq1) into a 
normal distribution (see [43]) given by

j Pc,lN{yk{i)\Hxk, Rk)Af(xk-, xk]k^ , Pk\k-i)dxk = PyN{yk{i)\fjk, Sk{i))
Xk

(3.22)

where

yk = Hxk |fc_j (3.23)

Sk(i) = HPk]k^HT + Rk (3.24)

As a result, the normalization density becomes,

$ = p(yk,mk\yk~1,mk~1)
rnk

= (vrkP(^mmk) + £ PyP(ek{i)\mk)N{yk{i)-, yk, S(i))
i—1

(3.25)

3.4.4 PDAF Posterior Density

The posterior state density can now be calculated to complete one iteration of 
PDAF.
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k — 1 fc-l\p(xk\yk,mk,y ,m'

(T)m*P{0k{O)\mk) + J2pG~lM(yk(i); Hxk, Rk)P(Ok(i)\mk)
Kvk l—l

k ? %k\k — l) Pk| k — 1)

)mkP(®k(0)|mfc)Af(x,k; x,fc||.k_j, Pkyk_i)
™>k ^

+ 'yi-zPG-tP{Qk{i)\mk)N{yk{i)\Hxk,Rk)N{xk-,xk\k_i,Pk\k_ll‘i.2&)

The term within summation can be evaluated as below to obtain a normal 
distribution.

PG-lP{Ok(i)\mk)N'(yk(i); Hxk, Rk)N{xk; xk\k-!, Pk\k-i)
d ic/w-m ^Kn r\ - c, .,M{yk{i)\Hxk,Rk)M{xk: xk\k_uPk\k_x)= PG — \P{Ok{i)\mk)N(yk{i)', xk\k-i, S(i))------------ „--------g------- !-----

N(yk{i);xk |fc_i,5(«)j
= PG-\P(0k{i)\mk)N{yk{i)\xk\k^i, S{i))N(xk\k{i)\xk\k(i), Pk]k(;i)) (3.27)

[following [34] ]

where

%k\kX^ %k\k — 1 T PijJkiT) Vkp 

Pk\k(i) = (I-KH)Pk |,_2 

= pk\k-xHTsy

Substituting (3.27) in (3.26), we have,

(3.28)
(3.29)
(3.30)

p(xk\yk, mk.yk ,,mk J)
= ^{P)mkP{Ok{0)\mkW{xk;xk\k-i, Pk\k-i)

rrik ^

+ ^xPG-lP(0k(i)\mkW{yk{i);xk\k-i,S(i))AT(xk\k(i);xk\k(i),Pk\k(i))

Pk (0)Af^Xk i %k\ k (0) 5 Pk\k (^) ) + '>ly ^ Pk (^)A/ (3?/c|/c(^); | /c | A; *d))
i=l

rnk

= TZfa{i)N{xk\k{i)]xk\k(i),Pk\k(i)) (3.31)

where
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0fc(O)
= l(irm(o)w

(3.32)

Pk{i)
= iPG-lP{Ok{i)\mk)JV{yk(i); xk\k-\, S{i))

(3.33)

i = 1,2, ...,mk

£fc|fc(0) ^k\k — l (3.34)

Pk\k(0) 11 ?r 1

(3.35)

The resultant posterior density is approximated by a single Gaussian mixture 
with first two moments as follows

rnk
&k\k ^ ftk {^^k\k (Q (3.36)

i=0
mk rrik

Pk\k = ^PkiPkidi)+ TlPk(i')S:k\k{i)xk\k(i)T ~ Zk\kxl\k (3.37)

i=0

3.4.5 PDAF Algorithm : Summarized

The Bayesian approach has resulted in deriving the PDAF equations. One 
iteration of PDAF algorithm is summarized here in step by step manner.

1. Step 1 : Prediction

^ k j k: — 1 -se1

1!

Pk \k — l II

1

~?
F
1

T + Qk

Vk 1

II

Sk(i)

1

-56

II + Pk

Kk = Pk\k-,HTS~k
1

2. Step 2 : Gating

Of all the observations received, select those which satisfy the distance 
test

\Vk{n) ~ Vk]TSk1\yk(n) - yk\ < 7 (3.38)

where 7 is the threshold to maintain Pq probability of gating and n = 
1, 2,3,..., number of received measurements.
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3. Step 3 : Update

mk
%k\k ^ ^ Pk (^)*£/c|k (0

2 = 0
mk mk

Pk\k = + Y^>3k^k\k(i)&k\k{'i)T ~ Zk\kxl\k
2=0 2=0

(3.39)

where rrik is the number of validated measurement in step 2 and

A(°) = ^(pr)”“m(0)K)

/MO = tpG_ip(0fc(j)|mfc)g/V(yfc(j);^fc|J,_:lj5(j))

i = 1,2,..., rrik

-Pfc|fc(0) = Pk\k-1
(3.40)

3.5 Augmented State PDA Filter (AS-PDAF)

3.5.1 Bayesian Model of AS--PDAF

Challa, Wang and Evans, [22], proposed Augmented State PDAF as a Bayesian 
solution of smoothing in clutter. It was observed by the authors that augmenting 
the state vector results in a Bayesian definition of smoothing for clutter problem 
and the resultant algorithm follows the standard PDA steps.

For AS-PDAF, the target dynamic and sensor model are same as given in 
(2.19) and (2.37) respectively. The assumptions on the noise vectors also hold 
true in the case of AS-PDA. Moreover, in a single scan, the sensor may miss 
the target and collect measurements from other sources. Therefore in general 
the sensor measurement vector consists of more than one elements at each scan. 
This is denoted as

Vk = {j/A:(1),3/a:(2), • • • ,yk(mk)} (3.41)

where mjc is the number of validated measurements received at time t = k. 
(discussed in section 3.4).

The Bayesian formulation augmented state approach of target tracking in 
clutter is then given by
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p(Xk\yk,mk) 
p{'X.k\yk,mk,yk^1 ,mk~1)

(3.42)

(3.43)

where yk(ji) is the n-th validated measurement at time t = n, Yk is the 
collection of all validated measurements up to t = /c, rrik is the number of

measurements till t = k.
The Bayesian definition of smoothing in clutter in (3.42) is exactly similar to 

the definition of standard PDAF in (3.5) with the exception that the standard 
state vectors are replaced by augmented ones. As a result the derivation will 
also follow the same as standard PDAF. The result will be an algorithm for 
tracking in clutter with smoothing of the past states along with the filtering 
of the most recent one. The summary steps of such an algorithm is provided 
below.

In an iterative manner, starting from previous state estimate X/e_1j/e_1 and 
associated error covariance Pk-i\k~i at time t — k — 1, the augmented state 
approach updates the state by following the steps similar to standard PDA filter. 
One iteration of AS-KF is as following:

1. Step 1 : Prediction

2. Step 2 : Gating Select the measurements that satisfy the distance test

where 7 is the threshold to maintain Pq probability of gating and n = 
1, 2,3,... , number of received measurements.

3. Step 3 : Update

validated measurement at t = k and mk is the collection of number of validated

[2lk{n) - yfc]TSfc1[?/fc(n) -yk\ < 7

i—0 
rnk

Pk\k = + J^2Pk(i)Xk\k(i)Xk\k(i)T ~
i—0

(3.44)
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where rrik is the number of validated measurement in step 2 and

o)K)

-dPG-lP{Ok{i)\mk)M(Yk{i)-±k\k-um)

i = 1,2,..., rrik

Xfc|fc_i 

P/b|fc-i
(3.45)

It is again evident that update equations of and I*k\k smooth the states 
of previous time instants as they are part of the augmented state vector. There­
fore the augmented state approach implements the Bayesian formulation of tar­
get tracking in clutter.

Pk(0) = 

Pk(i)

X*|fc(0) =

P/e|fc(0) =

3.6 Conclusion

In this chapter the Bayesian recursion for target tracking in clutter has been 
introduced. PDAF is a sub-optimal solution of Bayesian approach. PDAF 
has comparable performance over other similar algorithms, e.g particle filters 
etc, while being computationally efficient. In this chapter the PDAF formula­
tion is derived from Bayesian modeling. Also the implementation of Bayesian 
smoothing algorithm through augmentation of states have been modeled and 
Augmented State PDAF is derived as an illustration. It is also noted that the 
steps of standard PDAF and AS-PDAF are exactly same. In conjunction with 
last chapters derivation of KF and AS-KF, this chapter provides a very rigor­
ous platform based on Bayesian approach for target tracking solving continuous 
random variables like target’s dynamic states. In the next chapter, a discrete 
event like ’’target existence” will be dealt with from Bayesian perspective and 
a smoother will be proposed.



4. BAYESIAN TRACKING FOR AUTOMATIC TRACK 
MAINTENANCE

4.1 Introduction

In this chapter, the problem of track maintenance in a cluttered environment 
will be introduced. The Bayesian definition of the same problem will also be 
discussed. The solution of the Bayesian model for resolving track maintenance 
issues gives rise to the well known Integrated Probabilistic Data Association 
Filter (IPDAF). The derivation will be carried out in this chapter as an illustra­
tion. Following the previous chapters, the Bayesian model will be re-defined for 
augmented state to develop a smoothing algorithm for automatic track mainte­
nance. The solution of the augment,ed state approach, under linear Gaussian sys­
tems, reduces to the original derivation of Augmented State IPDA (AS-IPDA) 
smoother. The associated models and assumptions will also be detailed in the 
chapter.

4.2 Problem of Track Maintenance

The clutter, introduced in chapter 3, poses a problem of ’’data association” for 
tracking algorithms. The probabilistic solution to the problem is to propose a 
hypothesis that each of the validated measurement may or may not be from 
the target and assigns a probability to these hypothesis. Then each of the 
measurements is fed into simple KF whose output is then combined and weighted 
by the associated probability of each measurement hypothesis. The approach 
works with the assumption that the track exists and is already initiated by some 
prior knowledge about the target.

But in cluttered environment, it is almost impossible to detect a well defined 
target and then track it. Because in each scan a bunch of measurement is 
received and any combination of measurements from successive scans may look 
like a track. The problem is illustrated in figure 4.1.

It is clear from figure 4.1 above that after a track is initiated PDAF will con­
tinue tracking it without any verification. In that case, a target falsely started 
with clutter measurements (which in two successive scans looked like coming
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Target Initiated using Clutter

True Target Initiated

Fig. 4.1: Track Existence Problem

from a target by random chance), will be continued. Therefore a tracker may 
end up tracking a lot of unnecessary tracks resulting into high computational 
and memory requirements and low efficiency.

Generally in a cluttered scenario, tracks are initiated based on ’’two point 
differencing” method as described in [5]. The method actually looks for mea­
surement in two successive scans that satisfy some defined velocity range. After 
initiation, each track goes through the confirmation and/or termination stages. 
The track evolution can be summarized as in figure 4.2.

Confirmation

Termination

Termination

Initiated Tracks

Fig. 4.2: Track evolution stages

Initial attempts to deal with the situation were based on heuristic. One of 
these attempts was to count ” M out of N” scans where there is no measurement
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within the validation gate for certain track and if the condition was satisfied, the 
track was to be dropped. Another such attempt involved in checking the state 
error covariance and if it crossed certain threshold, the track would be dropped. 
But all these were not systematic and therefore performance of tracker depends 
significantly on the threshold chosen.

The Interacting Multiple Model Filter (IMMF), [18], was introduced for 
maneuvering target and it proved to be very successful. The working principal 
of IMMF is that it models target maneuver (acceleration) as discrete input 
to the system and runs separate filters for each of them. The output of each 
state is then combined to update the state. But in the process IMMF assigns 
probability to each model. This idea was then extended to deal with target 
existence uncertainty. In [5], the same IMM approach was taken with only two 
models defined as ”observability” and ”non-observability” of the target. The 
probabilities assigned to each of the model are then translated into ’’true track 
probability” based on which the decision on target maintenance is taken.

In early 90’s another algorithm, Integrated Probabilistic Data Association 
Filter (IPDAF) was proposed [61, 59, 60] to resolve target maintenance issue. 
In contrast to IMMPDAF’s two separate models, IPDA introduces a model 
termed as ’’target existence” with two possible possible events - ’’existence” and 
’’non-existence” and assigns probability on such events to decide on the track 
status. The advantage of IPDA over IMMPDA was that it does not require 
two separate filters to run for each track and therefore is computationally less 
intensive. Moreover, theoretically it follows the steps of standard PDAF with 
the added condition of target existence.

IPDAF is now established as one of the most effective filter algorithm for 
target tracking in clutter with target existence uncertainty. With the help of 
existence probabilities, the tracker can easily differentiate between true and false 
targets and evaluate each track status as either confirmed, terminated and etc. 
In this chapter a Bayesian formulation for tracking to solve target existence 
problem will be proposed. It will also be shown that the proposed formulation 
results into IPDA steps. Taking that as the base, the formulation will be ex­
tended to smoothing and the original contribution of AS-IPDA smoother will 
be presented.

4.3 Bayes’ Definition of Target Existence Uncertainty

Generally, the state update is carried out by calculating the posterior density 
p(xk\yk) where yk is the collection of all the validated measurements up to 
t = k. The definition, by itself, takes the existence of target as given. Therefore 
to resolve target existence, it needs to be introduced in the definition as an 
event and the resultant joint posterior density provides the Bayesian definition
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of tracking involving target existence uncertainty scenario. The joint posterior 
density is defined by

p(xk,Ek = l\yk) (4.1)

where

• Ek = 1 refers to the event that the target exists at t = k

• Ek = 0 refers to the event that the target does not exist at t = k

and yk is the set of all validated measurement till t = k.
The joint density can be expanded as

p{xk,Ek = l\yk) =p(xk\Ek = 1 ,yk)p(Ek = l\yk) (4.2)

The two components on the right hand side of (4.2) capture the notion of 
target existence uncertainty problem. The second term p(Ek = Myk) is the 
probability of ” target existence” event based on which the tracker decides the 
status of the target while the first term calculates the state density only if the 
target exists ensured by the condition on Ek = 1.

Expanding the state update part of (4.2) using Bayes’ theorem, we get the 
familiar Bayesian recursion formula.

p(xk\Ek = l,yk) = p(xk\Ek = 1, yk,yk~l)
_ p{yk\xk,Ek = I, yk~1)p{xk\Ek = l,2/fc-1)

p(Vk\Ek = 1, yk~l)
Likelihood x Prediction 

Normalization

where refers to the set of validated measurements at t = k.
Solving (4.3) for linear Gaussian systems will yield IPDAF while the proba­

bility p(Ek = 1|yk) gives the tracker an automatic way to discriminate between 
true and false tracks. Both of these will be solved in the next sections.

4.4 IPDAF Algorithm

In this section each of the terms - likelihood, prediction and normalization - 
will be calculated separately and associated parameters and/or models will be 
introduced in due manner.
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4.4.1 IPDAF Prediction

The prediction density p(xk\Ek — T^-1) can be expanded using total proba­
bility theorem and is given by

p(xk\Ek = 1, yk~l)
= p(xk,Ek_ i = 1| Ek = l,/"1) +p(xk,Ek.. i = 0| Ek = 1 ,yk~1)
= p(xk\Efc_i = 1 ,Ek = 1 ,yk~l)P{Ek^ = l|£fe = l,/"1)

+p(xfc|£*_1 = 0,£fc = 1 = 0| Ek = l,yfa4)

The terms in p(Ek-\ = ljE* 1,1) and p(Ek-1 = 0|£7^ : l,2/fc_1) in 
(4.4) are backward transition probabilities of target existence event. To resolve 
these probabilities, IPDAF introduces a Markov transition probability matrix 
for two events - ’'target existence” and ’’target non-existence”, as follows

Tii r10

r0i i"oo
(4.5)

where l\j = P(Ek = j\Ek-i = i) and F^ + Tji 1.
Now expanding (4.4) using the transition probabilities and using total prob­

ability, we get

p{xk\Ek = l,yk

j p{xk\xk-i,Ek-.\ = l,Ek = l,y 1)p(xk^i\Ek^i = l,Ek = l,yk l)dxk-x 
-1

P{Ek.i. = \\Ek = irf-1)
+ p(xk\Ek-i = 0 ,Ek = l,i/k~1)P(Ek^1 = 0| Ek = l,y/c_1)

j p(xk\xk-i,Ek_x = l,Ek = l,yk~1)p(xk-i\Ek-.1 = 1 ,Ek = 1 ,yk~1)dxk_i
' k - 1

P(Ek = 1| Ek-x = l).P(gfc-i = 1| y-1)
P(Ek = l\yk~A

)F n p i W = ll^-i = 0).P(Ek-i = Ol^-1)= 0,Ek - l,y )---------------p{Ek = 1|2/fc_1}---------------

J p(xk\xk
Xk-1

l, -E’jt - i = 1 ,Ek = l,yk 1)p(xk-1\Ek_1 = l,J5fc

rnP(£t-i = II/-1)
= lji/*-1)

i,y i)dxk_1
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+ p(xk\Ek_i=0,Ek = l,yk 1
T0iP(Ek^ = 0\yk~1) 

P(Ek = l\y^) (4

Now going back to the first term in (4.4), it contains p(Ek-i = 1|Ek = 
1, yk~l) which denotes the probability of a track at t = k - l conditioned on its 
existence at current time t = k. This is a case of continuation of existing tracks. 
The second term however requires the probability p(Ek-1 = 0|Ek = \,yk~l) 
that refers to the probability of a target that did not exist at\t = k—1 conditioned 
on its existence at t = k. This clearly indicated a case of new track. IPDAF 
deals with the situation by modeling the Markov switching between two states 
- ” target existence” and ” target non-existence” as follows :

rn i - rn
o 1

(4.7)

which clearly indicates that once a target in out of existence, it will not come 
into existence. Taking that into account, the second term in (4.6) becomes zero. 
Moreover, the term P(£’/e = 1|yk~l) can be expanded and evaluated as

p(Ek = ii/-1) = r„P(E*_i = II/"1) + r01p(Ek.1 =o|/-1)
= rnp(£M = i|/-J)+o
= r nPiEk-! = ll/-1) (4.8)

Therefore by substituting (4.8) in (4.6) and following the discussion above 
the prediction density becomes

p{xk\Ek = 1,/ l)
= J p{xk\xk-x,Ek_x = 1 ,Ek - l,yk~1)p{xk^i\Ek^i = 1 ,Ek = 1 ,yk~1)dxk_1

Xk-1
= J Af{xk;Fxk_i,Qk)Af(xk^i-,xk_1{k^1,Pk_Mk_1)dxk-i (4.9)

Xk-1

where

• %k-i\k-i &nd Pk-i\k-i are respectively previous state estimate and asso­
ciated error covariance.

• F and Qk are target dynamic model parameters (discussed in section 2.5).

The expression in (4.9) is standard Chapman-Kolmogorov equation and re­
sults into a normal distribution as in standard KF prediction step (discussed in 
section 2.5.1). Therefore, the prediction density is given by
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p(xk\Ek = l,yk *) = A/'(a:fc;xfc|fc_1,Pfc|fc„1) (4.10)

where

^k\k—l FXk-Hk-1 (^-H)
Pk\k-x = FPk\k-iFT + Qk (4.12)

4.4.2 IPDAF Likelihood

Similar to PDAF, the measurements are validated using gating technique ex­
plained in section 3.4. Therefore at any given instance, there are rrik number of 
validated measurements. The set of these validated measurements are referred 
as

Vk = {3/fe(l),2/fc(2),...,2/*;(m/b)} (4.13)

where yk(ri) refers to n-th validated measurements at t = k.
Expanding the likelihood p(yk\xk, Ek = l,2/fc_1) into component measure­

ments in the set, we get

p(yk\xk,Ek = l,yk x)
= p{yk(l),yk{‘2),...,yk{mk)\xk,Ek = l,yk~1) (4.14)

For the validated rrik number of measurements, the following hypotheses are 
assumed,

• Ofc(0) : no validated measurement is from target

• 9k(i) ■ only i-th measurement is from target while the other validated 
measurements are from clutter where i — 1,2,..., ra^.

The probabilities of these mutually exclusive events are given by

mw)

mw)

1 - PdPg 
PdPg 

rrik

(4.15)

(4.16)

where Pd,Pg are detection and gating probabilities respectively (introduced 
in section 3.4.2).
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Moreover, it is assumed that the number of clutter measurements received 
at certain scan conditioned on past measurements follow a Poisson distribution 
given by

-A \rnk
-POfc|2/fc_1) = Po{mk) = ------ j— (4.17)

ink'.

where A is the mean of the distribution referring to the number of expected 
clutter measurements per scan within the validation gate. The expression is 
given by

A - 0 mk = 0

mk - PDPGP{Ek = II/-1) mk > 0
(4.18)

where P(Ek = l|yfc_1) is predicted probability of target existence and is 
given by (4.8).

Except the conditioning on the existence of the target, the likelihood in 
(4.14) is similar to the one for PDAF (3.6). Therefore, introducing the same 
logic as stated in standard PDAF, the number of validated measurement is also 
introduced as a condition. The likelihood then can be expanded as

p(yk\xk,Ek = l,yk x)
mk

= T.P(yk’Ok(i),mk\xk,Ek = 1 ,yk~1)
1=0
rnk

= ^PiVk^k^^Xk^Ek = l,mk,yk -1) 
i=0

xP{Ok(i),mk\xk,Ek = lii/-1)
'rrik

= ^2p(yk\6k(i),mk,xk,Ek = l,/-1) 
o

xP(9k(i)\xk,Ek = l,mk,yk-~>)P(mk\xk,Ek = 1 ,yk~1)
mk

= y^p(.yk\Ok{i),xk,Ek = 1)
i=0

X P(6k yi)\xk, Ek = f 5 ??7k->y )P('//Z/C\Xk i -- 1,2/ )

mk

= ^2p{yk\0k{i),Xk,Ek = 1) 
i=o

xP(Ok(i)\xk,Ek = l,m,k)P{mk\yk~l) (4.19)

Now the first term in summation (4.19) refers to the probability that i — th 
measurement is target originated while the rest is clutter. Assuming a uniform 
spatial clutter density, the probability is given by,
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p{yk\9k(i),xk,Ek = 1)

{vz)mk^P(Vk{i)\xk)
i = 0

1,2,... ,mk
(4.20)

Substituting (4.15),(4.16),(4.17) and (4.20) in (4.19), the likelihood is calcu­
lated as

p(yk\xk,Ek = l,yk x)
= (T)m>Po(mk)P(6k(0)\xk,Ek = 1 ,mk)

Vk
rrik

+ ^fc, Ek = l)P(0k(i)\xk,Ek = 1 ,mk)P0(;ink - 1)
2=1

1 k 1 D JD
= (Trri’oKItl - PdPg) + V- 1) 

Vk .. vk rrik2=1

1 P iP 1 k
= (TrYnkPo(mk)( 1 - PDPG) + ]>>M*))M

kfc mk A l/fc “
2=1

in. u
[from (4.17) P0(mfc - 1) = Po{mk) —}

(^)nuPo(mk) 1 - PDPG + PDPG^ ^>M*))|a:fc) (4.21)

The density in the summation results into a normal (under linear Gaussian 
sensor model) distribution and is given as p(yk{i))\xk) = JV{yk{i)\Hxk, Rk)- 
The likelihood density is thus given by

p{yk\xk,Ek = 1,2/'k—i \

= (y-J"kPo(mk) 1 - PdPg + PdPg~^ T^dT(yk(i}; Hxk, (4.22)

4.4.3 IPDAF Normalization

The normalization density p(yk\Ek = l,yk~1) can be expanded in terms of 
likelihood and prediction densities and calculated as

p(yk\Ek = l,yk~l)

= J p{yk\xk,Ek = l,yk~1)p(xk\Ek = 1 ,yk~1)dxk

(VrkPo(mk) 1 - PdPG + PdPg^ ^2^(yk(i);Hxk,Rk) J\f (x/g, Xfc|fc_i, -Pfcjfc-l. dxk
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= (^)mfc-P°(mfc)(l " pDpo) J■^(^k-,xkik_1,Pklk_1)dxk

Xk

+ (VrkPo(mk)PDPG^- J y^Af(yk{i);Hxk,RkW{xk;xk\k-i,Pk\k-i)dxk
l—l

The term in the integral is shown to result in a normal given by N(yk{i)\ Vk,Sk{i)) 
where

(4.23)

Vk Hxk\k-i 
Sk(i) = HPk\k_1HT + Rk

The resultant normalization density becomes

(4.24)
(4.25)

p{yk\Ek = i,yk *) = 5
i i 'vcrnk

( — )mkPo(rnk)(l - PdPg) + {y-)mkP0(mk)PDPG-± J ^ V(yfc(i); yk, Sk(i))dxk
k k xk i=1

1 11/ mk(Vrkpo(mk)(l - PDPG) + (^-)mfcPo(mfc)PDPG^ £X(yk(r): yk, Sk(i)) (4.26)
'Vk

4.4.4 IPDAF State Update

With the calculation of likelihood, prediction and normalization density in pre­
vious sections, the state recursion in (4.3) can be carried out as

p{xk\Ek = 1 ,yk)

VvJnkp°{mk)
1, 1

1 - PDPG + PDPa^Y,NtVkV)-iH*k,Rk)
i=1

+ ^(T)^P0(mk)PDPGl±J2U(yk(^Hxk,RkW(xk:xklk_.i,Pklk_1)}vk

i=1

1 , 1-5{^)mkPo{mk){\ - PDPGW(xk:xk\k-ltPk\k i)

11 1/ k
+ --(■-)"**P0(imk)PDPG£ Ar(yk(i); Vk, Sk{i))Ar(xk; xk]k(t), Pk[k(i))

i—1

[following [34]]
mk

= ypJPk(i)N{xk\xk\k{i),Pk\k(Q)) (4.27)
i=0

where
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xk\k(0) %k\k — l (4.28)

Pk\k{ty = Pk\k-1 (4.29)

Pk( 0)
_ 1 -PdPg

1 —
(4.30)

0k(i)
PDPG^mk(i)-yk,S(i)) n n vkKn

= 1-4 PdPg xN{yk{i) ! Vk, S(i)) (4.31)

5k = PoPcE^mkAf^ykiil^k^kii)) (4.32)
2 = 0

The resultant density is approximated as a normal distribution with first 
two moments

mk
Xk\k = (4-33)

i=0
rrik mk

Pk\k = YlPkiPkikii)+ 'F,0k(i)£k\k{i)xk\k(i)T ~ Xk\kxJ,\k (4-34)
2=0 2=0

The expressions in (4.33) and (4.34) complete the state update recursion of 
IPDA algorithm. The recursion of target existence probability is carried out in 
next section to complete the automation of track maintenance.

4.4.5 IPDAF : Target Existence Probability Update

The tracker starts with prior probability of existence P(Ek-i = 1|yk) and up­
dates it with the expression derived here. The Bayes5 theorem applied on the 
required probability expression P{E^ — 1|yk) yields

P(Ek = l\yk) = P(Ek = l\yk,yk-1)
= p(yk\Ek = l^y-^PjEk = l\yk-r)

p{yk\yk~l)
= p{yk\Ek = l,ykyP{Ek = l\yk-1)

p(yk\Ek = 1 ,yk^)P(Ek = l\yk^) + p(yk\Ek = 0 )Vk-r)P{Ek = 0I?/"1)
(4.35)

The measurement density conditioned on target existencep(yk\Ek = 1, j/fc_1) 
is given by

p{yk\Ek = l,yk :) = Jp(yk\xk,Ek = l,yk 1)p(xk, Ek = 1, yk 1)dxk

Xk
= 6 (4.36)
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On the other hand the measurement density conditioned on target non­
existence refers to the clutter density and therefore results in

p(Vk\Ek=Q,yk-1) = (d-)mkPo(mk) (4.37)

Vk
Noting that

P(Ek = 0|/-1) = 1 - P(Ek = ll/-1) 

the existence probability update in (4.35) becomes

(4.38)

(4.39)

P(Ek = l\yk) = (1 -Sk)P(Ek = liy-1) 

1 - 6kP(Ek = 1|yfc-J)

4.4.6 IPDAF Algorithm : Summarized

(4.40)

Following Bayesian approach for target existence model, the equations of IPDAF 
are derived in previous sections. One iteration of the algorithm is summarized 
in following steps:

1. Step 1 : Prediction

% k:\k~l FXk~l\k — l

Pk\k-1 - FPk-i\k-iFJ 4" Qk

III

K
l

ST£
11

Vk 1

II

Sk{i) = HPk]k_YHT + Rk

Kk = p^k-^sya)

(4.41)

2. Step 2 : Gating

Of all the observations received, select those which satisfy the distance 
test

\Vk(n) - yk]TSk l{i)\yk{n) - yk\ < 7 (4.42)

where 7 is the threshold to maintain Pq probability of gating and n = 
1,2,3,..., number of received measurements.
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3. Step 3 : Update

m/e

Xk\k ^ ^ Pk (i)xk\k(i)
i—0
m/e mfc

Pk\k = ^2 PkiPkidi) + ^Pk{i)xk\k{i)xk\k{i)T ~ Zk\kg\k 
2 = 0 2 = 0

(4.43)

where mk is the number of validated measurement in step 2 and

(h( 0)

Pk{i)

5k

P(Ek = l|yfc)

xk\k{0)
Pk\k(0) 

%k,\k iP) 

Pk\kXP

1 - PdPg
1 -6k

PDPG^(yk(i);yk,Sk(i))
l-6k

M(yk{i)\yk,Sk{i))

PDPG'^'FsmkJ^tyk{i)\yk,Sk(i))
2=0

(1 - Sk)P(Ek = l]/-1)
1 - 5kP(Ek = l|yfc-i)

%k\k-l

Pk\k-1
i + Kkivkii) - Vk) 

(I - KkH)Pk|fc_!

The updated probability of target existence P(Ek = 1|yk) helps decide on 
the track status while Xk\k an^ Pk\k give the updates state estimate.

4.5 Integrated Probabilistic Data Association (IPDA) Smoothing

The proposed IPDA smoothing in this thesis follows the same principle and 
philosophy defined by IPDA filter. In this section the models associated with 
the smoothing framework will be discussed and the formulation of the smoothing 
algorithm will be detailed.

4.5.1 Augmented State Target Dynamic Model

The target dynamic model is an augmentation of states from time t = k to 
t = k — N where N is the fixed lag. Therefore the smoothing uses target 
dynamic model of

X^FfcX^+V^)

where the parameters are as defined in 2.6.2.

(4.44)
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4.5.2 Augmented State Sensor Model 

The sensor observation model for the augmented state is modified as

Vk = HA.Xfc + wk (4.45)

where the parameters are as defined in 2.6.2

4.5.3 Target Existence Model

As the states in the augmented vector correspond to the ones from time t - 
k — N to t = /c, the target itself may switch in between the possible events of 
” existence” and ” non-existence” within that time interval. A simple transition 
matrix defined for switching between X^_i and X& does not capture the fact. 
For this reason, several hypotheses are proposed each consisting a transition 
between target ” existence” and ” non-existence”.
According to the transition probability defined in (4.7). if a target goes out 
of ” existence” (that is it was decided to be ” non-existence” at some point of 
time), it cannot come into ”existence” again and also if a target is decided to 
be ”non-existing” once, it will remain that way. Under the above constraint, 
there exist N + 2 possible ways for target to switch between the ” existence” 
and ” non-existence” within the time interval from t = k — N to t = k. Each 
of these ways are termed as possible ’’Hypothesis”. Each of these hypotheses 
contains the joint state and existence of a target. The ’’Hypotheses” are 
defined mathematically as

• Hypothesis H™ : Target existed from time t = k - N to t = k — m but 
not from t = k — m -f 1 to t = k

H™ = [XE\E?]
fk 5 Eh

_ f^k — rai kSk — m
Xk — m — 11 Ek — rn

Xk-N, Ek-N

where ra = 0,1, 2,..., iV

• Hypothesis Hk : Target did not exist anytime within the interval t = 
k — N to t = k
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<£} Ek-N

The above mentioned IV + 2 hypotheses cover all the possibilities of a target 
transition between the "existence” and "non-existence” event. The models will 
eventually be utilized for smoothing of the target existence probability and hence 
for the development of the smoother algorithm.

With the models specifically defined as in section 4.5.1 through 4.5.3, the 
Bayesian definition of target tracking with target existence uncertainty for smooth­
ing estimation can be defined as

Going along the same methodology of standard IPDA filter, the smoother 
tries to determine the joint density of augment state and existence. But the 
decision of target existence for smoother, unlike filter, does not depend only on 
the hypothesis (that the target existed for whole duration of the specified
fixed lag) and (that the target did not exist at any time during the inter­
val) but also on other possible existence hypotheses as mentioned in section 
4.4.4. Therefore the smoother needs to determine the probability of each exis­
tence hypothesis p(E°k\yk),... ,p(Ek \yk),p(Ek\yk)- Based on these hypotheses 
probabilities, the component existence probabilities can be calculated as

where m = 0,1,. .. , N.
Here the expression in (4.47) refers to the smoothed existence probabilities 

(except for m = 0 for which the expression is the filter estimate). Based on the 
re-estimated probability for target existence using more observation, a better 
estimate is possible and hence a better decision can be taken.
The state estimate is based on the decision of target existence. Hence, the state 
estimate, similar to IPDA filter, is given by

4.5.4 Bayesian Formulation of AS-IPDA Smoothing

p(Xk,E°k\yk) (4.46)

m
(4.47)

p(Xk\E°k,yk) (4.48)
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The estimate (4.48) is conditioned on target existence hypothesis which is 
also consistence with standard IPDA technique.

4.6 Formulation of the Smoother

The development of the smoother requires the solution of two steps of the 
Bayesian definition of the problem :

1. Firstly : The probabilities of the existence hypotheses. These will in turn 
give the smoothed existence probabilities at each time within the interval 
through (4.47).

2. Secondly : If the target is decided to be existing, the conditional state es­
timate is given by p(Xfc|EjJ, yk). As the augmented state contains, besides 
current state x^. all the states within the fixed interval of TV, the Bayesian 
update will filter the current state and smooth the states at previous time 
instances.

The complete algorithm is devised based on the systematic interpretation 
of the above mentioned two stages. In the following discussions, the calculated 
probabilities will be presented and therefore a technique will emerge in an algo­
rithmic form.

4.7 Smoothing of Existence Probabilities

Firstly, the probabilities of the augmented existence hypotheses are described. 
The definitions of these probabilities, from a Bayesian approach, are

P(EZV) (4.49)

STCNo'II

£

KEfc|/) (4.50)
(4.51)

where p(Ef~\yk) is the probability of the hypothesis that the target did not 
exist at any time within the time interval. The probabilities are derived in 
appendix B. The resultant expressions are as given here

p(E°k\yk) = ^5rnp(K-i\vk-1) (4-52)

1 / 1 \ nik
P(El|yfc) = Po(mk)T10p(E0k_1\yk-1) (4.53)

1 / 1 \ m’k
P(EZV) = ^(^J Po{mk)T00p{K^)
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(4.54)

(m = 2,...,N)

where

A = P{yk\Ek,yk-l).P{Vk\yk-1)
nv-i

+ £p(yfc|E^/-1).p(E£V-1)
jm—O

+p{yk\E,l,yk-1).p{n\yk~1) (4.55)

If the transition matrix is defined as in (4.7), with the specific value Toi = 0 
and Too = 1, the expressions (4.54) can be further simplified as

Once these probabilities are available, it is straightforward to compute the 
probabilities of component target ” existence” event at each instant of the inter­
val through (4.47). The decision on target existence at any earlier time instant 
is then possible to be re-estimated using the smoothed existence probabilities 
derived in the above mentioned fashion.

The posterior density of augmented state conditioned on existence is the same 
as suggested by AS-PDAF algorithm described in section 3.4.5 and will closely 
follow the derivation steps of IPDAF as given in section 4.4 (and subsections 
therein). The resultant smoothing algorithm is therefore summarized in follow­
ing steps.

The smoothing starts with the a priori state estimate X^._1|^_1 and asso­
ciated error covariance PA:—11 A:—l - Then the following steps are carried out in 
steps.

1. Step 1 : An one step prediction is carried out on augmented state, mea­
surement and their associated covariances

(4.56)

4.8 AS-IPDA Smoothing Algorithm
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2. Step 2: Kalman gain is also calculated through standard Kalman 
filter procedure

Kfc = Pfcifc.jins^1

3. Step 3: To cater for clutter measurement, a gate of volume 14 is formed 
and measurements within the gate are called as validated ones. Data asso­
ciation coefficients are calculated for each of the validated measurements 
along with the hypothesis that no measurement is target originated.

Pk{i) =
\-5k

1-PdPg
1 — bk

Af(yk(z):HXklk-n Sit)

i = 0

1,2,..., mk

4. Step 4: Probabilities for augment existence hypotheses E^,...,E^ are 
calculated through

p(K\yk)

p(Ell/)

p(W\yk) 

(m = 2,..., N)

p(Vt\yk)

^TnMELih/-1)

1 / 1 \nik
A \Vk) po(mk)r10p(E0,yyk-1)

1 / 1 \ "'k
a (vtj

1 / 1 \ mk
- (-) Po(mk) [r&.rnPiEk-N-itf-1)

+ 1OT+1(1 - p{Ek-N-i\yk~1))}

(4.57)

where

A p{yk\^k,yk l)-p{r>k\yk J)
VN-1

+ ICpG/fclEr.y^M.pCEjpiy*-1)

+p(yfc|E^,yfc-1).p(EJ|j/fc-1)

5. Step 5:

Prom the probabilities of augmented existence hypotheses, target existence 
probabilities are obtained through
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rn

p(Ek-m\yk) = J>(E£| yk)

6. Step 6: If the target is decided to be existing, state and associated co­
variance are updated by

where ^(i), X/c|/f.(i), P/C|/C(z) can be obtained from the expressions in sec­
tion 3.4.5 by replacing the state vectors with augmented ones wherever 
appropriate.

Otherwise the target may be terminated without updating the state (as 
the target is decided to be non-existing, there is no necessity to estimate 
its state).

The steps stated above signify that Xk-i\k-i and Pa:—l|fc — l evolve into X^ 
and Pk\k respectively ensuring that the process is strictly recursive. One single 
recursion of a tracker that implements AS-IPDA goes through the flow shown 
in figure 4.3.
An important point to note is that if the target is decided to be non-existing at 
the current time t = k. based on the filtered existence probability (obtained in 
the same iteration of the AS-IPDA), none of the observations obviously contains 
information about the state of the target in previous time. This translated into 
the fact that under such scenario, smoothing should not be carried out. Ap­
pendix C proves the claim mathematically. The result shows that for hypotheses 
H)!1 and H/c (both of which cater for the fact that the target does not exist at 
current time), the state is retained as the previous one instead of being updated 
with the current measurements.

In this chapter, an original smoothing algorithm for automatic track initiation 
in clutter from Bayesian first principle is derived. First Bayesian model for auto­
matic track maintenance is detailed. Then the model is extended to smoothing 
and the solution of the proposed smoothing model results into augmented state 
IPDA smoother. Associated assumptions for augmented target dynamic and

P*|* Ac(d) + [Xfc|A;(i) - Xfc|fc][Xfc|fc(z) - ±klkf)

4.9 Conclusion
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sensor models are also devised in this chapter. The proposed smoother is ca­
pable of reestimating the target state along with the existence probability at a 
fixed lag. Using more observations help smoother to take more accurate deci­
sion about the status of the target - confirmed, terminated and etc., along with 
better state estimation. The principal features of the proposed smoother are

1. For state estimation, the smoother follows the IPDA steps almost iden­
tically with the difference of state and measurement vectors replaced by 
augmented ones.

2. For target existence probability estimation, it first calculates the proba,- 
bilities of augmented hypotheses and then the probability at each time 
instant within the fixed lag interval.

3. The smoother is strictly recursive making it easily implementable.

4. The smoother is also a direct extension of AS-PDAF discussed in chapter
3.

Following the derivation, the algorithm steps are cleared. A flow chart for 
one iteration of a tracker that implements the smoother is also presented in the 
chapter.
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Fig. 4.3: Flow chart of IPDA smoothing



5. RANDOM SET SMOOTHER

5.1 Introduction

Random sets and in particular Finite Set Statistics (FISST) are recently pro­
posed as the most appropriate framework for deriving Bayes’ optimal, multi­
target tracking algorithm. However most of the tracking filters that were de­
rived from this framework are based on first and second order moments. The 
PHD filters proposed recently and their particle filter generalizations fall in this 
category.

One of the open questions was the fundamental connection between random 
set filters and the other Bayesian multi-target tracking algorithm. Establishing 
the connection is significant as the Random Set merely provides a framework 
for multi-target tracking, however its realization in practical systems is a result 
of a series of pragmatic approximations. Since such filters already exist and are 
known to perform well, it is imperative to find such a connection and establish 
its foundations. In [24], Challa et-al. have shown that the random set formalism 
leads to IPDA and its variants.

Here the result is extended to derive Generalized Random Set based smooth­
ing algorithm. The significance of adopting random set. formalism especially in 
multiple target tracking is reviewed. By modeling the target motion model as 
the union of the past states, a generalized smoother algorithm is devised. The 
associated random set smoother models are proposed and described. Finally 
the augmented state IPDA smoother of chapter 4 is derived from the random 
set formalism.

5.2 Background

The Bayesian probabilistic framework provides an adequate approach for deal­
ing with Single Target Tracking. It is the most commonly accepted theoretical 
framework in the tracking community. The Bayesian updating paradigm is used 
in estimating the state of the single target in a recursive manner. These tech­
niques generalize to the case of multiple targets when the number of targets is 
known [2] or is bounded by a known number [74, 41]. However, the fundamen­
tal difference between single target tracking and multitarget tracking is that the 
number of targets under consideration is not known in the latter. The number
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of target(s) is unknown a priori and is to be estimated. While the prescribed 
probabilistic framework can be used to model such a situation theoretically, the 
assessment of some of the components of the estimation model, such as the 
likelihood functions [47], is not easily done in practice. In 1994, Ronald Mahler 
introduced the Finite-Set Statistics (FISST) [50, 49], a multisensor-multitarget 
differential and integral calculus as a formalism to deal with the modeling dif­
ficulties in multi-target tracking. FISST [29, 35, 46] is based on the fact that 
belief-mass functions [69, 72, 43] are the multisensor-multitarget counterparts 
of probability-mass functions in the single target tracking models. Mahler’s ap­
proach attempts to generalize the Bayesian framework into a formalism that 
can handle the multitarget, multisensor tracking problem. Using the FISST to 
develop implementable algorithms for multiple target tracking is not straightfor­
ward and approximations in the form of first order moments of the multitarget 
densities were proposed [48].

In [24]. it is shown by Challa ct. al. that the IPDA filter can be derived 
completely from the random set formalism for single target tracking. The fo­
cus was on establishing fundamental linkages between random set formalism 
and the IPDA algorithm. The IPDA algorithm is derived using FISST and in­
sights are provided into the approximations of IPDA and their significance in 
addressing the target existence issue. The Integrated Probabilistic Data Asso­
ciation (IPDA) algorithm has been shown to out-perform other filters such as 
the IMM-PDA filter [16] and is therefore given more attention in the tracking 
community. IPDA explicitly models the target existence as a random variable 
and in so doing, it has made an attempt, albeit by accident, to capture the 
defining elements of random sets. The random set estimators that exist so far 
in literature, [24, 48, 49, 50, 56], consider only the filtered state estimation. In 
this chapter, we propose to continue the work done in [24] by deriving a random 
set approach for smoothing. Smoothing within the state estimation context is 
technically defined as a process where the current measurements are used to 
improve the estimates of the past states of the object of interest [66]. In the 
target tracking problem, this corresponds to estimating the past target states 
and associated tracker performance parameters.

Section 5.3 visits the random set filter formulation while section 5.4 discusses 
the random set filter models with target existence uncertainty. In section 5.6, 
target tracking with target existence uncertainty is described. In section 5.7 
and 5.8, we derive the target dynamics and sensor model and deduce the Bayes 
update equation for the smoother to obtain the iterative global posterior density 
of the random set models. Finally, in section 5.9, we show that subject to certain 
simplifying assumptions and constraints, an IPDA smoother algorithm can be 
derived from the random set smoothing equations.
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5.3 Formulation of Random Set Filter

Random set formulation requires the tool of Finite Set Statistics (FISST) ([50, 
49]) and covered in appendix D. The key concept of FISST is the belief mass. 
The belief mass functions are non-additive generalizations of probability mass 
functions. Only on certain topological spaces, these belief masses behave the 
same as probability mass functions, [24]. In random set notation, the generalized 
multi-target dynamic and sensor models are Tk and E/~ respectively while Xk 
and Yk are realizations of them respectively. The models are defined as

• The target dynamic motion model

T/c = §k{Xk-i, Vk-i) U Bk(Xk-i) (5.1)

where $&(.) models the dynamic transition of the target and Bj,c(.) models 
the birth of the target.

• The sensor model

E& — Ey’. O 5-k (5.2)

where denotes the target originated measurement and 
Afc = Afc(l), Afc(2),..., Ak(M) models the clutter measurements. Once the 
models for target dynamics and sensor measurements are available, the corre­
sponding belief mass functions are calculated as

• The statistics of random set is given by the belief mass

= Pr(Tk C S) (5.3)

This refers to the total probability of finding all targets in the region S 
given that they had a target state Xk-i at time t = k — 1.

• The belief mass of randomly varying finite measurement set E^ is given 
by

fck{S\Xk) = pj2,uAk(S\Xk)=Pr(j:'kUAkCS) (5.4)
k K

The belief mass function denotes the total probability of finding all the 
measurements is a given region S.
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Differentiation of the belief masses in (5.3) and (5.4) above gives the Multi­
target transition densities and likelihoods respectively. Using FISST, these den­
sities can be obtained as below:

• Markov transition density

fk\k-i(Xk\Xk-i)

• Likelihood density

(5.5)

(5.6)

The densities in (5.5) and (5.6) can now be used in standard Bayesian re­
cursive equation to get the posterior target state density. The final posterior 
density is given by

fk\k(xk\Yk) = hfSk x J /fe|fc_1(xfe|xfc_1)/fc_i|fc_i(xfc_1|

(5.7)

The expressions in (5.3) through to (5.7) constitutes one iteration of a ran­
dom set filter. In the next section random set model for tracking with target 
existence uncertainty will be developed leading to the derivation of IPDAF 
equations.

5.4 Random Set Filter Models for Target Existence Uncertainty

In random set notation, the target state is denoted as finite random set Vk with 
two realizations, Xk = {xk} (the target exists with state Xk) and Xk = 4> (the 
target does not exist). The sensor reports the target originated measurement 
with probability Pd, while it picks up measurements from clutter with a proba­
bility Pfa- In random set notation, the sensor observation set has realization 
Yk — {Yfc(l), Yyc(2),..., Yk(rrik)} where each Yk(i) denotes a measurement either 
from target or clutter and where mk = \Yk\ refers to the number of the collected 
measurements.

5.4.1 Markov Transition Density for Target Dynamics

From the general target dynamic model of (5.1), the birth process is referred 
to by Bkf). For the problem under consideration, at any given instant, only
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one target can be present. Therefore there is no birth process involved in target 
dynamics. In that case, the target dynamics reduces to

rfc = <mx*_1i14_1) (5.8)

Under this constraint the realizations of F& are

Xk = {xk} Xk = {0} (5.9)

where

• Xk = {xk} with probability pv

• Xk = {</>} with probability 1 — pv

The discussion above establishes the fact that without the birth process, the 
process involves one target and it persists with probability pv while it can vanish 
with probability 1 —pv. Also if there is no target present, it will continue to be 
case. Given the above mentioned model parameters, it is possible to calculate 
the belief mass function, Prk]k_1 (£|^G;-i), which represents the total probability 
of finding the target in the region.

If Xk~i = {4>} (no target present), it will continue to be the case. Under 
that condition,

= Pr(rk = {0} c 5) = 1 (5.10)

On the other hand, if Xk-i = {x^-i} (the target existed at t — k — 1), 
it can either persist or vanish. Therefore the the belief mass function for this 
condition is

Pr(Tk = {0} !{**_!}) + Pr(Tk = {x4|{x,_1»

(1 -pv)+pv J p{xk\xk-i)dxk-i (5.11)
s

Differentiation of (5.10) and (5.11) give densities for each possible Markov 
transition in target states.

/(0I0) = 1 (5.12)
f{4>\{xk-i}) = 1 - Pv (5.13)

f{{xk}\{xk-i}) = pvp(xk\xk-i) (5.14)

(S|{xfc_i}) =
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5.4.2 Likelihood Densities

According to the sensor model (5.2). there are two parts in the finitely varying 
random set of X&. These are the target originated measurement Y>k and the 
measurements from clutter A/-. Under the assumption that measurements from 
target and clutter are independent, the total belief mass function /3xk(S\Xk) 
can be denoted as a product of two component belief mass functions as

fck(S\Xh) = PKuAk(S\Xk)

= Pr(s'fc C S)P(Ak C S) (5.15)

Analysis for each of them is done separately to deduce the complete belief 
mass function.

The realizations of are given by

• r,'k = {yk} and

• K = W

Sensor received target originated measurement with a probability of Pr>. 
Using this information, the belief mass function for the target originated mea­
surement is given by

PK(S\Xk) = Pr(Vk C 5|{xfc})

= + Pr(Y,'k = {yk}\{xk})
= l - PD + Pd Jp(yk\xk)dyk (5.16)

Differentiation of (5.1G) gives likelihood densities of measurements under the 
condition of target existence. These are

f{4>\Xk) = 1 -PD (5.17)
f({yk}\xk) = PDp(yk\xk) (5.18)

Now according to the model specification, the sensor receives false alarms 
with probability Pfa- Therefore with similar manipulation of the clutter model, 
the belief mass function of random set of observations generated by a clutter 
object is given by

P{Kk{i) C S) = j3c(S) = 1 - Pfa + PfaPc{S) (5.19)
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with probability measure p for some spatial distribution c. Now, the total 
sensor model set f3^k(S\Xk) can be expanded using the belief masses of target 
and clutter generated measurements.

fck{S\Xk)
= Pr(E;,A*C5)

= Pr(Zk C S\{xk})P(Ak C S)
= Pr(Ek C S)P(Afc(l), Afc(2),..., Afe(M) C S)
= Pr(Y,'k c S)P(A*(1) C S)P(Ak(2) C S)... P(Ak(M) C 5)

= (5|Xfc)/?c(5)M (5.20)

The differentiation of (5.20) will give joint likelihood density. Using FISST 
product rule, the global likelihood density can be calculated as

hk{Yk\Xk) = vKk{Yk\Xk)
k K

= E f^(Zk\Yk)fAk(Yk-Zk) (5.21)
ZkCYk "

Following [24], the global density of clutter process is a Poisson process and 
is given by

/a* = Pr.(mk) = Xm"e-x (5.22)
Vk

Also it can be easily shown that

Pcijnk- 1) = Pc(mk)— (5.23)

In both (5.22) and (5.23), Vk refers to the volume of surveillance region, mk 
is the number of clutter measurements and A is the average number of clutter 
measurements within the validation gate.

The overall likelihood functions is obtained by substituting (5.17), (5.18) 
and (5.22) in (5.21).

f(Yk\Xk) = f{4>\Xk)fhk (yk(l), yk{2),.. .,yk(mk)) 

+ - {yk(i)})

Pc(mk)(l - PD) +pc(mk - 1) PD^2p(yk(.i)\xk)
2—1

= Pc{mk)

2 — 1
(5.24)
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On the other hand the global likelihood function if the target does not exist 
f(Yk\<t>) denotes only clutter densities and therefore can be easily given by

f{Yk\4>) = pc{mk) (5.25)

5.4.3 Global Update Density

In general the posterior density is given by standard Bayesian recursion.

fk\k(Xk\Yk)

= £fzk(yk\Xk)x J fk\k-i{Xk\Xk-1)fk_lik_1{Xk-1\Yk-1)6Xk-1

(5.26)

There are two realizations of target state Xk = {0} and Xk = {xk}- There­
fore the posterior density comes in two forms

fk\k{{xk}\Yk) — Posterior probability that the target exists with state {x/e}
(5.27)

/fc|fc({^}|^fc) = Posterior probability that the target does not exist (5.28) 

and f(Xk\Yk) is a density in the sense that

J fk\k{Xk\Yk)SXk

= fklkm\Yk) + h J f{{xk}\Yk)5{xk}

= 1 (5.29)

To obtain the posterior state density, we need the solution of fk\k({xk}\Yk)- 
Therefore using the Bayesian update definition,

fk\k({xk}\Yk)

^hk(Yk |{xfc})x

hk(Yk\{xk}) x 

hk(Yk\{xk}) x

Pc(rnk)
(1 - Pd)

J fk\k-i{{xk}\Xk-1)fk_1\k_1{Xk.-l\Yk-1)6Xk-1

[/fc|fc-i({^fc}|{0})/fc-i|fc-i({<^}|^fc_1)]

[/fc|fc-i({a;fc}|{*/c-i})/*;-i|fc-i({*fc-i}|Vfc_1)]
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x

x

0 +pv Jp{xk\xk^i)p(xk^l\Yk l)dxk^i

Pc(rnk)pv (1 - PD) + YhER. ( ^2p(yk{i)\xk)
mk

J p(xk\xk-i)p(xk-i\Yk 1)dxk

i—1

1 (5.30)

On the other hand, the posterior density fk\k({cf)}\Yk) can easily be obtained 
from the relation (5.29),

fk\k({4>}\Yk) = 1 ~ fk\k({xk}\Yk) (5.31)

The expressions in (5.30) and (5.31) complete the Bayesian filter steps for 
target tracking with track existence uncertainty. The posterior probability of 
target existence is given by

pv(posterior) = J fk\k{{xk}\Yk) (5.32)

In the next section, these filter steps will be shown to deduce IPDAF under 
linear Gaussian assumptions.

5.4.4 Deri vi ng IP DA F

In IPDAF, the target existence is modeled as an event with two possible events 
Pk.v (target exists at t = k) and pk~} (target does not exist at t = k). These 
events switch between themselves with defined Markov Transition probability 
matrix defined

Pk\k — l.v 

Pk\k — l,v

This transition also agrees with the random set model assumption that if a 
target exists, it may persist with probability pv or may vanish with probability 
1 — pv. On the other hand if a target does not exist, it will continue to be the 
case. Due to this transition model, the fixed probability of target existence pv 
in random set filter equations need to be replaced by predicted probability of 
target existence Pk\k-i,v which can be obtained iteratively from (5.33).

Another important factor to consider is that almost all practical algorithms 
use ” gating” to choose a certain validated set of measurements instead of con­
sidering all obtained measurements. Therefore the detection probability Pd 
needs to replaced by PdPg to cater for gating probability Pq of each validated 
measurements.

’ ru 0 ---
---

1

?r 1 I? 1

_ i -r„ 1 Pk — l\k — l,v
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Introducing these aforementioned modifications the state update equations 
of random set filter (5.30) becomes

x

fk\k({xk}\Yk)

Pc{mk)pk\k-\,v M D d \ , VkPDPo 
------------A-------- [(1 “ PdPg) + —> —

J p{xk\xk-i)p{xk-i\Yk-1)dxk-i

mk

'Y^,p{yk(i)\xk)
.Ml

(5.34)

The integral in (5.34) is Chapman-Kolmogorov integral and for Gaussian lin­
ear densities of the component densities, it results into simple Kalman predictor 
and reduces to a normal distribution given by N(xk\ Xk\k-h Pjc\k-i)- Moreover, 
if the sensor model is assumed to be linear in states of the target and affected 
by white Gaussian noise the likelihood density p(yk(i)\%k) is also given by a 
normal distribution Af(yk{i)] Hxk.Rk)- Under these assumptions, the posterior 
density can be further reduced as

fk\k({xk}\Yk)

Pc{^k)Pk\k — l,v (1-PDPg) + — ~£ ^Ar(yk(t)-,Hxk,Rk)

i— 1

(yV"(x&, Xk\k — 11 R*k\k — 1)]

= Pc{mk)2lk~1'v (1 - PDPG)

+ V±P°P-Myk(iy, Hxk, Rk)M{xk-xk\k_^Pk]k^)
i= 1

mk
@k,v{Q')N{Xk')Xk\k — \'>Rk\k — \) T ^ ^ Pk.v (^)«A/’ (Xk, %k\k (01 Rk\k) (o. 35)

i— 1

where 0kWs, i = 0,1, 2,..., are data association probabilities and de­
fined as

/MO) = Pc--Wfc)|^fc Mi - pdpg)

PkM =
[where Af(yk(i); Hxk\k-i, Sk) = A*>(z)]

(5.36)

(5.37)

The summation of (5.35) is approximated by a normal distribution and with 
first two moments defined by

rnk

%k\k ^ ^ fik (^)^/c|fc (Q)
i—0

(5.38)
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Pk\k

where

mk rrifc
Yh PkiPk\k{i) + ^2,0k{i)xk\k{i)xk\k{i)T - xk\kxl\k (5.39)
i=0 i—0

= (5-40)

= Pk\k-i (5.41)

The state update density defined by mean and associated variance (5.38) and 
(5.39) respectively from Random set formulation is exactly same as obtained for 
standard IPDAF in (4.33) and (4.34).

Now looking at the data association probabilities,

Zfc|fc(0)
pk\k{fy

0k,v = A 1Pc{mk)pk\k-i,v (5.42)
Pk,v(0) = A~1pc(mk)Pk\k-i,vO ~ PdPg) (5.43)

Pk,v(i) = A 1pc(mk)pk Afc(i) (5.44)
(5.45)

where Pk\k-i,v and pk\k-\,v are predicted probabilities of target existence 
and non-existence respectively and are obtained from (5.33).

From (5.29),

rrik
Pk,v T Pk,v{fy + Pk,v{P) — 1

1

Solving (5.44) for A, we have

(5.46)

A = PcXmk)Pk\k-i?u + PcXrrik)Pk\k-i,v{1 ~ pDpG)

, PDPcVkKl.x
+ 2^PrXmk)Pk\k-l,v--------^---------- A k(t)

i=1
= Pc(mk)(l - 6kpk\k-i,v) (5.47)

because pk\k-i,v+Pk\k-i,v = 1 and assuming Sk = PDPG - J2 PpPfVh Ak(i).
i—1

Posterior probability of target existence pk\k,v is given by the integral (5.32). 
This can be obtained easily and from [24], the probability can be directly given 
as

Pk\k,v
rnk

Pk,v(0) + Pk,v{i)
i—1

1 — 5k
f $kPk\k — l,v

'Pk\k — l,v (5.48)
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This updated probability of target existence is what IPDAF gives in (4.40).
The state update given by (5.38) and (5.39) along with the existence proba­

bility recursion (5.48) completes the Random set filter based IPDA derivation.
In the next section, generalized smoothing algorithm for finitely varying 

random set is proposed. The resultant smoother will later be used to model 
target existence uncertainty scenario. This will result in AS-IPDA smoother 
(proposed and discussed in chapter 4) establishing the theoretical connection 
between random set smoothing approach and standard IPDA smoothing.

5.5 Generalized Random Set Smoother

This section looks at the original derivation of random set smoother. Also the 
assumptions and necessary modifications are detailed with explanation.

As stated previously, the tool for modeling a random set target tracking 
scenario in FISST involves the concept of belief mass function. Keeping the 
standard notation of random set

• Fk and E& denote the augmented state random set model for target mo­
tion and sensor measurements at time t = /c, respectively, while Tk refers 
to the target motion model at any particular time t = k.

• Xk and Yk arc the realizations of sets IT and XT respectively while Xk is 
the realization of Tk.

• Yk denotes the collection of all the measurements up to time t = k.

For random set smoothing, the target dynamics and sensor measurements 
models are as follows:

• Target Dynamics Modeling

At any particular time t = k, the random set model for target dynamics 
is given by

Tk = Q{Xk.u V*_!) U Bk(Xk-!) (5.49)

where

— $(AT_i, I4-i) refers to the transition dynamics of the existing tar­
gets
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— Bk(Xk-i) refers to the target birth process which caters for the pos­
sibility of any new target detected

To model an augmented state smoother framework with N lag, the target 
dynamics model will contain the same target equations of (5.49) for time 
t = k,k - l,...,fc — N. Hence the target dynamic model of augmented 
state smoother will have the form of

t—k
Tk= (J Tt (5.50)

t=k-N

The set union operation of (5.50) suggests a stochastic dynamics for past 
states (included in the Tt) vector. This is not correct in the sense that 
stochastic dynamic is only applied for the current state. Therefore, for 
the rest of the derivation it is understood that the union operation is 
restrictive and takes care of the fact that uncertainty (modeled as Vk-i) 
affects only the current state while all the states undergo transition.

• Sensor Measurement Models

The sensor model for random set formalization is given by

^k — hk U Afc (5.51)

where

— T,k denotes the model for target originated measurements 

— A*; refers to the clutter measurement model

Based on the above models, the belief mass functions of the associated set 
are obtained.

• The belief mass function of the target motion model is given by

0rkik-ASl*fc-i) = *Mrfc C SI**-!) (5.52)

This refers to the total probability of finding a target within the space S 
at time t = k provided that at time t = t — 1 the target had an augmented 
state of Xk-\.
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• Similarly the belief mass function of the sensor model is given by

0j:klk{S\Xk) = Pr{^kCS\Xk) (5.53)

This is the total probability of the event that all the sensor observations at 
time / = k will be within the set space S if the target has the augmented 
state of Xk.

Multi-target Markov densities and multi-target likelihoods are obtained by 
differentiating the corresponding belief mass functions.

• The multi-target Markov density is the set derivative of the belief mass 
function stated in (5.52). The density is given by

• Similarly the multi-target likelihood density is given by the set derivative 
of the belief mass function of (5.53) as

The updated multi-target state estimate follows using the standard Bayesian 
recursive approach

The proposed random set smoother models the target motion and sensor 
according to (5.50) and (5.51) respectively. The complete smoother follows 
the systematic solution of (5.54) through (5.56) which complete the smoothing 
algorithm in an iterative manner. In the next sections, we propose particular 
models for target dynamics and sensor measurements for problems involving 
target existence uncertainty. Based on the models, solutions for the smoothing 
steps are derived.

(5.54)

(5.55)

frkik(Xk\Yk) = lx/Ei|jyt\Xk)x

J frk]k^l(Xk\Xk-i)frk_llk_1 {Xk-\\Yk~l)8Xk-\ (5.56)fc — 11 fc — 1
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5.6 Target Existence Uncertainty in Random Set Domain

The scope of the thesis covers the single non-maneuvering target tracking in 
clutter with target existence uncertainty. The scenario considered is the one in 
which the target exists at time t = k — 1, and

• it can persist with probability pv, or

• it can vanish with probability 1 — pv

The problem is to determine if a target exists and if it does, find the state 
of the target. At any particular time t = k — d, where d = 0,1,2,..., N, Xk~d, 
which is the realization of Tk_d (defined by (5.49)), can be either of two possible 
events

• Xk_d {4>}

• Xk-d = {xk}

where {a^} represents the state of the target if the target is present. The 
target dynamic model of IT (defined in (5.50)) is the union set of any combi­
nation of different Tk~d• The measurements reported by the sensors originate 
from

• the actual target with probability Pd, and

• from a clutter source with probability Pfa

The instance of measurement model at time t = k is denoted by Yk. 
The number of collected sensor report at any particular time t = k is given by 
\Yk\ = mk and the clutters are uniformly distributed within the surveillance 
region of the sensor.

5.7 Random Set Models

The target dynamics and sensors measurement models specific to the problem 
defined in section 5.6 are developed in this section, using equations (5.50) and
(5.51).

5.7.1 Markov Transition Densities for Random Set Smoother under Target
Existence Uncertainty

At any single time instant, the random set model for target motion is given by 
(5.49). The problem defined in section 5.6 requires that at most one target be 
present in the surveillance region of the sensor. Given that constraint the birth
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process will be a null set and hence the target motion model of (5.49) is given 
by

Tk = 9(Xk-1,Vk-1) (5.57)

The possible transition from Xk-i through the function gives rise to 
the current target state Xk-

where

• the realization of Xk can either be {xk} or {0}

The union operation of (5.50) gives rise to the realization of T^ which is 
denoted by Xk-

At each time, the target state Xk-d, where d = 0,1,...,7V, can have two 
realizations,

• {x-k-d} ~ the target exists with state Xk-d-

• {0/e_ri} - the target does not exist.

Xk is then a union of all such possible states for the entire lag of TV. In 
general, this union set can be given as

= {Xk U U ... U Xk-N} (5.58)

But under the assumption of no new target birth, the particular set of

{xiUfa} (5.59)

where i > j, is impossible. Given this constraint, there are TV + 2 number 
of set allowed for Xk as possible realizations of Fk- These can be summarized 
here as

• X£k = {xfc,xfc_i,... ,x/c_7v} - target exists for the entire duration of the 
lag

• X™ = {xk—m—h • • •, x/c-jv}, m = 0,1,..., TV — 1 - target existed between 
t = k — TV to t = k — m — 1 and disappeared afterwards •

• X£ = {(f>k... ., d>k-N} ~ target was not existing for the entire duration of 
the lag
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These are exactly the same hypotheses developed in AS-IPDA algorithm in 
section 4.5.3. It is also noted that only X£k and Xj? (two sets denoting the 
persistence of the target and disappearance of the target at the current time 
instant respectively) are evolved from the set Xk-i defined at previous time 
instant.

The belief mass function of the set Tk can be found using the definition of
(5.52). For N + 2 possible sets at time t = k — 1, there will be N + 2 possible 
belief masses. These are given by:

0r«>-AS\Xxk-i) = = xkk C S\Xxk^1)

+Pr(Tk = X°k C SI*;*!1) + • • • + Pr(Tk = Xj?~l C S\X^) +
Pr(rk = x? c s\xxkk_~^)

= PXk,Xk.x Jp{XZk\XZ--i1)dXZk_i1+pXk.1 (5.60)

In similar manner, the belief masses for other remaining sets are also calcu­
lated and given by

Prk]k_1{S\X^_l)=p{m,m-l)

(where rn = 1,. .., TV — 2).

(5.61)

/8r*|t-.(5|XfcN_-11)=pn,JV_1 (5.62)

Prk\k 1(W_1) = 1 (5.63)

(5.64)

The complete Markov transition densities can be obtained by calculating the 
derivatives of (5.60) through (5.63). The calculated densities are

= 1 (5.65)

f(Xk\x7_7) “ Pn.N — 1 (5.66)

1

jfX
1
! (5.67)

where m = 0,1,..., TV — 2

KIC;1) = Pxk,x„ : / P(^IC)1)^-)' (5.68)

f{^k\xti)

1

HOII (5.69)
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5.7.2 Likelihood density of Random Set Smoother

The random set model for sensor measurements along with clutter is given by 
(5.51) such that

• Efc models the target originated measurement, and

• A/e models the clutter originated measurements

The belief mass function of the total measurement set E/e can then be ex­
pressed as

fcnJS\Xk) = Pr-^UAfcCSI^) (5.70)

Assuming that the target originated measurements and clutter originated 
measurements are independent of each other, (5.70) can be re-written as

fcktk(S\Xk) = 0s'k{S\Xk) X P^WXk)

= Pr(ll'k C S\Xk) Pr(Ak C S\Xk) (5.71)

The sensor collects the report of the target with a detection probability of 
Pd. Hence, the measurement model for target originated data, provided that 
the target exists, can be expanded as

PK(S\Xk) = Pr(T,'k = 4>\{Xkk})

+ Pr(S;^,£'tCS|{*r})

= (l - PD) + PDpK(S\X*«)

= (1-PD) +PD f f(Yk\X't)

= f{4>\Kk) + +pD J fmx?) (5.72)

For the clutter measurement model A^, it is assumed that

• there are M number of clutters present at time t = k

• each of the clutter observations is independent of the other

• each clutter has the same probability measure with respect to spatial den­
sity

Based on these assumptions, the belief mass measure is
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0Ak(S\XZk) = Pr(Ak CS\X*«)
= Pr(A*(l) C 5, Afc(2) CS,.., A*(Af) C S\Xxkk)

...Pr(Ak(M)CS\Xlk)
M

= l[Pr(\k(i)CS\X^)
i=l

= I3C(S)M (5.73)

Putting the expressions from (5.72) and (5.73) into (5.71), the complete 
belief mass measure for sensor model is

Pxhlk (S\Xk) =Pv'k(S\Xk) x (ic{S)M (5.74)

The next task in deriving the smoothing algorithm is to find the derivative of 
the belief mass function in (5.74) to obtain the likelihood function {Yk\X£k). 
The belief mass function is a product of two separate belief measures, therefore 
the likelihood function is obtained using the product rule of FISST. It can be 
shown that

hklk(Yk\Xk1')

= /s;uAfe(Ul<*r)

= Z fs'iW^k)/Ak(Yk - Zk) (5.75)
kZkCYk

The global density of the clutter process /aa.{£i, £2, • • ■ ,£n} is

n! CM,nP?A( 1 - P#TnMei) ■.. C($n)
(5.76)

where Cm,ti denotes the number of combinations of n out of M, with the 
assumption of clutter being uniformly distributed in the surveillance volume T, 
cte) — V' a result, the density of clutter in (5.76) can further be reduced 
to

n!
1

V

n

CM.tiPfa (1 Pfa)- (5.77)

If M is large and Pfa is small the expression on the right hand side of (5.77) 
can be approximated by a poisson process. This further simplifies to
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/ 1 \ 71 \np-X

/At{£i,$2,...,Sn} = (5.78)

In literature, the number of clutter for the scan at time t = k is denoted by 
rrik. Hence if n is replaced by rrik in expression (5.78), and the global density 
/Afc{£i> £2,... , £n} is denoted by the clutter density becomes,

/ ^ mfc\ Xmke~'K
pc(mk) =

/ -1 \
= (-) \mke~x (5.79)

It is also evident that

Vpc(mk - 1) = pc(mk)— (5.80)

The overall likelihood function of (5.75), when the target exists, can now be 
derived using the relationships found in (5.72) and (5.79). This is given by

/s„fc(u\Kk)
= fK(d>\X^) xfAk(Yk(l),...,Yk(mk))

+E^nwi*r)-/At(u - {uw»
i

= Pc{mk) (1 - Pd)

+ Pc{mk - 1) y^p(U(«)|^t) j

= Pc(mk) (1 -pd + f>(rfc(i)|-*T)j

(5.81)

When the target does not exist, the sensor model equation of (5.51) remains 
same with the difference that the target originated measurement can have only 
one realization, = 0. It is also easy to verify that the likelihood will have no 
representation of the target and only the clutter will contribute to the density. 
Therefore

/Ekljui*r) =

hk]k(Yk\Xrk)

Pc(mk)

where m = 0, 1, 2,..., N — 1
Pr,{mk) (5.82)
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5.8 Calculation of Global Posterior Density of Target State and
Existence

The Bayes recursion follows the same procedure as in single target single sensor 
case. Dropping the notation of T for clarity, the global posterior density is 
given by

fk\k(Xk\Yk)

= ^h„k(Yk\Xk) x

/ /rfc|fc_j (Xk\Xk~i)frk_ltk_1 {Xk-i\Yk~1)5Xk~i

= -^hktk(Yk\Xk)

{fkik-MX^) fk-i\k-i(Xk_1\Yk~1) +

J f^k-TXklK*-1) fk-Mk-dKkG1\Yk-l)dXl'L\1}
(5.83)

The posterior density fk\kXXk\Yk) has following forms:

f(Xk\Yk) (5.84)
f(Xp\Yk) (5.85)
where m = 0,1,...,7V — 1
f(X*k\Yk) (5.86)

The global posterior density is a probability density and

J fk\k{Xk\Yk)5Xk

= fklk(X£\Yk) + hj fk\k{Xkk\Yk)dXkk

N~i . .
+ E TT fk\k(XP\Yk)dX™

m=0 J
= 1 (5.87)

If the target exists, the state estimation will be obtained from fk\k{X£k |Yk). 
This is obtained through (5.83), where Xk is replaced by its realization X£k.

fk\k(X^\Yk)
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= /Efc|jnKk)

fTV —1

X

_m—0

+ £/e*,*OW)
X /fc|fc-i(^‘l^-i) A-Hfc-iW-il^-1) 

/Et|fc(ni^) x

I h\k^{XXkk\K^) fk-\\k-\{Xkk~l\Yk-l)dXk--\

(oJ t>re*K“;') )«;:r)

= (l - Pd + ^ f>(iy.)K*‘))

(/(5-88)

The posterior densities of the remaining realizations of Xk can also be ob­
tained in a a similar manner and are given by (using (5.65) - (5.69))

fk\k{X°k\Yk)

= h f^k(Yk\x°k) x/fc^iy*-1)

= £ fzkikmXk) x PO'tMX&lY*-1)

= ^Pc(mfc) xpo^/fcifc^^y*-1) (5.89)

fk\k{Xr\Yk)
= ^Mlfc(niAr)xAlfc(Ariyfc-1)

= ^ hkik(Yk\xn x pm,m-ifk\k{xr_-1i\Yk-1)

= ^PcWx^.!/^"-1^-1) (5.90)

(where m = 1,...,TV — 2).

/fc|fe(^_1|Vfc)
= Pc(mfc) X pw-i.jv-a/fcifc^l1 IV*-1)

^iV-1
(5.91)
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The expressions in (5.89) and (5.91) are obtained through the realizations 
that by the definition of the random sets {T/,..., X^~1} at time t = k are 
same as {T^_1,..., at time t = k — 1. The probability pa,b denotes the
transition probability from X^_Y to X^_1. These expressions also prove the fact 
that under no target hypothesis the previous filtered and/or smoothed states 
are retained (which is proved in appendix C for AS-IPDA algorithm).

The state update under random set formalism for target existence uncer­
tainty is carried out through expressions (5.88) through (5.91). The posterior 
probability of each of the possible sets are calculated as following:

Vxk = J
1 fk\k{Xp\Yk)dX*> (5.92)

Pm = j
hk\k(xnYk)dx? (5.93)

m — 0, ... ,N - 1

Pn = ' fk{kX£\YkdX? (5.94)

The expressions, (5.88) through (5.94), solve the random set smoothing algo­
rithm problem for target tracking with target existence uncertainty. The system 
uses the augmented set approach through the use of realizations for Xk and thus 
provide a smoothed state estimate of target’s dynamic state.

5.9 Augmented State IPDA smoother Derivation

The original derivation of the IPDA filter, [61] takes the target existence as a 
random variable with two possible events:

• Ek refers to the event that the target exists at time t = k

• Ek refers to the event that the target does not exist at time t = k

The IPDA algorithm finds the probability of these two possible events, p(Eic), 
P{Ek)•

A target can also switch between these two states with a predefined Markov 
transition probability matrix. The matrix is given by

p{Ek) 7n 7l2 p(Ek-i)
_ P(Ek) _ 721 722 p{Ek-1)

(5.95)
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In the IPDA filter, the Markov transition probabilities from non-existence 
to existence is zero which is consistent with the fact that if a target goes out 
of existence, it will continue to be the case. In that context, the transition 
probability matrix of (5.95) can be expressed more specifically as

p{Ek) 7n 0 p(Ek-i)
p(Ek) _ l-7n 1 p(Ek-i)

Because of Markov transition, target existence evolves over time and there­
fore all the terms of static existence probabilities from section 5.7.1 need 
to be replaced by dynamic existence probabilities. The definitions of any such 
probabilities are as follows :

• Pxk,k-i\k-u Pm,k-i\k-i and Pn,k—i\k—i are the prior probabilities of ran­
dom sets denoted by Xkk, X™ (where m = 0,1,2,..., N - 1) and Xj} 
respectively.

• Pxk.k\k-h Pm,h\h — i and pn,k\k-i are the predicted probabilities of random 
sets denoted by Xkk, X™ (where m = 0,1, 2,..., N — 1) and Xk respec­
tively.

• Pxk,k|fcj Pm,k\k and prhk\k are the posterior probabilities of random sets 
denoted by Xkk, X™ (where m = 0,1, 2,..., N — 1) and Xk respectively.

In a single iteration of a fixed lag smoothing algorithm, the existence proba­
bilities within the time from t = K—N to t = k are updated with the observation 
made at t = k. Therefore it is more appropriate to use the probability at time 
instant t = k — N — 1 for prediction of probabilities at t = k. Using the rela­
tionship in (5.96), the target existence (and non-existence) probabilities can be 
predicted as following:

PXkMk-i =yiip(Ek_N_1\Yk~1) (5.97)
Pm,fc|fc-i = 7io7n~m;p(£fc-/v-i|^fc-1)

Pn,k\k—1 = 7l0P(^fc-N-l||^fc_1) + (1 ~p{Ek-N-l)) (5-98)

Moreover, all practically implement able algorithms use a validation gate and 
consider only those measurements that are within the validation gate for state 
update. Therefore, only Pd does not suffice. The fact, that a detected target 
also has to be within the validation gate needs to be incorporated. This can be 
carried out by introducing a gating probability Pq and replacing Pd by PdPg 
in the set of equations in section 5.8. Considering the changes states above, 
the Bayes5 update equation for state estimation provided that the target exists 
simplifies to
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h\k(Xxkk\ Yk)
_ Pc {jTbk )Pxk ,k\k~l

x (/fKiC;1)# (s as)

The integration term on the last line of (5.99) is the well known Chapman- 
Kolmogorv integral. If both the transition probability density 
and the prior density {Y1*'1) are Gaussian in nature, the solution of the
Chapman-Kolmogorov integral is also Gaussian and follows the same form as 
Kalman Predictor step. We can write the resultant expression for the solution 
of the integral as

/ p{xxk^\Yk-x)dxxk^

= N{X^,X^k_vV^k_,) (5.100)

The target originated measurement obtained by the sensor are assumed to 
be linear in state of the target and are affected by white; Gaussian noise. Un­
der these assumptions the likelihood terms p(Yk(i)\X£k), for each z, are also 
Gaussian and are expressed as

p{Yk{i)\X^) = M{Yk{i):nxxk\nk) (5.101)

where

• Ti is the state to measurement transition matrix

• IZk is the noise co-variance matrix

If we put the derived relations from (5.100) and (5.101) into (5.99), the 
posterior density can be further simplified as

fm(Kk\Yk)
_ Pc{pik)Pxk ,k\k — 1

PnPrV x-Ax (1 - PDPG + -g- g- Y, (i); nxi", nk)
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= Pc{mk)P^Mk-1 (1 - 

, Pc(mk)Pk\k-i,v w PdPgV w

T A ^ 7 XA A
mk

Y,M(Yk{i)-HXl*, nk)AWi (5-102)
i

It can be easily shown that

W* M; . ft* WW; x**k_lt v^)

= Af(yfc(i); HX*^, Sk)N{X■ XZ«k{i),Vl*k(i))

= niM(x^-,x^k(i),r*[k(i)) (5.103)

where

n*fc =
(5.104)

• tS/c is the innovation covariance

• X^k(i) is the updated target state based on validated measurement Yk(i) 

The posterior target density can now be further simplified by using (5.103)

fk\k(X^\Yk)

= Pc{mk)P^Mk-1 (1 - PDPG)M{X^;X^k_^k_l)

t Pc{^k)Pxk,k\k — l
+ A X

(^r- E ^xkk;**?* w. Kt*«))
= ek,Xk{

mk

+ £ £fc,xt (i)V(A^; ***(*), Vxk{k{i)) (5.105)
i

The e s are commonly known as data association probabilities and are given 
by

e/t.0(O) = A lpc{mk){\ -pXk,fc|*_i)

ffc.Zit (0) 

tfc.Xfe (*)

A 1j0c(»TZ*:)j>a;fc,*|fc_l (1 - PdPg)
a_i , \ PdPgV j
A Pc(TOfc)p^k,fc|fc-l--------- 7---------

(5.106)
(5.107)

(5.108)
A
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It can be stated that

mk
e/c:<?(0) + tk,xk (0) + ^2 ek,xk (*) = 1 (5.109)

i—1

The above expression in (5.109) helps us determining the normalizing con­
stant A. If we put the respective expression of (5.106) to (5.108) in (5.109), A 
can be obtained as

A~1pc(mk)(l - Pxk,k\k—i) + ^~1Pc{mk)Pxk,k\k-i (1 - PDPG) 
^a-i ( ^ PdPgV
+ 2_^A Pc(mk)Pxk,k\k-i----^= 1

i — 1

A = pc(TOfc)(l - PxkMk-\) + Pc{mk)pXkMk_\ (1 - PdPg)

i—1

A = pc(mk) ((1 -pXk,k\k-i)+Pxk,k\k-i C1 “ PdPg)
^2Pxk,k\k-iPDiyV (5.110)

2 = 1 '

Replacing PdPg ~ by <5^, the normalization constant A can
be obtained as follows:

A = pc(mk){ 1 - SkpXkM|fc_i) (5.111)

Replacing A in (5.106)-(5.108) by the obtained expression in (5.111), the
data association probabilities can be simplified as

ek^(0) = (1 — Pxk,k\k-l)

1 &kPxk ,k\k — 1
(5.112)

ek,xk (0) —
Pxk,k\k — 1 (1 PdPg)

1 &kPxk ,k\k — 1
(5.113)

ek,xk {i) —
PdPgV m

Pxk,k\k-1 \

1 — ^kPxk ,k\k — 1
(5.114)

Substituting these values of data association probabilities in (5.105) com­
pletes the target state estimation problem of augmented state IPDA smoother. 
To obtain the posterior target existence probability, we use (5.92) to (5.94) . 
Hence the posterior target existence probability is:

PxkMk= fk\k{X?\Yk)dX?
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= J (e*,*fc(0
rnk \

+ £ ; X^{i),v*k|‘fc(t)) J ^

mk

— £-k,xk (0) + ^ ^ efe,xfc (Q 
i

_ Pxk,k\k-1 (1 ~ PdPg) Pxfc,fcl/c-l PDP\QV ^k

1 &kPxk ,k\k — 1 1 — ^kPxk fk\k — 1

1 — <^/c
i r Pxk ,k\k — l
1 ~ &kPxk,k\k-l

(5.115)

The updated probabilities of the remaining sets can be found through the 
solution of (5.23) through (5.24) and using (5.89-5.90).

Po,k\k = J ^Pc(mk) *Po.xJk\k{Xk-i\Yk-l)dX‘kl,

= ^ Pc(mk)po,Xk (5.116)

Prn,k\k = / X Pc(mk^ X Prn,rn-lfk\k{XF--~l1\Yk~1)dXn-l

'— ^ Pr ( )pm,m — I (5.117)
(5.118)

The updated probability of null hypothesis X£ can be easily obtained as

N-l
Pn,k\k 1 Pxk,k\k ^ ^ Pm,k\k (5.119)

i=0

The derivations of (5.115) through (5.119) are the updated probabilities of 
each of the random set defined as the realizations of X^ at t = k. These are also 
same as ” hypotheses probabilities” for AS-IPDA development given by (4.49) 
through (4.54). This completes the derivation of AS-IPDA from random set 
formalism.

5.10 Conclusion

In this chapter Random Set filter is first revisited and its calculation for global 
prediction and likelihood densities are calculated. The random set formalism 
provides a sound mathematical formulation to deal with multiple targets and 
especially if the target dynamics and/or their statistics are unknown but varying 
finitely. IPDAF is also proved to be a special case for Random set filter under 
linear Gaussian assumptions.
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In this chapter the approach of Random set formulation for target tracking 
is extended to smoothing. The original derivation of generalized smoother for 
random but finitely varying set is derived. The appropriate target dynamic 
and sensor models are devised along with the belief mass functions for each 
of those. The developed generalized random set smoother is then modeled for 
target existence uncertainty resulting into an tracking algorithm for automatic 
track maintenance under random set domain. This proposed algorithm is then 
shown to be reducing into AS-IPDA smoother under linear Gaussian model.



6. TARGET EXISTENCE UNCERTAINTY WITH 
OUT-OF-SEQUENCE-MEASUREMENT

6.1 Introduction

In this chapter, a theoretical model will be proposed to handle out of se­
quence measurement (OOSM) problem. The problem of delayed arrival, which is 
termed as ’’out of sequence”, of measurements is very common in a multi-sensor 
environment. The problem will be defined in this chapter and a correspond­
ing theoretical framework will be proposed to address the issue under target 
existence uncertainty.

6.2 OOSM Problem

In a multi-sensor environment, sensor observations may arrive with a delay. Due 
to network congestion, blockage or simply because of the sensor property, this 
delayed arrival is a common feature for a large scale sensor network. Therefore 
the situation arises that observations at current time t = k and at t — k — d 
arrive at the same instant. The situation is depicted in diagram 6.2.

This problem is termed as ’’out of sequence measurement” problem in lit­
erature. A consistent modeling of the problem is required to use the delayed 
measurement without compromising the requirement of a real time tracking 
application.

An optimal solution to OOSM problem was first proposed as a filtering 
framework by Bar-Shalom in [4]. It was also noted by the author that extension

IK ~7K~

Sensor observation 
at t=k-d arrives at t=k

Fig. 6.1: Out of Sequence Measurement Problem
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of such effort to longer time delays gives rise to ” non-standard” smoothing 
algorithms. Such an approach was later considered by Mallick et al. in [51]. 
OOSM was then approximately solved in [33]. The key difference between the 
exact and approximate algorithms in [4] and [33] respectively is the effect of 
the process noise on the filtering scheme. Although both consider the effect of 
process noise, the optimal solution incorporates the non-zero conditional mean 
of the process noise into the filter update equations while the approximate filter 
does not. The OOSM problem in clutter was first considered in [21]. It was 
almost simultaneously considered by Orton and Ma.rrs using particle filters in 
[63]. The authors concluded that target states from both the current time 
and delayed time need to be considered. They propose a method of using a 
forwardbackward sampling to address this issue.

So far the existing literature proposes the OOSM problem for track in clut­
ter environment. In this chapter, a theoretical framework will be proposed to 
address the OOSM problem under target existence certainty. First the Bayesian 
modeling will be proposed and corresponding modifications in AS-IPDA mod­
eling and also the random set modeling will be highlighted.

6.3 Bayes’ model for OOSM for Target Existence Uncertainty

The Bayesian model for general target existence certainty is given by (4.46).

p(xk,Ek\yk)
p{xk\Ek,yk,yk~1) (6.1)

To accommodate delayed measurements, the measurement vector includes 
the delayed measurements. The redefinition of the measurement vector results 
in expression given by

Tk = {Vk-i}d £ {0,...,d} (6.2)

where d denotes delay. Each measurement vector yk contains the clutter at 
the corresponding time instant and therefore can be defined by

Vk = {yk{l),---,yk(mk)} (6.3)

where rrik is the number of validated measurement.
Correspondingly, the state vector also needs to be updated with the replace­

ment of Xk ,Ek with xk,Ek,...,Xk-d,Ek-d- As a result the Bayesian model for 
OOSM problem under target existence uncertainty becomes
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p{xk,Ek,. • • ,xk-d,Ek-d\Yk)
= p(Xk,Ek\Yk) (6.4)

The modeling in (6.4) is exactly same as the proposed Bayesian smoothing 
model in (4.46) with the lag being replaced by the delay parameter d. The only 
difference introduced by the OOSM problem is the augmentation of the sensor 
observation vector with the delayed measurements. In the next two sections, 
reflections of this modification to cater for OOSM issue will be detailed for 
both standard AS-IPDA sensor modeling and random set modeling for sensor 
observations.

6.4 Modification in AS-IPDA Sensor Model

The standard sensor observation model for the augmented state is given by 
(4.45) and is provided here for clarity.

Yk = [ yk Vk-d — PkXk + Wk

where

Hk

Wk

Hk ... 0

0 ... Hk-d _
1Tw(k) .. . w(k — d)

The sensor noise covariance matrix is defined as

(6.5)

(6.6)

(6.7)

Hk
Rk ... 0

0 ... Rk-d

(6.8)

(.Hk, w(k), Rk are as defined in section 2.5). In (6.6)-(6.8), 0rs and Ps refer 
to zero and identity matrix respectively with appropriate dimensions.

The target state augmentation is carried out in the same manner is defined in 
relations (4.44) through (2.43) with the lag parameter N replaced by the delay 
parameter d. As a result, the hypotheses defined in section 4.5.3, explaining 
the possible transitions between target existence and non-existing between time 
t = k — d to t = k, also holds.
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The redefined sensor observation model as (6.5) and the target motion model 
being the same as (4.44), the Bayesian model in (6.4) for handling OOSM 
suggests that the derivation follows exactly same as proposed in chapter 4. 
Therefore, the proposed AS-IPDA holds, in itself, a mechanism to solve OOSM 
problem with the sensor model redefined as in (6.5).

6.5 Modification in Random Set Sensor Model

The sensor model in random set domain is given by

Ek = E#fc U Ak (6.9)

where

• Ek denotes the model for target originated measurements

• Ak refers to the clutter measurement model

Again to cater for delayed measurements, the sensor observation model has 
to include the measurements from the delayed instant. In random set formalism, 
the scenario can be modeled as

Ek = Efc U Efc-d (6.10)

The target motion dynamics is modeled in similar manner as in (5.50). The 
union of sets is taken over the entire delay period between t = k — d to t = k.

The random set smoother derivation steps, described in chapter 5, can then 
be followed in exactly same manner replacing the sensor observation set T,k by 
Efc-

6.6 Handling multiple delayed measurements

The models proposed in section 6.3 through 6.5 introduces a single delay of 
t = k — d. In reality measurements from different delayed time instants may 
arrive. This arrival of measurements from multiple delayed instants can be 
handled by introducing those delayed measurements in the generalized Bayesian 
formulation. This can be given by

P/c \_Vki Vk—di 5 Vk — di 5 • ■ • Uk — de } (6.11)

where de is the maximum delay among all the observations received.
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In principle, this refers to the fact that as soon as a measurement arrives, it 
needs to be augmented in the measurement vector. Correspondingly, the target 
state and existence vector needs to be augmented covering the duration of the 
maximum delays.

X-k — %k-> Ek,.. •, Xk—de, Ek—de (6.12)

The corresponding sensor model equations for catering multiple delayed mea­
surements are to be modified in this manner

• The parameters Hk and Rk in (6.6) and (6.8) respectively have non-zero 
values where the time index corresponds to the delay for which observa­
tions are obtained and has zero values otherwise.

For random set formalism, the global observation set is the union of all the 
observation sets obtained from different delays.

Efc = S/c U Y,k-di U T,k~d2 Cl ... U £/c-de (6.13)

where e is the maximum of the delays of the measurements collected.

6.7 Conclusion

In this chapter, a theoretical modeling is proposed to address the problem of 
out of sequence measurements under target existence uncertainty. The Bayesian 
model is first proposed with a single delayed measurement. The modifications 
required in standard Bayesian approach is first identified. Then based on the 
model, the specific system models (both target motion model and sensor model) 
are introduced for both IPDA and random set approaches. Finally the model 
is generalized for any number of delayed measurements.



7. SIMULATION RESULTS

7.1 Introduction

This chapter provides the performance measures of the proposed algorithm 
through the results of various simulation scenarios. The smoother is compared 
with the standard filter algorithm against the major parameters like RMS error 
in state estimation, number of confirmed true and/or false tracks and detection 
of termination time of targets. The chapter provides details of the simulated 
scenario. The obtained results are also analyzed for conclusive deduction about 
the performance of the proposed algorithm.

The basic simulated environment follows the benchmark scenario described in 
[61]. The two dimensional surveillance area is 1000m long and 400m wide. The 
sensor receives target originated measurement with a detection probability Pd 
(the value of which is specified in the description). The sensor also receives 
measurements from clutter. The number of these false measurements in a single 
scan is drawn randomly from a Poisson distribution with the mean of being 
ltimesl0~4 / scan/m2. But the false measurements, received in a single scan, 
are uniformly distributed within the whole surveillance region.

A single non-maneuvering target moves within the sensor surveillance region 
and follows the dynamic equation

The state of the target at time t = /c, Xk, consists of position and velocity of 
the target in the direction of each co-ordinate.

7.2 Simulation Scenario

xk+i = Fxk + vk (7.1)

y (7.2)

The transition matrix F encapsulates the target dynamics and is given by



7. Simulation Results 95

1 T 0 0 
0 10 0 
0 0 1 T 
0 0 0 1

(7.3)

where T — lsec is the sampling period. The zero mean white Gaussian process 
noise Vk accounts for small target maneuvers. The variance of the distribution 
is known a priori and is given by

E\viVj] = Q6(i,j)

where d(i,j) is the Kronecker delta function and

(7.4)

Q = q (7.5)

For the simulation purpose, q is chosen as 0.75.
The sensor reports the position of the target in the two co-ordinate system. The 
sensor model is therefore given by

Vk = Hxk + wk (7.6)

where

H =
10 0 0 
0 0 10

(7.7)

The random noise wk is assumed to be drawn from a Gaussian distribution with 
zero mean. The variance of the distribution is known and is given by

E[w{Wj] RSijj

In the simulation scenario,

R =
25 0
0 25

(7.8)

(7.9)
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which follows the benchmark environment of [61]. The elliptical gate vol­
ume is chosen to be 13 to ensure 99% probability of having target originated 
measurement within the gate.

For a meaningful comparison, the algorithms are executed through 1000 
(unless otherwise specified) Monte Carlo runs. Again following the standard 
simulation environment, during the start of each iteration, one target appears 
with initial state [ 130 35 200 0 ]T. The targets are initiated using two
point differencing method as described in [5]. Both the algorithms use the 
Markov Chain One transition chain with probablities

' rn r0i " ’ 0.98 0 "
_ r10

i

ooU
i 0.02 1

(7.10)

Each target is started with an initial probability of existence of 0.2. During 
each iteration, the existence probability is updated and the target evolves from 
remaining tentative either to confirmed or terminated targets. If the target 
existence probability is above ’’confirmation threshold”, the target is confirmed. 
On the other hand if that is below the ’’termination threshold”, the target is 
terminated. The chosen threshold values are given in the table below

AS-IPDA Smoothing IPDA
Confirmation Threshold 0.95 0.99
Termination Threshold 0.05 0.03

The reason for choosing the above mentioned thresholds is to make the false 
track statistics of both the algorithms almost the same while maximizing the 
true target confirmation statistics. The average number of false tracks were 164 
for IPDA filter. The same for AS-IPDA smoothing was 172 (for lag 1), 175 (for 
lag 2 and 3), 179 (for lag 4) and 183 (for lag 5 and 6).

7.3 Simulation Results

7.3.1 Target Termination Time Detection

For this particular simulation, the algorithms are run for 50 Monte Carlo Runs 
with two specific values of transition probability Tu (refer to (7.10)). The dura­
tion of each run was 40 scans. But the true target was terminated at 30th scan 
and the observations in the next 10 scans contain only the clutter observations. 
Detection probability used was Pd = 0.9. The results are summarized in the 
tables 7.1 and 7.2.
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Tab. 7.1: First Case : Tn = 0.98, Actual Termination Time = 30
Filter termination Smoother termination

Lag 1 Lag 2 Lag 3 Lag 4
34 33 32 31 30

Tab. 7.2: Second Case : Tn - 0.9, Actual Termination Time = 30
Filter termination Smoother termination

Lag 1 Lag 2 Lag 3 Lag 4
33 32 32 32 31

7.3.2 State Estimation

The simulation scenario for comparison of RMS error in state estimation follows 
the standard scenario as described in section 7.2. Two probabilities of detection 
PD = 0.9 and Pd =0.8 are used. The smoother was run on the same set of 
measurements for 1000 Monte Carlo runs for various fixed lags ranging from 1 
to 6. The obtained comparison result is shown in the figures 7.1-7.8.

7.3.3 Number of Confirmed True targets

One of the major performance measures of automatic tracking algorithms is the 
number of true targets that it can confirm. The simulation is carried out to test 
the algorithms for that parameter and the obtained Monte Carlo result (1000 
run) is shown in figure 7.9 and 7.10.

7.4 Performance Analysis

As expected theoretically, the application of smoothing algorithm reduces the 
state estimation error. In the case of smoothers, as opposed to filters, the inclu­
sion of more measurements or, in other sense - information, results in a better
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RMS Error - X Position

IPDA Filter
AS-IPDA Smoother (Lag 6) 
AS-IPDA Smoother (Lag 5) 
AS-IPDA Smoother (Lag 4) 
AS-IPDA Smoother (Lag 3) 
AS-IPDA Smoother (Lag 2) 
AS-IPDA Smoother (Lag 1)

Fig. 7.1: RMS Error : X position, Detection Probability 0.9

target dynamic state estimation. The effect of smoother is also very evident in 
terms of number of confirmed true targets. The Monte Carlo result shows that 
more number of true targets are confirmed which translated into less percentage 
of lost targets. Finally it is also significant that the detection of termination 
time of a target can also be inferred better by introducing a fixed lag in esti­
mation. This has a profound effect on applications like "Situation Awareness" 
where the improved result of the tracker may in turn make the decision process­
ing more efficient.
Given that the AS-IPDA smoother provides better target state as well as main­
tenance statistics, its theoretical linkage to Random Set Formalism (as proved 
in chapter 5) provides a very suitable platform to contribute significantly in 
multi-target tracking environment.
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RMS Error - Y Position
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Fig. 7.2: RMS Error : Y position, Detection Probability 0.9

7.5 Conclusion

In this chapter, the simulation scenario of the proposed smoothing algorithm 
is described in detail along with particular values for various parameters. The 
proposed algorithm is applied with different fixed lags and is compared with 
standard IPDA filter against performance parameters like RMS error, target 
termination detection and confirmed number of true targets. Theoretically, 
smoother uses more observations, compared to filters, to deduce the estimate of 
the random variables of interest and therefore is expected to provide more ac­
curacy. The simulated results in this chapters confirms this. The improvements 
observed due to application of the smoothing algorithm are significant in deci­
sion support system applications where a slight delay in information gathering 
can be allowed in return for improved accuracy.
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RMS Error - X Velocity
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Fig. 7.3: RMS Error : X Velocity, Detection Probability 0.9
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RMS Error-Y Velocity
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Fig. 7.4: RMS Error : Y Velocity, Detection Probability 0.9
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RMS Error - X Position
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A AS-IPDA Smoother (Lag 1)

Fig. 7.5: RMS Error : X position, Detection Probability 0.8
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RMS Error - Y Position

- - IPDA Filter
AS-IPDA Smoother (Lag 6) 

-A- AS-IPDA Smoother (Lag 5) 
—3— AS-IPDA Smoother (Lag 4) 
—*— AS-IPDA Smoother (Lag 3) 
—AS-IPDA Smoother (Lag 2) 
—3— AS-IPDA Smoother (Lag 1)

Fig. 7.6: RMS Error : Y position, Detection Probability 0.8
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RMS Error-X Velocity
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Fig. 7.7: RMS Error : X Velocity, Detection Probability 0.8
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Fig. 7.8: RMS Error : Y Velocity, Detection Probability 0.8
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Number of Confirmed True Track

Fig. 7.9: Number of Confirmed True Tracks, Detection Probability 0.9
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Number of Confirmed True Track
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Fig. 7.10: Number of Confirmed True Tracks, Detection Probability 0.8



8. CONCLUSION AND FUTURE WORK

8.1 Introduction

This thesis investigated the effect of introducing smoothing estimation in target 
tracking scenario with target existence uncertainty. This chapter is aimed at 
summarizing the findings of the effort with conclusive remarks and a guide for 
future works.

8.2 Conclusion and Summary

In 1.3, the objectives and contributions of the thesis have been summarized. In 
light of that, the original contributions of the research, that have been achieved, 
are :

• Original formulation of Augmented State IPDA (AS-IPDA) smoother for 
improved track initiation and maintenance

• Original framework of generalized Random Set Smoother

• Establishing a link between the AS-IPDA algorithm and the generalized 
random set smoothing algorithm under target existence uncertainty sce­
nario

• Theoretical framework for resolving out-of-sequence measurement problem 
in a multi-sensor tracking application with target existence uncertainty.

These proposed smoothers are also compared through simulation, using pub­
lished benchmark scenarios [61, 59, 60], with standard IPDA filter for establish­
ing the improvements through simulation. The thesis therefore also establishes 
the significance of applying smoothing through following advantages in perfor­
mance measures:

• Improved state estimation for targets in clutter (less RMS error)

• Improved detection and confirmation of true targets (less percentage of 
lost tracks) •

• Improved estimate of track termination times
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The development of AS-IPDA provides a smoothing technique for a single 
target tracking in clutter for automatic track maintenance. The generalized 
random set smoothing algorithm, proposed in the thesis, lays the theoretical 
platform to tackle multi-target tracking problem with automatic track mainte­
nance. The theoretical link between the AS-IPDA and the generalized random 
set smoothing algorithm also provides an insight about extending existing algo­
rithms into the realm of multiple target tracking problem.In this thesis, Bayesian 
models are developed to incorporate target existence uncertainty problem for 
delayed measurements.

8.3 Extensions and Future Work

The research carried out was aimed at investigation of a smoothing algorithm 
that can enhance the performance of a tracker in terms of reduced error in state 
estimation and improved target maintenance in clutter. The theoretical work 
and formulation is carried out and was proved to be effective through simulation. 
The current task has also the potential for further exploitation and extensions.

The interacting multiple model algorithm IMM [18], was originally proposed 
for maneuvering target tracking. The IMM was then extended for problems in­
volving clutter and to address the problem of target existence uncertainty, [5]. 
The resulting IMM-PDA algorithm is an alternative to IPDA algorithm for 
tracking with target existence uncertainty. In contrast to IPDA, IMM-PDA 
models the target state as ’’observable” ors ”non-observable”. The probabilities 
of these two interacting models give the ’’true target probability” to decide about 
the target existence. The IMM-PDA is extended to smoothing for maneuvering 
target tracking. Therefore an extension of the existing IMM-PDA to smoothing 
for target existence uncertainty scenario is still an open research question. Sim­
ilar to AS-IPDA smoothing technique developed in this thesis, an IMM-PDA 
smoother can be derived where the target switches between ’’observable” and 
” non-observable” states.

Algorithm like IMM-IPDA, [28], considers automatic initiation of maneu­
vering target tracking in clutter. Extension of this into smoothing is also an 
interesting problem as it poses the problem of switching of targets among the 
various maneuvering models as well as existence models.

Established filtering algorithms like Multiple Hypothesis Algorithm can also 
be extended to smoothing for automatic track initiation.

AS-IPDA smoothing is shown to have improved track maintenance parame­
ters. Extending the other algorithms into smoothing are also expected to have 
an improved affect on the track maintenance. These improvements provide 
a significant boost in performance for target trackers as well as higher level 
’’Situation Awareness” applications to decide different parameters like instant
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of target appearance/confirmation/termination, maneuver, number of targets, 
classification of targets and etc. An effort of developing such algorithms and 
comparing the results in terms of track maintenance parameters, computational 
load requirement under both single target and multi-target environment is re­
quired.

A real time optimization of the algorithm and implementation of it is still a 
challenging task. While the core algorithm steps remain the same, optimization 
is possible in individual modules and its effect on performance - both in com­
putation and in target tracking aspects - in real time is an interesting problem 
still to be undertaken.

Fusion of target existence uncertainties from different sensors and possible 
improvements thereby is also another aspect worthy of investigation. Also in 
the case of wireless sensors, the minimum data rate that will carry ” useful” 
information is an important parameter because of limited band width. The 
consideration of other practical aspects like terrain, weather, power consump­
tion, limited computation and some other factors affect the accuracy of the 
system as a whole. A systematic study of such a real time scenario is essential 
for deploying such systems in action.

Another multi disciplinary effort would be to apply the standard tracking 
applications in the realm of image processing, intelligent video processing and 
event detections and etc. In theory, the tracking algorithms are generic enough 
to be applicable wherever the estimation of some parameters are required. But 
the study of various problems to devise appropriate models for that specific 
problem is not completed yet, especially for the application of sophisticated 
algorithms like IPDA and etc. But this effort can have a very profound effect 
on the performance of some of the mostly used commercial application. More 
importantly, such an investigation can open a new horizon in applying advanced 
algorithms of ’’data fusion” for reduced uncertainty and false alarms.
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C. PROOF : HYPOTHESES Hg DOES NOT CONTRIBUTE 
TO AS-IPDA STATE UPDATE
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Under the assumption that the target does not exist at time t = k (based 
on the hypothesis definition), the likelihood term in (C.l) reduces to,

P( YfclXF.E^Y*-1) = ptyk\Ek,yk~')
= " Po(mk) (C.2)

The prediction term is

p(XF|EF, Yfc_1)
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Lastly the normalization is
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It is clear the likelihood and normalization terms are same and therefore 
(C.l) is simplified as
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p(XF|E£\Yfc)
= Pip^k—m — li • • • > %k — N \Pk — m— 1 j • • * . Pk — N iV ) (C.o)

Thus (C.5) shows that the other hypothesis, where the target does not exist 
at current time t = k, does not contribute to the update of the state and co­
variance. So if the target does not exist at current time, the previous smoothed 
or filtered values are retained as it is.



D. CALCULUS OF FINITE-SET STATISTICS (FISST)

D.l Introduction

The statistics of finitely varying random sets depend on the mathematics of 
finite sets. In this appendix, the finite set mathematics will be presented. This 
appendix is reconstructed principally from the text, [49].

D.2 Random Set Model for target dynamics and sensors

Random set notation for target motion model is give by

rfc+1 =$fc(*fc,14)U Bk(Xk) (D.l)

<h(.) represents the change of target dynamics from time t = k to t. = k + 1. 
B(.) caters for target birth process in multiple target case.

Similarly, the sensor model in random set notation is given by

E = T(X)UC{X) (D.2)

T(.) defines the measurements originated from true targets while C(.) ac­
counts for clutter measurements.

The models (D.l) and (D.2) give rise to multi-target Markov transition den­
sities and global likelihood for randomly varying set.

D.3 Belief Mass function of Sensor Model

The probability mass p(5|x) = Pr(Z G S) captures the statistical behavior of 
observation set Z. In random set domain, the statistics of E is characterized by 
its belief mass function fi(S\X). The belief mass measure is given by

P{S\X) = fc\r(S\X) = Pr(Z C 5) (D.3)

This belief mass measure is total probability that all observations in a sensor 
(or multi sensor) scan will be found in any region S. The belief mass function 
in (D.3) provides the global likelihood density.
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DA Belief Mass function of target motion model

The probability mass p(S\xk) = Pr(Xk+i E 5), which is the probability that the 
target state Xk+\ will be found in the region S conditioned on previous state 
Xfe, provides the statistical measure of the target dynamics. For a randomly 
varying finite length set Tfc+i, the sufficient statistics is captured in the belief 
mass function given by

pFk+l(S\Xk) = Pr(Tk+1 C S) (D.4)

Markov transition density is calculated from the belief mass measure in 
(D.4).

D.5 Basics of FISST Mathematics

Unlike probability mass, belief mass functions are non-additive measures. In 
general, if Si (1 S2 = 4>, while joint probability mass p(S 1 U S^lx) = p(<Si|a;) + 
p(S2\x), the joint belief mass /3(S\ U S2\x) > p(S\\x) + P{S2\x). It is also 
noted in [49] that belief mass measure behaves like probability mass on certain 
abstract topological spaces. This additional property introduces some additional 
complexities in calculating densities from belief mass functions.

In general, the relation between belief mass measure of a certain randomly 
varying set (probability of the random set being in the region S'), is given by

P(S\B) = Pt(A € S\B) J f{A\B)SA (D.5)
5

where A denotes either the target dynamic set or sensor observation set 
£. The integration in (D.5) refers to the sum of densities or likelihoods of all 
possibilities suggested by random set.

D.6 Set Integral Rule

The integration in (D.5) follows FISST ’’set integeral” rule. An illustrative 
example (following [49]), will be useful to demonstrate ’’set integral”.

Assuming a function F(Y) is given for a finite-set variable Y, F(Y) can have 
following forms

F(4>)

F({y})

F({yi,V2})

probability that Y = 0 
likelihood that Y = {y} 
likelihood that Y = {yi,y2}



D. Calculus of Finite-Set Statistics (FISST) 119

F{{yi, 2/2, •••,%}) = likelihood that Y = {j/i,j/2,-•• ,Vj}
(D.6)

In general, this F(Y) can be a likelihood F(Z) = f(Z\X) or Markov den­
sity F(X) = fk+i\k{X\Xk) and the forms refer to the possible sets. The ”set 
integral” suggests that

J F(Y)6Y
S

= -fw + Ejr
J = 1 / F({yi,y2,---,Vj})dyi ...dyj

S x ... x S j times

= F(<fi) + Fs(l) + Fs(2) + ... (D.7)
where
Fs(j) = jj J F({yi, y2, ■ ■ ■ ,yJ})dy1. ..dy3 denotes the to­

S x ... x S j times
tal probability that Y contains j elements.

D.7 Set Derivative Rule

In (D.5), a procedure is suggested to build the belief mass measure of a finite-set 
from its density. For building density or likelihood from belief mass functions, 
an opei'ation opposite to ’’set integral” is needed. This operation is termed as 
’’set derivative” also follows FISST rules.

If Y = {?/i, 1/2,, 2/m}, the set derivatives are defined as

~(S) = Xi3(S) = lim
6y 5y.

P(S U Ev) - p(S) 
A (Ez)

«(S, =
SYy 6yi ... Sy„ O'Vl OlJm

8(f)
(S) = 0(S)

D.8 Calculating Likelihoods and Markov Densities

According to the ’’set derivative” and ’’set integral” rules, the belief mass mea­
sure and densities are related to each other as

P(S) = J
S

F(X) = y/>(>•>«-

(D.8)

(D.9)
S = <j>
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The expressions in (D.8) and (D.9) are the key to calculating multi-target 
likelihoods and Markov densities under random set formalism.

• The true likelihood f(Z\X) is given by

f(Z\X) = J^(<P\X) (D.10)

(D.ll)

• The true Markov density is given by

fk+i \k(Xk+1\Xk) = \Xk) (D.12)

Based on the target dynamic model and sensor model, the densities can 
be calculated after constructing the belief mass measure of the appropriate 
sets. After the likelihood and Markov density are obtained, standard Bayesian 
recursion updates the target state in usual manner.

D.9 Standard Rules of FISST calculus

Like ordinary differential calculus, FISST calculus follows some rules. These are 
summarized here for reference (for details, [49j,pp. 31).

D.9.1 Sum Rule

f-[aipi{S) + a2(h{S)\ = a, 
oZ

J [aiFi{S) + a2F2(S)]SZ =

$Pl ( Q\ . S02 , CxJz{s) + a2Jz{s)

a\ J F1(S)6Z + a2 J F2(S)5Z

D.9.2 Product Rule

^{Msms)l = jr(S)P2(S) + Pi(S)j^(S)
|[A(S)A(S)1= E

w r 7. v 7

D.9.3 Constant Rule
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D.9.4 Chain Rule

£/(«S))-|(«S))g(S)

yzm(S). . . Pn{S)) = J2 ■ ■ ■ Pn(S))6-^(S)
i — 1 1

. D.9.5 Power Rule

Let Z = {z\,... ,Zk} and let n > 0 be an integer. Let p(S) be a probability 
mass function with density function fp(z). Then,

jLp(S)” = J 10k)\P(s)n~kfp(zi)---fp(zk) ii k < n 
$Z I 0 if k > n
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