

Microwave Image Reconstruction of 3-D Dielectric Scatterers via Stochastic Optimization Approaches

By

Tony Huang

Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the Faculty of Engineering, University of Technology, Sydney.

January 2007

CERTIFICATE OF AUTHORSHIP / ORIGINALITY

I certify that the work in this thesis has not previously been submitted for a degree nor has it been submitted as part of requirements for a degree except as fully acknowledged within the text.

I also certify that the thesis has been written by me. Any help that I have received in my research work and the preparation of the thesis itself has been acknowledged. In addition, I certify that all information sources and literature used are indicated in the thesis.

Production Note: Signature removed prior to publication.

Tony Huang

ABSTRACT

The reconstruction of microwave images is generally considered as a nonlinear and ill-posed inverse scattering problem. Such problems are generally solved by the application of iterative numerical methods. However, the accuracy of images reconstructed by traditional methods is heavily dependent on the choice of the initial estimate used to solve the problem. Thus, with the aim to overcome this problem, this research work has reformulated inverse problems into global optimization problems and investigated the feasibility of solving such problems via the use of stochastic optimization techniques. A number of global inverse solvers have been implemented using different evolutionary strategies, namely the rivalry and cooperation strategies, and tested against a set of imaging problems involving 3-D lossless and lossy scatterers and different problem dimensions. Our simulation results have shown that the particle swarm optimization (PSO) technique is more effective for solving inverse problems than techniques such as the genetic algorithms (GA) and micro-genetic algorithms (μ GA). In addition, we have investigated the impact of using different PSO neighborhood topologies and proposed a simple hybrid boundary condition to improve the robustness and consistency of the PSO technique. Furthermore, by examining the advantages and limitations of each optimization technique, we have proposed a novel optimization technique called the micro-particle swarm optimizer (µPSO). With the proposed µPSO, excellent optimization performances can be obtained especially for solving high dimensional optimization problems. In addition, the proposed µPSO requires only a small population size to outperform the standard PSO that uses a larger population size. Our simulation results have also shown that the μ PSO can offer a very competitive performance for solving high dimensional microwave image reconstruction problems.

ACKNOWLEDGEMENTS

I would like to thank A/Prof. Ananda Mohan Sanagavarapu for his supervision and providing me with innumerable encouragements, productive discussions and timely advices throughout the duration of this Ph.D. research work. His support has ensured the smooth completion of this Ph.D. dissertation.

In addition, I would like to express my sincere appreciation to the Key University Research Center on Health Technologies, Faculty of Engineering of UTS for their financial support.

Finally, I would like to show my deepest gratitude to my parents, brothers and Cheryl for their constant supports and encouragements.

TABLE OF CONTENTS

TABLE OF CONTENTS	I
LIST OF FIGURES	V
LIST OF TABLES	XV
LIST OF ACRONYMS AND SYMBOLS	XVI

CHAPTER 1.

INTROE		1
1.1	MOTIVATION AND OBJECTIVES	1
1.2	METHODOLOGY	3
1.3	LITERATURE REVIEW ON MICROWAVE IMAGING	3
1.3.	.1 Forward Solvers	5
1.3.	.2 Inverse Solvers	3
1.3.	.3 Microwave Imaging Systems, Methods and Applications	1
1.4	CONTRIBUTIONS 23	3
1.5	THESIS OUTLINE	4

CHAPTER 2.

GENETIC	ALGORITHM – A NATURAL EVOLUTIONARY BASED	
APPROA	CH TO MICROWAVE IMAGE RECONSTRUCTION	26
2.1 I	NTRODUCTION TO GENETIC ALGORITHM	26
2.1.1	Selection Operation	31
2.1.2	Crossover Operation	34
2.1.3	Mutation Operation	36
2.1.4	Simulation Results	37

2.	.2	SCHEMA THEOREM	39
2.	.3	MICROWAVE IMAGE RECONSTRUCTION USING GA	42
	2.3.	.1 Microwave Image Reconstruction of Homogeneous Lossless	
	Diel	electric Scatterer via GA	43
	2.3.	2.2 Microwave Image Reconstruction of Inhomogeneous Lossless	
	Diel	electric Scatterer via GA	52
2.	.4	SUMMARY	60

CHAPTER 3.

MICRO-GENETIC ALGORITHM AND ITS SIGNIFICANCE IN THE	
RECONSTRUCTION OF MICROWAVE IMAGES	63
3.1 INTRODUCTION TO MICRO-GENETIC ALGORITHM	63
3.2 COMPARISON BETWEEN µGA AND GA PERFORMANCES FO	DR
MICROWAVE IMAGE RECONSTRUCTION	68
3.2.1 Microwave Image Reconstruction Problem Involving a Single	
Homogeneous Lossless Dielectric Scatterer	69
3.2.2 Microwave Image Reconstruction Problem Involving a Single	
Inhomogeneous Lossless Dielectric Scatterer	73
3.2.3 Microwave Image Reconstruction Problem Involving a Single	
Inhomogeneous Lossless Dielectric Scatterer – High Dimension	77
3.3 SUMMARY	82

CHAPTER 4.

PAR	TICLE	E SWARM OPTIMIZER AND ITS APPLICATION IN MICROWAY	/E
IMAG	GE RE		84
4.1	I T	HE ORIGINAL PARTICLE SWARM OPTIMIZER	84
4.2	2 C	OMMON IMPROVEMENTS FOR THE ORIGINAL PSO	87
	4.2.1	Inertia Weight	87
	4.2.2	Constriction Factor	88
	4.2.3	Neighborhood topologies	89

4.2.4 Boundary Conditions
4.3 A NOVEL HYBRID BOUNDARY CONDITION FOR ROBUST PSO
PERFORMANCE
4.4 MICROWAVE IMAGE RECONSTRUCTION USING PSO 111
4.4.1 Advantage of Applying Damping Boundary for Microwave Image
Reconstruction
4.4.2 Microwave Image Reconstruction of Homogeneous Lossless
Dielectric Scatterer via PSO 114
4.4.3 Microwave Image Reconstruction of Inhomogeneous Lossless
Dielectric Scatterer via PSO 115
4.4.4 Microwave Image Reconstruction of Inhomogeneous Lossy
Dielectric Scatterer via PSO 118
4.4.5 Effect of Using Different PSO Neighborhood Topologies for
Microwave Image Reconstruction 125
4.5 SUMMARY

CHAPTER 5.

MICRO-PARTICLE SWARM OPTIMIZER – A NOVEL ALTERNATIVE
APPROACH TO MICROWAVE IMAGE RECONSTRUCTION
5.1 MOTIVATION
5.2 MICRO-PARTICLE SWARM OPTIMIZER 132
5.2.1 Choice of a Suitable Parameter w
5.2.2 Choice of a Suitable Parameter m
5.2.3 Choice of a Suitable Neighborhood Topology
5.3 PERFORMANCE BENCHMARKS 144
5.4 APPLICATION OF μ PSO FOR 3-D MICROWAVE IMAGE
RECONSTRUCTION
5.4.1 Homogeneous Lossless Dielectric Scatterer
5.4.2 Inhomogeneous Lossless Dielectric Scatterer
5.4.3 Inhomogeneous Lossy Dielectric Scatterer
5.5 SUMMARY

CHAPTER 6.

CONCL	USION	173
6.1	SUMMARY	173
6.2	FUTURE RESEARCH	176

REFERENCES	 178

LIST OF FIGURES

Fig. 1.1: The flow of an iterative microwave image reconstruction process4
Fig. 1.2: The unit cell used in Yee's original FDTD algorithm11
Fig. 1.3: (a) The reconstructed profile of a 2-D cylinder of radius 1.5λ and refractive index 1.005. (b) The cross section of the refractive index on the <i>x</i> -axis
Fig. 1.4: (a) The reconstructed profile of a 2-D cylinder of radius 1.5λ and refractive index 1.05. (b) The cross section of the refractive index on the <i>x</i> -axis
Fig. 2.1: The problem surface described by the 2-D Ackley function shown in (2.1)
Fig. 2.2: The relationships between the problem parameters, genes, chromosomes, and GA population
Fig. 2.3: The roulette wheel portrayed by the initial GA population. The width of each slot is proportional to the relative fitness of each corresponding chromosome
Fig. 2.4: An example showing how two parent chromosomes are chosen under the tournament selection approach. The fitness of each chromosome is shown in the fitness column of Table 2.1

Fig. 2.10: Three schemata of the GA population shown in Table 2.140

Fig. 2.12: The average *OF* values (RMSE between the measured and computed scattered fields) obtained by the GA for different SNR values46

Fig. 3.1: Flowchart of the μ GA operations65

Fig. 3.3: Pseudo code for the μGA 68

Fig. 3.4: Comparison of the average fitness value minimized by the μ GA and GA for the image reconstruction problem given in Fig. 2.1171

Fig. 4.1: Pseudo code for the original PSO87

Fig. 4.3: An illustration showing the feature of different boundary conditions. (a) For absorbing boundaries, the velocity of the particle is zeroed and the particle is stopped at the boundary. (b) For reflecting boundaries, the sign of the velocity is reversed and the particle is reflected back to the problem space after the impact. (c) For invisible boundaries, the particle is allowed to

Fig. 4.5: Flowchart of the PSO algorithm with common modifications97

Fig. 4.6: Pseudo code for the common implementation of the PSO97

Fig. 4.14: The reconstructed final image of the inhomogeneous lossless dielectric scatterer shown in Fig. 3.8. (b) PSO result. (c) μ GA result117

Fig. 5.2: Flowchart of the proposed µPSO137

Fig. 5.3: Percentage of each w_{init} value achieving the best performance for the population size of (a) 3 particles, and (b) 5 particles140

Fig. 5.6: Comparison of optimization performances for the Rosenbrock function of different dimensions. (a) N = 100. (b) N = 200149

Fig. 5.21: Comparison of the optimization performance obtained by the μ PSO and PSO for the image reconstruction problem given in Fig. 5.16170

LIST OF TABLES

Table 3.1: Summary of parameter values used to implement the μ GA for solving the microwave image reconstruction problem shown in Fig. 2.1170

Table 3.2: Summary of parameter values used to implement the μ GA for solving the microwave image reconstruction problem shown in Fig. 2.1874

Table 3.3: Summary of parameter values used to implement the μ GA for solving the microwave image reconstruction problem shown in Fig. 3.879

Table 5.1: Parameters used for the implementation of μPSO 144

LIST OF ACRONYMS AND SYMBOLS

ABC	Absorbing boundary condition
ADI-FDTD	Alternating direct implicit finite-difference time-domain
BIM	Born iterative method
СТ	Computed tomography
DBIM	Distorted Born iterative method
DT	Diffraction tomography
EM	Electromagnetic
FDTD	Finite-difference time-domain
FEM	Finite element method
FMM	Fast multipole method
GA	Genetic algorithm
GCPSO	Guaranteed convergence particle swarm optimizer
GLM	Gel'fand-Levitan-Marchenko
MGM	Modified gradient method
MLFMA	Multilevel fast multipole algorithm
MoM	Method of moment
MRTD	Multiresolution time-domain
NKM	Newton Kantorovich method
OF	Objective function
OUI	Object under investigation
PEC	Perfectly electrically conducting
PML	Perfectly matched layer
PSO	Particle swarm optimization
PSTD	Pseudospectral time-domain
RCS	Radar cross section
RMSE	Root mean square error
SNR	Signal-to-noise ratio
UCA	Uniform circular array
UWB	Ultra-wideband
μGA	Micro-genetic algorithm
μPSO	Micro- particle swarm optimizer
$\phi(r)$	Total phase
$\phi_{_0}(r)$	Incident phase
$\phi_1(\boldsymbol{r})$	Scattered phase

$\overline{G}(r,r')$	dyadic Green's function
n_{δ}	Change in refractive index
$\psi(\mathbf{r})$	Total field
$\psi_0(\mathbf{r})$	Incident field
λ	Wavelength
μ	Permeability
σ	Conductivity
ω	Angular frequency
β	A parameter used to adjust the increment of the inertia weight
α	Constant
φ , φ_1 and φ_2	Constants
$\rho(t)$	Scaling factor
Δx , Δy and Δz	Dimensions of a FDTD cell
а	Radius of a homogeneous cylinder
c_1 and c_2	Acceleration constants
D	Dynamic range of the problem space
E	Total electric field
E_{inc}	Incident field
E_s	Scattered field
gbest	Global best neighborhood topology
<i>Sbest</i>	Best solution found by the entire swarm
Н	Schema
H	Total magnetic field
k	Wavenumber
k	Constriction factor
L	Length of the chromosome
lbest	Local best neighborhood topology
т	A parameter used to adjust the µPSO repulsion
Ν	Problem dimension
N _{bit}	Number of bits per gene
N _{chro}	Number of chromosomes
Ngene	Number of genes per chromosome
N _{i,best}	Best solution found by the neighborhood of the i^{th} particle
N _{sub}	Size of the sub-population
$O(\mathbf{r})$	Inhomogeneity
P _{cross}	Crossover probability
<i>p</i> _{<i>i</i>,<i>best</i>}	Best solution found by the i^{in} particle
P _{mut}	Mutation probability
$r_1, r_2 \text{ and } r_3$	Uniformly distributed random variables in the range of $[0,1]$
<i>r</i> ₃	Uniformly distributed random variable in the ranges of $[1, N_{chro}]$
<i>r</i> ₄	Uniformly distributed random variable in the ranges of $[1, L]$

<i>rep</i> _i	Amount of repulsion experienced by the i^{th} particle
s_{th} and f_{th}	threshold values for the success and failure, respectively
$u_{\rm max}$	Maximum wave phase velocity
$V_i(t)$	Velocity of the <i>i</i> th particle
$V_{\rm max}$	Maximum velocity
W	Inertia weight
Winit	The initial value of the inertia weight
W _{max}	Maximum allowed value for the inertia weight
$X_i(t)$	Position of the i^{th} particle
3	Permittivity