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Abstract—Our previous study proposed a dielectric model for Contrast features found by previous studies in THz images
human breast tissue and provided initial analysis of clasfication  petween normal breast tissue and tumour prove the appli-
potential of the eight model parameters and their multiparameter cability of the terahertz imaging technique to improve the

combinations with the support vector machine (SVM). A combi . . . -
nation of three model parameters could achieve a leave-ormit margin detection of breast cancer in breast conservingsyrg

cross validation accuracy 0f93.2%. However, the SVM approach (BCS) [2], [7]. Higher optical properties including reftae
fails to exploit the combinations of more than three model index and absorption coefficient of breast tumour as conapare

parameters for classification improvement. Thus, the Bayean to healthy breast tissue can result in the aforementioned
neural network (BNN) method is employed to overcome this contrast [8]. As optical properties can be represented by

problem based on its advantages of handling our small data ah lex dielectri tants at th | lar | | a oehe
high complexity of the multiparamter combinations. The BNN complex dielectric constants at the molecular level, a C

successfully classifies the data using the combinations obur Understanding of dielectric properties of breast tisswwiges
model parameters with an accuracy, estimated by leave-onedt  further insight of the contrast mechanism. Therefore, riinde

cross validation, 0f97.3%. Overall performance assessed by leave- the dielectric function of breast tissue not only explaihs t
one-out and repeated random-subsampling cross validatianfor physical characteristics underpinning the contrast featin

all examined combinations is also remarkably improved by BN. THz i but al iblv introd indicator f
The results indicate the advance of BNN as compared to SVM in Z Images but also possibly introduces some indicator for

utilising the model parameters for detecting tumour from narmal ~ diagnosis improvement in BCS.
breast tissue. Our previous study proposed a empirical model describing

Index terms. terahertz (THz), dielectric properties, opti-the d'.EIGCt”C properties of hu.man breast .t|ssue [9].' Th'§
mization, support vector machine, neural network, classifi modeling was b".’lsed on analysmg the expe.nment.al d|ategtr|
tion spectra_of fat_tlssue and highly fat-contained tissues. (i.e
breast tissue) in the frequency range from 0.1 to 1.8 THz.

. INTRODUCTION Both the non-Debye relaxation responses at the frequencies

Biomedical applications of terahertz (THz) radiation h3Eelow 1 THz and the Debye relaxation responses at the higher

been drawing researchers’ attention thanks to recent de ﬂé{fquenmes of these tissues were taken into consideradion

opments of broadband-pulse generation and detection &or cvelop the_‘ model. The modgl—ﬁttmg_procedurg using the
frequency regime. Terahertz imaging has been suggestesl td ust gradient sampling algorithm facilitated optimiithe

capable of identifying contrast between normal and cangerd <raction of the model parameters. We also applied the sup-

tissue in skin, breast, and colon [1]-[3]. Distinct projest port vector machine method to classify the extracted véiues

of THz radiation make this imaging technique possible f&reast cancer Qetection and obtained the predigtivg aoeura
clinical implementation. For instance, with low photon egye up t093.2% (estimated by leave-one-out cross validation) with

THz radiation is non-ionizing and non-destructive as wasll & combination of three model parameters [9]. However, the

its applied power levels in typical terahertz imaging syste |n||t|al_fr_esij_lts we;e "f‘fouf“';‘g'”g bL:jt <|:ou|d nottfully_reftldm ¢
comply with safety guidelines [4]. Additionally, the extnely classilication potential of tn€ model parameters in terms o

high sensitivity of THz waves to water/highly-hydrated ma(_:omblnmg the model parameters. In fact, more parameters

terials gives THz imaging an ultimate advantage for medic'ﬂcorﬂpratt.ed into_the c_:ll_i_ssﬁmatpor; COU'? r;otk |r;1p:ove the
applications as most biological tissues have high wateterdn classification accuracy. This motivates us to take furthepss

[5]. In fact, this property of THz radiation is considered agowards finding the other applicable methods to improve the

a major factor contributing to the observed contrast bemNegIasmﬁcatmn performance of these parameter combingtion

normal and diseased tissues in THz images. Other sourceag;;mz F():?;Osesri}i\:evreaesxs\l/glrleatz?r:gn:atll(i):a(t))glittheosf%ﬁgog ve(;tio
of contrast could be differences in content of protein, RN feural networks to improve the clgspsificatio);] accuracygisin
DNA, and structure changes in tissue [2], [6]. . P : yal
combinations of the model parameters introduced by [9] for
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tralia; Email: vincent.wallace@uwa.edu.au. small data with increasing noisy information and complex-



ity [10]. The parameter combinations are used to train tleefficientsa(w) of the breast samples were calculated from
neural networks for classifying the normal breast tissué athese time-domain pulses using the method described in [8].
tumour. Classification accuracies are estimated by botreleaFinally, the measured complex permittivities, (w) were
one-out cross validation and repeated random-subsampléssily obtained from these optical properties by the folhawy
validation method. The Bayesian neural networks dematestraelationshipé,, (w) = (n(w) — ja(w))?. More specific details

a remarkable improvement in applying the model parametafsthe measurement procedure,experimental equipment, and
for the breast cancer classification, which is confirmed lgy tlealculations can be referenced in [8].

estimated accuracies up 97.3% with a combination of the  To fit the measured data with the applied dielectric model,

four model parameters. we minimized the sum of squared error (SSE) between this
model and the data. Despite that this optimization problem i
Il. DIELECTRIC MODEL OF HUMAN BREAST TISSUE highly non-linear and non-convey, it can be effectivelyveadl
A. Applied Model by the robust gradient sampling algorithm [9], [12]. We aggl

this method to fit the measured complex permittivities of the

Since human breast tissue not only has low water contgjbast samples and extracted the respective parametets of t
but also possesses inhomogeneous structures of fat cells gijectric model (1) as can be seen in Table I.

proteins, its dielectric spectra in the terahertz rangewsho
sifgrl;i_fitl:an_t dlifftc_erences f:ﬁmh_tme cotmmon tspe::ct;al tr_eslypolnse lIl. CLASSIFICATION
of biological tissues wi igh water content. Particujar .

increases in the real part of the dielectric spectra at gagies A. Support Vector Machines

below 1 THz and fairly flat responses over higher frequenciesThe support vector machine (SVM) has been emerging
were found in fatty tissues such as adipose and breast tisdgeone of the most popular learning algorithms for pattern
[8]. Therefore, the well-known double Debye model, whickecognition [13]. This method aims to search for a hypemlan
has been applied for approximating the complex permiigigit separating two data classes in a multi-dimensional space.
of the highly hydrated tissues, is not fully capable of degli The optimal hyperplane should create maximal gaps between
with these dielectric responses of breast tissue. To etepuritself and support vectors falling on two sides of this plane
this problem, the multiple Cole-Cole relaxation model wakor this study, we implemented the SVM classification with
applied for replacing the double Debye model to resohfge toolbox of [14] in the Matlab environment. Based on a
the low-water-content issue of breast tissue [9]. The asthdumber of trial simulations, the kernel function, the Gaarss
also considered a non-Debye dielectric relaxation procedial basic function (RBF), was applied due to its best
which is generalized by the Havriliak-Negami relationshiglassification performance for the data. However, this &ern
[11], to tackle the dielectric response of breast tissuehi tfunction requires adjusting its parameteto a suitable value
low frequency range. Eventually, [9] proposed the follogvinin order to optimize the classification performance. Apeotrf

dielectric model for breast tissue that, the costC, which controls the trade-off between the
wT1A€; + Aey Aes complexity of learning model and training errors, also reed
€(w) =€ (1) to be selected by users. Therefore, we applied the grictisear

+ =
@ 1 . . . :
L+ (wr) towTy e to simultaneously find the optimé(, ~) that can provide the

HereAe;, Ae; and the time constant; describe the dielectric pest classification performance.
dispersion in the non-Debye relaxation process correspgnd
to the low frequencies. The dispersive amplitude of the fagt Bayesian Neural Network
relaxation process with the time constart is given by

€3. This Debye-like relaxation mode dominates the dielectric A fraditional learning method such as SVM and regular
response of breast tissue in the higher frequency range neural networks commonly encounters crucial issues ofrgene

represents the high-frequency limit of the dielectric ¢ans alization which is defined by how well an obtained prediction

of breast tissue anal reflects the impact of tissue conductivit;ﬂmdel can Qetect new cases e>.<clud|ng ffO'T‘ _tramlng dgta_t. The
on dielectric loss. generalization loss leads to either underfitting or ovanrtt

the data structure. The problem can be solved by determining
) appropriate complexity of the prediction model throughbglo
B. Parameters Extraction ally searching its design parameters. This approach is very
The data used in this study includes the complex permittiirtensive and requires using a part of data for validation of
ities measured with 74 human breast samples, both healthg parameter search, thus not being able to optimize the use
and cancerous. The samples were taken from the excisddiata source [15].
specimens of 20 female patients with necessary consemts fro Bayesian neural networks (BNN) have been seen as a
these patients and the local research committee. All these s practical and powerful tool to improve the generalizatiown a
imens were preserved in refrigerated and humid environmegmrformance of neural networks since they were introduced
to maintain their natural moistness. TPIspectral000 {ieva by [16]. The Bayesian framework applied in this method
Ltd, U.K.), a THz time-domain spectrometer, was used for thalows the learning process to overcome the aforementioned
measurements which were conducted in transmission modelallenge. Particularly, based on the Bayes’ theorem a-prob
collect the transmitted pulses through the samples. THren, ability distribution of network parameters is obtainabiethe
frequency-dependent refractive indicetv) and absorption Bayesian learning. By that it means that uncertainty andynoi



Table |
THE GROUPAVERAGE VALUES OF THE MODEL PARAMETERS IN(1) OBTAINED BY FITTING THE 74 BREAST SAMPLES FROM8].

Group €00 A€ Aes Aes o T1(ps) T2(ps) a

Normal 2.61+ 0.10 21.75+ 9.50 -1.844+ 0.25 0.99+ 0.11 2.89+ 0.36 2.84+ 045 0.13+ 0.01 1.80+ 0.13
Tumour  3.15+ 0.07 545.6+ 500.3  2.82+ 0.22  1.344+ 0.07 7.89+ 0.36 4.67+ 2.17 0.10+ 0.01 1.90+ 0.14

Table Il
THE ESTIMATED ACCURACIES(%) BY LOO-CV AND RRSFOR APPLYING THE DOUBLEDEBYE PARAMETERS WITH THESVM TO CLASSIFY THE
HEALTHY BREAST TISSUE AND BREAST TUMOUR

Parameter Combinations Kernel Parameterg Leave-One-Out Repeated Random Subsampling

P C 5y Accuracy(%) Accuracy(o)  Sensitivity(t)  Specificity(%)
Cl.o 1 0.25 86.5 85.0+ 8.1 84.1+ 12.3 85.8+ 12.1
C2. (€0, 0) 512 0.125 91.9 86.6+ 8.9 85.2+ 14.3 87.8+ 12.4
C3.(o,71) 16 0.125 91.9 88.3+ 8.5 86.0+ 13.6 90.4+ 10.9
C4. (€0, A€r,0) 4 0.0625 87.8 81.0+ 95 74.6+ 19.0 86.6+ 13.4
C5. (€0, Ae€2,0) 1 0.03125 85.1 85.6+ 85 85.3+ 125 85.9+ 124
C6. (€0, A€3,0) 256 0.25 93.2 87.6+ 8.8 85.4+ 14.4 89.6+ 11.3
C7. (€x0,0,T2) 512 0.125 90.5 86.4+ 8.6 85.6+ 13.9 87.1+ 125
C8. (€x, 0, @) 512 0.125 89.2 84.2+ 9.6 82.6+ 15.0 85.6+ 12.9
C9. (€co, A€z, A€3,0) 1 0.03125 85.1 85.3+ 8.3 84.2+ 12.5 86.3+ 12.1
C10. (éso,0,T2, ) 512 0.125 89.2 84.6+ 9.6 83.1+ 15.3 86.0+ 12.8

Table 11I

THE ESTIMATED ACCURACIES(%) BY LOO-CV AND RRSFOR APPLYING THE DOUBLEDEBYE PARAMETERS WITH THEBNN TO CLASSIFY THE
HEALTHY BREAST TISSUE AND BREAST TUMOUR

.. | Leave-One-Out Repeated Random Subsampling
Parameter Combinations Accuracy(o) Accuracy@o)  Sensitivity(t) — Specificity(%)
Cl.o 86.5 86.5+ 8.7 86.0+ 11.4 88.8+ 9.6
C2. (€0, 0) 91.9 92.9+ 6.6 93.2+ 9.0 944+ 7.8
C3.(o,71) 94.6 88.6+ 7.4 91.3+ 9.6 88.5+ 9.6
C4. (€co, Ae1, 0) 94.6 93.1+ 6.5 93.7+ 8.7 942+ 75
C5. (€00, A€2,0) 96.0 92.3+ 6.5 94.0+ 8.2 92.2+ 8.3
C6. (€0, A€3,0) 94.6 93.0+ 5.8 94.0+ 8.5 93.9+ 7.6
C7. (€x0,0,T2) 93.2 93.4+ 6.5 93.2+ 8.7 95.0+ 7.4
C8. (€xo, 0, ) 96.0 92.2+ 6.6 92.8+ 9.2 93.5+ 8.1
C9. (€0, A€2, A€3,0) 97.3 92.4+ 6.4 93.3+ 9.0 93.4+ 7.7
C10. (€co,0,T2, ) 97.3 93.6+ 6.4 94.3+ 8.3 94.4+ 7.6

information of data can be taken into consideration to impro With consecutively holding out only one point and using
the prediction performance. In addition, the learning pesc the whole remaining set of the data for training, this cross
using the Bayesian regulation facilitates automatic adjest validation provides an unbiased and high-variance esitmat
of network hyper-parameters, which are regulation constawof accuracy. Thus, the accuracy prediction with LOOCYV could
controlling the complexity of the prediction model, to thée too optimistic. The RRS with a significant proportion of
most appropriate values. This allows the elimination ofigsi data left out for testing does not make the best use of data for
the validation set of data, thus maximizing data resource fwaining but offers a better balance between bias and wegian
training. As a result, BNN is of great interest to handling ouvhen estimating the classification accuracy. Combing the tw
small data. Besides, by viewing our multiparameter problewalidation methods is necessary for more accurately yistf

in this paper from the advantages of BNN, we can find it the classification performance. For this study, we chose to
probable solution to dealing with the increasing compiexituse 8% of the data (59 samples) for training and%2@15

of the prediction model when more model parameters asamples) for testing in the RRS with 1000 repetitions of the
incorporated into the classification. Indeed, this comipfex training-testing process for each classifier.

issue is directly concerned with adjusting more regulation

constants, which is considered as an important advantage of V. RESULTS AND DISCUSSION

the Bayesian approach [16]. In this study, ten classification combinations of the model
o parameters are chosen to investigate and annotated by C1 to

C. Accuracy Estimation C10 respectively as can be seen in both Table Il and I1I. It) fac

Both leave-one-out cross validation (LOOCV) and repeatdxhsed on the statistical analysis in [9], we could form aetgri
random-subsampling validation (RRS) are applied to védideof potential combinations for the classification. Howevey,
the classification accuracy. LOOCV has been among the masalysing the LOOCV and RRS accuracy simultaneously with
popular methods to estimate the accuracy of a classifier [1&ither the SVM or BNN a number of the combinations were



filtered, and hence, only the best ten combinations we9e.17 — 93.57% corresponding the different combinations,
selected to present. They are not only able to achieve thkich are also by far higher thag8.3% (RRS) with the
highest classification accuracies but also optimal in teos SVM. Apart from that, the classification accuracies prestict
low dimension and complexity. by cross validation methods in this study may be statidyical
Table Il shows the LOO-CVs and the average classificatidmsufficient for making a confirmation of the true classifioat
accuracies with their standard deviations estimated by RRScuracies in practice due to the used small data. Howewer, o
for using SVM classifiers with combinations of the mode¢ncouraging results should be basic to future studies which
parameters in (1). The optimal kernel parameters including examines larger data such as THz images of breast tumour in
and~ for each set of the model parameters are accountable éwder to improve the cancer-margin detection in BCS. Furthe

the best LOOCYV of the combination. Under the impact of théevelopments of this study will also include selection o th

smaller training set, C6 obtains the highest LOOCGN.2%)

best parameter combinations and improvement of classificat

but a far lower RRS accuracg.6%). Despite that C1 only methodologies.

contains one model parameterits classification performance

is still better than the higher-dimension combinationshsas

C5 and C9. In facig has been considered as the most potentidi]
parameter of the model (1) for breast cancer classification
[9]. C3 should be the most suitable for the SVM method
thanks to its high and stable accuracies predicted by LOOCW¥]
(91.9%) and RRS $8.3%). However, the combinations with
more model parameters such as C4-C10 do not improve gj
even weaken the classification performance using SVM. As
mentioned earlier, this remains the challenge of applying
the SVM approach for the data, which motivates furtheg,
investigation into the applicability of BNN.

According to Table Ill, the problem of SVM indeed can
be overcome by BNN structured by 10 hidden nodes. To bg;
more specific, the overall classification performance of the
combinations is improved whenever an extra model parameter
is added to the classification. Accordingly, the best aaura [g]
obtained with the four-parameter combinations includirgy C
and C10 is97.3% in LOOCV and 93.6% in RRS. The
highest LOOCVs of the three- and two-parameter combingy,
tions including C2-C8 are96.0% and 94.6% respectively.
However, although the average accuracies of C2-C10 in RRS
achieve very high values frof®.2%, the impact of increasing g
the number of input parameters on the classification is not
significant. The similarity in C1,C2,C4 between LOOCVs and
RRS accuracies suggests BNN can learn the data structuregf
these combinations very well regardless of the smaller data
set for training in RRS. Conversely, the impressive LOOCVs
of the rest are unachievable in RRS due to the shortage
training data. By and large, classifying the breast tumaimg
the combinations of the model parameters in (1) with BNRHI
offers better overall performance than that with SVM.

[12]

V. CONCLUSION

The SVM method is limited in terms of efficiently Iearning[
the data structure of the combinations of the model paramet
in (1) for classification. Therefore, we revised the proble
and successfully applied the BNN classifier to improve per-
formance of the combinations. Particularly, ten parametﬁg]
combinations C1-C10 were introduced for investigationrhwit
both SVM and BNN. Using the BNN, the best LOOCYV ig16]
enhanced t®7.3% with the four-parameter combinations as
compared t093.2% with the SVM. The advance of BNN
in classifying the data is also expressed over the estimatet
accuracies in RRS. The average accuracies vary betweeh abou

14]
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