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Abstract:  

This paper proposes a decoupling algorithm for reliability-based design optimization (RBDO) with high 

performance in terms of efficiency and convergence, which provides an effective tool for reliability design of many 

complex structures. The algorithm proceeds by performing a shifting vector calculation and then solving a 

deterministic design optimization in each step, and eventually converges to the optimal solution. An incremental 

shifting strategy is proposed to ensure stable convergence in the iteration process. In each step, the shifting vector 

preserves the information from the previous step, and only an adjustment is made for it through a shifting vector 

increment. A computation method is given for the shifting vector increment, avoiding solving an optimization 

problem during the reliability analysis and thus greatly reducing the computational cost of the iteration process. Six 

numerical examples and two engineering applications are presented to validate the effectiveness of the method 

proposed in this paper. 
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1 Introduction 

There exist many uncertainties in practical engineering problems, including geometric dimensions, material 

properties, and loads.  The combined effects of these uncertain factors can lead to large variations in the structural 

properties and even failure.  Reliability-based design optimization (RBDO) [1-7] can fully take into account the 

impact of these uncertainties on the constraints in the optimization process; therefore, it can make the result 

satisfying the requirements of reliability and hence plays an important role in practical safety design of structures 

and products.  RBDO has become an important research direction in the field of structural reliability, and a series 

of important theories and methods have been developed in this area.  However, from an overall perspective, 

RBDO still in the developing stage, and some key issues need to be resolved, efficiency being one of them.  

Performing RBDO usually involves a two-layer nested optimization, with the outer layer being optimization of the 

design variables and the inner layer being the reliability analysis. However, practical engineering problems are 

generally solved using time-consuming numerical simulation techniques such as the finite element method (FEM).  

Thus, nested optimization based on the simulation model will lead to extremely low computational efficiency.  

Some important RBDO methods have been developed to address this efficiency issue, which can be roughly 

grouped into two categories. One category is response surface methods, which greatly reduce computational cost by 

constructing an analytic function to replace the time-consuming numerical simulation in the optimization process.  

Youn et al. [8] used a selective interaction sampling technique to construct an interpolation response surface; they 

combined this technique with an inverse reliability analysis technique to reduce the FEM calls, and the RBDO 

efficiency could be improved.  Kim et al. [9] used the response surface based on the moving least squares method 

for reliability optimization and estimated the impact of the response surface error on the RBDO analysis results.  

Basudhar and Missoum [10] used the support vector machine to deal with the constraints and whereby developed 

an efficient probabilistic optimization design method, which also could handle the problems with discontinuous 

limit state functions.  Shan and Wang [11] used the mode-pursuing sampling method to construct a Kriging 

approximation model for high-efficiency RBDO.  Zhuang and Pan [12] employed a sequential expected 

improvement strategy for sampling and continuously refreshed the response surface during the RBDO process to 

ensure convergence.  The above methods improved the computational efficiency of RBDO significantly.  

However, for many complex engineering problems, especially those with high dimensionalities and large numbers 

of reliability constraints, establishing a highly accurate response surface function to ensure accuracy of the RBDO 

computation is not an easy task. 

The second category is decoupling methods [13-27].  The basic idea of this type of method is to decouple the 

nested optimization in RBDO into a series of iterative processes that are composed of deterministic design 

optimization and reliability analysis; the design optimization and reliability analysis are completed alternately and 

converge to the optimal solution.  Currently, the decoupling approach has been the most effective type of method 

for addressing RBDO efficiency issue and has been the main research direction in RBDO.  Wu et al. [13] used 

safety-factor-based deterministic constraints rather probabilistic constraints to avoid performing an inner-layer 

reliability analysis; however, this method can only consider the uncertainty in design parameters but cannot treat 
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random parameters.  Du and Chen [14] proposed a sequential optimization and reliability assessment (SORA) 

algorithm based on the approximate equivalent feasible domain of the probabilistic constraints.  This algorithm 

thus decouples the reliability analysis from the design optimization, significantly reducing the number of constraint 

reliability analysis and whereby improving the RBDO efficiency.  Liang et al. [15] proposed a single-loop method 

(SLM) by using a similar searching strategy as the SORA algorithm.  However, SLM utilizes an approximation 

method for reliability analysis to avoid multi-variable optimization in the conventional reliability computation and 

thus further improve the efficiency.  Cheng et al. [16] divided the RBDO problem into a series of sub-problems by 

using linear approximation on the objective function and constraints, in which the reliability evaluation of 

constraints and sensitivity analysis could be conducted very efficiently.  Shan and Wang [17] proposed a 

decoupling method that replaced probabilistic constraints with an approximate reliability design space and thus 

converted the RBDO problem into a deterministic optimization problem.  However, it seems difficult for this 

method to treat problems that the probabilistic constraints are complex implicit functions.  Agarwal et al. [18] 

employed homotopy analysis technique and Karush-Kuhn-Tucker condition to transform the original RBDO 

problem into a series of less difficult optimizations.  Huang et al. [19], based on the SORA, obtained the most 

probable point (MPP) using an approximation strategy and thereby further improved the RBDO efficiency.  Chen 

et al. [20] modified the solution framework of SORA by proposing a new shifting vector computation method when 

applying equivalent constraints, which reduced the number of iterations to a certain extent.  Generally, the 

decoupling method could improve the RBDO computational efficiency significantly and greatly facilitate the 

application of RBDO in practical structural analysis and product design.  However, objectively, the decoupling 

method currently still has some shortcomings.  First, in terms of computational efficiency, although methods such 

as SORA have successfully separated reliability analysis from design optimization and thus eliminated two-layer 

nested optimization, the entire iterative solving process still needs to perform reliability analysis many times.  

Furthermore, every reliability analysis is a multi-variable optimization process, which makes these decoupling 

methods difficult to satisfy the design requirements of many more complex structures.  The second shortcoming is 

related to the convergence of the computational processes.  To reduce the computational cost incurred by the 

reliability analysis in the iterative process, some approximate reliability analysis strategies were then introduced in 

several current RBDO decoupling methods, such as SLM [15] and sequential approximate programming approach 

[16].  These strategies make the RBDO solution much more efficient.  However, the introduction of these 

approximate reliability analysis strategies may decrease the convergence of the decoupling methods, thereby 

leading to difficulty in converging to a stable solution especially when treating problems with more variables and 
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relatively high degrees of non-linearity.  Therefore, developing a decoupling method for RBDO that is efficient 

and also exhibits stable convergence is of great importance.  Such a method will effectively improve the ability of 

RBDO to solve many more complex engineering problems and hence greatly increase the practical use of RBDO. 

This paper proposes a new RBDO method based on an incremental shifting vector (ISV) strategy; it uses 

currently available decoupling methods as its foundation.  This method exhibits a good comprehensive 

performance in terms of efficiency and convergence and hence provides an effective computation tool for reliability 

design of many complex structures and products.  The remainder of this paper is structured as follows: the second 

section reviews the general concepts and decoupling strategies of RBDO, the third section proposes the ISV 

method, the fourth and fifth sections present the analyses of numerical examples and practical applications, 

respectively, and the sixth section discusses the conclusions. 

2 Fundamental concepts and decoupling approach of RBDO 

A RBDO problem can generally be expressed as follows [14]: 

 

  
,

t

L U L U

min , ,

s.t. Prob , , 0 , 1,2,...,

,

X

X P
d μ

X X X

d μ μ

d X P

d d d μ μ μ

j j g

f

g R j = n 

   

                       (1) 

where f  and jg  represent the objective function and j-th constraint, respectively; gn  represents the number 

of constraints;  d  represents the dn -dimensional deterministic design vector;  X  represents the Xn  

-dimensional random design vector; P  represents the pn -dimensional random parameter vector; X
μ  and Pμ  

represent the mean vectors of X and P , respectively; and L and U represent the upper and lower boundaries, 

respectively;  Prob represents the probability of constraint satisfaction, which is also called the reliability; and 
t

jR  

represents the desired probability of the j-th constraint.  In practical engineering applications, f  and jg  are 

usually non-linear implicit functions; the former is related to d , X
μ , and Pμ , and the latter is related to d , X , 

and P . 

Assume that X and P  are mutually independent. Then, under any d  and X
μ , the reliability of the j-th 

constraint can be written in the following integral form: 

    

 

0
Prob 0

,

j
j

g
g h d


 



 ZZ Z Z

Z X P

                            (2) 

Page 4 of 46

Prof. G.I.N. Rozvany, phone: +36 (26) 362 592, e-mail: smo.rozvany@axelero.hu

Structural and Multidisciplinary Optimization

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

 

 5 

where Z  represents an Zn -dimensional random vector with 
Z
μ  as the mean vector, where Z X Pn n n  , and 

( )
Z

Zh  represents the joint probability density function (PDF) of Z . 

2.1 Constraint reliability analysis 

Currently, the first-order reliability method (FORM) is the most widely used method for treating the constraint 

reliability.  Its basic idea is to map the constraint function from the original space (Z space) to the standard normal 

space (U space), construct linear approximation of the constraint function at the most probable point (MPP) and 

whereby compute the approximate reliability.  The mapping of the random variables from Z space to U space can 

be expressed as follows [28, 29]: 

   

     1 1

1,2,...,

,

=
i

i i

i Z i Z

i Z i i Z i

U F Z i n

U F Z Z F U



  



 

，
                            (3) 

where 
iZ

F  and 
1

iZ
F 

 are the cumulative distribution function (CDF) and its inverse function of 
i

Z , respectively; 

  and 
1 

 represent the standard normal CDF and its inverse function, respectively; and U is Z vector in the 

standard normal space.  Then, the probabilistic constraint in Eq. (1) can be rewritten as follows: 

    

 

0

t t

Prob , , 0

, 1,2,...,

j

t

j j
G

j j g

g h d R

R j n 


  

  

 U
d X P U U

                         (4) 

where G denotes the constraint function g  in U space, Uh  is the joint PDF of the standard normal vector U , 

and 
t

j  is the desired reliability index of the j-th constraint. 

There are two kinds of commonly used FORMs to solve Eq. (4), the reliability index approach (RIA) [28-32] and 

the performance measurement approach (PMA) [33-37].  In RIA, the reliability index   represents the 

minimum distance between the limit-state surface and the origin in U space and can be expressed as follows: 

 

min

s.t. 0G

 



U
U

U
                                      (5) 

Its optimum solution MPPU  (which is the MPP) and reliability index  can be obtained through some well 

established methods such as the Hasofer-Lind and Rackwitz-Fiessler (HL-RF) iterations [28, 29].  If 
t  , 

then the constraint can be considered to satisfy the reliability requirement.  PMA, which is also called the inverse 

reliability analysis, generally can exhibit better performance than the RIA in RBDO problems because it uses a 

fixed search region [33].  In PMA, the location of the MPP can be determined through a following optimization 

problem: 
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 
t

min

s.t.

U
U

U

G


                                        (6) 

The optimal solution MPPU  and corresponding performance function value  MPPUG  can be obtained through 

some high-efficiency methods such as the advanced mean value method [34].  When  MPP 0G U , the 

constraint can be considered to satisfy the reliability requirement. 

2.2 Decoupling approach 

Through the above analysis, it can be found that the solution of RBDO involves a two-layer nested optimization, 

which generally suffers from extremely low computational efficiency in practical applications.  The decoupling 

method seems the most effective RBDO solution method that has been presented to date.  Its basic idea is to 

convert the nested optimization into a sequential iteration process composed of a deterministic design optimization 

and the reliability analysis.  The design optimization and reliability analysis are performed alternately; therefore, 

the computational cost is greatly reduced.  Currently, SORA [14] and SLM [15] seem the two most important 

decoupling methods for RBDO, which have been successfully applied to many practical engineering problems. 

 

Fig. 1 Shifting vector of the probability constraint in SORA 

In SORA, the key is to determine a deterministic constraint approximation that is equivalent to the probabilistic 

constraint, which requires construction of a shifting vector.  For description convenience, assume that d does not 

exist and there are only X and P.  The vector Z composed of X and P includes two normally distributed random 

components, and the equivalent process of a certain constrain in the k-th iteration is shown in Fig. 1.  The curve 

  0g Zμ  represents the original boundary of the deterministic constraint.  After considering the uncertainty, 

the feasible domain of the design variables is decreased, and the probabilistic constraint boundary, 

   tProb 0Zg R  , must be inside the feasible domain of the deterministic constraint.  In SORA, the 

approximate equivalent boundary of the actual probabilistic constraint boundary is obtained by moving the original 

boundary   0g Zμ  toward the feasible domain by a vector S , which is denoted as 
   0

Z
μ S

k
g   .  

Then, in the k-th iteration, the converted deterministic design optimization can be created [14]: 

1Z

2Z Feasible Domain

0

  0g Zμ

   tProb 0Zg R 

   0
Z
μ S

k
g  

 1

Z
μ

k

 1

MPPZ
k

 
S

k
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 

  
 

,

L U L U

min , ,

s.t. , 0, 1,2,

, ,

X

X P
d μ

Z

Z X P X X X

d μ μ

d μ S

μ μ ,μ d d d μ μ μ

k

j j

f

g j = ...,n 

    

                    (7) 

The computation of the shifting vector S is the key of the method.  S determines the difference between the 

probabilistic constraint boundary and the equivalent constraint boundary, and the smaller the difference, the faster 

the iterations can approach the optimal solution and the fewer number of iterations are required.  However, the 

computation of S itself directly impacts the efficiency of RBDO. 

In SORA, the shifting vector S depends on the MPP information in the previous iteration, 
 1

Z
k-

.  It should be 

noted that MPP is different for different constraints; therefore, the shifting vectors of different constraints are 

generally not the same.  For a specific constraint, the shifting vector can be written as: 

     1 1

MPPZ
S μ Z

k k k-
                                       (8) 

In the above equation, 
 1

MPPZ
k-

 can be obtained by solving the following PMA optimization: 

  1

t

min ,

s.t.  

U
d U

U

k
G






                                    (9) 

The optimal solution of the above problem is 
 1

MPPU
k-

, and its value in the original space is 
 1

MPPZ
k-

.  The design 

optimization in Eq. (7) and reliability analysis in Eq. (9) are performed alternately until convergence is achieved. 

SLM [14] uses a solution framework similar as SORA. The k-th iteration step also contains a deterministic 

design optimization as indicated in Eq. (7), and for a certain constraint the computation of the shifting vector 
 

S
k

 

also depends on the corresponding MPP of the previous step as in Eq. (8).  The difference is that SLM computes 

an imprecise MPP using an approximate reliability analysis technique to construct the shifting vector in each 

iteration step. Thus the inner layer optimization for reliability analysis is eliminated, and whereby the whole 

optimization efficiency can be greatly promoted. 

3 Formulation of the ISV method 

It can be observed from the above analysis that when the reliability analysis is decoupled from the design 

optimization in SORA, the efficiency is improved greatly compared with the earlier two-layer nested optimization.  

However, it can also be observed that the whole optimization process still needs a number of reliability analyses, 

especially for problems with more constraints.  Furthermore, every reliability analysis needs to solve a 

time-consuming optimization problem; therefore, the computational cost seems still a challenge for SORA when 

dealing with some more complex engineering problems. The special feature of SLM is that an approximation 

technique is used when computing the MPP; therefore, it avoids the optimization solution for reliability analysis, 

and the computational efficiency is improved further relative to SORA.  However, the introduction of approximate 
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reliability analysis can lead to divergence in the iteration process and thus decrease the stability and convergence of 

the decoupling process greatly; this will be demonstrated in the examples presented below.  In the following, this 

paper will propose a new decoupling method for RBDO, namely the incremental shifting vector approach (ISV).  

The proposed method exhibits a better overall performance in terms of efficiency and convergence and expects to 

provide an effective computational tool for reliability design of many complex structures and products in the future.  

The ISV method uses a similar solution framework as SORA and SLM, i.e., converting a multilayer nested 

optimization into the sequential design optimization and reliability analysis steps.  Compared with the currently 

available methods, the innovations of ISV are that it uses an incremental shifting strategy to ensure stable 

convergence in the iteration process and that it also provides a new computational method for determining the 

shifting vector in the incremental iteration process to ensure high efficiency of RBDO. 

3.1 Incremental shifting strategy 

In the currently available decoupling strategies such as SORA and SLM, as indicated by Eq. (7), the constraint 

boundary needs to be determined by computing the shifting vector 
 

S
k

j  based on the original boundary 

  0Zd,μjg   in any iteration step k; this makes the deterministic constraint  ( ) 0Zd,μ S
k

j jg    equivalent 

to the probabilistic constraint    tProb , , 0d X Pj jg R   in Eq. (1).  Consequently, the shifting vectors need 

to be recomputed in each iteration.  For some complex RBDO problems, such as functions with strong 

non-linearity or when the number of constraints or variables is relatively large, the difference between the shifting 

vectors of two adjacent iteration steps can be large, which may lead to numerical oscillation and whereby impact 

the convergence of the iteration process.  Especially for methods such as SLM that use an approximate reliability 

analysis, the difficulty for the entire decoupling method to converge is exacerbated if the shifting vector must be 

recomputed in every iteration.  To address the above issue, only a shifting vector increment 
( )kS  is computed 

in the k-th iteration step of the ISV method.  This shifting vector increment is then combined with the shifting 

vector 
( 1)k

S  in the previous step to form the current shifting vector 
( )k

S : 

     1
S S S

k k k
                                     (10)  

Using 
( )k

S , the deterministic design optimization problem, as given by Eq. (7), can be created and solved.  

Therefore, in ISV the shifting vector in each iteration step is only an adjustment to the shifting vector in the 

previous step, and the shift of the constraint boundary is incremental. 
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Fig. 2 Shifting vector increment in ISV method 

We use Fig. 2 to illustrate the computational process for determining the shifting vector increment of a constraint 

in the k-th iteration.  For convenience of description, we assume there are 2 random variables in the constraint, and 

the entire analysis process takes place in U space.  The curve 
  1

0
U

U S
k

G


   represents the equivalent 

constraint boundary of the previous iteration step, and its left side is the feasible domain, within which the current 

design falls.  It is noted that the optimum 
 
Z
μ

k
 is updated; hence the constraint function G in U space is related 

to the iteration k.  Considering the uncertainty, the random space of the design is centered at the origin, and the 

target reliability index is a circle with the radius 
t , which is referred to as the 

t -circle .  Assuming that the 

constraint boundary 
  1

0
k

G


 
U

U S  passes through the 
t -circle , then the actual reliability index   is 

less than the target reliability index 
t ; in this case, the reliability requirement is not satisfied, and the difference 

is 
t     .  To improve the design reliability, the constraint boundary should be adjusted toward the 

feasible domain in the current iteration step.  Specifically, the equivalent constraint boundary needs to be shifted 

from where it was in the previous iteration by   in the MPP gradient direction.  It is just the shifting vector 

increment that needs to compute in our ISV approach, and it can be expressed as: 

    
  
  
MPPt

MPP

k

k k

k

G

G
 

 
    
 

 
 

U

U
S

U
                            (11) 

If we solve the above equation directly, then RIA must be used to obtain 
 k

  and 
 
MPP

U
k

 to determine the 

shifting vector increment.  However, the form of RIA is a multi-variant optimization problem as given by Eq. (5), 

which will lead to significant computational cost in practical engineering problems.  In the following, an efficient 

method will be presented to solve Eq. (11). 

As shown in Fig. 2, for a constraint that does not yet satisfy the reliability requirement, the MPPU  is relatively 

0

  1
0

U
U S

k
G


 

1U

2U

Feasible Domain

 
MPPU
k

tβ -circle

  0UG G

 
U

S
k

 ( ) 0
U

U S
kG  

( )

U
S

k

 k


( )k

Page 9 of 46

Prof. G.I.N. Rozvany, phone: +36 (26) 362 592, e-mail: smo.rozvany@axelero.hu

Structural and Multidisciplinary Optimization

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

 

 10 

close to the mean value point 
0

U  (the origin of U space).  The contour of the constraint function   0UG G  

(
0

G  is the value of the constraint function at the origin of the U space) will have a curve shape that is very similar 

to the constraint boundary   0UG   under usual circumstances.  Therefore, to solve Eq. (11), we can use the 

gradients at the origin 
0U 0  to approximate the gradients at MPPU  and whereby compute an approximate 

reliability index 
k ( )

.  The solution process can be expressed as: 

   

 
0

k G
G

G


 
  
  

0

0

U

U
                                (12) 

The above equation is a nonlinear equation that contains only one unknown variable 
k ( )

, which can be solved 

with high efficiency using the Newton iterative method [38]: 

   
 

 

 
 
 

 
 
 

1

0( )

00( ) ( )

0 0' ( )

0

U

UU

U U

U

k

j

k k

j j

k

j

G
G

GG

G G
G

G



 




 
 
    

  
 
  

                  (13) 

where j denotes the iteration step.  Under normal circumstances, Newton iteration only requires a few steps and a 

small number of function computations to converge.  Based on the above analysis, Eq. (11) can be rewritten as: 

 
 

 
0( ) ( )

U

0

U
S

U

k t k
G

G
 

 
    

  

                            (14) 

Mapping 
k ( )

U
S  back to the original space through Eq. (3), the needed shifting vector increment 

( )
S

k  can be 

obtained. 

3.2 Constraint reliability assessment 

In practical RBDO problems, there can be many probabilistic constraints, some of which have relatively good 

reliability and always satisfy the reliability requirements in the iteration process.  To further increase the efficiency, 

if a certain constraint in the current design satisfies the reliability requirement, then there is no need to shift the 

vector that corresponds to this constraint in the next iteration, i.e., we can set 
( )

S 0
k  ; thus, a constraint 

reliability satisfaction assessment is needed.  In PMA analysis, the reliability satisfaction of a certain constraint 

can be assessed through the following equation: 
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  
  
  

1

MPP1 t

MPP 1

MPP

0

k

k

k

G
G G

G








 
   
 

 
 

U
U

U
                      (15) 

It needs to solve an optimization problem as Eq. (6) to obtain the MPP [34].  As mentioned above, for the 

constraints that we are primarily concerned (constraints those do not satisfy the reliability requirements), the 

gradients at 
0

U  and at MPPU  are generally very similar.  Therefore, the proposed method uses the gradients 

at 
0

U  to approximate those at MPPU  to reduce the computational cost; then, the reliability assessment in Eq. 

(15) can be changed to: 

 

 
t 0

0

0

U

U

G
G

G


 
  
  

                              (16) 

In doing so, the inverse MPP search required in Eq. (15) can be avoided.  In each iteration, the reliability 

satisfaction of all probabilistic constraints is judged through Eq. (16), and the shifting vectors are only updated for 

the constraints that do not satisfy the reliability requirements. 
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Fig. 3 Flowchart of the ISV method 

3.3 Flowchart of the algorithm 

The flowchart of our ISV method is shown in Fig. 3.  The entire solving process is completed with a series of 

iteration steps.  In every step, the constraint reliability satisfaction is assessed first.  For those constraints that 

satisfy the reliability requirements, set the shifting vector increment to 
 

S 0
k

  ; for those that do not satisfy the 

reliability requirements, the shifting vector increment analysis is conducted.  The shifting vector 
( )k

S  is obtained 

based on 
( )kS , and the design optimization problem in Eq. (7) is constructed and solved.  The shifting vector 

computation and design optimization steps are conducted alternately until convergence is achieved.  In theory, any 
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 
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L U L U

min , ,

s.t. , 0 , 1,2,...,
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j j g

f

g j = n 
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     1
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k k k

j j j


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 
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point could be used as the initial point of the ISV method, but to increase the convergence speed, the following 

deterministic optimization solution can be used as the initial point: 

 

 

 

,

L U L U

min , ,

s.t. , 0 , 1,2,...,

, , ,

X

X P
d μ

Z

Z X P X X X

d μ μ

d μ

μ μ μ d d d μ μ μ

j g

f

g j = n

    

                   (17) 

 

Fig. 4 Schematic diagram of the ISV’s iterative process for a RBDO problem 

As shown in Fig. 4, for the ease of understanding, a RBDO problem with 2 constraints is used to illustrate the 

iteration process of ISV.  It is assumed that the vector Z contains 2 normal random variables, X and P.  First, set 

the shifting vectors to 
 0

1
0S   and 

 0

2
0S   and solve Eq. (17) for the initial solution 

 0

Z
μ .  We assume that 

this solution is located on the boundary of constraint 1,  1 0Zμg  , and close to the boundary of constraint 2, 

 2 0Zμg  ; then, iteration 2 is entered.  The reliability of every constraint is assessed with Eq. (16).  Let us 

assume that neither of the two constraints satisfies the reliability requirement; then, Eq. (14) is used to compute the 

shifting vector increments 
 1

1
S  and 

 1

2
S  of the 2 constraint boundaries.   Because the shifting vectors of the 

2 constraints in the initial iteration are 
0

1
0( )

S  and 
0

2
0( )

S , the shifting vectors in the second iteration are 

1 1

1 1

( ) ( )
S S   and 

1 1

2 2

( ) ( )
S S  , respectively.  As shown in Fig. 4(a), the two constraint boundaries moved from 

their original places,  1 0Zμg   and  2 0Zμg  , toward the feasible domain, and the equivalent constraint 

boundaries, 
  1

1 1
0

Z
μ Sg    and 

  1

2 2
0

Z
μ Sg   , are obtained.  The optimal solution 

 1

Z
μ  in the second 

iteration can be obtained by solving the design optimization problem like Eq. (7).  Under the influence of the 

equivalent constraints, 
 1

Z
μ  moved toward the feasible domain relative to 

 0

Z
μ  and created a certain distance 

from the initial boundaries of the two constraints, which is reflected in the increase of the reliability of 
1( )

Z
μ .  

0

 1 0g Zμ

1Z

Feasible Domain
2Z

 2 0g Zμ

  1

1 1 0
Z
μ Sg  

  1

2 2 0
Z
μ Sg  

 0

Z
μ
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Z
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nd(a) 2 iteration

0 1Z

2Z

 2

Z
μ

 1

Z
μ

  1
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Then, the third iteration is entered.  As before, Eq. (16) is used to assess the reliability of every constraint.  

Assume that the 2 constraints still do not satisfy the requirements.  Then, Eq. (14) is used to compute the shifting 

vector increments 
 2

1
S  and 

 2

2
S , and the shifting vectors of the 2 constraints, 

     2 1 2

1 1 1
S S S   and 

     2 1 2

2 2 2
S S S  , are computed.  As shown in Fig. 4(b), the two constraint boundaries are incrementally 

adjusted based on their individual locations in the previous iteration, i.e., they are moved toward the feasible 

domain by a corresponding increment.  Thus, the optimal solution 
 2

Z
μ  in the third iteration can be obtained by 

solving the design optimization problem specified by Eq. (7) again.  The above iteration process will be repeated 

until convergence is achieved. 

It can be observed based on the above analysis that in ISV approach the shifting vectors in each iteration step 

preserved their information from the previous step; thus, the shifting vectors can be considered as an adjustment to 

the ones of the previous iteration.  Therefore, the equivalent constraint boundary is also an incremental adjustment 

from that of the previous iteration, and the movement of the constraint boundary is incremental.  Such an 

incremental adjustment ensures that the locations of the constraint boundaries will not change drastically between 

two adjacent iterations; therefore, the method avoids numerical oscillation in the iteration process to a great extent. 

Simultaneously, the design reliability is increased stably, and convergence of the iterative process can be well 

guaranteed.  Furthermore, the multi-variant optimization of the RIA reliability analysis is replaced by a 

determination of a solution to a non-linear equation (single-variable problem) in the computation of the shifting 

vector increment; thus, the computational cost is greatly reduced.  Additionally, because of the adoption of an 

incremental shifting strategy, generally the small error introduced by the approximation in the shifting vector 

analysis does not take large influence to the convergence of the entire solution process, which gives ISV approach a 

good overall performance in terms of both efficiency and convergence.  This point will be further demonstrated in 

the numerical examples that follow. 

4 Numerical examples and discussion 

In this section, six commonly used numerical examples in RBDO field are analyzed.  As indicated in Table 1, 

these six examples have different complexities.  There are five different situations that will be analyzed for each 

example.  In situations 1 – 4, all random parameter distributions in a given situation are of the same type; in 

situations 1, 2, 3, and 4, respectively, normal, lognormal, uniform and Gumbel probability distributions, which are 

four typical probability distributions, are used.  The fifth situation represents a general mixed situation, i.e., the 

random parameters are mixed with the above four distribution types.  There are 6 5 30   situations in total.  

For every situation, SORA, SLM, and the ISV method proposed in this paper are used for optimization.  The 

initial points used in all three methods are determined by using the deterministic optimization, and the convergence 

standards are set the same.  The inverse MPP search in the SORA method and the design optimizations in the 

iterative processes of all three methods are solved using sequential quadratic programming (SQP) [39].  For every 

example, the optimum solution, number of iterations 
I

N , number of constraint function computations 
F

N , and 

actual reliability index   of the probabilistic constraints under the optimum solution from the three methods will 

be compared. 
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Table 1. Six numerical examples 

Example Random Design 

Variables 

Random 

Parameters 

Probabilistic 

Constrains 

Reference 

1 2 0 3 Liang et al. [15] 

2 0 4 2 Liang et al. [15] 

3 2 0 2 Chen et al. [20] 

4 5 0 10 Chen et al. [20] 

5 4 6 1 Cheng et al. [16] 

6 4 7 5 Cho et al. [27] 

4.1 Example 1 

Consider the following RBDO problem [15]: 

 

    

 

 
   

 
 

1 2

t t

2

1 2
1

2 2

1 2 1 2

2

3 2

1 2

,

min

s.t . Prob 0 , 3.0 1, 2, 3

1
20

5 12
1

30 120

80
1

8 5

0 10, 0.3, 1,2

X

X
μ

μ

X

X

X

X

j

i i

X X

j j

X X

f

g j =

X X
g

X X X X
g

g
X X

i

 

 

 

 

    

 

   
  

 
 

   

                  (18) 

where 
iX  and 

iX  represent the mean and standard deviation of the random design variable iX , respectively. 

The computational results are presented in Table 2.  It can be observed from the results that for the five different 

distribution situations SORA and ISV converged to very close results, but in the third situation, for which all 

random variables have uniform distributions, the SLM diverged.  The reason is that in SLM the MPP of the 

current iteration will be approximately replaced by the MPP in the previous iteration to construct the shifting vector.  

However, in the first iteration in this example, neither of the two components of the MPP of the constraint 1g , 

   0

MPP 2.599,1.587X  , lies within the uniform distribution region of the design in the second iteration, 

   1
3.341,2.980

X
μ   (  

1
2.839,3.843IX   and  

2
2.478,3.482IX  ), which renders obtaining an 

approximation of MPP in the current iteration impossible and leads to a failure to converge. 
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Table 2. Optimization results for numerical example 1 

Distribution  Results SORA SLM ISV 

X1, X2: Normal 

*

X
μ  3.439, 3.287  3.440, 3.284 3.440, 3.281 

 f 
* 

6.726 6.724 6.721 

NI 3 4 4 

NF 183 76 99 

β 3.0, 3.0, 10.0 3.0, 3.0, 10.0 3.0, 3.0, 10.0 

X1, X2: Lognormal 

*

X
μ  3.401, 3.186 3.401, 3.185 3.415, 3.197 

 f 
* 

6.587 6.586 6.612 

NI 3 6 3 

NF 178 106 102 

β 3.0, 3.0, 7.8 3.0, 3.0, 7.8 3.1, 3.0, 7.8 

X1, X2: Uniform 

*

X
μ  3.343, 2.981 --- 3.341, 2.980 

 f 
* 

6.324 --- 6.321 

NI 2 --- 2 

NF 217 --- 53 

β 3.0, 2.9, 3.9 --- 2.9, 3.0, 3.9 

X1, X2: Gumbel 

*

X
μ  3.280, 3.010 3.288, 2.996  3.312,3.018 

 f 
* 

6.290 6.284 6.330 

NI 3 6 2 

NF 183 118 51 

β 3.0, 3.0, 5.34 2.9, 3.0, 5.3 3.2, 3.0, 5.3 

X1: Normal 

X2:Lognormal 

*

X
μ   3.471, 3.208 3.472, 3.207 3.464, 3.222 

 f 
* 

6.680 6.679 6.686 

NI 3 6 3 

NF 188 112 78 

β 3.0, 3.0, 8.9 3.0, 3.0, 8.9 3.0, 3.0, 8.9 

 

 

 

Fig. 5 A cantilever beam [15] 

 

t

L w

2
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4.2 Example 2 

As shown in Fig. 5, the example represents a cantilever bending problem under a load.  The free end of the 

cantilever is under a vertical load of 1Y  and a horizontal load of 2Y , The width w and thickness t of the 

cross-section of the cantilever are deterministic design variables, and the design target is the weight of the 

cantilever.  Two failure modes are considered: the first is that the stress at the fixed end should not be greater than 

the allowable yield stress y, and the second is that the displacement of the free end should not be greater than the 

allowable displacement 0 2.5 inD  .  The length of the cantilever is 100 inL  , E is the Young’s Modulus, 

and the material density is constant.  The RBDO problem can be created as follows [15]: 

 

    

 

 

,

t t

1 2

1 1 2 1 22 2

2 23

1 2
2 1 2 0 2 2

min ,

s.t. Prob 0 , 3.0 , 1, 2

600 600

4

0 in, 0 in 5 in

j

w t

j j

f w t wt

g w,t,Y ,Y , y,E j =

g w,t,Y ,Y , y y Y Y
wt w t

Y YL
g w,t,Y ,Y ,E D

Ewt t w

w t

  



   

 
   

 

   
     

   

  

        (19) 

where the loads 1Y  and 2Y , the allowable yield stress y, and the Young’s Modulus E are random parameters as 

shown in Table 3. 

Table 3. Random variables and distributions in example 2 

Variable Symbol Mean Standard deviation  

Vertical load Y1 1000 lb 100 lb 

Horizontal load Y2 500 lb 50 lb 

Allowable yield stress y 40000 psi 4000 psi 

Young’s Modulus E 29000000 psi 2900000 psi 

4.3 Example 3 

Consider the following RBDO problem [20]: 

     

    
     

 

1 2

1 2

2 2

t t

1 1 1 2 2

2 1 2

min 3.7 4

s.t . Prob 0 , 2.0, 1, 2

sin 4 1.1 sin 2

3

0.0 3.7 0.0 4.0

0.1 , 1, 2

X

X
μ

μ

X

X

X

j

i

X X

j j

X X

X

f

g j =

g X X X X

g X X

i

 

  

 



   

   

  

  

   

 

                  (20) 
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There are two random design variables and two probabilistic constraints. 

 

Fig. 6 A speed reducer of light plane [20] 

Table 4. Random variables and distributions in example 4 

Variable Symbol Mean Standard deviation  

Gear width X1 μX1 0.005 mm 

Shaft1 length  X2 μX2 0.005 mm 

Shaft2 length X3 μX3 0.005 mm 

Shaft1 diameter  X4 μX4 0.005 mm 

Shaft2 diameter X5 μX5 0.005 mm 

4.4 Example 4 

Figure 6 illustrates a speed reducer on a light plane.  The speed reducer can realize high-efficiency speed 

matching between the engine and the propeller.  The design target is to minimize the weight of the speed reducer.  

This problem contains 2 deterministic design variables, 5 random design variables as shown in Table 4 and 10 

probabilistic constraints.  The deterministic design variables include the pinion teeth number 
1d  and gear module 

2d .  And the random design variables include the gear width 
1X , the gear modulus 

2X , the number of pinion 

teeth 
3X , the lengths of shaft 1 and shaft 2 denoted as 

4X  and 
5X , the diameters of shaft 1 and shaft 2 denoted 

as 
6X  and 

7X , and all variables are mutually independent.  The probabilistic constraints involve several 

mechanical properties of the speed reducer, such as bending stress, contact stress, longitudinal displacement, axial 

displacement, and geometrical dimension constraints.  The RBDO model of the speed reducer can be created in 

the following form [20]: 

4
X

7
X

6
X

5
X

Shaft2

Shaft1

Gear Pinion
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   

     

    

     

1

4 5 4 5 4 2 5

2

2 1 1
,

2 2 3 3 2 2

1 1

t t

1 2 32 2 2

1 2 1 1 2 1

min , 0.7854 3.3333 14.9334 43.0934

1.508 7.477 0.7854

s.t . Prob , 0 , 3.0, 1,2,...,10

1.9327 397.5
, 1 , , 1 , , 1

j j

X

X X X X X X X

j

f d d d

d d

g j =

X
g g g

d d X d d X



      

  

  

     

   

     

X

X
d μ

X

d μ

d μ

d X d X d X

   
 

 
 

   

3

2

4

2 1 4

2 63
2 2 13

4 54 3

2 1 5 4

2 6

3 2 1 1
6 73

5 2

51 4
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2 2 3

1 2

,

745 / ( ) 16.9 101.93
, 1 , , 1100

0.1

745 / ( ) 157.5 10
, 850 , ( , ) 5 ,

0.1

1.1 1.91.5 1.9
( , ) 12 , 1 , 1 ,

17 18, 0.7mm 0.

d d X

X d dX
g g

d d X X

X d d X
g g

X d

XX X
g g g

d X X

d d

 
   

 
   


     

   

d X d X

d X d X

d X X X

1 2

3 4 5

8mm, 2.6mm 3.6mm, 7.3mm 8.3mm,

7.3mm 8.3mm, 2.9mm 3.9mm, 5.0mm 5.5mm

X X

X X X

 

  

   

              (21) 

4.5 Example 5 

Consider the design problem of a steel column.  The column length is a constant, and the cross-sectional 

dimensions B, D and H are three random design variables.  The design target is to minimize the volume of the 

column, and there is only one failure mode.  The RBDO problem can be expressed as [16]: 

    
,

t t

0

2

2

2

1 2 3

min ( , ) 5

s. t . Prob 0 , 3.0

1

200mm 400mm,10mm 30mm,

100mm 500mm,

where 2 , , ,

1
, , 75

2

B D H
B D H B D H

S 1 2 3 0

b
S

S s b

B D

H

i
s s b

i

f

g B,D,H,F ,P ,P ,P ,F ,E

F
g F F

A U F

EU
A BD U BDH

L

U BDH F P P P L

  
     

  





 







  

   

 
   

 

   

 

  

     00mm

            (22) 

where the random design variables are flange breadth B, flange thickness D and height of profile H; the random 

parameters are yield stress 
SF , dead weigh load 

1P , variable load 
2P , variable load 

3P , initial deflection 
0F  and 

Young’s Modulus E.  Their probability distributions are given in Table 5. 
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Table 5. Random variables and distributions in example 5 

Variable Symbol Mean Standard deviation  

Flange breadth B μB 0.1μB 

Flange thickness D μD 0.1μD 

Height of profile H μH 0.1μH 

Yield stress FS 400 Mpa 40 Mpa 

Dead weight load P1 500,000 N 50,000 N 

Variable load P2 600,000 N 60,000 N 

Variable load P3 600,000 N 60,000 N 

Initial deflection F0 30 mm 3 mm 

Young’s modulus E 21,000 Mpa 2,100 Mpa 

 

Fig. 7 A welded beam structure [27] 

4.6 Example 6 

Consider a welded beam design problem, as shown in Fig. 7.  The objective function is to minimize the welding 

cost, and the probabilistic constraints involve mechanical properties of the welded beam such as the shear stress, 

bending stress, buckling, and free-end displacement.  The design variables are the depth 1X  and length 2X  of 

the welding point, and the beam height 3X  and thickness 4X .  The involved parameters include the following: 

free-end concentrated load 1P , beam length 2P , Young’s Modulus 3P  and shear Modulus 4P  of the material, 

free-end allowable displacement 5P , allowable shear stress 6P , and allowable normal stress 7P .  The above 

parameters are all independent random variables.  The RBDO problem can be expressed as [27]: 

1
X

2
X

1
P

1
P

3
X

Beam

Structure
weldment

4
X

2
P
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

        (23) 

where the constants 
5

1 6.74135 10c    and 
5

2 2.93585 10c    represent the welding cost coefficients.  

And the probability distributions for the involved uncertain parameters are given in Table 6. 

Table 6. Random variables and distributions in example 6 

Variable Symbol Mean Standard deviation  

Welding point depth X1 μX1 0.4 mm 

Welding point length X2 μX2 4.0 mm 

Beam height  X3 μX3 4.0 mm 

Beam thickness X4 μX4 0.4 mm 

Concentrated load P1 26,688 N 2,668.8 N 

Beam length P2 3,556 mm 355.6 mm 

Young’s Modulus P3 20,685 Mpa 2,068.5 Mpa 

Shear Modulus P4 82,740 Mpa 8,274.0 Mpa 

Allowable displacement P5 6.35 mm 0.635 mm 

Allowable shear stress P6 93.77 Mpa 9.377 Mpa 

Allowable normal stress P7 206.85Mpa 20.685Mpa 

 

4.7 Analysis of the results 

The computational results for the above six numerical examples are presented in Tables 2, 7-11.  A 

comprehensive analysis on the 30 situations leads to the following conclusions: 

(1) Convergence.  As indicated in Table 12, SORA and ISV converged in all 30 situations of the six 

examples, but for 11 situations SLM did not converge; nine of these failures were due to the involved uniform 
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probability distributions.  The results indicate that SORA and the ISV method proposed here exhibit better 

convergence than SLM.  In addition, for all converged situations, the ISV method obtained optimization results 

that are very close to those obtained from SORA and SLM, thereby indicating to some extent that the ISV method 

has a fine computational accuracy. 

(2) Efficiency.  As indicated by Fig. 8, overall, the SLM and ISV methods have higher computational 

efficiency than SORA.  In the 19 situations for which SLM converged, the ISV method had higher efficiency for 

14 ones of them, whereas SLM was more efficient for 5 ones.  Thus, the ISV method generally has a slight 

advantage over SLM in terms of efficiency.  Compared with SORA, the ISV method has a more significant 

advantage in terms of efficiency: in 29 ones out of 30 situations, the computational cost of the ISV method was less 

than that of SORA.  Moreover, as the problem complexity increases (more constraints and parameters), the 

efficiency advantage of the ISV method becomes more obvious.  For example, the efficiency of the ISV method 

was 3-5 times that of SORA in Example 6.  In Example 5, the efficiency of the ISV method reached even 10-12 

times that of SORA. 

(3) Summing up the above two points, we can see that the ISV method not only inherits the good 

convergence property of SORA but also possesses the high computational efficiency of the approximation methods 

such as SLM.  Therefore, the result analysis of the above numerical examples has demonstrated that the ISV 

method exhibits a stronger overall performance in terms of convergence and efficiency.  This superior overall 

performance has a very good application potential for reliability design of many complex structures or products. 
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 Table 7. Optimization results for numerical example 2 

Distribution  Results SORA SLM ISV 

Y1 , Y2 , y , E: 

Normal 

d
* 

 2.239, 4.477 2.240, 4.477  2.230, 4.497 

f 
*
 10.026 10.026 10.025 

NI 4 3 3 

NF 489 67 79 

β 3, 3.4 3, 3.5 3, 3.4 

Y1 , Y2 , y , E: 

Lognormal 

d
* 

2.213, 4.422 2.212, 4.423 2.200, 4.447 

f 
*
 9.784 9.784 9.783 

NI 4 2 2 

NF 432 47 48 

β 3.0, 3.4 3.0, 3.3 3.0, 3.3 

Y1 , Y2 , y , E: 

Uniform 

d
* 

2.180, 4.361 --- 2.166, 4.360 

f 
*
 9.508 --- 9.446 

NI 3 --- 2 

NF 378 --- 50 

β 3.0, 5.9 --- 2.8, 6.5 

Y1 , Y2 , y , E: 

Gumbel 

d
* 

2.199, 4.340    2.199, 4.340 2.160, 4.351 

f 
*
 9.545 9.545 9.340 

NI 4 3 3 

NF 430 65 74 

β 3.0, 3.0 3.0, 3.0 2.8, 2.7 

Y1: Normal 

Y2: Lognormal 

y: Lognormal 

E: Gumbel 

d
* 

2.226, 4.394 2.227, 4.391 2.202, 4.446 

f 
*
 9.780 9.780 9.792 

NI 4 2 2 

NF 488 51 49 

β 3.0, 4.0 3.0, 3.8 3.0, 3.8 
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Table 8. Optimization results for numerical example 3 

Distribution  Results SORA SLM ISV 

X1, X2: Normal 

*

X
μ  2.816, 3.277 2.817, 3.276 2.819, 3.279 

 f 
* 

1.304 1.304 1.297 

NI 3 4 2 

NF 88 83 37 

β 2.0, 21.9 2.0, 21.9 2.0, 21.9 

X1, X2: Lognormal 

*

X
μ  2.814, 3.276 2.814, 3.276 2.819, 3.279 

 f 
* 

1.309 1.309 1.296 

NI 3 4 2 

NF 86 81 37 

β 2.0, 30.5 2.0, 30.5 2.0, 30.6 

X1, X2: Uniform 

*

X
μ  2.818, 3.266 --- 2.817, 3.270 

 f 
* 

1.317 --- 1.313 

NI 3 --- 2 

NF 74 --- 37 

β 2.0, 205.0 --- 2.0, 307.2 

X1, X2: Gumbel 

*

X
μ   2.880, 3.129 2.785, 3.293  2.881, 3.130 

 f 
* 

1.427 1.337 1.428 

NI 5 5 27 

NF 102 95 617 

β 2.0, 54.2 2.0, 54.1 2.1, 54.2 

X1: Normal 

X2: Uniform 

*

X
μ  2.802, 3.276 --- 2.832, 3.265 

 f 
* 

1.331 --- 1.293 

NI 3 --- 2 

NF 188 --- 37 

β 2.0, 41.0 --- 1.9, 41.1 
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Table 9. Optimization results for numerical example 4 

Distribution  Results SORA SLM ISV 

X1~X5: Normal 

* , *

X
d μ  

17, 0.7, 3.58, 7.3 

7.73, 3.36, 5.30 

17, 0.7, 3.58, 7.3 

7.75, 3.36, 5.30 

17, 0.7, 3.58, 7.3 

7.75, 3.36, 5.30 

 f 
* 

3035.5 3036 3036.3 

NI 2 2 2 

NF 1358 375 326 

β 

6.7, 15.9, 64.1, 128.9, 

3.1, 3.1, 3.0 

80.1, 40.2, 3.0 

6.7, 15.9, 63.3, 128.7, 

3.1, 3.1, 3.0 

80.1, 40.1, 3.0 

6.7, 15.9, 63.3, 128.9, 

3.1, 3.1, 3.0 

80.1, 40.1, 3.0 

X1~X5: Lognormal 

* , *

X
d μ  

 17, 0.7, 3.58, 7.3,  

7.73, 3.36, 5.30 

17, 0.7, 3.58, 7.3,  

7.75, 3.36, 5.30 

17, 0.7, 3.58, 7.3,  

7.75, 3.36, 5.30 

 f 
* 

3035.8 3036.2 3036.6 

NI 2 2 2 

NF 1372 375 330 

β 

6.9, 16.9, 51.5, 36.5, 

3.0, 3.0, 3.0, 

39.1, 12.5, 3.0 

6.9, 16.9, 51.5, 36.5, 

3.0, 3.0, 3.0, 

39.1, 12.5, 3.0 

6.9, 16.9, 51.5, 36.4, 

3.0, 3.0, 3.0, 

39.1, 12.5, 3.0 

X1~X5: Uniform 

* , *

X
d μ  

 17, 0.7, 3.55, 7.3, 

 7.72, 3.35, 5.29 
--- 

 17, 0.7, 3.55, 7.3, 

7.74, 3.35, 5.29 

 f 
* 

3019.5 --- 3017.4 

NI 2 --- 2 

NF 2674 --- 620 

β 

86.8, 188, 7, 1666, 

3.0, 3.0, 3.0, 

227.5, 354.6, 3.0 

--- 

86.8, 188, 7, 1666, 

3.0, 3.0, 3.0, 

227.0, 354.6, 3.0 

X1~X7: Gumbel 

* , *

X
d μ  

17, 0.7, 3.6, 7.3 

7.73, 3.35, 5.30 
--- 

17, 0.7, 3.6, 7.3 

7.75, 3.35, 5.30 

 f 
* 

3039.8 --- 3040.7 

NI 2 --- 2 

NF 1724 --- 337 

β 

46.4, 59.9, 57.3, 24.9 

3.0, 3;0, 2.7, 

39.0, 35.7, 3.0 

--- 

46.4, 59.9, 55.5, 25.2, 

3.3, 3.3, 2.7,  

39.0, 39.4, 3.0 

X1: Normal 

X2: Lognormal 

X3, X4: Uniform 

X5: Gumbel 

* , *

X
d μ  

17, 0.7, 3.58, 7.3,  

7.72, 3.35, 5.30 
--- 

17, 0.7, 3.58, 7.3, 

7.74, 3.35, 5.30  

 f 
* 

3030.3 --- 3030.8 

NI 2 --- 2 

NF 1371 --- 431 

β 

6.7, 15.9, 33.0, 33.3, 

3.0, 3.0, 3.0 

80.1, 54.2, 3.0 

--- 

6.7, 15.9, 33.0, 33.2, 

2.9, 3.0, 3.0 

80.1, 53.9, 3.0 
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Table 10. Optimization results for numerical example 5 

Distribution  Results SORA SLM ISV 

B, D, H, P1, P2, P3,  

FS, E, F0: Normal 

, ,* * *

B D H    
254.02, 13.72,  

100.00 

256.77, 13.57, 

100.00 

256.73, 13.48,  

100.00 

 f 
* 

3985.6 3984.5 3960.5 

NI 4 4 2 

NF 602 81 51 

β 3.0 3.0 3.0 

B, D, H, P1, P2, P3,  

FS, E, F0: Lognormal 

, ,* * *

B D H     251.72, 13.50, 100.00 
253.66, 13.40,  

100.00 

254.40, 13.36,  

100.00 

 f 
* 

3898.6 3898.5 3897.5 

NI 4 4 2 

NF 553 81 47 

β 3.0 3.0 3.0 

B, D, H, P1, P2, P3,  

FS, E, F0: Uniform 

, ,* * *

B D H     257.12, 13.57, 100.00 --- 
255.98, 13.44,  

100.00 

 f 
* 

3988.6 --- 3940.1 

NI 3 --- 2 

NF 465 --- 49 

β 3.0 --- 2.9 

B, D, H, P1, P2, P3,  

FS, E, F0: Gumbel 

, ,* * *

B D H    
244.96, 12.96,  

100.00 

244.37, 12.98,  

100.00 

246.39, 12.94,  

100.00 

 f 
* 

3673.8 3671 3687.1 

NI 4 4 2 

NF 525 81 46 

β 3.0 3.0 3.0 

B,D,H: Normal 

P1, P2, P3: Uniform 

FS, E: Lognormal 

F0: Gumbel 

, ,* * *

B D H    
255.22, 13.68,  

100.00 

257.42, 13.54,  

100.00 

257.87, 13.54,  

100.00 

 f 
* 

3990.7 3985.9 3991 

NI 4 4 2 

NF 587 83 49 

β 3.0 3.0 3.0 
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Table 11. Optimization results for numerical example 6 

Distribution  Results SORA SLM ISV 

X1~ X4, P1~P7:  

Normal 

*

X
μ  

10.07, 158.28, 

210.89, 11.76 

 10.07, 158.30, 

 210.90, 11.76 

 10.00, 158.26, 

210.89, 11.70 

 f 
* 

4.8238 4.8238 4.7875 

NI 3 4 3 

NF 1532 391 323 

β 
3.0, 3.6, 3.0, 

11.7, 8.8 

3.0, 3.6, 3.0, 

11.7, 8.8 

3.0, 3.5, 3.0, 

11.5, 8.7 

X1~ X4, P1~P7:  

Lognormal 

*

X
μ  

9.97, 158.28, 

210.89, 11.68 

9.97, 158.28, 

210.89, 11.68 

9.97, 158.26, 

210.88, 11.68 

 f 
* 

4.7774 4.7775 4.7756 

NI 3 3 3 

NF 1170 301 329 

β 
3.0, 3.6, 3.0, 

9.7, 7.6 

3.0, 3.6, 3.0, 

9.7, 7.6 

3.0, 3.6, 3.0, 

9.6, 7.5 

X1~ X4, P1~P7:  

Uniform 

*

X
μ  

9.96, 158.23, 

210.87, 11.30 
--- 

9.87, 158.19, 

210.85, 11.21 

 f 
* 

4.6522 --- 4.6021 

NI 3 --- 2 

NF 1884 --- 205 

β 
3.0, 4.1, 3.0, 

288.7, 366.9 
--- 

2.9, 3.9, 3.0, 

388.7, 129.8 

X1~ X4, P1~P7:  

Gumbel 

*

X
μ  

10.17, 158.30, 

210.91, 12.26 
--- 

10.14, 158.30, 

210.91, 12.05 

 f 
* 

5.0068 --- 4.9315 

NI 3 --- 6 

NF 1783 --- 607 

β 
3.0, 3.5, 3.0, 

6.8, 6.3 
--- 

3.0, 3.4, 2.8, 

6.8, 6.1 

X1~ X4: Uniform 

P1, P2, P5: Lognormal 

P3, P4: Normal 

P6, P7: Gumbel 

*

X
μ  

9.86, 158.22, 

210.86, 11.20 
--- 

9.91, 158.21, 

210.86, 11.25 

 f 
* 

4.5982 --- 4.6253 

NI 3 --- 3 

NF 1632 --- 304 

β 
3.0, 3.4, 3.0 

9.6, 3.5 
--- 

3.04, 3.4, 3.0, 

9.6, 7.6 

 

Page 27 of 46

Prof. G.I.N. Rozvany, phone: +36 (26) 362 592, e-mail: smo.rozvany@axelero.hu

Structural and Multidisciplinary Optimization

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

 

 28 

Table 12. Comparison of convergence for 6 numerical examples 

Method SORA SLM ISV 

Case 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 

Example 1 √ √ √ √ √ √ √ × √ √ √ √ √ √ √ 

Example 2 √ √ √ √ √ √ √ × √ √ √ √ √ √ √ 

Example 3 √ √ √ √ √ √ √ × √ × √ √ √ √ √ 

Example 4 √ √ √ √ √ √ √ × × × √ √ √ √ √ 

Example 5 √ √ √ √ √ √ √ × √ √ √ √ √ √ √ 

Example 6 √ √ √ √ √ √ √ × × × √ √ √ √ √ 

√: Convergence; ×: Divergence.  
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Fig. 8 Comparison of computational cost for 6 numerical examples 

5 Engineering applications 

5.1 Electronic packaging design for a smart watch 

  The wearable electronic device is generally highly integrated, which is required to satisfy some specific 

requirements in terms of mechanical, thermal and electrical performances using appropriate electronic packaging 

design.  A smart watch as shown in Fig. 9 is considered in this problem.  The thickness 
mT  on the midsection is 

required to minimize to satisfy the wearing comfort.  Therefore, it is defined as the RBDO objective function.  

The smart watch should work reliably in some extreme conditions with hard impact and high temperature 

environment.  In the hard impact environment, three identical steel balls are used to hit against the surface of the 

display in three different mark points, respectively.  To ensure the display quality, the maximal stress in each point, 

N , 1,2,3i i  , should be less than the yield strength 
Display  of the material. In the high temperature 

environment, the operating temperature of the device is set as 50℃.  The maximum temperature of Chip_1 and 
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Chip_2, 1T  and 2T , and the maximum stress 
H  of the solder between display and main board are required to 

be less than the allowable values, 
ChipT  and 

Solder .  The target reliability indexes for the constraints are 

2.0,  1,2,3,4,5,6j j   .  The thicknesses of the device housing, main board, bracket, display and lens, 

, 1,2,...,5iX i  , are treated as random design variables, which follow uniform distributions.  The Young 

Modulus of the main board, display and lens, , 1,2,3iP i  , are random parameters.  The power dissipation of 

Chip_1 and Chip_2, 4P  and 5P , are also treated as random parameters.  The probability distributions for the 

design variables and parameters are given in Table 13. The RBDO problem is formulated as follows: 

 

    

   

   

   

1 2 3 4 5

m

t t

Display N Display N

1 1 2 2

Display N Solder H

3 3 4

Chip Chip

5 1 6 2

OLED Solder

,

min

s.t. Prob , 0 , 3.0 1, 2, 3, 4,5,6

, , , ,

, , , ,

, , , ,

82.0 Mpa, 62

j

X X X X X

j j

T

g j =

g g

g g

g T T g T T

    

  

   

   

 

    

   

   

   

   

 

X

X
μ

μ

X P

X P X P

X P X P

X P X P

Chip.8 MPa, 90.0

1.0mm 2.0mm, 1,2,3,4,5
iX

T

i



  

℃

              (25) 

The FEM models are established for all the performance functions as shown in Fig. 10, which are all implicit and 

time-consuming computational models.  To realize the parameterization and also improve the optimization 

efficiency, a second-order polynomial response surface is created for each performance function by using 65 FEM 

samples, as shown in Table 14.  The three methods, SORA, ISV and SLM, are all used to solve this problem with 

the same initial point 
initial [1.50,1.00,1.50,1.40,1.20]Xμ , and the results are provided in Table 15.  Firstly, it 

can be seen that all reliability requirements of the smart watch are satisfied and the thickness of the device is 

reduced from 6.60mm to 6.29mm.  Secondly, the optimal objective function values for SORA and ISV are 6.28mm 

and 6.29mm, respectively, which behaves only a small difference of 0.16%.  It indicates that these two methods 

have a comparative accuracy for this problem.  Thirdly, there is no result of SLM provided here, which is due to 

the fact that SLM is not convergent for this problem.  Finally, SORA and ISV both require only a few iterations to 

reach an optimum.  However, the total performance functional evaluations for SORA are 724, while it is only 381 

for ISV.  Therefore, ISV works more computationally efficient than SORA for this engineering application. 
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Fig.9 A smart watch 

3 Impact Points

Device Housing

Mainboard

Bracket

Display

Lens

m
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(a) Point 1 in hard impact ( 1g )          (b) Point 2 in hard impact ( 2g ) 

  

(c) Point 3 in hard impact ( 3g )         (d) Solder stress in high temperature ( 4g ) 

 

     (e) Chip temperature in high temperature ( 5g , 6g ) 

Fig.10 Simulation models for the smart watch problem 

Chip_1 Chip_2
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Table 13. Random variables and distributions in engineering application 1 

Variable Symbol Mean 
Standard 

deviation  

Distribution type 

Device housing thickness X1 μX1 0.03 mm Uniform 

Main board thickness X2 μX2 0.03 mm Uniform 

Bracket thickness X3 μX3 0.03 mm Uniform 

Display thickness X4 μX4 0.03 mm Uniform 

Lens thickness X5 μX5 0.03 mm Uniform 

Main board Young’s Modulus P1 11,000 Mpa 200 Mpa Normal 

Display Young’s Modulus P2 23,000 Mpa 400 Mpa Normal 

Lens Young’s Modulus P3 2,480 Mpa 100 Mpa Normal 

Chip_1 power dissipation P4 0.15 W 0.02 W Normal 

Chip_2 power dissipation P5 0.15 W 0.02 W Normal 

 

Table 14. Response surfaces for the performance functions in engineering application 1 

Performance function Response surface 

 OLED N

1 1 ,g    X P  

   2 2

2 2 3 2 3

2 2

1 1 3 1 4 1 5 3

2 2

3 4

N 6

3 5 4 4 5

1

5

.001848 0.3688 973.18 1.609

30.19 1.133 33.10 1.313 0.4128

3.7317 0.26871 56.55 65.54 55.32 129

, 10

.86

0 P P P P P

X X X X X X X X

X X X X X X X X

   

   

 



     

X P

 

 OLED N

2 2 ,g    X P  

   2 2

2 2 3 2 3

2 2

1 1 3 1

N 6

4 1 5 3

2 2

3 4 3 5

2

4 4 5 5

0.03509 0.1813 1277 1.461

35.80 6.112 32.86 2.891 6.809

4.303 9.209 63.71 67.43 64.37 135.2

, 10 P P P P P

X X X X X X X X

X X X X X X X X

    

    

    

 



X P

 

 OLED N

3 3 ,g    X P  

   2 2

2 2 3 2 3

2 2

1 1 3 1 4

N 6

3

1 5 3

2 2

3 4 3 5 4 4 5 5

0.03054 0.95 802.6 4.645

28.19 4.188 28.63 0.2030 9.152

16.12 15.75 42.17 62.61

, 1

36.32 119.

0

5

P P P P P

X X X X X X X X

X X X X X X X X

    

    

     

X P

 

 Solder H

4 ,g    X P  
  2 2

1 1 2 1 1 2

2 2

3 2 2 3 3

H

1

2578 0.00002501 0.9103 0.02502

0.6950 0.1007 0.

, 0.000

0125 2.372 37 5

00

. 4

0 P P X X X X

X X X X X X

  





  





X P
 

 Chip

5 1 ,g T T  X P  
  2 2

1 1 2 1 3 2 2 3

2

3 4

1

5 4 5

0.5473 2.932 0.3207 5.589 2.970

1.206 71.85 72.81 299.3 62. 5

,

0

X X X X X X X X

X P P P P

T    

    

X P
 

 Chip

6 2 ,g T T  X P  
  2 2

1 1 2 1 3 2 2 3

2

3 4

2

5 4 5

0.5448 2.923 0.3219 5.569 2.973

1.204 61.10 96.78 255.2 61. 1

,

1

X X X X X X X X

X P P P P

T    

    

X P
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Table 15. Optimization results for engineering application 1 

Results Symbol SORA ISV 

Design optimum 
*

X
μ  

(1.00mm, 0.80 mm,1.92 mm, 

1.20 mm, 1.36 mm) 

(1.00mm, 0.80mm, 1.93mm, 

1.20mm, 1.36mm) 

Objective optimum m*T  6.28 mm 6.29 mm 

Reliability index  

at the optimum  

*
β  4.9, 2.0, 4.9, 2.0, 4.8, 4.5 4.9, 2.0, 4.9, 2.0, 4.5, 4.5 

Iteration numbers IN  3 4 

Performance functional 

evaluations 
FN  724 381 

 

5.2 An automobile crashworthiness design 

Lightweight design of automobile offers a promising way to improve the vehicle power performance, while it 

may also lead to the degradation of vehicle crashworthiness to some extent.  Therefore, it seems useful to obtain a 

trade-off between the two aspects using the RBDO method.  A vehicle model [40] as shown in Fig. 11 is 

considered. The design objective is to minimize the total mass M of the five key parts of the vehicle, namely, the 

crash box inner and outer plates, the front longitudinal beam inner and outer plates, the frontal bumper. The 

constraints are the vehicle crashworthiness requirements.  The low-speed offset collision analysis at 15km/h and 

the high-speed frontal collision analysis at 56.4km/h are both conducted for the vehicle in this example.  In the 

low-speed collision, the protection of the vehicle body is the priority because passenger safety is barely threatened 

in this case.  The deformation of the front longitudinal beam can be described using the absorbed energy E in the 

collision, which should be less than an allowable value 0E  to guarantee the low-speed crashworthiness.  In the 

high-speed collision, the damage to the passenger is required to be controlled and a safety space should be ensured.  

Therefore, the mean integration acceleration of the left backseat, a , and the intrusion quantities of the upper and 

lower mark points, 
HI  and 

LI , are required to be less than the given allowable values 0a , 
H

0I  and 
L

0I  

respectively. The target reliability indexes for the four constraints are set as 2.0, 1,2,3,4j j   .  The 

thickness 1X
 
of the front bumper, the thicknesses 2X  and

 3X
 
of the crash box inner and outer plates, the 

thicknesses 4X  and 5X
 

of the front longitudinal beam inner and outer plates are treated as uncertain design 

variables, as shown in Table 16.  The RBDO problem is then formulated as follows: 
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 

    

   

   

1 2 3 4 5

1 2

t t

1 0 2 0

H H L L

3 0 4 0

H L

0 0 0 0

,

min 2 088 0 404 0 22 1 2 0 887

s.t. Prob 0 , 2.0 1, 2, 3, 4

, ,

,

40 g, 300 J, 270 mm, 180 mm

2.0mm 3.0mm,1.0mm 3.0mm, 1.0mm

j

X X X X X

j j

X X

M . + . + . + . + .

g j =

g E E g a a

g I I g I I

a E I I

    

  

 



   

   

   

   

    

X

X
μ

μ

X

X X

X X

3

4 5

2.5mm, 

1.5mm 3.0mm, 1.0mm 3.0mm

X

X X



 



   

       (24) 

The FEM models are established for all the performance functions, as shown in Fig. 12. The response surfaces 

for the performance functions are also created based on 65 FEM samples, as shown in Table 17.  In this 

application, SORA, ISV and SLM methods are all used to solve the above RBDO problem with a same initial point 

 initial 2.20, 2.20, 2.20, 2.20, 2.20Xμ .  For this initial point, the actual reliability indexes of the four 

constrains are  Initial 0.0,  4.5,  0.0,  4.5β .  Obviously, the first and third constrains cannot reach the target 

reliabilities.  After RBDO analysis, the obtained optimal designs through the three methods are very close as 

shown in Table 18.  From the optimization results, it can be found that the thicknesses of the five parts have been 

redistributed and the reliability requirements for all the constraints are then satisfied.  What’s more, the 

lightweight design is improved slightly since the mass is reduced from 10.56 kg to 10.44 kg.  In this application, 

the total performance functional evaluations for SORA, ISV and SLM are 452, 151 and 136, respectively, which 

indicates that ISV and SLM have obviously higher computational efficiency than SORA for this problem.   

 

        (a) Low-speed offset collision ( 1g )      (b) High-speed frontal collision ( 2g , 3g , 4g ) 

Fig.11 Configurations of vehicle collision 

L

0 15 km / hV  H

0 56.4 km / hV 

Frontal bumper

Crash box

F.L. beam

F.L. : Frontal longitudinal 

Engine
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(a) Low-speed offset collision              (b) High-speed frontal collision 

Fig.12 Simulation models for the vehicle crashworthiness problem 

Table 16. Random variables and distributions in engineering application 2 

Variable Symbol Mean Standard deviation  Distribution type 

Frontal bumper thickness X1 μX1 0.05 mm Normal 

Crash box inner plate thickness  X2 μX2 0.05 mm Normal 

Crash box outer plate thickness X3 μX3 0.05 mm Normal 

F.L. beam inner plate thickness X4 μX4 0.05 mm Normal 

F.L. beam outer plate thickness  X5 μX5 0.05 mm Normal 
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 Table 17. Response surfaces for performance functions in engineering application 2 

Performance function Response surface 

 1 0g E E  X  

  1 2 3 4 5

1 2 1 3 1 4 2 3 1 5

2 4 2 5 3 4 3 5 4 5

2 2 2

2 4 5

109.428 446.816 292.161 783.119 1455.022

78.912 179.822 55.735 68.927 97.546

99.046 88.414 35.461 52.259 185.717

14.85 134.994 275.308 127

E X + X + X X X

X X X X + X X + X X + X X

X X X X X X + X X + X X

+ X + X + X +

  

 

  

X

79 336.

 

 2 0g a a  X  

  2 1 3 4 5 1 2

1 4 2 3 1 5 2 5 3 4

2 2 2 2

3 5 1 2 3 4

9 449 1 832 11 69 10 636 6 679 1 232

1 329 1 106 0 914 1 313 3 759

1 1978 1 225 2 366 1 353 0 906 16 596

a . X . X + . X + . X + . X . X X

. X X + . X X . X X . X X . X X

. X X + . X . X . X . X + .  

  

   

   

X

 

 H H

3 0g I I  X  

 H 2

1 1 2 1 3 1 5 1

2 2

2 2 4 2 5 2 3

2

3 4 3 4 4 5 4

2

5 5

37 824 12 634 21 495 20 773 135 479

25 779 15 08 8 781 123 145 29 194

7 606 65 554 31 565 15 874 93 243

14 968 106 945 643 436

I . X . X X . X X . X X . X

. X . X X . X X . X . X

. X X . X . X . X X . X

. X . X .   

    

    

    

  

X

 

 L L

4 0g I I  X  

 L

1 2 3 4 5

1 2 2 3 1 5 2 4 2 5

2 2

3 4 3 5 4 5 1 2

2 2

4 5

51 820 9 242 8 394 79 998 64 932

5 156 6 211 14 747 5 878 9 894

8 811 2 477 7 152 15 196 6 761

20 438 7 471 275 327

I . X . X + . X . X . X

. X X + . X X + . X X . X X . X X

. X X - . X X + . X X . X + . X

+ . X . X + .    

   

  

 



X

 

 

Table 18. Optimization results for engineering application 2  

Results Symbol SORA ISV SLM 

Design optimum 
*

X
μ  

(2.31mm, 2.03mm, 

1.63mm, 2.12mm, 

2.12mm 

(2.31mm, 2.04mm, 

1.68mm, 2.11mm, 

2.11mm) 

(2.31mm, 2.03mm, 

1.63mm, 2.12mm, 

2.12mm) 

Objective optimum *M
 10.44 kg 10.44 kg 10.44 kg 

Reliability index  

at the optimum 

*
β  2.0, 3.8, 2.0, 4.1 2.0, 2.7, 2.0, 4.1 2.0, 3.8, 2.0, 4.1 

Iteration numbers IN  4 7 6 

Performance functional 

evaluations 
FN  452 151 136 

 

6 Conclusions 

This paper proposed an ISV-based RBDO decoupling method that performs well in terms of both efficiency and 

convergence. The innovations of the proposed ISV method are that it uses a new incremental shifting strategy to 

ensure convergence in the iteration process and that it includes a new shifting vector computation method to avoid 

solving an optimization problem in the reliability analysis, which ensures high-efficiency RBDO solution.  

Through analyzing 30 different situations of six numerical examples as well as two practical applications, it was 

found that the ISV method possesses not only the similar convergence property of SORA but also the high 

Page 37 of 46

Prof. G.I.N. Rozvany, phone: +36 (26) 362 592, e-mail: smo.rozvany@axelero.hu

Structural and Multidisciplinary Optimization

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

 

 38 

computational efficiency such as SLM.  Also, the computational results can validate to some extent that the 

accuracy of the ISV method is guaranteed.  Thus the proposed ISV method has a good application potential in 

reliability design of many complex structures or products.  In the future, the ISV method can be expanded into 

reliability design for problems involving multidisciplinary analysis and problems including probabilistic and 

non-probabilistic hybrid uncertainties.  
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Figure captions 

Fig. 1 Shifting vector of the probability constraint in SORA 

Fig. 2 Shifting vector of increment in ISV method 

Fig. 3 Flowchart of the ISV method 

Fig. 4 Schematic diagram of the ISV’s iterative process for a RBDO problem 

Fig. 5 A cantilever beam [15] 

Fig. 6 A speed reducer for a light plane [20] 

Fig. 7 A welded beam structure [27] 

Fig. 8 Comparison of the computational costs for the 6 numerical examples 

Fig.9 A smart watch 

Fig.10 Simulation models for the smart watch problem 

Fig.11 Configurations of vehicle collision 

Fig.12 Simulation models for vehicle crashworthiness 
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Table captions 

Table 1 Six numerical examples 

Table 2 Optimization results for numerical example 1 

Table 3 Random variables and distributions in example 2 

Table 4 Random variables and distributions in example 4 

Table 5 Random variables and distributions in example 5 

Table 6 Random variables and distributions in example 6 

Table 7 Optimization results for numerical example 2 

Table 8 Optimization results for numerical example 3 

Table 9 Optimization results for numerical example 4 

Table 10 Optimization results for numerical example 5 

Table 11 Optimization results for numerical example 6 

Table 12 Comparison of convergence for 6 numerical examples 

Table 13 Random variables and distributions in engineering application 1 

Table 14 Response surfaces for performance functions in engineering application 1 

Table 15 Optimization results for engineering application 1 

Table 16 Random variables and distributions in engineering application 2 

Table 17 Response surfaces for performance functions in engineering application 2 

Table 18 Optimization results for engineering application 2 
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