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Abstract - Clustered graph drawing is widely considered as 
a good method to overcome the scalability problem when 
visualizing large (or huge) graphs. Force-directed algorithm 
is a popular approach for laying graphs yet small to 
medium size datasets due to its slow convergence time. This 
paper proposes a new method which combines clustering 
and a force-directed algorithm, to reduce the computational 
complexity and time. It works by dividing a Long 
Convergence: LC into two Short Convergences: SC1, SC2, 
where SC1+SC2 < LC. We also apply our work on weighted 
graphs. Our experiments show that the new method 
improves the aesthetics in graph visualization by providing 
clearer views for connectivity and edge weights. 

 
Keywords--- graph visualization; graph drawing; 

data analytics; information visualization; force-
directed graph drawing; clustered graph drawing; 
weighted graph. 
 
 

I. INTRODUCTION 

      Graphs generated in real-world applications could be 
very large with thousands or perhaps millions of nodes, 
such as academic citation and collaboration networks 
and the World Wide Web (WWW). On the other hand, 
in real world, the relationships among data elements in 
many cases are not only just “connection”, rather they 
have some domain specific attributes (or ‘weight’) need 
also to be graphically represented in the graph, such as 
costs, lengths or capacities, etc. Those graphs are called 
weighted graphs if a number (weight) is assigned to each 
edge. [1]  
      As the result of rapid increasing of the size in 
networks, how to draw a large graph with clear 
representations of data and its network structures is the 
challenge to the graph drawing community. The key 
issue here is not only to provide users with a 
comprehensive display of large graphs on the screen, but 
also a user-friendly navigable visual structure for users 
browsing through the structure to find a particular detail 
of the data. In the past, some attempts to overcome this 
problem have proceeded in two main directions: 

• Clustering: Groups   of   related   nodes   are 
clustered into super-nodes. The user sees a 
summary of the graph with the super-nodes 
(clusters) and super-edges between the super- 
nodes (clusters). [2, 3, 4, 5]. E.g. K-mean 
clustering method, Markov Clustering method. 

• Navigation: The user sees only a small subset of 
the nodes and edges at any one time, and 
facilities are provided to navigate through the 
graph [6, 7, 8, 9, 10, 11, 12]. 

      Clustering is the task of grouping a set of objects in 
such a way that objects in the same group (called cluster) 
are more similar (in some sense or another) to each other 
than to those in other groups (clusters). Cluster analysis 
itself is not one specific algorithm, but the general task to 
be solved. It can be achieved by various algorithms that 
differ significantly in their notion of what constitutes a 
cluster and how to efficiently find them. Popular notions 
of clusters include groups with small distances among 
the cluster members, dense areas of the data space, 
intervals or particular statistical distributions. Clustering 
can therefore be formulated as a multi-objective 
optimization problem [2, 13]. There are many different 
clustering methods and more commonly those algorithms 
on based on the following arrangements: 

• Connectivity based clustering (hierarchical 
clustering) 

• Centroid-based clustering (k-means clustering) 
• Distribution-based clustering 
• Density-based clustering 

      In practice, applying different clustering algorithms 
to the same clustered graphs might create very different 
final layouts. Force-directed layout algorithms use a 
physical analogy to draw graphs. A graph is viewed as a 
system of bodies with forces acting between the bodies. 
The algorithm seeks a configuration of the bodies with 
locally minimal energy, that is, a position for each body, 
such that the sum of forces on each body is zero. And the 
method is easy to understand, the results is normally 
good [14, 15, 16, 3, 17, 18]. 
      However, force-directed methods can deal with only 
a limited number of nodes due to its slow convergence 
time. In this paper, we propose a new approach which 
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combines clustering method and the traditional force-
directed algorithm, to speed up the convergence time by 
dividing a Long Convergence: LC into two Short 
Convergences : SC1, SC2, where SC1+SC2 < LC. Thus, 
we could greatly reduce the computation complexity (or 
convergence time) of force-directed graph drawing 
methods. 
      We also apply proposed method to drawing weighted 
graphs. The early outcome of our approach indicates 
improvement in computation time and graph aesthetics 
that have a clearer view of the properties associated with 
the weighted graph in terms of its connectivity and edge 
weights. The preliminarily experimental results also 
shown that the combination of the clustered graph 
drawing method and the force-directed layout algorithm 
could be used in large graph drawing. 

II. METHODS 

In our experiments, we used clustering method 
based on edge weight to group vertices for pre-handling; 
then applied forces within each cluster. Details are 
described in the following subchapters. 

A. Decrease Progressively Clustering on Weighted 
Graph (DPCW) 

The DPCW clustering is based on the connectivity of 
vertices and weight on each edge in the graph. The basic 
idea is that if a vertex viis assigned in a cluster cj, then we 
intend to include all its connected vertices with the most 
weights in the graph in this cluster.  
Suppose that W = (w0, w2, …, wk) is the set of weights on 
every edge, wk is the maximum weight, and w0 is the 
minimum weight in W. 
Assume that G = (V, E) is a connected undirected 
weighted graph, whereV is the set of vertices and E is the 
set of edges among V. A cluster graph C = (G’, T) 
consists of graph G’= (V’, E’) and a rooted tree T, where 
G’ is a sub-graph of G. The DPCW algorithm can be 
described below: 

a) If (vm, vn)� V, where ei = (vm, vn) and its weight 
wi= wk, then we add two vertices vm and vninto 
the same cluster ck

1; 
b) If (vm1, vn1)� V, where ei1 = (vm1, vn1) and its 

weight wi1 =  wk. 
1) If (m = m1and n � n1), then we add 

vertex vn1into the cluster ck
1; 

2) If (m � m1and n = n1), then we add 
vertex vm1into the cluster ck

1; 
3) If (m= n1and n � m1), then we add 

vertexvm1into the cluster ck
1; 

4) If (m � n1and n = m1), then we add 
vertex vm1into the cluster ck

1; 
5) If (m � m1and n � n1andm � n1and n � 

m1), then we add two vertices vm1 and 
vn1into the same cluster ck

2; 
c) Repeat step (b) until every vertex satisfies the 

conditions described in (b) are included in 
clusters, and the cluster ck= {ck

1,ck
2,…, ck

xk};  

d) Find the smaller weight wk-1� W, where wk-1<wk 
and wk-1> {w0, w2, …, wk-2 }, set wk= wk-1, 
Repeat step (b) and (c) until every vertex 
satisfies the conditions described in (b) are 
included in clusters, and the cluster ck-1= {ck-1

1, 
…, ck-1

x(k-1)}; 
e) Repeat step (d) until wi= w0and every weight in 

W has been handled; 
f) The final clusters C ={ck 

1, …ck 
x, … , ck-1 

1, 
…ck-1 

x(k-1), … , c0 
1, …c0 

x0}. 
 

B. Markov Cluster Algorithm (MCL) 

     The MCL is based on the Markov Chain method 
which calculates the random walkers’ chance between 
every pair of nodes in the graph, and then the nodes 
could be grouped according to the connection 
possibilities among them [19]. 
     The MCL adds the inflation operator for both 
strengthening and weakening of current [19] 
(Strengthens strong currents, and weakens already weak 
currents). The details are: 

a) Input is an un-directed graph, power parameter 
e, and inflation parameter r. 

b) Create the associated matrix 
c) Add self-loops to each node (optional) 
d) Normalize the matrix 
e) Expand by taking the eth power of the matrix 
f) Inflate by taking inflation of the resulting matrix 

with parameter r 
g) Repeat steps e) and f) until a steady state is 

reached (convergence). 
h) Interpret resulting matrix to discover clusters. 

 

C. A Classical Force-Directed Algorithm 

     The force-directed algorithm aims to position nodes 
with  as  few  crossing  edges  as  possible  by  assigning 
forces among the set of nodes and edges for drawing 
graphs  in  an  aesthetically  pleasing  way.  The spring 
forces are used to keep all elements in reasonable 
distances: not too close and not too far. 
     The force-directed algorithms achieve this by 
assigning forces amongst the set of edges and the set of 
nodes. The entire graph is then simulated as if it were a 
physical system. In the force-directed algorithm, we need 
to calculate all the forces work on every element, and 
then place them to suitable position to avoid edge 
crossings. There are three steps for each iterative 
calculation. 

a) Calculate the effect of attractive forces 
fa(d)=d2/k between adjacent vertices; 

b) Calculate the effect of repulsive forces 
fr(d)=�k2/d between all pairs of vertices; 

c) Finally stop the iteration if fa and fr tend to not 
be changed. 

Where d is the distance between two vertices and k is the 
optimal distance between vertices. 
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III. OUR APPROACH 

This section describes the details of our approach as: 
a. The first step is to apply the force-directed algorithm 

on a given graph G = (V, E); 
b. Apply two clustering methods DPCW and MCL 

separately to build a clustering structure on the given 
graph G; 

c. Apply the force-directed algorithm on clustered 
graph C(G) = (G’, T) with all its clusters ‘close’ as  
red  dots in  the  layout till it’s (force-directed 
drawing) convergence process completed  and 
reaches the energy balance; 

d. ‘Open’ all its clusters in the layout of C(G); 
e.  Apply the forces on the elements within same 

clusters separately again to achieve the energy 
balance; 

f. In the final step, compare the qualities of final 
layouts (edge crossing). 

 

IV. CASE STUDY 

     A case is given to explain the relationship between 
final layout and edge weight, the data is based on a real 
company structure and dummy email communication 
amounts which can be found in the Table 3. 

 
Figure 1. Structure of a company 

(Sourced from http://www.tacme.com/corporate_structure.html) 
 
 
 
 
 
 
 
 
 
 

Table 2. Email weighting description 

 
 

Table 2. HR details 
 
 
 

 
Table 3. Dummy email amount 

 
 
 
 
 
 
 
 
 
 
 

ID Name Position 

0 James Director 

1 David Director 

2 George CEO

3 Ronald Business Development Manager

4 John Business Support Manager 

5 Richard Business Control Manager 

6 Daniel Sales Department Leader 

7 Kenneth Product Department Leader 

8 Anthony Marketing Department Leader

9 Robert Project Office Leader 

10 Charles Professional Service Leader 

11 Paul QA Leader 

12 Mark Design Office Leader 

13 Kevin Technical Support Office Leader

14 Edward Software Development Leader

15 Joseph Legal Office Leader 

16 Michael Finance Office Leader 

17 Jason HR Office Leader 

Weighting Description: 
Quantity Weighting 
<10 1 
11 – 50 2 
51 – 100 3 
101 – 200 4 
201 – 300 5 
301 – 400 6 
> 401 7 

 

Email Amount
ID Emails

/pm 
Weighting ID 

0 5 1 1 
0 6 1 2 
1 5 1 2 
2 25 2 3 
2 36 2 4 
2 53 3 5 
3 150 4 6 
3 213 5 7 
3 298 5 8 
4 345 6 9 
4 123 4 10 
4 212 5 11 
4 453 7 12 
4 156 4 13 
4 278 5 14 
5 300 5 15 
5 78 3 16 
5 256 5 17 
6 78 3 7 
6 145 4 8 
7 139 4 8 
9 34 2 10 
9 134 4 11 

ID Emails
/pm 

Weighting ID 

9 546 7 12 
9 23 2 13 
9 145 4 14 
10 256 5 11 
10 222 5 12 
10 190 4 13 
10 56 3 14 
11 78 3 12 
11 112 4 13 
12 98 3 14 
15 88 3 16 
15 128 4 17 
16 238 5 17 
17 5 1 7 
16 15 2 6 
16 23 2 7 
16 54 3 8 
16 18 2 9 
16 23 2 11 
16 41 2 13 
16 13 2 14 
16 27 2 10 
9 546 7 12 
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(a) 

 
(b) 

 
(c) 

Figure 2 Example of final layout comparison on weighted graph Gm 
(a) Initial graph Gm; (b) Final layout based on MCL; (c) Final 

layout based on DPCW. 
 

In Figure 2 above, every orange rectangle indicates a 
cluster. 
In Figure 2 (b), the clusters are {v4, v9, v10, v11, v12, v13, 
v14}, {v0, v1, v2, v5, v15, v16,v17} and {v3, v6, v7, v8}; 
In Figure 2 (c), the clusters are {v0, v1}, {v4, v9, v10, v11, 
v12, v13, v14}, {v2, v5, v15, v16,v17} and {v3, v6, v7, v8}; 
There is a slight difference between (b) and (c), but they 
all provided a reasonable layout based on the email 
communication amounts. And since the time complexity 
of DPCW is much better than MCL, it can reduce 
computational time significantly, the experimental result 
on running time is given in Figure 3 shown below. 
 

V. EXPERIMENTAL EVALUATION 

     We created artificial 20 connected / undirected 
weighted graphs randomly range from 100 to 290 
vertices, and from 272 to 1010 edges for the evaluations. 
We applied the MCL /DPCW and forces on each graph, 
compared the qualities of the final layouts (edge 

crossing). See Figure 3 for the comparison results on 
time complexity and edge crossing of our experiments. 

 
(a) 

 
(b) 

Figure 3.Thecomparisonofthefinal layouts on experiments 
(a) Computing time; (b) Edge crossing. 

 
     From the results of the Figure 3 above we can see that 
the DPCW method provides layouts with a similar 
number of edge crossings to the traditional force-directed 
algorithm (see Figure 3(a)) yet much less computational 
time (see Figure 3(b)). DPCW also has much better than 
outputs the MCL method. However, the reduction in 
edge crossings is not significant, although the structures 
are based on logical values. 
 

VI. CONCLUSIONS AND FUTURE WORKS 

     We have presented a new approach for potentially 
visualizing large graphs by combining clustering and 
force-directed algorithms. Our method works by 
dividing long convergences into short convergences so 
that the computational time can be reduced. Early 
experimental evaluations demonstrate its effectiveness 
in terms of reduction in computational time and some 
aesthetical improvement in the graph layouts. In our 
future works, we will apply our approaches to a wider 
and larger datasets and applications. A usability study 
will also be carried out to formally evaluate the 
effectiveness of the methods. 
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