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ABSTRACT

Response of leaf area index (LAI) is the key determinant for predicting impacts of the elevated CO2 (eCO2) on water budgets.
Importance of the changes in functional attributes of vegetation associated with eCO2 for predicting responses of LAI has rarely been
addressed. In this study, theWAter Vegetation Energy and Solute (WAVES)model was applied to simulate ecohydrological effects of
the eCO2 at two free-air CO2 enrichment (FACE) experimental siteswith contrasting vegetation.Onewas carried out by theOakRidge
National Laboratory on the forest (ORNLFACE). The other onewas conducted by the University ofMinnesota on the grass (BioCON
FACE). Results demonstrated that changes in functional attributes of vegetation (including reduction in specific leaf area, changes in
carbon assimilation and allocation characteristics) and availability of nutrients are important for reproducing the responses of LAI,
transpiration and soil moisture at both sites. Predicted LAI increased slightly at both sites because of fertilization effects of the eCO2.
Simulated transpiration decreased 10·5% at ORNL site and 13·8% at BioCON site because of reduction in the stomatal conductance.
Predicted evaporation from interception and soil surface increased slightly (<1·0mmyear�1) at both sites because of increased LAI
and litter production, and increased soil moisture resulted from reduced transpiration. All components of run-off were predicted to
increase because of significant decrease in transpiration. Simulated mean annual evapotranspiration decreased about 8·7% and 10·8%,
andmean annual run-off increased about 11·1% (59·3mmyear�1) and 9·5% (37·6mmyear�1) at the ORNL andBioCONFACE sites,
respectively. Copyright © 2014 John Wiley & Sons, Ltd.
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INTRODUCTION

The steady rise in atmospheric CO2 concentration may alter
terrestrial water budgets considerably because elevated
CO2 (eCO2) has significant influences on the functioning of
plant stomata (Medlyn et al., 2001; Ainsworth and Rogers,
2007), which is the pathway of nearly 50% of the water
transferred from land surface to the atmosphere (Dirmeyer
et al., 2006). At the leaf scale, eCO2 can increase water use
efficiency by suppressing stomatal transpiration and
stimulating photosynthesis (Eamus, 1991; Wand et al.,
1999; Yu et al., 2004). Experimental evidences indicated
that stomatal conductance (gs) reduced persistently by
about 20% under eCO2 condition (~550 ppm) (Medlyn
et al., 2001; Ainsworth and Long, 2005). If all other factors
remain constant, eCO2 will lower terrestrial evapotranspi-
ration (ET) and result in increase in water availability. In
fact, several studies have demonstrated that eCO2 increased
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run-off only on the basis of the reduction of gs at leaf level
to eCO2 alone (e.g. Aston (1984), Gedney et al. (2006) and
Cao et al. (2010)). However, the leaf-scale water-saving
effects of eCO2 by lowering gs can be offset by the
concurrent increase in leaf area index (LAI) at stand level
(Betts et al., 1997; Piao et al., 2007), change in vegetation
distribution at regional scale (Morgan et al., 2007;
Macinnis-Ng et al., 2011) and other environmental factors
including rising temperature (Dieleman et al., 2012). These
feedbacks are poorly understood and difficult to investigate
in field experiments (Luo et al., 1999; Körner, 2011;
Leuzinger et al., 2011; Luo et al., 2011). Thus, whether
eCO2 will increase run-off and by how much are uncertain
and subject of current debate.
Generally, much of our knowledge of impacts of eCO2 on

water budget in the future comes from numerical modelling.
At the global scale, sophisticated land surface models were
used with general circulation models to study the eCO2

effects on water availability (e.g. Sellers et al. (1996), Betts
et al. (1997), Gedney et al. (2006), Piao et al. (2007),
Betts et al. (2007), Gerten et al. (2008), Cao et al. (2010)).
However, predicted changes in water budgets were highly
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variable and inconclusive because of different stomatal
responses (De Kauwe et al., 2013), different vegetation
structural feedbacks (LAI and/or distribution) (Gerten et al.,
2008; Bounoua et al., 2010) and poor hydrological
performance (Wood et al., 2011; Wang and Dickinson,
2012; Zhou et al., 2012). At the catchment and plot scales,
several studies predicted that water yield increased from less
than 3% to about 90% (Aston, 1984; Hatton et al., 1992;
Eckhardt and Ulbrich, 2003; Kruijt et al., 2008; Leuzinger
and Körner, 2010; Warren et al., 2011a). However, carbon–
water relationships were usually decoupled or loosely
coupled in these studies (e.g. Eckhardt and Ulbrich (2003)
and Leuzinger and Körner (2010)), and parameterization of
hydrological and physiological processes were imbalanced
(e.g. Kruijt et al. (2008)) in the models employed in these
studies. As a result, physiological effects of the eCO2 cannot
be simulated dynamically, and interactions of water, carbon
and energy between plant and soil as well as between plant
and atmosphere cannot be captured systematically (Gerten
et al., 2004; Körner, 2006; DeKauwe et al., 2013). Basically,
previous modelling studies on the impacts of eCO2 on
water yield are poorly validated or constrained by field
observations from free-air CO2 enrichment (FACE)
experiments, in which CO2 was manipulated under natural
condition. At present, many FACE experiments on
different ecosystems have been conducted, and observa-
tions about the ecohydrological effects of eCO2 are
available for validating models.
The magnitude of change in LAI is a key determinant of

whether eCO2 will result in significant changes in water
budgets because foliage is the primary interface of water and
carbon and increase in LAI would enhance transpiration rate
and canopy interception (Woodward, 1990; Piao et al., 2007;
Bounoua et al., 2010). Observations from the FACE
experiments on closed-canopy forest stand showed that LAI
changed from�8% to 43% (Norby andZak, 2011). Piao et al.
(2007) indicated that allowing LAI to change with rising CO2

will offset about 50% of the water saved by the effects of
eCO2 on gs globally. The physiological processes associated
with eCO2 can stimulate plant growth and increase canopy
LAI via two mechanisms. One is via direct CO2 fertilization
effects (Körner et al., 2007); the other is indirectly via
increased soil water availability resulting from reduced gs and
soil water uptake (Morgan et al., 2004). It is reported that the
direct fertilization effects of eCO2 on LAI were likely to vary
remarkably among functional groups (Nowak et al., 2004;
Körner, 2006) and the indirect effects via soil water were
likely to be significant in water-limited regions (Wullschleger
et al., 2002a; Morgan et al., 2004; Körner et al., 2007).
However, response of LAI to both direct and indirect effects
of the eCO2 are not well understood (Pritchard et al., 1999;
Ainsworth and Rogers, 2007), and validation of the simulated
responses of LAI to eCO2 is not a major focus of most studies
(Cowling and Field, 2003) in spite of the fact that nearly all
Copyright © 2014 John Wiley & Sons, Ltd.
models have parameterized LAI as the control of plant
productivity and canopy transpiration. In addition, functional
changes in intrinsic physiological traits of vegetation, such as
specific leaf area (SLA) (Ainsworth and Long, 2005),
photosynthetic capacity (Medlyn et al., 1999; Ainsworth
and Long, 2005), foliar nitrogen (Reich et al., 2006) and
adaption in the carbon allocation to meet larger resource
demand (Rogers et al., 1994; Iversen, 2010), may further
modulate response of LAI greatly under the eCO2 condition.
Meanwhile, physiological effects of the eCO2 as well as
development of LAImay be further regulated by higher-order
interactions (Leuzinger et al., 2011), for instance, availability
of nitrogen (Luo et al., 2004; Reich et al., 2006). However,
influences of the changes in functional attributes of vegetation
associated with the eCO2 on responses of LAI have rarely
been addressed.
In this study, a coupled water and carbon ecohydrological

model (WAVES) was applied to reproduce both physiological
and hydrological responses observed in the FACE experi-
ments. In WAVES, water and carbon processes are coupled
dynamically with appropriate feedbacks included at a daily
time scale. The model strikes a good balance between
complexity and accuracy of prediction in water, energy and
carbon processes. Observations from two FACE experiments
with contrasting vegetation were collected. One is a close-
canopy forest FACE experiment carried out by the Oak Ridge
National Laboratory (ORNL FACE), the other one is grass
FACE experiment carried out by the University of Minnesota
(BioCON FACE). After the WAVES model was calibrated
using the control plots under ambient CO2 concentration
(aCO2), two different modelling experiments were conducted
to examine whether changes in functional attributes of
vegetation are important for modelling responses of LAI and
water budgets under the eCO2 conditions. Three functional
changes under eCO2 condition, which are all changed in the
field experiments and central to determine response of LAI and
hydrological aspect of plant growth in WAVES model, were
considered here, and they were maximum carbon assimilation
rate, SLA and portioning factor of daily assimilated carbon
between above-ground and below-ground. In addition, the
parameter reflecting availability of nutrients in the
WAVES model was adjusted to mimic progressive
nitrogen limitation on the growth under eCO2 condition
at both sites. This study aims to (1) examine whether an
ecohydrological model with coupled water–carbon repre-
sentation and a consistent level of complexity in both
hydrological and physiological processes can reproduce
observed effects of the eCO2 on LAI and water budgets
(including transpiration and soil water) in the FACE
experiments, (2) examine whether changes of functional
attributes of vegetation induced by eCO2 are important for
modelling responses of LAI and water use under the eCO2

conditions and (3) investigate whether eCO2 can exert
noticeable changes in water budgets at two FACE
Ecohydrol. (2014)
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experimental sites and how the impacts vary among
different components of water budgets.
METHOD

The WAVES model

In WAVES, net radiation is partitioned between canopy and
soil available energy using the Beer’s law. Daily transpiration
is calculated by a ‘big-leaf’ application of the Penman–
Monteith formula. Leaf gs is calculated by the equation
developed by Ball (1987) and Leuning (1995), and this is then
scaled up to canopy scale using themethod proposed by Sellers
et al. (1992). The micrometeorological feedback between
canopy and atmosphere is regulated by the omega coefficient
proposed by Jarvis andMcNaughton (1986). The daily carbon
assimilation rate is estimated by the maximum carbon
assimilation rate and relative growth rate multiplicatively.
The relative growth rate varies between 0 and 1 to represent the
availability of different resources for growth using an integrated
rate method (IRM) developed byWu et al. (1994) on the basis
of saturation rate kinetics. TheWAVESmodel use in this study
coded CO2 as a variable within the canopy conductance (gc)
module as in Equation (1) and daily assimilation (Ai) module
using IRM approach as in Equation (2).

gc ¼ g0LAI þ
g1Ai

Csi � Γð Þ 1þ Dci=Dcoð Þ
1� exp �kLAIð Þ

k

(1)

where g0 is the residual stomatal conductance, g1 is an
empirical coefficient, Ai is the daily carbon assimilation rate,
Csi is the CO2 mole fraction of the air at the canopy surface, Γ
is the CO2 compensation point, Dci is the vapour pressure
deficit at the canopy surface, Dco is an empirical coefficient,
LAI is the canopy LAI and k is the attenuation coefficient for
light. g0, Csi, Dco and Γ were constant and the same for both
sites, while k was estimated from observed data, and g1 was
fixed as 0·8 for both sites.

Ai ¼ Amax
1þW2 þW3 þW4

1
m1x1

þ W2
x2

þ W3
x3

þ 1
m4x4

(2)

where Amax is the maximum carbon assimilation rate;W2,W3

andW4 are the weighting factor for water, nutrients and CO2

relative to light, respectively; x1, x2, x3 and x4 are normalized
availability of photosynthesis active radiation, water, nutri-
ents andCO2, respectively, andm1 is the temperaturemodifier
and m4 is the vapour pressure modifier. All the weighting
factors and normalized availabilities were empirical param-
eters and calibrated within the ranges as recommended by
Zhang andDawes (1998). The availability of water that can be
extracted by roots for transportation is estimated according to
Copyright © 2014 John Wiley & Sons, Ltd.
the distributions of both roots density and soil water content as
in Ritchie et al. (1986).
Three carbon pools (or compartments) of leaves, roots

and stems are set for respiration and allocation as in
Running and Coughlan (1988). Assimilation is allocated
according to the priorities as in Running and Gower
(1991): (1) maintenance respiration, (2) growth respiration,
(3) leaf and root growth and (4) stem growth. The ratio of
leaf/root allocation reflects growth stress, and smaller ratio
indicates that more carbon is allocated to roots to acquire
nutrients or water for growth. Carbon allocated to leaves is
assumed to increase leaf area by an amount determined by
the SLA, and the carbon allocated to roots is distributed
amongst soil nodes weighted by the availability of soil
water and nutrients. So, the physiological responses of
canopy conductance and assimilation rate in WAVES are
fully coupled with climatic regulation on stomata and both
water and nutrients availability to roots, which allows LAI
to vary with different environmental conditions.
The infiltration of net rainfall and soil water movement

along the soil profile are simulated using a fully finite
difference numerical solution of the Richards equation
(Ross, 1990; Dawes and Short, 1993). For each soil type,
an analytical soil model proposed by Broadbridge and
White (1988) is employed to describe the relationships
amongst water potential, volumetric water content and
hydraulic conductivity. Overland flow (i.e. surface flow)
can be generated from the infiltration excess rainfall and
rainfall over saturated area. Lateral flow (i.e. subsurface
flow) can be generated via the saturated water table and is
simulated by Darcy’s law if non-zero slope is specified.
Water can leak out of soil column if it is set in the model. A
more detailed modelling strategy and descriptions of
WAVES are provided in the works of Zhang et al.
(1996) and Zhang and Dawes (1998).
The capability of WAVE model for simulating coupled

water and carbon processes has been demonstrated against a
number of experimental datasets including Zhang et al.
(1996), Zhang et al. (1999a, 1999b, 1999c) and (Wang
et al., 2001). Comparing with other models for
investigating the physiological and hydrological impacts
of eCO2, such as models use in the studies of Cramer
et al. (2001), Eckhardt and Ulbrich (2003), Luo et al.
(2008), Kruijt et al. (2008) and De Kauwe et al. (2013),
the advantages of the WAVES model used in this study
are: (1) dynamically linking hydrological processes with
vegetation growth so that it can accurately simulate
development of LAI, canopy transpiration, rooting
dynamics and soil water stress on both transpiration
and growth; (2) accurate representation of soil moisture
dynamics in saturated and unsaturated zones using the
Richards equation; (3) consistent level of complexity in
representing hydrological and physiological processes
with appropriate feedbacks incorporated; (4) integrated
Ecohydrol. (2014)
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representation of multiple limiting factors on vegetation
growth, retaining complex mechanism of chemical and
mechanical controls.
Experiments and data

The ORNL FACE experiment and data. The ORNL FACE
experiment research site is a planted sweetgum (Liquidambar
styraciflua) monoculture located in eastern Tennessee. Mean
annual precipitation was about 1371mm, and the mean
annual temperature was 13·9 °C. Trees were about
12–21 years old with an average height of 12m and average
LAI of 5·5m2m�2. Six 25-m diameter plots were laid out in
1997, and construction of the FACE facility began thereafter.
The FACE experiments span from 1998 to 2008. The
experimental design comprised two plots with eCO2

treatment and three plots with aCO2 treatment. Atmospheric
CO2 in the elevated plots was maintained at a target daytime
concentration of 525 ~ 555 ppm during the growing season,
ca 40% higher than CO2 levels in the ambient plots. More
detailed information about experimental design can be found
at http://face.ornl.gov/.
The observational daily meteorological data (including

temperature, precipitation, humidity and radiation), LAI and
soil moisture content (SWC) to a depth of 20 cm were
accessed from the FACE Data Management System
maintained by the Carbon Dioxide Information and Analysis
Centre (http://public.ornl.gov/face/index.shtml). The canopy
transpiration (Ec) was derived from measurement of sap flux
and averaged over the two eCO2 plots (ring 1 and ring 2) and
two aCO2 plots (ring 4 and ring 5) in the growing season of
1999, 2004 and 2008. The Ec data used in this study are the
same as that of Warren et al. (2011a). For consistency,
observations of SWC and LAI were also averaged over ring 1
and ring 2 to present the eCO2 conditions and over ring 4 and
ring 5 to represent aCO2 conditions during the modelling.

The BioCON experiment and data. The BioCON FACE is
an ecological experiment that started in 1997 at the
University of Minnesota’s Cedar Creek Ecosystem Science
Reserve. Mean annual precipitation was 660mm with mean
monthly temperatures of �11 °C in January and 22 °C in
July. The BioCON consists of 371 plots (2m× 2m),
established on secondary successional grassland on a sandy
outwash soil. The experimental treatments were arranged in
complete factorial combination ofCO2 (ambient or 560 ppm),
species number (1, 4, 9 and 16) and N level (control and
fertilized). The grass species were planted in 1998, including
C3, C4, forbs and legumes across four functional types. More
detailed information about experimental design can be
referred to Reich et al. (2001) or can be found at http://
www.biocon.umn.edu/. In this study, plots having a
monoculture Agropyron repens (C3 grass) were chosen for
modelling study. Both aCO2 and eCO2 treatments have two
Copyright © 2014 John Wiley & Sons, Ltd.
replicas. The aCO2 plots are plot number 111 in ring 2 and
plot number 235 in ring 4, and the eCO2 plots are plot 24 in
ring 1 and plot 145 in ring 3. The short height of A. repens is
less than 1·0m, and maximum root depth is about 1·0m
(Craine et al., 2003). The modelling period was from January
of 1998 to October of 2005 (about 8 years).
Daily observed meteorological forcing data, including

precipitation and maximum and minimum air temperature,
and radiation were obtained from the Cedar Creek weather
station. The LAI data were estimated from the observed
photosynthetically active radiation data approximately at
monthly interval during the growing season of each year.
The LAI was averaged over the replicated plots with the
same CO2 treatments. About 21 records of LAI from 2002
to 2005 were used to calibrate model. Soil moisture data
observed to a depth of 20 cm were collected, but only about
24 records measured in the first 2 years were available. Soil
moisture data were also averaged over the two replicated
plots with the same CO2 treatment.

Parameter estimation

There are 26 vegetation parameters in the WAVES model,
which control growth, carbon allocation and physiological
and phenological responses of vegetation to different
environmental conditions. The key physiological parame-
ters are listed in Table I. Most of these parameters can be
measured directly or taken from plant physiological
literature, with only a few remaining for fitting or adapting
to local conditions. Some of the vegetation parameters in
both experimental sites were adopted from publications or
estimated from available data including maximum carbon
assimilation rate (Amax), light extinction coefficient, SLA
and above-ground partition factor (Cf). Amax and Cf are two
hypothetical physiological parameters in the WAVES
model. Amax represents maximum carbon assimilation rate
under optimum conditions. Cf represents the ratio of newly
assimilated carbon allocated to above-ground under no
water stress condition. In this study, light-saturated carbon
assimilation rates at current CO2 conditions observed in gas
exchange experiments (Wullschleger et al., 2002b; Ells-
worth et al., 2004) were adopted as Amax at both sites. Cf

was estimated from the ratio of observed increase in above-
ground biomass to increase in total biomass during the
modelling periods. Some of the hypothetical parameters,
such as weight of water availability, optimum temperature,
degree-daylight hours for growth and so on, were adopted
from source references or calibrated against observed LAI,
canopy transpiration and soil water content observations.
The soil properties were identified from the National

Cooperative Soil Survey (NCSS) of USA (https://soilseries.
sc.egov.usda.gov) on the basis of the site-specific classifica-
tion, which was found from the published literature on both
sites. Soils were classed as Aquic Hapludult soil at the ORNL
Ecohydrol. (2014)
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FACE site (van Miegroet et al., 1994; Wullschleger et al.,
2002b; Warren et al., 2011a) and Lamellic Udipsamments
(i.e. Argic Udipsamments) soil at the BioCON site (Lee et al.,
2001; Dijkstra et al., 2006; Dijkstra et al., 2007). Soil
properties were inferred from the Wolftever soil series and
Zimmerman series for ORNL and BioCON FACE sites,
respectively. Soil types derived from NCSS were used to
establish soil layers and initial soil parameters for the soil
model. Depth of modelled soil profile was set to 3·5m
according to the depth of typical soil column from the
surveyed data at the ORNL FACE site. It was set as 1·25m at
the BioCON site considering the maximum depth of the root
(Craine et al., 2003), although depth of the Zimmerman soil
series is much deeper than 1·25m. In addition, more than 20
unequally spaced nodes were set along the soil profile at both
sites, on which soil water content and root growth were
estimated. The soil hydraulic parameters of different layers
were also calibrated under the aCO2 condition.
Both vegetation and soil parameters were optimized

against observed data under the aCO2 condition using the
shuffled complex evolution (SCE-UA) method (Duan
et al., 1992). All parameters were calibrated within their
feasible ranges, which were given by Dawes et al. (1998)
on the basis of extensive literature survey. The objective
functions of LAI, canopy transpiration and soil water
content were optimized simultaneously and given equal
weights to form the total objective function of SCE-UA
method. Both bias (B) and Nash–Sutcliffe coefficient (Ens)
(Nash and Sutcliffe, 1970) were considered to quantify the
dynamic and systematic differences between simulated and
observed values as in Viney et al. (2009) as follows:

Ens ¼ 1�
Xn

i¼1
ysim;i � yobs;i
� �2

Xn

i¼1
yobs;i � yobs
� �2 (3-1)

B ¼

Xn

i¼1

ysim;i �
Xn

i¼1

yobs;i

Xn

i¼1

yobs;i

(3-2)

f obj ¼ Ens� 5 ln 1þ Bð Þj j2:5 (3-3)

where n is the number of days of simulated or observed
period, yobs is the observed data, ysim is simulated data,
subscript i is the index of the data and fobj is the objective
function for assessing the goodness of a given parameter set.
At the ORNL FACE site, available daily LAI, canopy

transpiration and soil water content data were used to
calibrate the vegetation and soil parameters. While at the
BioCON FACE site, infrequent daily LAI and soil water
content data were used. The purpose of calibration was to
obtain a set of parameter values that represent site-specific
plant and soil conditions.
Copyright © 2014 John Wiley & Sons, Ltd.
Modelling experiments under eCO2 condition

Two modelling experiments were conducted to estimate the
ecohydrological responses to eCO2 at both sites. In the first
experiment (Expt1), all vegetation and soil parameters were
kept the same as those under the aCO2 condition, and only the
CO2 concentration was elevated to 550 ppm. Expt1 was
designed to examine whether a water–carbon coupled model
can capture the physiological and hydrological effects of
eCO2 assuming that functioning of vegetation were not
changed under the eCO2 conditions. In the second experiment
(Expt2), changes in vegetation functional attributes associat-
ed with the eCO2 were considered with eCO2 concentration.
Three vegetation parameters in theWAVESmodel, which are
critical to water use efficiency and LAI simulation and also
observed to change at both sites, are changed under the eCO2

condition, while the rest of the vegetation and soil parameters
were kept the same as those under the aCO2 condition. These
three functional parameters aremaximum carbon assimilation
rate (Amax), SLA and the above-ground partitioning factor of
newly assimilated carbon (Cf). Amax and Cf are considered as
surrogates to represent observed photosynthetic down-
regulation and changes in carbon allocation under eCO2

condition in the field. Values of these three parameters under
eCO2 conditions were all adopted from published literature or
estimated from observed data. In Expt2, nutrient availability
was also changed from 1·0 to 0·9 to represent progressive
nitrogen limitation under the eCO2 treatment. Expt2 was
designed to examine whether functional changes in vegeta-
tion attributes are important for simulating the
ecohydrological effects of eCO2 on LAI and water budgets.
RESULTS

Modelling results under the aCO2 condition

Optimized vegetation parameters under the aCO2 condition
at both sites are listed in Table I. On the basis of the
optimized vegetation and soil parameters, simulated LAI,
canopy transpiration and soil water content at the ORNL
FACE site are compared with observations in Figure 1, and
results of the BioCON FACE site are shown in Figure 2.
At the ORNL FACE site, the biases were about �0·2%,

0·1% and �2·1%, and the Nash–Sutcliffe efficiencies were
0·72, 0·72 and 0·69 for LAI, canopy transpiration and
SWC, respectively. At the BioCON FACE site, the biases
were about �2·8% and 0·7% for LAI and SWC, and the
Nash–Sutcliffe efficiencies were 0·74 and 0·44, respective-
ly. The WAVES model captured the daily and seasonal
variations of LAI, canopy transpiration and soil water
content well at both sites. At the ORNL FACE site, the
WAVES model captured the inter-annual variations in
LAI, except for 2008, where LAI was overestimated by the
WAVES model [Figure 1(a)]. The slopes between
Ecohydrol. (2014)



Figure 1. Comparison between simulated and observed leaf area index (LAI), (a) and (b); canopy transpiration in 1999, 2004 and 2008, (c) and (d); and
soil water content of the ORNL FACE site under ambient CO2 conditions, (e) and (f). In subplot (b), the LAI of 5th, 15th and 25th of the months during

growing season were compared.

Figure 2. Comparison between simulated and observed leaf area index, (a) and (b); and soil water content of the BioCON FACE site under ambient CO2

conditions, (c) and (d).

QUANTIFYING THE EFFECTS OF ELEVATED CO2 ON WATER BUDGETS
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simulated and observed daily transpiration [Figure 1(d)] and
soil water content [Figure 1(f)] are very close to 1·0 at the
ORNL FACE site. The coefficients of determination (R2) are
0·67, 0·76 and 0·61 for LAI, transpiration and SWC,
respectively. At the BioCON FACE site, the WAVES model
slightly underestimated LAI with a slope of 0·94 [Figure 2(b)],
while the slope between simulated and observed soil water
content is close to 1·0 [Figure 2(d)].

Simulated ecohydrological responses under the eCO2

condition

The simulated impacts of eCO2 on LAI, transpiration and
soil water content in Expt1 and Expt2 were compared with
observed changes as shown in Figure 3. The WAVES
model significantly overestimated responses of LAI and
underestimated response of transpiration and soil water
content in Expt1 (i.e. without considering changes of
functional parameters and reduction in availability of
nutrients) at both sites. However, simulated responses are
much closer to observed responses when the maximum
carbon assimilation rate, SLA, above-ground partitioning
factor and availability of nutrient were estimated on the
basis of the measurements (Figure 3). This implies that
functional changes of vegetation are important for the
WAVES model to capture the responses of LAI and shift in
water budget caused by eCO2.
Figure 3. Comparison of simulated and observed responses of leaf area
index (LAI), soil water content or canopy transpiration to elevated CO2 at
ORNL FACE site (a) and BioCON FACE site (b). The error bar represents

one standard deviation across year.

Copyright © 2014 John Wiley & Sons, Ltd.
At the ORNL FACE site, observed responses of LAI,
canopy transpiration and soil moisture (0 ~ 20 cm) to eCO2

are 1·1%, �14·2% and 0·9%, respectively. The annual
variation of observed LAI response is quite large with one
standard deviation of about 6·8% across year. When only
CO2 was elevated to 550 ppm and all parameters were fixed
as under the aCO2 conditions (i.e. Expt1), WAVES
produced a much larger increase (14·8%) in LAI, a smaller
increase (3·6%) in transpiration and a smaller decrease
(0·6%) in soil moisture. Under Expt2 condition, responses
of LAI, transpiration and soil water content were 2·6%,
�10·5% and 0·9% at the ORNL FACE site [Figure 3(a)],
respectively. Predicted responses of LAI and transpiration
to eCO2 are significantly improved at the ORNL FACE site
when both CO2 and few functional parameters were
changed according to observations in the fields under the
eCO2 treatment. At the BioCON site, the observed
responses of LAI and soil water content (0 ~ 20 cm) to
eCO2 are 1·32% and 10·96% [Figure 3(b)]. When CO2 was
increased from 370 to 550 ppm (i.e. Expt1), the WAVES
model predicted a significant increase in LAI by about
36·1% and decrease in soil moisture by about 9·9%.
Similarly, when both CO2 and a few parameters were
changed, predicted responses under Expt2 were much
closer to the observed responses. The WAVES model
estimated a 0·8% increase in LAI and 5·1% increase in soil
moisture at the BioCON site under Expt2 condition
[Figure 3(b)]. According to the observed changes, the
effects of eCO2 on LAI were small (~1%) at both sites
(Figure 3), but responses of soil water content at
(0 ~ 20 cm) were quite different. The soil water content
was increased by about 1% at the ORNL FACE site but
increased about 11% at the BioCON FACE site.
Changes in water budgets at the two FACE sites

Simulated mean annual water balance components, i.e. ET
and run-off (Q), under aCO2 and eCO2 (considering both
eCO2 and vegetation functional changes, i.e. Expt2)
conditions at both sites are compared in Figure 4. Note that
the results of 2005 were not included for estimating changes
in water budgets in the BioCON FACE site because only part
of 2005 was simulated. Changes in different components of
ET and Q were also investigated, including evaporation from
interception (Ei, including both canopy and litter layer),
canopy transpiration (Ec), evaporation from soil (Es), surface
flow (Qs, i.e. overland flow), subsurface flow (Qss, i.e.
saturated lateral flow) and deep drainage (Qd, i.e. percolated
soil water from the bottom of soil column to deeper layer).
Total ET decreased and run-off increased at both sites,

and these results suggest that eCO2 suppressed ET and
increased run-off. For different components of ET, only
canopy transpiration significantly decreased, but evapora-
tion from interception and soil surface increased slightly
Ecohydrol. (2014)



Figure 4. Water fluxes under both ambient CO2 (aCO2) and elevated CO2

(eCO2) conditions at ORNL FACE site (a) and BioCON FACE site (b).
Change in water fluxes induced by eCO2 was shown as percentage. The

error bar represents one standard deviation across year.
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(<1·0mmyear�1). All three components of the simulated run-
off increased at both sites (Figure 4). Under the eCO2

condition, ET from the forest at the ORNL FACE site
decreased about 8·7% (60·3mmyear�1), and run-off increased
about 11·1% (59·3mmyear�1). For different components of
ET, Ec decreased 10·5% (61·3mmyear�1), while Ei and Es
increased about 0·8% (0·6mmyear�1) and 1·1% (0·4mm
year�1) at the ORNL FACE site, respectively. For different
components of Q, no overland flowwas generated under either
the aCO2 or eCO2 conditions at the ORNL FACE site, while
both Qss and Qd were increased. The Qss increased 11·6%
(58·7mmyear�1), while Qd increased about 1·9% (0·6mm
year�1). At the BioCON site [Figure 4(b)], total ET decreased
about 10·8% (37·7mmyear�1) and run-off increased about
9·5% (37·6mmyear�1). Evaporation from interception in-
creased about 0·6% (0·2mmyear�1), and evaporation from
soil surface increased 0·2% (0·08mmyear�1), while transpi-
ration reduced about 13·8% (38·0mmyear�1) under the eCO2

condition. All three components of the simulated run-off
increased at the BioCON FACE site, and the increases in Qs,
Qss and Qd were about 10·2% (19·3mmyear�1), 10·5%
(17·7mmyear�1) and 1·5% (0·5mmyear�1), respectively.
DISCUSSION

Performance of the WAVES model

Leaf phenology remains one of the most challenging
processes to parameterize (Arora and Boer, 2005), and this
Copyright © 2014 John Wiley & Sons, Ltd.
is no exception for the WAVES model. The inter-annual
variability of leaf onset and offset were not captured
accurately at ORNL FACE site because germination date,
carbon gain of leaf onset and total degree-daylight hours
for growth were fixed in the WAVE model. A large bias in
the peak LAI of 2005 and 2008 was predicted, possibly due
to the WAVES model failed to consider the windstorm in
2004 and serious drought in 2007, which were believed to
have introduced significant legacy into the following year
(Warren et al., 2011b; Warren et al., 2011a). In spite of
discrepancies in the leaf phenology, the WAVES model
captured seasonal and daily variations of LAI at ORNL FACE
site satisfactorilywith very small bias (�0·2%) and highNash–
Sutcliffe coefficient (0·72). The predicted LAI for the BioCON
site agrees reasonably well with the measurements.
The canopy transpiration and soil water content were

accurately simulated at both sites under aCO2 conditions,
which demonstrated the robustness of the WAVES model
in simulating water fluxes through soil-plant-atmosphere
continuum. For the predicted canopy transpiration at the
ORNL FACE site, the WAVES model captured daily and
seasonal variations well, and the bias in the simulated
transpiration was principally introduced by error in the
simulated LAI time series. Previously, the WAVES model
was tested against field data of ET (Zhang et al., 1996),
LAI (Wang et al., 2001), soil water and groundwater
(Zhang and Dawes, 1998) and isotope concentrations
(Zhang et al., 1999c; Zhang et al., 1999b; Wang et al.,
2001), and these studies have demonstrated the ability of
WAVES to satisfactorily simulate ecohydrological pro-
cesses. Recently, the WAVES model was applied in studies
of the impact of climate change on groundwater recharge
(e.g. Green et al. (2007), McCallum et al. (2010), Crosbie
et al. (2011), and Post et al. (2012)). The WAVES model
can accurately simulate both plant growth and water yield
because of two advantages. One is the coupled water,
energy and carbon processes representations in the
WAVES model. This coupled modelling structure enabled
WAVES model to capture the daily, seasonal and annual
variations in plant growth and canopy transpiration. The
other one is balanced complexity and accuracy in both
hydrological and physiological processes. Coupled
interactions between plant and atmosphere as well as
between plant and soil are complex, and their responses to
environmental changes (including rising CO2) are not well
understood (Luo et al., 1999; Hetherington and Woodward,
2003; Bonan, 2008). They are likely to manifest
nonlinearly across different spatio-temporal scales (Körner
et al., 2007; Leuzinger et al., 2011). Thus, it is important
for models to address the coupling processes of soil-
plant-atmosphere continuum with an appropriate scale-
dependent parameterization and balanced complexity
(Blöschl and Sivapalan, 1995; Luo et al., 2011; Beven and
Cloke, 2012). The WAVES model strikes a good balance
Ecohydrol. (2014)
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among generality, realism and accuracy (Zhang et al., 1996;
Zhang and Dawes, 1998) and thus provides satisfactory
predictions of the water, energy and carbon balances with
readily available inputs.
Importance of the changes in functional attributes for predicting
ecohydrological responses under the eCO2 condition

This study considered changes in the functional attributes
and emphasized the feedbacks of canopy LAI caused by
eCO2. Gas exchange observation showed that light-
saturated photosynthetic rate at same CO2 concentration
of sweetgum forest at the ORNL FACE site decreased
about 7% (Sholtis et al., 2004) and about 10% for A.
repens at the BioCON FACE site (Ellsworth et al., 2004).
Photosynthetic down-regulation was generally related to
reduction in leaf nitrogen concentration under eCO2

condition (Medlyn et al., 1999; Ellsworth et al., 2004).
Although photosynthetic down-regulation effects may
offset the positive response of photosynthesis to eCO2, it
rarely completely eliminates it. LAI at both sites was
increased, indicating increase of net photosynthesis. This
agrees with field studies that net primary production
increased about 23% at ORNL FACE site (Norby et al.,
2005) and biomass increased 8 ~ 12% at BioCON FACE
site (Reich et al., 2006) caused by eCO2. In the WAVES
model, SLA determines conversion of leaf carbon
allocation to leaf area, and it is a key determinant of how
much carbon a plant can assimilate for a given time. Thus,
response of the LAI is sensitive to change in the SLA. SLA
decreased about 5% at both sites. Ainsworth and Long
(2005) also reported that SLA decreased about 8·4% for
trees and 7·5% for C3 grass across several FACE
experiments. Previous studies indicated that decrease in
SLA under eCO2 condition was induced by accumulation
of non-structural carbohydrates (Pritchard et al., 1999) as a
result of increased photosynthesis under eCO2 conditions.
Change in above-ground partitioning factor was also
considered in this study because it is an important factor
controlling carbon allocation for the development of LAI in
the WAVES model. Estimation of decrease in the ratio of
above-ground biomass to total biomass indicated that more
new assimilated carbon was allocated to roots under eCO2

condition at both sites. At the ORNL FACE site, Norby
et al. (2004) and Iversen (2010) reported that root
production was increased and more carbon was preferen-
tially allocated to roots rather than stem. At the BioCON
FACE site, Reich et al. (2001) showed that eCO2 induced
increase in the below-ground biomass was larger than
increase in the above-ground biomass. Increased carbon
allocated to roots was considered to develop a deeper
rooting profile to acquire more resources (Rogers et al.,
1994; Iversen, 2010), because photosynthesis was signif-
icantly stimulated, and nutrient demand was increased
Copyright © 2014 John Wiley & Sons, Ltd.
consequently (Medlyn et al., 1999). Responses of these
three intrinsic attributes all directly or indirectly related
to the unsatisfied nutrient availability under eCO2

condition, especially for nitrogen. Thus, nutrient avail-
ability was also changed in this study to reflect
progressive nitrogen limitation on growth under eCO2

condition (Luo et al., 2004).
Two modelling experiments for eCO2 treatment showed

that feedbacks in canopy LAI were critical for predicting
the hydrological impacts (i.e. canopy transpiration and soil
water content) of eCO2 and changes in functional attributes
were important for modelling the feedbacks of canopy LAI
under eCO2 condition. At the ORNL FACE site,
experiment without any changes in functional attributes
in vegetation (i.e. Expt1 for eCO2 treatment) consumed
more water and depleted soil water because of significant
increase in LAI caused by increase in CO2. It implies that
feedbacks of LAI at plot scale may offset the water-saving
effects through suppressed stomatal conductance by eCO2.
Experiment with functional changes (i.e. Expt2 for eCO2

treatment) predicted a little higher increase in LAI, smaller
decrease in canopy transpiration and almost equivalent
response of soil water content. Larger increase in LAI is
possibly the reason for smaller decrease in canopy
transpiration, because LAI is an important factor for
determining water use. Expt2 of eCO2 treatment predicted
about a reduction of 10·5% in transpiration, which is
slightly smaller than the observed changes in the 3 years
with available data but is close to estimate of Wullschleger
et al. (2002b) at the ORNL FACE site. At the BioCON site,
Expt1 for eCO2 predicted a large increase in LAI, which
intercepted and transpired more water and resulted in
decrease in soil water content. At both sites, simulated and
observed increases in LAI due to eCO2 are small. It infers
that future rising CO2 will not increase LAI noticeably in
energy-limited (annual rainfall is larger than annual
potential ET) ecosystems. Norby and Zak (2011) reported
that changes in LAI are small in the forest FACE
experiments with high canopy LAI (>5·0), which are all
in wet environments. LAI of ecosystems in energy-limited
climatic regime is insensitive to eCO2 possibly because
CO2 and water are not the first-order constrains on the
growth of vegetation (Field et al., 1995; Wullschleger
et al., 2002a). Regarding the changes in soil water content,
increase in BioCON FACE site is much greater than that in
the ORNL FACE site, and the large difference is possibly
caused by the different rooting profiles in forest and grass
ecosystems. The differences in soil moisture response
between the two sites may be explained by the fact that
grasses have most of the roots in the top soil layer while
trees have much deeper roots. The study by Duursma et al.
(2011) showed that blue gum forest (Eucalyptus saligna)
can extract less water from deep soil layer (~3·5m) under
eCO2 condition. Thus, both observed and simulated
Ecohydrol. (2014)
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responses of soil water content in surface layer to eCO2 are
larger at the BioCON site than those at the ORNL FACE site.

Modelling experiments in this study suggest that feedbacks
in canopy LAI are important for quantifying the potential
effects of eCO2 on water budgets. Failure to account for this
feedback can significantly overestimate the water-saving
effects [e.g. Aston (1984), Gedney et al. (2006) and Cao et al.
(2010)]. This study also highlights that changes in functional
attributes are important for capturing the feedbacks of LAI to
eCO2. Not including these changes can overestimate the
response in LAI and underestimate the water-saving effects or
even offset water-saving effects completely. Previous studies
indicated that changes in functional attributes were closely
related to availability of nitrogen under eCO2 conditions,
which implies that coupling between soil cycling of nitrogen
and vegetation functioning under eCO2 condition are
necessary for models to predict the impacts of eCO2 on
water budgets adequately.
Impacts of the eCO2 on water budgets

The WAVES model predicted decrease in ET and increase
in run-off (Q) due to eCO2 at both sites. Evaporation from
interception (Ei, including canopy and litter layer) were
predicted to increase slightly (<1·0mmyear�1) because of
increase in LAI and consequent increase in litter produc-
tion, which intercepted more water. Simulated decrease in
canopy transpiration resulted from decreased canopy
conductance under eCO2 condition as described in
Equation (1). Evaporation from soil surface (Es) at both
FACE sites increased slightly because of the increase in
soil water content at surface layer due to eCO2 and more
water available for evaporation. All the three components
of the simulated run-off were predicted to increase under
eCO2 condition, and they all resulted from decrease in
canopy transpiration. Decreased transpiration under eCO2

conditions result in more water in the soil comparing with
that under aCO2 conditions. Increased soil water content
can facilitate generation of overland flow, lateral flow and
seepage. Modelling results showed that run-off had larger
inter-annual variability than ET (Figure 4) because of the
buffering effects of the soil water storage and dynamic
responses of vegetation growth to climate variability
(Zhang et al., 2001; Huxman et al., 2004; Cheng et al.,
2011; Duursma et al., 2011). Estimated changes in ET and
total run-off at the ORNL FACE site in this study are close
to changes predicted by Warren et al. (2011a) using Biome
BGC model, who estimated that transpiration reduced
about 10 ~ 16% and run-off increased about 16%.

The FACE experiments were principally designed to
investigate the societal and scientific interests in potential
capacity of CO2 uptake by plants under eCO2 condition
and its potential mitigation of climate change (Hendrey and
Miglietta, 2006). However, to some extent, results from
Copyright © 2014 John Wiley & Sons, Ltd.
past two decades indicated that the effects of eCO2 on
water budgets may be of more overall significance than
effects on carbon storages (Holtum and Winter, 2010)
because initial enhancement of productivity by eCO2

diminished quickly over time (Norby et al., 2010; Norby
and Zak, 2011), but reduction in stomatal conductance (gs)
is significant and persistent (Medlyn et al., 2001).
Ainsworth and Long (2005) reported that gs was reduced
by 20% averaged over 12 investigated FACE experiments.
If all other factors remain unchanged, 20% reduction in gs
due to eCO2 can lead to noticeable increase in water yield.
Potential increase in water availability under eCO2 may be
particularly important for water-limited regions
(Wullschleger et al., 2002a). However, leaf-level water-
saving effects tend to decline over time and larger spatial
scales because of higher-level interactions (Leakey et al.,
2009; Leuzinger et al., 2011; Warren et al., 2011a) or
offset by increase in LAI (or vegetation expansion) induced
by either direct CO2 fertilization effects or indirect water
effects (Morgan et al., 2004; Donohue et al., 2009;
Macinnis-Ng et al., 2011), especially in water-limited
regions. In this study, LAI increased slightly and run-off
increased significantly at both ecosystems, which are likely
to be typical responses for ecosystems in the energy-limited
regions (i.e. wet regions). In energy-limited regions, water
is already more than the ecosystem can evaporate, and
ecosystem functioning might be mainly constrained by
temperature and nutrients rather than water availability or
CO2. Thus, increase in LAI is small, and increase in soil
water content did not stimulate growth. As a result, run-off
was increased significantly at both sites. In the water-
limited regions, impacts of the eCO2 on water budgets and
subsequent indirect effects via water availability on the
response of LAI may be quite different (Wullschleger
et al., 2002a; Morgan et al., 2004; Morgan et al., 2007;
Macinnis-Ng et al., 2011; Morgan et al., 2011).
CONCLUSIONS

Net effect of rising atmospheric CO2 on water availability
is uncertain and depends on responses of both stomatal
conductance and LAI. In this study, a coupled water and
carbon ecohydrological model (WAVES) was applied to
examine physiological and hydrological responses at the two
FACE experiments established on different ecosystems, i.e.
one forest (ORNL FACE) and one grass (BioCON FACE).
Our results showed that changes in vegetation functional
attributes are important for reproducing responses of LAI,
canopy transpiration and soil moisture under the eCO2

condition. The WAVES model captured the changes in LAI
and water budgets to eCO2 very well at both sites when
functional vegetation changes were considered. The LAI
was predicted to increase slightly, and run-off increased
Ecohydrol. (2014)
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significantly at both forest and grass FACE sites. Predicted
mean annual ET decreased about 8·7% and 10·8%, and mean
annual run-off increased about 11·1% (59·3mmyear�1) and
9·5% (37·6mmyear�1) at the ORNL and BioCON FACE
sites, respectively. This study highlights that functional
vegetation changes are important for predicting changes in
coupled water and carbon relationship under the eCO2

conditions, and more experimental evidences are needed for
further improvements of ecohydrological models to capture
such changes.
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