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ABSTRACT

The reconstruction of microwave images is generally considered as a nonlinear and
ill-posed inverse scattering problem. Such problems are generally solved by the
application of iterative numerical methods. However, the accuracy of images
reconstructed by traditional methods is heavily dependent on the choice of the initial
estimate used to solve the problem. Thus, with the aim to overcome this problem,
this research work has reformulated inverse problems into global optimization
problems and investigated the feasibility of solving such problems via the use of
stochastic optimization techniques. A number of global inverse solvers have been
implemented using different evolutionary strategies, namely the rivalry and
cooperation strategies, and tested against a set of imaging problems involving 3-D
lossless and lossy scatterers and different problem dimensions. Our simulation results
have shown that the particle swarm optimization (PSO) technique is more effective
for solving inverse problems than techniques such as the genetic algorithms (GA)
and micro-genetic algorithms (LGA). In addition, we have investigated the impact of
using different PSO neighborhood topologies and proposed a simple hybrid
boundary condition to improve the robustness and consistency of the PSO technique.
Furthermore, by examining the advantages and limitations of each optimization
technique, we have proposed a novel optimization technique called the micro-particle
swarm optimizer (uPSO). With the proposed pPSO, excellent optimization
performances can be obtained especially for solving high dimensional optimization
problems. In addition, the proposed uPSO requires only a small population size to
outperform the standard PSO that uses a larger population size. Our simulation
results have also shown that the pPSO can offer a very competitive performance for

solving high dimensional microwave image reconstruction problems.
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