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ABSTRACT

The reconstruction of microwave images is generally considered as a nonlinear and 

ill-posed inverse scattering problem. Such problems are generally solved by the 

application of iterative numerical methods. However, the accuracy of images 

reconstructed by traditional methods is heavily dependent on the choice of the initial 

estimate used to solve the problem. Thus, with the aim to overcome this problem, 

this research work has reformulated inverse problems into global optimization 

problems and investigated the feasibility of solving such problems via the use of 

stochastic optimization techniques. A number of global inverse solvers have been 

implemented using different evolutionary strategies, namely the rivalry and 

cooperation strategies, and tested against a set of imaging problems involving 3-D 

lossless and lossy scatterers and different problem dimensions. Our simulation results 

have shown that the particle swarm optimization (PSO) technique is more effective 

for solving inverse problems than techniques such as the genetic algorithms (GA) 

and micro-genetic algorithms (pGA). In addition, we have investigated the impact of 

using different PSO neighborhood topologies and proposed a simple hybrid 

boundary condition to improve the robustness and consistency of the PSO technique. 

Furthermore, by examining the advantages and limitations of each optimization 

technique, we have proposed a novel optimization technique called the micro-particle 

swarm optimizer (pPSO). With the proposed pPSO, excellent optimization 

performances can be obtained especially for solving high dimensional optimization 

problems. In addition, the proposed pPSO requires only a small population size to 

outperform the standard PSO that uses a larger population size. Our simulation 

results have also shown that the pPSO can offer a very competitive performance for 

solving high dimensional microwave image reconstruction problems.
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