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INTRODUCTION 

Parasitic organisms remain the scourge of the developed and underdeveloped worlds.  

Malaria, Schistosomiasis, Leishmaniasis and Trypanosomiasis still result in a large number 

of deaths each year (Anonymous, 2002), while drug resistance in malaria is increasing as a 

public health problem (Nosten and Brasseur, 2002).  Similarly, resistance in parasitic 

worms is increasing at such an alarming rate that many drugs will soon be rendered useless 

to the livestock industry (Sangster, 2001). It is therefore not surprising that genome projects 

on parasitic organisms are now abundant in the hope that new methods for the control of 

parasites will be forthcoming.   

The purpose of this article is to review advances in the general area of parasite 

genomics, and to outline where the application of genomics and proteomics studies can 

impact on the development of new control methods for parasitic organisms. This review 

concentrates primarily on parasites of the phylum Apicomplexa, which includes malaria, 

Toxoplasma, Neospora and Eimeria.  All these are important either medically or to the 

livestock industry. 

 

 VACCINE DEVELOPMENT BEFORE THE GENOMICS  ERA 

Commercially, vaccines based on live parasites (some naturally attenuated) are 

available and used successfully and extensively around the world for a limited number of 

parasite species.  For example, live vaccines are available against besnoitiosis in cattle 

(Bigalke et al., 1974), Toxoplasma-induced abortion in sheep (Buxton and Innes, 1995) and 

coccidiosis in poultry (Chapman et al., 2002). 

 In contrast, few inactivated or subunit vaccines based on recombinant proteins have 

been developed against parasites (Lightowlers et al., 2000), but none for commercially 



important human or animal pathogens.  There is great optimism however, that the 

application of the “omics” technologies will deliver new candidates for development into 

vaccines, and so more attention has been placed on gene discovery processes and the role of 

their products in parasite biology. 

 

Identifying vaccine candidates 

 

In the past, prior knowledge of induction of protective immunity in the host has 

been an essential prerequisite of any parasite vaccine program.  For example, the malaria 

vaccine programs are founded primarily on two examples of immunity to malaria in 

humans : (1) naturally acquired immunity develops in those residing in malaria endemic 

areas (Carucci, 2001), and (2)  irradiated sporozoites can protect humans against challenge.  

Of relevance to the animal health industry, it has long been recognised that Eimeria species 

induce a long-lasting, species specific immunity in the chicken (Chapman et al., 2002). 

Previous approaches for identifying potential vaccine candidates have focussed on 

antigens which stimulate or are the target of host immunity (Jenkins, 2001) or molecules 

which are vital to infection (Lustigman et al., 2002). Identifying such molecules is not an 

easy task, given the complexity found in the diverse life cycle stages known to exist 

amongst parasites. Indeed these life cycle stages of parasites typically present a plethora of 

antigens to the host immune system.  

In some circumstances, the life cycle stages involved in the presentation of 

protective antigens to the host can be determined.  For example, studies on precocious lines 

of Eimeria (Shirley and Bedrnik, 1997) demonstrated that lines with abbreviated life cycles 

could still induce protection (McDonald et al., 1986; McDonald et al., 1988). An 

inactivated vaccine (NeoGuard) based on tachyzoites of Neospora caninum was developed 



to prevent Neospora-associated abortion in cattle, and this was recently released in the 

U.S.A. and New Zealand (Reichel and Ellis, 2002). 

Screening of expression libraries with immune sera (or monoclonal antibodies) has 

become probably the most widespread approach for identifying antigens recognised by host 

antibody.  This approach is limited by the fact that frequently humoral immunity is 

relatively unimportant in conferring protective immunity against a parasite. In addition, the 

approach has led to the characterisation of molecules in the past, which are typically 

abundant and highly expressed within the cell (Maizels et al., 2001).  

 One of the best examples utilising this approach successfully, however, is the 

correlation of maternal antibody-based immunity in the chicken with protection from 

infection by Eimeria maxima (Wallach et al., 1995).   This led to the development of a 

vaccine using gametocyte antigens of this species, which are now the basis of a commercial 

vaccine (CoxAbic™). 

Hidden antigens have shown great promise for some years now as vaccine 

candidates for parasitic nematodes.  These are molecules that are normally hidden from the 

host immune system, and do not illicite an immune response during the course of a natural 

infection.  Immunisation with native proteins of this type can induce a strong protective 

immune response (Knox and Smith, 2001), however commercial development of a subunit 

form of such a vaccine has not yet materialised. 

 

Cell-mediated responses 

For many parasitic diseases, the induction of cell-mediated immunity is paramount 

for successful vaccine production, and much has been learnt in recent years about the 

mechanisms and molecules which participate in these processes (Brake, 2002; Quinn et al., 

2002). A Th1 response is seen as vital for induction of protective immunity against the 



Apicomplexa, and therefore selection of vaccine candidates which stimulate this type of 

immunity must warrant further consideration.  One of the best examples from the protozoa 

relating to identification of vaccine candidates through their interaction with the cell 

mediated immune response was the identification of the LACK antigen (Leishmania  

homolog of receptors for activated C kinase) from Leishmania major (phylum 

Sarcomastigophora) as the main target of the Th2 response in mice which conferred 

susceptibility to leishmaniasis (Mougneau et al., 1995; Schilling and Glaichenhaus, 2001).  

Vaccination of mice using protein or DNA of LACK generated substantial levels of 

species-specific protective immunity to L. major (Gurunathan et al., 1997; Melby et al., 

2001). 

 In summary, attempts to develop vaccines against parasitic organisms have thus far 

concentrated on relatively few molecules, and more often than not, these targets were 

isolated by techniques which selected for immunogens which are reasonably abundant in 

the cell.  Studies on the genomes of parasites have expanded the population of genes and 

proteins available for study, and the issue at hand now is how  to make best use of the 

information available. 

 

Laboratory models and screening 

The development of a laboratory model of infection, incorporating the features of 

immunisation schedules and challenge, greatly facilitates the screening of potential vaccine 

formulations. Animal models have now been developed for all pathogenic parasites of 

humans and animals. For example, cell free lysates of Eimeria tenella and N. caninum  

were  shown to protect against coccidiosis in chickens and transplacental transmission of N. 

caninum in a mouse model respectively  (Karkhanis et al., 1991; Liddell et al., 1999).  

 



ANALYSES OF THE PARASITE TRANSCRIPTOME 

Initially, several approaches were used to define mRNA populations of parasitic 

organisms.  Techniques such as differential display (Heard et al., 1996; Schroeder et al., 

1998; Lau et al., 2000; Cui et al., 2001) and serial analysis of gene expression (Patankar et 

al., 2001) have played a role in gene discovery, yet 5’ sequencing of random cDNA clones 

to generate expressed sequence tags has proven to be the most important approach, limited 

only by the quality of the cDNA libraries generated (Blackwell, 1997; Ajioka, 1998; 

Abrahamsen, 1999; Blaxter et al., 2002).   

 Clustering of ESTs and the generation of a consensus sequence for each cluster 

greatly facilitates the ease by which data can be rapidly assembled to generate a complete 

gene sequence (Lawson, 1999).  It is interesting to note that many of the abundant ESTs of 

Apicomplexa encode antigens that have been well characterised in the past (Table 1) such 

as those found in the micronemes, dense granules and rhoptries.   

Of importance is the accessibility of information and data in the public domain 

through a variety of internet-based resources, such as the Parasite Genome Internet 

Resource List (http://www.ebi.ac.uk/parasites/paratable.html), Parasite Genome Blast 

Server (http://www.ebi.ac.uk/blast2/parasites.html); Parasite Databases of Clustered 

Sequences (http://ParaDB.cis.upenn.edu/); Nembase 

(http://nema.cap.ed.ac.uk/nematodeESTs/nembase.html); and the Plasmodium and 

Toxoplasma genome resources (http://plasmodb.org/PlasmoDB.shtml; 

http://ToxoDB.org/ToxoDB.shtml).   

 Methods for searching sequence databases with new sequence data have proven to 

be fundamentally vital to parasite gene discovery programs.  Algorithms like BLAST, 

when used in conjunction with large sequence datasets present in Genbank or other similar 

databases, readily assign a putative function through detecting sequence similarity.  Of 

http://www.ebi.ac.uk/blast2/parasites.html
http://paradb.cis.upenn.edu/
http://nema.cap.ed.ac.uk/nematodeESTs/nembase.html
http://plasmodb.org/PlasmoDB.shtml
http://toxodb.org/ToxoDB.shtml


interest to vaccine development, however, is the very large number of parasite genes which 

exist for which no provisional identification can be made and about which nothing is as yet 

known (Table 1).  Potentially this also proves to be a difficulty, because of the high 

throughput approaches that need to be developed in order to assess such a large number of 

vaccine candidates. 

 

Microarrays 

Recently expression profiling by microarray analyses (Carucci, 2000; Cummings 

and Relman, 2000; Rathod et al., 2002) has been reported from a small number of taxa 

(Hayward et al., 2000; Mamoun et al., 2001; Cleary et al., 2002; Matrajt et al., 2002; Singh 

et al., 2002), and no doubt the popularity of this technique will increase in parasitology as 

resources (such as clones and arrays) become more widely available.  Such studies are 

proving important in raising and testing hypotheses on the developmental biology of 

parasites, and the signalling pathways that control them.  

There is nothing inherently unique about microarray data or its analysis. In a 

microarray experiment one is simply trying to identify which genes are the most 

“interesting” in terms of the experimental question, and these will usually be those that are 

either over-expressed or under-expressed (or transiently expressed) under the experimental 

conditions being studied. However, the type of data analysis to be used will depend on the 

objective of the experiment. If the experimental question predicts an explicit pattern (e.g. 

differences in expression between developmental stages), then traditional statistical 

hypothesis testing is the best method for assessing whether the data support or refute that 

pattern. Alternatively, if the experimental question is about searching for unknown patterns 

among the samples (e.g. groups of genes that show co-expression) then multivariate pattern 

analysis is the best method for exploring the patterns that might exist in the data. A detailed 



discussion can be found in the introductory book by (Knudsen, 2002). 

Statistical hypothesis testing is no different for microarray data than for any other 

type of data. However, there are issues that are particularly important for such data, and 

some of them have been discussed previously (Nadon and Shoemaker, 2002; Yang and 

Speed, 2002). Specialist computer programs have also been developed (Didier et al., 2002). 

Similarly, multivariate pattern analysis is a general mathematical technique in science, 

although there are many alternative methods. Some of these methods are briefly described 

in the context of microarray data analysis by others and so will not be discussed further 

(Hess et al., 2001; Quackenbush, 2001; Raychaudhuri et al., 2001; Sherlock, 2001). (Eisen 

et al., 1998) describe a commonly used computer program for carrying out the analyses. 

Microarrays are also being used to investigate changes in gene expression of host 

cells during parasite infection in order to investigate host response mechanisms (Blader et 

al., 2001; Gail et al., 2001).  Real-time quantitative RT-PCR analysis, using fluorogenic 

5’nuclease assays, or Taqman, is typically used to confirm and quantify gene expression 

levels (Blair et al., 2002).  

As yet, no reports have described simultaneous analyses of gene expression in the 

host as well as in the parasite as they interact with each other.  This clearly would be a 

fascinating approach to adopt. 

 

SEQUENCING OF PARASITE GENOMES 

Table 2 lists all genome projects for parasites being conducted through either the 

Sanger Centre (U.K.)(http://www.sanger.ac.uk/Projects/) or The Institute for Genome 

Research (USA)(http://www.tigr.org/tdb/parasites/).  The approaches being adopted are 

similar in structure for each, concentrating on sequence assembly from whole genome 

shotgun sequencing approaches (Gardner, 2001).  Initially, some of the projects began on a 



chromosome by chromosome basis, with different groups taking responsibility for 

individual chromosomes (Gardner et al., 1998; Bowman et al., 1999).  Strategically, this 

approach was important because it facilitated the leverage of funds from a number of public 

and private bodies, and demonstrated proof of concept that parasite genomes could be 

sequenced. However the power of shotgun sequencing realistically has made approaches 

based on individual chromosomes redundant for protozoa, and more dependent on the tools 

of bioinformatics for compiling and annotating the genome sequences generated. For 

example, the high AT content of the P. falciparum genome coupled with the recognised 

gene density of 20%, required the development and training of new gene finder algorithms 

such as GlimmerM (Salzberg et al., 1999) and Phat (Cawley et al., 2001).  Even then, 

manual searches are proving just as effective in making robust gene predictions (Huestis 

and Fischer, 2001). Despite these difficulties, the genome sequence of P. falciparum was 

recently reported (Gardner et al., 2002), and this presents an outstanding opportunity to 

explore many different aspects of the biology of this parasite. 

The genomes of parasitic worms, being much larger than those of protozoa, will 

take some considerable time to investigate, although EST programs are prevalent and 

rapidly defining the genetic component of these organisms.  Projects to survey the genomes 

of Brugia malayi and Schisotosoma mansoni are underway. The generation and analyses of 

such large volumes of data is daunting, yet it potentially provides many new exciting 

opportunities for gene discovery which may result in the development of new parasite 

control methods.  

 

LINKAGE ANALYSES 

The ability to perform classical genetic crosses using cloned lines of parasites of 

defined phenotype represents an outstanding advantage for investigating unique traits in 



some parasitic organisms. For example, acute virulence in T. gondii is recognised as an 

inherited, multigenic trait (Howe et al., 1996; Sibley et al., 2002), precocious development 

in Eimeria was assigned to chromosome 2 (Shirley and Harvey, 2000) and a gene with a 

functional role in malarial gametocytogenesis was assigned to chromosome 12 (Guinet and 

Wellems, 1997).  Such studies, in conjunction with pulsed-field gel electrophoresis and 

DNA markers, not only confirm the number of linkage groups (and hence the number of 

chromosomes) present (Shirley et al., 1990; Sibley and Boothroyd, 1992; Hays et al., 

1995), but also provides a framework on which genome sequences can be overlaid and 

correlated.  Hence, positional cloning with the help of physical genetic maps and genome 

sequences may materialise gene loci central to parasite development and pathogenesis. 

 HAPPY mapping is a relatively simple method for assigning and ordering DNA 

markers to chromosomes (Dear and Cook, 1993), and was first used to produce a linkage 

map of the genome of C. parvum (Piper et al., 1998).  More recently, it has found use in 

GAP closure in the P. falciparum genome, where there was a paucity of markers for 

ordering of the contigs (Gardner, 2001). The main advantage of this approach for mapping 

genomes of lower eukaryotes is its relative simplicity, and so will find further widespread 

use in the study of protozoa. 

 

COMPARATIVE GENOMICS 

Comparisons of parasite genomes from closely related species is now providing 

valuable information not only on genome organization but also on gene function 

(Thompson et al., 2001; Waters, 2002).  In malaria research, karyotype analyses 

demonstrated conservation of chromosome structure amongst both rodent and human 

malarias (Janse et al., 1994; Carlton et al., 1999), and this work has aided the identification 

of homologous genes amongst species (Thompson et al., 2001). In addition, genetic 



manipulation of P. berghei is somewhat more amenable than for P. falciparum, thereby 

facilitating functional studies through targeted disruption (Waters et al., 1997). 

 Functional genomics may also prove valuable in the study of other protozoan 

parasites.  For example, in vitro culture and transfection of Eimeria species of poultry is not 

yet possible and so genetic manipulation of its genome is difficult.  Comparisons of 

genome sequences from different Eimeria species may assist in studies of gene 

identification and function.  Similarly, T. gondii and N. caninum are closely related species, 

but relatively little is known about the genome of the latter. Sequencing and mapping of the 

N. caninum genome, and its comparison to that of T. gondii, may ultimately shed light on 

the unique biological features of this organism. 

 

ANALYSES OF THE PARASITE PROTEOME 

The investigation of protein-protein interactions is fundamentally central to the 

investigation of parasite-host interactions.  The processes of host cell recognition, 

attachment and invasion require the interaction of a large number of parasite surface and 

organelle specific molecules with those present on host cells (Hemphill, 1999).  

Determination of their identity and  function can provide potential vaccine targets. 

 The key technologies behind the core of proteome analyses, namely two-

dimensional gel electrophoresis coupled to mass spectroscopy and data base searching, 

have been described in detail elsewhere (Barrett et al., 2000; Ashton et al., 2001). Recently 

large scale analyses of parasite proteomes have been reported (Jefferies et al., 2001; Cohen 

et al., 2002) and the available data shows that it is un-necessary to possess whole genome 

sequence data in order to make proteomic analyses viable.  Large numbers of proteins are 

being identified merely from database searches of peptide fragmentation data.  



Post-translational modifications of proteins clearly exist, but this whole area is 

vastly underexplored from a vaccine viewpoint and so presents many potential 

opportunities.  Glycosylphosphatidylinositols have been extensively studied in protozoa for 

their role as membrane anchors and in cell signalling (Schofield and Tachado, 1996), and 

more recently their role in activating a Toll-like receptor recognition system may have 

important implications for vaccine design (Campos et al., 2001).  Mice immunised with a 

synthetic GPI designed from malaria were substantially protected against malarial acidosis, 

pulmonary oedema, cerebral syndrome and fatality (Schofield et al., 2002). 

Currently there are few attempts to group genes and proteins into functional 

categories.  The Parasite Proteome Server (http:www.ebi.ac.uk/parasites/proteomes.html) 

was the first attempt to do this, but other information sources are now being developed that 

may facilitate the incorporation and integration of additional biological information 

(Coppel, 2001).  The InterPro database (http://www.ebi.ac.uk/interpro/), which is an 

assemblage of others for defining gene families, signatures and domains, is proving useful 

in this respect along with Gene Ontology assessments (http://www.geneontology.org/).  

The illucidation of metabolic pathways will prove vital to the development  of new control 

methods based on drugs (Fairlamb, 2002). 

 

GENETIC MANIPULATION OF PARASITES 

The development of a wide range of molecular genetics tools for T. gondii, such as 

transformation and a variety of gene disruption technologies, has propelled this organism 

into the forefront of parasite genetics [Sibley, 1993 #1796; Donald, 1993 #1532; Donald, 

1995 #1529; Soldati, 1996 #1350; Boothroyd, 1997 #932; Roos, 1997 #961; Donald, 1998 

#1523; Black, 1998 #1346; Brecht, 1999 #1791; Soete, 1999 #1790; Knoll, 2001 #1039; 

Sibley, 2002 #1631].  Although some of these techniques have also been developed for 

http://www.geneontology.org/


parasites such as Plasmodium  (de Koning-Ward et al., 2000; Cowman et al., 2002), and 

are probably easily transferable to other species such as N. caninum (Howe and Sibley, 

1997), advanced genetic manipulations are currently impossible for many others such as 

Eimeria or Sarcocystis. RNA interference methodologies, although available for 

Trypanosoma brucei (Ullu et al., 2002), are not yet commonplace for the Apicomplexa 

(McRobert and McConkey, 2002). 

 Probably the main value to be gained from applying these techniques to the study of 

parasites is an advanced knowledge on the distribution, localisation and function of 

individual molecules.  This can facilitate an assessment of their role in parasite virulence 

and pathogenesis. Many of the knock-outs generated typically show no discernable change 

in cell phenotype, and so many of these lines may not be rigorously pursued for further 

investigation. However the creation of knock-out mutants, and the restoration of the gene 

and wild-type function back to these mutants, is required to fulfil a molecular version of 

Koch’s postulates (Falkow, 1988). 

 

VACCINES AND IMMUNOTHERAPIES 

The generation of genome sequences facilitates access to all potential targets of 

immunity, and so they can be used in a number of novel ways.  The use of reverse 

vaccinology is growing, being increasingly dependent on the tools of bioinformatics 

(Rappuoli, 2000; Rappuoli, 2001).  Sequence databases are searched (mined) for molecules 

that are predicted to possess some novel trait, such as being secreted or membrane bound. 

Genes are identified coding for molecules which may play an important role in the parasite 

life cycle, pathogenesis or immune evasion.  Subsequently, these molecules are tested in 

animal models for their ability to induce protective immunity. 



The development of high-throughput approaches has been needed to screen large 

numbers of vaccine candidates in a rational, un-biased fashion.  The majority of these have 

used the DNA vaccination approach, with candidates being assessed individually or in 

pools (Almeida et al., 2002). Expression library immunisation has also been used directly 

as a screening method in conjunction with animal models, for the identification of vaccine 

candidates (Melby et al., 2000; Smooker et al., 2000).  This later approach is recognised to 

be limited in its ability to identify vaccine candidates because of the phenomenon of 

masking of protection, which can occur by individual members of the group.  

 The development of novel live vaccines through the use of genetic manipulation 

technologies has exciting potential.   To date, auxotrophic mutants of Leishmania and T. 

gondii created by knock-out strategies, have been shown to be attenuated and to be able to 

induce strong protective immunity  (Titus et al., 1995; Fox and Bzik, 2002).  Issues such as 

persistence of the live vaccine or reversion to the virulent phenotype within the vaccinated 

population remain a concern, but nevertheless these issues are potentially addressable. 

 

 

IDENTIFICATION OF NEW DRUG TARGETS 

Investigations into the genomes of parasitic protozoa have also identified many 

new, potentially exciting targets for chemotherapeutic treatment, such as enzymes of folate 

metabolism, the mannitol cycle and polyamine biosynthesis for example (Coombs and 

Muller, 2002).  Some of the most exciting advances come from the characterisation of the 

apicoplast, a novel remnant of a chloroplast which is essential for parasite survival 

(McFadden and Roos, 1999; Ralph et al., 2001). Plastid genomes in Apicomplexa are 

similar to those found in bacteria, and some known drugs like Ciprofloxacin, selectively 

target the apicoplast (Fichera and Roos, 1997).    



Another good example of drug development is the discovery of fosmidomycin as an 

antimalarial compound and this has been described in some detail elswhere (Anonymous, 

2002).  Briefly, mining of the malaria genome database demonstrated that the parasite used 

the non-mevalonate pathway for isoprenoid synthesis, which is absent in humans.  

Inhibitors of this pathway had been available for some time,  and through the use of mouse 

models were found to be effective antimalarial compounds (Jomaa et al., 1999).  

The identification of the shikimate pathway in Apicomplexa is also worth noting, 

since this pathway is missing in mammals and is a target for herbicides in plants (Roberts et 

al., 2002).  Indeed glyphosphate, which targets 5-enolpyruvyl shikimate 3-phosphate 

synthase, shows anti-parasitic activity (Roberts et al., 1998). 

The large numbers of parasite genes and proteins which remain to be characterised 

imply that we know relatively little about the metabolic pathways of parasites and that 

many more remain to be discovered. Hence it is highly likely that new drug targets will be 

identified in the future (Fairlamb, 2002).  

 

SUMMARY 

 There is no doubt the era of the “omics” is with parasitology, and current trends in 

the discipline are addressing fundamental biological questions that can make best use of the 

new technologies, as well as the vast amount of new data being generated.  Genes, currently 

uncharacterised, will be identified that are involved in the host-parasite interaction and we 

will learn more about parasite biology and pathogenesis.  Attempts to explain the diversity 

of phenotypic traits shown by parasites will occur using genome sequence data, and new 

parasite-specific biochemical pathways and mechanisms of drug-resistance will be 

identified.  In addition, the host response to parasites will be investigated, and the 

mechanisms used by parasites to evade immunity will be explained.  This surely will 



become the “golden age of molecular parasitology”, leading to the control of parasitic 

diseases which have plagued mankind for hundreds of years.
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TABLE 1. SUMMARY OF THE 20 MOST ABUNDANT ESTs IN THREE 

COCCIDIAN SPECIES (http://ParaDB.cis.upenn.edu/)1 

Toxoplasma gondii Neospora caninum Eimeria tenella 

GRA7 GRA2 Antigen 

GRA1 GRA7 Actophorin 

GRA2 UNCHARACTERISED 

CLUSTER (neo_566) 

Serine protease 

inhibitor 

GRA6 MIC1 UNCHARACTERISED 

CLUSTER 

(Ceimqual_264) 

P22 UNCHARACTERISED 

CLUSTER (neo_617) 

MIC1 

P30 GRA1 UNCHARACTERISED 

CLUSTER 

(Ceimqual_287) 

HSP30 MIC10 UNCHARACTERISED 

CLUSTER 

(Ceimqual_521) 

NTPase P38 UNCHARACTERISED 

CLUSTER 

(Ceimqual_1487) 

UNCHARACTERISED 

CLUSTER 

(Ctoxoqual4_276) 

SUL1 UNCHARACTERISED 

CLUSTER 

(Ceimqual_953) 



GRA5 UNCHARACTERISED 

CLUSTER (neo_824) 

UNCHARACTERISED 

CLUSTER 

(Ceimqual_926) 

UNCHARACTERISED 

CLUSTER 

(Ctoxoqual4_5857) 

Serine protease 

inhibitor 

MIC2 

GRA3 NTPase Calmodulin 

SAG1 Serine protease UNCHARACTERISED 

CLUSTER 

(Ceimqual_566) 

UNCHARACTERISED 

CLUSTER 

(Ctoxoqual4_64) 

UNCHARACTERISED 

CLUSTER (neo_378) 

UNCHARACTERISED 

CLUSTER 

(Ceimqual_714) 

H4 antigen MIC4 UNCHARACTERISED 

CLUSTER 

(Ceimqual_775) 

GRA5 UNCHARACTERISED 

CLUSTER (neo_150) 

UNCHARACTERISED 

CLUSTER 

(Ceimqual_218) 

ROP2 

 

UNCHARACTERISED 

CLUSTER (neo_549) 

Cytochrome C oxidase 

UNCHARACTERISED 

CLUSTER 

(Ctoxoqual4_3035) 

UNCHARACTERISED 

CLUSTER (neo_759) 

TA4 antigen 



GRA8 

 

MIC6 UNCHARACTERISED 

CLUSTER 

(Ceimqual_758) 

UNCHARACTERISED 

CLUSTER 

(toxoqual4_4452) 

UNCHARACTERISED 

CLUSTER (neo_287) 

UNCHARACTERISED 

CLUSTER 

(Ceimqual_161) 

 

1GRA, dense granule protein; MIC, microneme protein; ROP, rhoptry protein



TABLE 2. SUMMARY OF PARASITE GENOME PROJECTS BEING 

CONDUCTED THROUGH THE SANGER INSTITUTE OR TIGR 

Species Number of 

chromosomes, 

genome size 

(Mb) 

Comments1 Useful web-sites2 

Plasmodium 

falciparum3 

14, 30 WG http://www.plasmodb.org;  

SI; TIGR 

 

Plasmodium 

yoelli3 

 WG TIGR 

Theileria 

annualata  

4, 10 WG SI, TIGR 

Toxoplasma 

gondii 

11, ,80 WG http://ToxoDB.org/ToxoDB.shtml 

http://ParaDB.cis.upenn.edu/ 

SI, TIGR 

Eimeria tenella 14, 60 WG SI 

Trypanosoma 

brucei 

11+, 35 WG http://parsun1.path.cam.ac.uk/ 

http://www.genedb.org/ 

SI, TIGR 

Trypanosoma 

cruzi 

35, 40 PG http://www.dbbm.fiocruz.br/genome/tcruzi/tcruzi.html 

Leishmania major 36, 33.6 WG http://www.genedb.org/ 

SI, TIGR 

http://www.plasmodb.org/
http://toxodb.org/ToxoDB.shtml
http://paradb.cis.upenn.edu/
http://parsun1.path.cam.ac.uk/
http://www.genedb.org/
http://www.genedb.org/


Entamoeba 

histolytica 

18, 20 WG SI, TIGR 

Brugia malayia 6, 110 WG http://www.nematode.net/ 

http://www.nematodes.org/html 

http://circuit.neb.com/fgn/filgen1.html 

http://www.wormbase.org/ 

SI, TIGR 

Schistosoma 

mansoni 

 PG http://www.nhm.ac.uk/hosted_sites/schisto/ 

TIGR 

1 WG, Whole genome,  PS, Partial genome; 2 SI, Sanger Institute 

(http://www.sanger.ac.uk/Projects/); TIGR, The Institute for Genome Research 

(http://www.tigr.org/tdb/parasites/); 3partial shortguns are also being generated for 

P. berghei, P. chabaudi and P. knowlesi. 

 

 

http://www.nematode.net/
http://www.nematodes.org/html
http://www.wormbase.org/
http://www.nhm.ac.uk/hosted_sites/schisto/
http://www.tigr.org/tdb/parasites/
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