A Parallel and Distributed Genetic-Based Learning Classifier System with Application in Human Electroencephalographic Signal Classification

Bradley Skinner

Doctor of Philosophy (Engineering)

Year of Submission: 2007

Centre for Health Technologies

Mechatronics and Intelligent Systems Group

Faculty of Engineering

University of Technology, Sydney

Australia

Contents

Introduction			
1.1	Problem Statement		
1.2	Aim		
1.3	Overview of the Study		
1.4	Research Methods		
Review of	f Literature30		
2.1	Introduction		
2.2	Genetic Algorithms		
2.2.1	Why use Genetic Algorithms?		
2.2.2	2 Basic Definitions and Terminology		
2.2.3	Selection Operators		
2.2.4	Recombination Operators		
2.2.5	5 Mutation Operators		
2.2.6	Static and Adaptive Operators		
2.2.7	Static Crossover and Mutation Operators		
2.2.8	B Dynamic Crossover and Mutation Operators		
2.2.9	Replacement Mechanisms		
2.2.1	0 Coding Schemes		
2.2.1	The Schema Theorem		
2.2.1	2 Building Block Hypothesis		
2.2.1	The No Free Lunch Theorem		
2.3	Parallel Genetic Algorithms		
2.3.1	Classification of Parallel Genetic Algorithms		
2.4	Parallel Computing Architectures		
2.5	Inter-process Communication Models		
2.5.1	Socket Programming 60		
2.5.2	Parallel Virtual Machine - PVM		
253	R. Massaga Passing Interface MDI		

CONTENTS 3

2.5.4	Java Remote Method Invocation - JRMI	62
2.5.5	Common Object Request Broker Architecture - CORBA	62
2.5.6	Globus	62
2.6 L	earning Classifier Systems	63
2.6.1	Reinforcement Learning	64
2.6.2	Reinforcement Learning Architectures	65
2.6.3	Tabular Q-Learning	67
2.6.4	A Brief History of Learning Classifier Systems	68
2.6.5	Holland's Learning Classifier System.	69
2.6.6	Zeroth Level Classifier System - ZCS	72
2.6.7	Overview of the XCS Classifier System	76
2.6.8	Detailed Description of the XCS Classifier System	78
2.6.9	XCS and Tabular Q-Learning	93
2.6.10	Common Classifier Encodings	94
2.7 P	arallel Learning Classifier Systems	97
2.8	Conclusion	98
Classificati	on Learning of the Human Electroencephalogram	101
3.1 In	ntroduction	101
	ntroduction The Human Electroencephalogram	
		102
3.2 T	he Human Electroencephalogram	102
3.2 T	The Human Electroencephalogram	102 102 108
3.2 T 3.2.1 3.2.2	The Human Electroencephalogram The Source of EEG Signals Rhythms of the Human Brain	102 102 108
3.2 T 3.2.1 3.2.2 3.2.3	The Human Electroencephalogram The Source of EEG Signals Rhythms of the Human Brain Recording Electrodes	
3.2 T 3.2.1 3.2.2 3.2.3 3.2.4 3.2.5	The Human Electroencephalogram The Source of EEG Signals Rhythms of the Human Brain. Recording Electrodes The EEG System	
3.2 T 3.2.1 3.2.2 3.2.3 3.2.4 3.2.5 3.3 C	The Human Electroencephalogram The Source of EEG Signals Rhythms of the Human Brain Recording Electrodes The EEG System EEG Artefacts	
3.2 T 3.2.1 3.2.2 3.2.3 3.2.4 3.2.5 3.3 C	The Human Electroencephalogram The Source of EEG Signals Rhythms of the Human Brain Recording Electrodes The EEG System EEG Artefacts Correlation of Human EEG with Mental Tasks	
3.2 T 3.2.1 3.2.2 3.2.3 3.2.4 3.2.5 3.3 C 3.4 S	The Human Electroencephalogram The Source of EEG Signals Rhythms of the Human Brain Recording Electrodes The EEG System EEG Artefacts Correlation of Human EEG with Mental Tasks ignal Processing and Representation of Human EEG	
3.2 T 3.2.1 3.2.2 3.2.3 3.2.4 3.2.5 3.3 C 3.4 S 3.4.1	The Human Electroencephalogram The Source of EEG Signals Rhythms of the Human Brain Recording Electrodes The EEG System EEG Artefacts Correlation of Human EEG with Mental Tasks ignal Processing and Representation of Human EEG Frequency-Based Representation	
3.2 T 3.2.1 3.2.2 3.2.3 3.2.4 3.2.5 3.3 C 3.4 S 3.4.1 3.4.2 3.4.3	The Human Electroencephalogram The Source of EEG Signals Rhythms of the Human Brain. Recording Electrodes The EEG System EEG Artefacts Correlation of Human EEG with Mental Tasks ignal Processing and Representation of Human EEG Frequency-Based Representation Parametric Methods	
3.2 T 3.2.1 3.2.2 3.2.3 3.2.4 3.2.5 3.3 C 3.4 S 3.4.1 3.4.2 3.4.3	The Human Electroencephalogram The Source of EEG Signals Rhythms of the Human Brain. Recording Electrodes The EEG System EEG Artefacts Correlation of Human EEG with Mental Tasks ignal Processing and Representation of Human EEG Frequency-Based Representation Parametric Methods Other Signal Processing and Representations	
3.2 T 3.2.1 3.2.2 3.2.3 3.2.4 3.2.5 3.3 C 3.4 S 3.4.1 3.4.2 3.4.3 3.5 E	The Human Electroencephalogram The Source of EEG Signals Rhythms of the Human Brain Recording Electrodes The EEG System EEG Artefacts Correlation of Human EEG with Mental Tasks ignal Processing and Representation of Human EEG Frequency-Based Representation Parametric Methods Other Signal Processing and Representations Other Signal Processing and Representations	
3.2 T 3.2.1 3.2.2 3.2.3 3.2.4 3.2.5 3.3 C 3.4 S 3.4.1 3.4.2 3.4.3 3.5 E 3.5.1 3.5.2	The Human Electroencephalogram The Source of EEG Signals Rhythms of the Human Brain Recording Electrodes The EEG System EEG Artefacts Correlation of Human EEG with Mental Tasks ignal Processing and Representation of Human EEG Frequency-Based Representation Parametric Methods Other Signal Processing and Representations Oata Mining Human EEG Classification of EGG using Non-Evolutionary Algorithms	

CONTENTS 4

(Chapter	Outline	136
4	1.1	Aim	137
4	1.2	PGA Convergence Velocity and Solution Quality	137
	4.2.1	Refinement	138
	4.2.2	Operational Hypotheses	139
4	1.3	Method	139
	4.3.1	Multi-Deme Parallel Genetic Algorithm	140
	4.3.2	Numerical Objective Functions	148
	4.3.3	Experiment Parameters	151
	4.3.4	Experimental Apparatus	152
4	1.4	Results	153
	4.4.1	Description	153
	4.4.2	Presentation	154
	4.4.3	Analysis	161
	4.4.4	Interpretation	163
4	1.5	Conclusion	169
Sec	quentia	l Quadratic Programming Methods in PGAs	171
(Chapter	Outline	171
4	5.1	Aim	172
4	5.2	Performance Hypothesis of the Hybrid Algorithm	173
	5.2.1	Refinement	173
4	5.3	Method	175
	5.3.1	The Hybrid Search Algorithm	175
	5.3.2	Exploration Stage – Parallel Genetic Algorithm	177
	5.3.3	Exploitation Stage – The RFSQP Algorithm	182
	5.3.4	Numerical Objective Functions	186
	5.3.5	Experiment Parameters	189
	5.3.6	Experimental Apparatus	191
4	5.4	Results	191
	5.4.1	Description	191
	5.4.2	Presentation	192
	5.4.3	Analysis	196
	5.4.4	Total and the second of the se	100
	J.4.4	Interpretation	198

Genetic-Ba	sed Machine Learning Classifier for EEG Signal Classification	202
Chapter (Outline	202
6.1 A	Aim	203
6.2 E	EEG Signal Representation and Competitive Hypotheses	203
6.2.1	Refinement	204
6.2.2	Operational Hypotheses	206
6.3 N	Method	206
6.3.1	Experimental Apparatus – EEG Data Acquisition	207
6.3.2	Participant Preparation	213
6.3.3	Mental Task Experiments	214
6.3.4	Data Acquisition and Pre-processing	215
6.3.5	EEG Signal Representations	222
6.3.6	Classification Environment	231
6.4 F	Results	236
6.4.1	Description	236
6.4.2	Presentation	237
6.4.3	Analysis	242
6.4.4	Interpretation	245
6.5	Conclusion	249
Distributed	l Classifier Migration in XCS for Classification of EEG Signals	251
Chapter (Outline	251
7.1 A	Aim	252
7.2 F	Parallel Evolutionary Methods in Leaning Classifier Systems	252
7.2.1	Refinement	253
7.2.2	Operational Hypotheses	254
7.3 N	Method	255
7.3.1	Classification Environment - pXCS	255
7.3.2	Parametric Representation of EEG Data	261
7.3.3	Feature Vector Encoding	262
7.3.4	Experimental Apparatus	262
7.3.5	Experimental Parameters	263
7.4 F	Results	264
7.4.1	Description	264
7.4.2	Presentation	266
7.4.3	Analysis	273

CONTENTS 6

	7.4.4	Interpretation	. 282
	7.5	Conclusion	. 285
S	ummary a	and Conclusions	. 287
	8.1	Summary of Results	. 287
	8.1.1	Findings on XCS performance for the Classification of EEG	. 287
	8.1.2	Findings on Distributed Classifier Migration in pXCS for the Classification of	of
	EEG		. 289
	8.1.3	Findings on Optimal Migration Strategies in a PGA with Adaptive Mutation	. 291
	8.1.4	Findings on the Incorporation of the RFSQP method in PGAs	. 292
	8.2	Conclusions	. 294
	8.2.1	Aim One	. 294
	8.2.2	Aim Two	. 295
	8.2.3	Aim Three	. 295
	8.2.4	Aim Four	. 296
	8.2.5	Aim Five	. 296
	8.3	Direction of Future Work	. 297
В	ibliograp	hy	. 299
A	Schema	Theorem	. 309
В	Test Fu	nctions	.313
	B.1	introduction	. 313
	Spher	e Function (f _{Sph})	. 313
	Rastri	gin Function (f _{Ras})	. 314
	Ackle	y Path Function (f _{Ack})	. 315
	Schwe	efel Function (f _{Sch})	.316
	Micha	llewicz Function (f _{Mic})	. 317
		rman Function (f _{Lan})	
	Decep	otive n-bit Trap Function (f _{Trap})	. 319
		Roads Function (f _{RR})	
C	Taylors	Series - RFSQP Algorithm	. 321
D	The XC	S Classifier	. 323

CONTENTS	7

E	Gene	tic-Based Machine Learning Classifier for EEG Classification	329
F	The p	oXCS Classifier	337
G	The	Electroencephalographic System	340
	G.1	BioSemi Active Two Mk2 System Specification	340
	G.2	BioSemi EEG Electrode Montage for 32+2 Channels	341
	G.3	BioSemi BDF and EDF File Format	342
Н	Thes	is Software Collection	343

List of Figures

1: Taxonomy of Search Methods in the broader field of Computational Intelligence	31
2: (a) One-Point Crossover Operation using gene position 3. (b) The Two-Point Crossover Operation	eration
using gene positions 2 and 6.	38
3: Uniform Crossover Operator.	39
4: The Mutation Operator selecting genes in offspring chromosomes.	40
5: 4-bit Deceptive Trap Function	48
6: Schematic diagram of the Multiple-Population Coarse-Grained PGA consisting of six is	solated
subpopulations.	53
7: Schematic diagram of the Global Single-Population Master-Slave PGA.	56
8: Schematic diagram of the Single-Population Fine-Grained PGA arranged into neighbourhoo	ds57
9: (a) Multi-deme coarse-grained PGA at both levels with different connection topologies. (b)	Multi-
deme coarse-grained PGA at upper level and fine-grained PGA at lower level.	57
10: The basic Reinforcement Learning Problem.	65
11: Reinforcement Learning Architectures – Policy-Only and Reinforcement-Comparison	66
12: Reinforcement Learning Architectures – Adaptive-Heuristic-Critic and Q-Learning	66
13: Schematic illustration of Holland's 1986 Learning Classifier System.	70
14: Schematic illustration of ZCS Learning Classifier System.	72
15: Schematic illustration of XCS Learning Classifier System, 1998	79
16: Classifier accuracy κ as a function of classifier prediction error ε	89
17: The Cerebrum, showing the 4 lobes (Frontal, Parietal, Temporal, and Occipital)	103
18: Structure of a typical neuron.	104
19: The Purkinje cell and the Pyramidal cell located in the cerebral cortex.	104
20: Postsynaptic and Action Potential of neuronal membrane.	105
21: The generation of EEG by the cerebral cortex.	107
22: Different types of normal EEG waves in the time domain (a) Delta, (b) Theta, (c) Alpha (c	d) Beta
activity (e) blocking of the alpha wave by eye opening and (f) 1 second markers.	109
23: Equivalent Circuit Model for an electrode.	112
24: Basic circuit model for two scalp electrodes with input into a differential amplifier	112
25: Electrode names and placement in the International 10-20 System.	114
26: Modified expanded 10-20 system	115
27: Simplified Block Diagram of a modern 8-Channel EEG Recording System.	115

28: A modern Sigma-Delta ADC with Fully programmable Low-Pass filter
29: Eye movement artefacts in time domain. (1) Blink, (2) eye opening (EO), (3) eye closing (EC),
rhythmical slow eye movement (EM), (5) saccadic eye movement (EM)
30: Common artefacts generated by extracerebral activity
31: Non-biological artefacts
32: Mutation Probability $P_{\rm M}(t)$
33: The Multi-Deme Master-Slave Topologies of the PGA using 4- and 8- subpopulations142
34: Unordered and blocking communication provided synchronous migration between loosely-
coupled and coarse-grained sub-populations of the Master-Slave PGA
35: Decomposition of the Level 1 (PGA) Structure Chart for the PGA Software System146
36: Decomposition of Level 1.1 (Initialise), 1.3 (Optional GAFuncs), and 1.4 (Cycle_Error) Structure
Charts for the PGA System
37: Decomposition of Level 1.2 (Generation) Structure Chart for the PGA Software System 147
38: Decomposition of Level 1.5 (Migration) Structure Chart for the PGA Software System147
39: Decomposition of Level 1.6 (WriteResults) Structure Chart for the PGA Software System 147
40: An example illustration of the Sphere Function for n=3
41: An example illustration of Rastrigin's Function for n=3 (top) and n=2 (bottom)149
42: An example illustration of the Ackley Path Function for n=3 (top) and n=2 (bottom)150
43: Mutation Probability $P_{\rm M}(t)$ for $\alpha = 5, 10, 20, 40, 80, 160.$
44: Sphere Function with 4-subpopulations and variable migration period
45: Sphere Function with 8-subpopulations and variable migration period
46: Rastrigin's Function with 4-subpopulations and variable migration period
47: Rastrigin's Function with 8-subpopulations and variable migration period
48: Ackley's Path Function with 4-subpopulations and variable migration period
49: Ackley's Path Function with 8-subpopulations and variable migration period
50: Adaptive Mutation vs Static Mutation probability for the Sphere Function (m_F =5, $d_\#$ = 8)158
51: Adaptive Mutation vs Static Mutation probability for the Rastrigin Function (m_F =5, $d_\#$ = 8)159
52: Adaptive vs Static Mutation probability for the Ackley Path Function (m_F =5, $d_\#$ = 8)160
53: The hybrid search algorithm architecture
54: The Multi-Deme Master-Slave Topology of the PGA used in the exploration stage of the hybrid
algorithm
55: Unordered and blocking communication provided synchronous migration between loosely-
coupled and coarse-grained sub-populations of a 4-deme Master-Slave PA
56: Hybrid Algorithm Search – Exploration and Exploitation
57: Decomposition of the Level 1 Structure Chart for the Hybrid Algorithm Software System185
58: Decomposition of the Level 1.7 Structure Chart for the RFSQP algorithm

59: An example illustration of Schwefel's Function for n=3 (top) and n=2 (bottom)	187
60: An example illustration of the Michalewicz Function for n=3 (top) and n=2 (bottom)	188
61: An example illustration of the Langerman Function for n=3 (top) and n=2 (bottom)	189
62: Results for PGA and Hybrid Search Algorithm applied to the Sphere Function.	192
63: Results for PGA and Hybrid Search Algorithm applied to Rastrigin's Function	193
64: Results for PGA and Hybrid Search Algorithm applied to the Ackley Path Function	193
65: Results for PGA and Hybrid Search Algorithm applied to the Schwefel Function	194
66: Results for PGA and Hybrid Search Algorithm applied to the Michalewicz Function	194
67: Results for PGA and Hybrid Search Algorithm applied to the Langerman Function	195
68: Experimental configuration of the BioSemi Active-Two EEG Acquisition subsystem	207
69: Rear view of the BioSemi headcap used for all experiements in this study	208
70: Circuit diagram and transfer function of the active electrode.	208
71: (a) BioSemi "pin-type" active electrode and (b) Standard set of 32 electrodes	209
72: BiosSemi ActiveTwo AD-Box and battery box power supply.	210
73: Front and Rear view of the ActiveTwo Optical-to-USB2 converter	211
74: The BioSemi ActiView Real-Time Interface.	212
75: Participant Preparation.	213
76: A fully prepared participant ready to commence mental task experiments	214
77: An example of 32-channel referenced EEG data from $t=9$ to $t=21$ seconds for baseline	and
Mental Counting task from a single participant.	217
78: An example of 6-channel EEG data from <i>t</i> =9 to <i>t</i> =21 seconds for baseline and Mental Coun	iting
Task from a single participant.	218
79: A 10-second recording of the Mental Counting Task being windowed to 8-seconds by remova	al of
the first and last 1-second of time-domain EEG data from all 6-channels	219
80: Partitioning EEG windows into segments of 4.0- and 2.0-seconds in length	220
81: Partitioning EEG windows into segments of 1.0- and 0.5-seconds in length	221
82: Generalised Autoregressive Filter Model of order <i>p</i>	223
83: Example of visual AR order determination.	224
84: AR order determination using the Akaike Information Criterion (AIC) Technique	225
85: Tree solution for the 9 asymmetry ratios of the Delta (δ) EEG frequency band	.226
86: A single 108-bit feature vector based on the parametric representation.	227
87: A single feature vector based on the frequency-band representation	228
88: Summary of the steps required produce training and testing sets.	229
89: A single pre-processed and windowed time-domain segment of EEG data is transformed into) the
frequency-domain using FFT.	.230
90: Default settings for classifiers implemented in Weka v3.5.5	233

91: Weka v3.5.5 GUI; (a) The training data and (b) Classification result using supplied test set234
92: Topologies employed by pXCS - (a) Uni-directional Ring, (b) Bi-directional ring and (c) Fully-
Connected topologies
93: pXCS Migration System performs classifier selection and replacement upon the sub-population
[P], producing classifier sets [I] and [E]260
94: Average of the best classification accuracy with varying migration frequencies between pXCS
and XCS267
95: Average of the best classification accuracy with varying migration rates between pXCS and
XCS
96: Average of the best classification accuracy between a fully connected pXCS topology and XCS
for each participant and associated task experiment268
97: Average of the best classification accuracy between a bi-directional ring pXCS topology and
XCS for each participant and associated task experiment
98: Average of the best classification accuracy between a uni-directional ring pXCS topology and
XCS for each participant and associated task experiment
99: Histogram of improvements and degradation in average classification accuracy between pXCS
and XCS for varying migration frequencies270
100: Histogram of improvements and degradation in average classification accuracy between pXCS
and XCS for varying migration rates270
101: Reduction in Classifier Population between pXCS and XCS during training with varying
migration frequencies
102: Reduction in Classifier Population between pXCS and XCS during training with varying
migration rates
103: Improvement in Learning Rate during training between pXCS and XCS with varying migration
frequencies
104: Improvement in Learning Rate during training between pXCS and XCS with varying migration
rates
105:Classification Accuracy of pXCS and XCS for a single experimental instance273
106: Two-sample pooled t-test results comparing the classification accuracy of pXCS vs XCS274
107: Two-sample pooled t-test curve comparing the classification accuracy of pXCS vs XCS276
108: Two-sample pooled t-test curve comparing the classification accuracy of pXCS vs XCS276
109: Example of reduction in classifier population of pXCS and XCS
110: Example of learning rate as a fraction of correct classifications of pXCS and XCS281
111: Two-sample pooled t-test curve comparing the classification accuracy of pXCS and XCS for
the results presented in Figure 110
112.B: Sphere Function (n=3), 113.B: Sphere Function Contour Plot (n=2),

14.B: Rastrigin Function (n=3)	314
15.B: Rastrigin Function Contour Plot (n=2)	314
16.B: Ackley Path Function (n=3)	315
17.B: Ackley Path Function Contour Plot (n=2)	315
18.B: Schwefel Function (n=3)	316
19.B: Schwefel Function Contour Plot (n=2)	316
20.B: Michalewicz Function (n=3)	317
21.B: Michalewicz Function Contour Plot (n=2)	317
22.B: Langerman Function (n=3)	318
23.B: Langerman Function Contour Plot (n=2)	318

List of Tables

1: Mapping between terms in Natural Evolution and the Genetic Algorithms Framework	34
2: Population of Micro-classifiers in XCS	81
3: Population of Macro-classifiers in XCS	81
4: Datasets used for the Comparison of Learning Schemes in	132
5: Average Prediction Accuracy and Standard Deviations of six Machine Learning Sc	hemes
using Stratified Ten-Fold Cross-Validation.	132
6: Parallel Genetic Algorithm Parameter Specification	151
7: Cluster Computing Hardware and Software Environment - PGA	152
8: Convergence Velocity and Solution Quality – Sphere Function	155
9: Convergence Velocity and Solution Quality – Rastrigin Function	156
10: Convergence Velocity and Solution Quality – Ackley Path Function	157
11: Effect of Adaptive Mutation Operator ($lpha$) on Convergence Velocity and Solution Q)uality
- Sphere Function	158
12: Effect of Adaptive Mutation Operator (α) on Convergence Velocity and Solution Q	Quality
- Rastrigin Function	159
13: Effect of Adaptive Mutation Operator (α) on Convergence Velocity and Solution Q)uality
– Ackley Path Function	160
14: Results For Convergence Velocity against Migration Frequency	164
15: Results For Solution Quality Against Migration Frequency	164
16: Results for Convergence Velocity and Solution Quality Against Deme Size	166
17: Results for Static and Adaptive Mutation Probabilities	168
18: Parallel Genetic Algorithm Parameter Specification	189
19: RFSQP Algorithm Parameter Specification.	190
20: Cluster Computing Hardware and Software Environment - Hybrid Algorithm	191
21: Computation Times for the hybrid search and parallel genetic algorithms	195
22: Results For Convergence Velocity, Solution Quality and Computation Time	199
23: Cluster Computing Hardware and Software Environment – XCS	235
24: Classification Accuracy for Burg Parametric Method (order p=6)	238
25: Classification Accuracy for Cov Parametric Method (order p=6)	238
26: Classification Accuracy for MCov Parametric Method (order p=6)	238
27: Average Classification Results for the Different Parametric Methods (order:n=6)	239

LIST OF TABLES

28: Classification Accuracy for Frequency-Band method	240
29: Classifier Scheme Comparison Using Parametric Methods (order p=6)	241
30: Classifier Scheme Comparison Using Frequency-Band Representation	241
31: Results For Average Classification Accuracy of Parametric Methods	242
32: Results For Average Classification Accuracy of EEG Frequency-Bands	243
33: Results For Average Classification Accuracy between The Parametric and Frequency	iency.
Band Representations	246
34: Results For Average Classification Accuracy using Parametric Representation	248
35: Results For Average Classification Accuracy using Frequency-Band Representation.	248
36: Cluster Computing Hardware and Software Environment - pXCS	263
37: Tasks, Topological and Participatory Experiment Matrix for pXCS	266

Certificate of Authorship / Originality

I certify that the work in this thesis has not previously been submitted for a degree nor has it been submitted as part of the requirements for a degree except as acknowledged within the text.

I also certify that the thesis has been written by me. Any assistance that I have received in my research work and the preparation of the thesis itself has been acknowledged. In addition, I certify that all information sources and literature used are indicated in the thesis.

Signature of Candidate

Abstract

Genetic-based Learning Classifier Systems have been proposed as a competent technology for the classification of medical data sets. What is not known about this class of system is two-fold. Firstly, how does a Learning Classifier System (LCS) perform when applied to the single-step classification of multiple-channel, noisy, artefact-inclusive human EEG signals acquired from many participants? Secondly and more importantly, is how the learning classifier system performs when incorporated with migration strategies, inspired by multi-deme, coarse-grained Parallel Genetic Algorithms (PGA) to provide parallel and distributed classifier migration? This research investigates these open questions and concludes, subject to the considerations herein, that these technological approaches can provide competitive classification performance for such applications.

We performed a preliminary examination and implementation of a parallel genetic algorithm and hybrid local search PGA using experimental methods. The parallelisation and incorporation of classical local search methods into a genetic algorithm are well known methods for increasing performance and we examine this. Furthermore, inspired by the significant improvements in convergence velocity and solution quality provided by the multideme, coarse-grained Parallel Genetic Algorithm, we incorporate the method into a learning classifier system with the aim of providing parallel and distributed classifier migration. As a result, a unique learning classifier system (pXCS) is proposed that improves classification accuracy, achieves increased learning rates and significantly reduces the classifier population during learning. It is compared to the eXtended learning Classifier System (XCS) and several state of the art non-evolutionary classifiers in the single-step classification of noisy, artefactinclusive human EEG signals, derived from mental task experiments conducted using ten human participants.

We also conclude that establishing an appropriate migration strategy is an important cause of pXCS learning and classification performance. However, an inappropriate migration rate, frequency or selection:replacement scheme can reduce performance and we document the factors associated with this. Furthermore, we conclude that both EEG segment size and representation both have a significant influence on classification performance. In effect, determining an appropriate representation of the raw EEG signal is tantamount to the classification method itself.

ABSTRACT 17

This research allows us to further explore and incorporate pXCS evolved classifiers derived from multi-channel human EEG signals as an interface in the control of a device such as a powered wheelchair or brain-computer interface (BCI) applications.

Statement of Contribution

Contributions to Knowledge

We have proposed and tested three research hypotheses (H3, H4, H5) related to the Genetic-Based Machine Learning (GBML) Classifier System for the single-step classification of multi-channel, artefact-inclusive human electroencephalographic (EEG) signals, derived from mental task experiments. In addition we have tested two research hypotheses (H1 and H2) related to the convergence property and solution quality of a Parallel Genetic Algorithm and Hybrid Algorithm:

- Hypothesis H1 which claims "The convergence velocity and solution quality achieved by a parallel genetic algorithm, with adaptive mutation is superior to that achieved by the serial genetic algorithm on a common set of optimisation problems."
- Hypothesis H2 which claims "The convergence velocity, solution quality and computation time achieved by a hybrid search algorithm is superior to that achieved by the parallel genetic algorithm on a common set of optimisation problems."
- Hypothesis H3 which claims "A parametric representation provides superior performance compared to the frequency-band representation for the single-step classification of multiple-channel, artefact-inclusive human EEG data using evolutionary and non-evolutionary classifiers."
- Hypothesis H4 which claims "The eXtended learning Classifier System (XCS)
 provides superior performance when compared to the current state of the art in nonevolutionary classifiers for the single-step classification of multiple-channel, artefactinclusive human EEG data"
- Hypothesis H5 which claims "The incorporation of a parallel and distributed classifier migration policy into the eXtended learning Classifier System (XCS)

increases classification performance for the single-step classification of multiplechannel, artefact-inclusive human EEG data"

The implications of these findings provide, in some measure, new knowledge about the classification of human EEG signals using parallel and distributed Genetic-Based Machine Learning (GBML) Classifier System. In the course of examining these hypotheses, the following contributions were also made:

- We have determined, documented and implemented a simple mechanism for the parallel and distributed migration of classifiers in the discovery component of a genetic-based learning classifier system, which we called pXCS. This parallel and distributed algorithm extends Wilson's XCS learning classifier system by introducing a *migratory pressure*, with improved learning rate, improved classification accuracy and smaller classifier population size.
- The *degree-of-connectivity* implicit in the fully-connected, bi-directional and unidirectional ring topologies have a significant influence upon the learning and classification performance of pXCS. This finding extends the number of topologies found in the literature.
- The *rate* and *frequency* of distributed classifier migrations in pXCS does have a significant impact on the learning and classification performance. This finding is at variance with the literature which portrays classifications performance for idealised problems.
- A *selection* and *replacement* scheme based upon ranking of classifier *fitness*, *numerosity* and *random* in pXCS can have significant impact on the learning and classification performance. This finding extends the number of such schemes found in the literature for idealised problems. Furthermore, we have shown that fitness bias selection can inhibit classification performance.
- We have provided extensive benchmarking for the classification performance of XCS
 and pXCS in an observable and repeatable manner in the single-step classification of
 multiple-channel, artefact-inclusive human EEG signals. This approach allowed for
 the comparison of evolutionary and current state-of-the-art non-evolutionary classifier
 systems, in terms of average classification accuracy and its variance.

- In terms of learning and classification performance of XCS and pXCS, in conjunction with typical real-time constraints of similar applications we have determined:
 - (a) an optimal EEG segment size of 2.0-seconds,
 - (b) an optimal autoregressive model order of p=6 for the Burg, Covariance, and Modified Covariance parametric methods.
- We have achieved significant improvements in classification accuracy by increasing the ability of XCS to form generalisations in the single-step classification of multiple-channel, artefact-inclusive human EEG signals. More specifically, establishing a generalisation or 'don't care' probability of $P_{\#}$ =0.86 tended to provide significant improvements in classification accuracy compared to $P_{\#}$ =0.76.
- We have discovered that an XCS classifier population of N=8000 did not provide significant improvement or degradation in classification accuracy when compared with N=2000 and N=4000 for parametric representations and P_#=0.86.
- We have developed, documented and implemented a simple hybrid search algorithm employing an iterative global search heuristic and cascaded architecture. Our method loosely couples our parallel genetic algorithm with a non-evolutionary search algorithm, which based on the Reduced Feasible Sequential Quadratic Algorithm. The hybrid algorithm achieved significant improvements in convergence velocity, solution quality and computation time for a suite of idealised objective functions.
- We have developed, documented and implemented a multi-deme parallel genetic algorithm (PGA) employing an adaptive mutation function. In general, adaptive mutation can increase convergence velocity and solution quality of a multi-deme PGA for a suite of idealised objective functions. This finding supports the current literature.

Related Publications

- Performance Study of a Multi-Deme Parallel Genetic Algorithm with Adaptive Mutation, B.T. Skinner, H.T. Nguyen, D.K. Liu, International Conference on Autonomous Robots and Agents (ICARA), pp. 88-94, New Zealand, December 2004.
- Hybrid Optimisation Method Using PGA and SQP Algorithm, B.T. Skinner, H.T. Nguyen, D.K. Liu, IEEE Symposium on Foundations of Computational Intelligence (FOCI), pp. 73-80, Honolulu, Hawaii, USA, April 2007.
- Classification of EEG Signals Using a Genetic-Based Machine Learning Classifier,
 B.T. Skinner, H.T. Nguyen, D.K. Liu, 29th Annual International Conference of the
 IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3120-3123, Lyon,
 France, 2007.
- Distributed Classifier Migration in XCS for the Classification of Electroencephalographic Signals, B.T. Skinner, H.T. Nguyen, D.K. Liu, IEEE Congress on Evolutionary Computation (CEC), pp. 2829-2836, Singapore, 2007.

Other Publications during PhD Candidature

 Distributed Simultaneous Task Allocation and Motion Coordination of Autonomous Vehicles Using a Parallel Computing Cluster, A.K. Kulantunga, B.T. Skinner, D.K. Liu, H.T. Nguyen, in Robotic Welding, Intelligence and Automation, Lecture Notes in Control and Information Sciences (Vol. 362), Springer-Verlag, 2007, pp. 409-420.

Acknowledgments

Firstly I would like to thank my supervisor, Professor Hung Nguyen for providing me with the opportunity to pursue postgraduate research at the University of Technology, Sydney. Without Hung's support, guidance and honesty I would not have been able to become a capable research engineer. His patience and kindness continue to surprise me. I am also grateful to Dr Dikai Liu for his guidance, encouragement and lengthy discussions on evolutionary computation, which proved invaluable. I am indebted to him for his friendship and company in distant places.

I would also like to thank Dr Yvonne Tran and Professor Ashley Craig for providing access to the EEG laboratory during participant experimentation. I am thankful for their helpful advice, ongoing support and review of my work. I am grateful to Dr Matt Gaston and Mr Peter Brady for establishing, maintaining and supporting the UTS Engineering Linux Computing Cluster Environment. Without their valuable help and interest my research study would be have been more difficult. I am also thankful for the early discussions about XCS with by Dr Alwyn Barry.

I thank my colleagues: Lesley King and Phil Taylor for the scholarly discussions about classification learning and many other topics, which frequently took place over a beer; Daniel Craig for his kind cooperation during the EEG participant experiments and our lengthy chats, which I miss; Dr Shane Magrath for providing advice on the structure and presentation of this thesis; Dr Son Nguyen for his friendly discussions; and the many people who thoughtfully participated in the EEG recording sessions.

Perhaps the greatest credit goes to my family who have supported me throughout my life and without which this work would not have been possible. I would like to dedicate this research to my wonderful Melissa for her constant empathy and unwavering support particularly when times were tough - she is a matchless partner in all adventures.