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Abstract: Values up to γ = 7× 106/(Wkm) for the nonlinear parameter
are feasible if silicon-on-insulator based strip and slot waveguides are
properly designed. This is more than three orders of magnitude larger than
for state-of-the-art highly nonlinear fibers, and it enables ultrafast all-optical
signal processing with nonresonant compact devices. At λ = 1.55 μm we
provide universal design curves for strip and slot waveguides which are
covered with different linear and nonlinear materials, and we calculate the
resulting maximum γ .
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1. Introduction

Silicon-on-insulator (SOI) is considered a promising material system for dense on-chip inte-
gration of both photonic and electronic devices. Providing low absorption at infrared telecom-
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munication wavelengths and having a high refractive index of n ≈ 3.48, silicon is well suited
for building compact linear optical devices [1–6]. To efficiently use their inherently large op-
tical bandwidth, it is desirable to perform all-optical signal processing and switching on the
same chip by exploiting ultrafast χ (3)-nonlinearities such as four-wave-mixing (FWM), cross-
and self-phase modulation (XPM, SPM) or two-photon absorption (TPA). Such devices show
potential for ultrafast all-optical switching at low power [7, 8].

Third-order nonlinear interaction in SOI-based waveguides can be realized in two ways:
First, nonlinear interaction with the silicon waveguide core itself can be used, leading to
SPM/XPM overlayed by TPA [9–11]. Second, the silicon core can be embedded in nonlinear
cladding material, and interaction with the evanescent part of the guided mode can be exploited.
In the latter case, interaction with the nonlinear cladding material can be significantly enhanced
when using slot waveguides rather than strips [12, 13], whereby the fraction of optical power
guided in the low-index region can be maximized by appropriate waveguide dimensions [14].

However, it is not clear from the beginning, which choice leads to more pronounced non-
linearities. The strength of third-order nonlinear interaction in a waveguide is described by the
nonlinear parameter γ , the real part of which depends on the waveguide geometry as well as on
the nonlinear-index coefficient n2 of the nonlinear interaction material. To optimize the wave-
guide dimensions for maximal nonlinear interaction, a geometrical measure is needed to rate
the spatial confinement of the mode inside the nonlinear material. For optical fibers or other low
index-contrast waveguides, the light propagates inside a quasi-homogeneous nonlinear mate-
rial, and an appropriate measure is the so-called effective core area for nonlinear interaction
Aeff [15] which is calculated based on a scalar approximation of the modal field. The actual
cross-sectional power P related to the effective core area A eff accounts then for the nonlinear
deviation n2P/Aeff from the linear effective refractive index of the waveguide mode.

This widely used notion of an effective area cannot be directly transferred to nonlinear high
index-contrast SOI waveguides. In addition, the nonlinearity is usually limited to certain sub-
domains of the modal cross section.

In this paper we therefore first extend the standard definition of A eff to the case of a high
index-contrast χ (3)-nonlinear waveguide and calculate its effective area A eff. The smaller Aeff

becomes, the larger the nonlinear effects will be for a given χ (3). We then calculate universal
design parameters for a silicon core and for various cover materials leading to a minimum A eff

for strip and slot waveguides at the telecommunication wavelength λ = 1.55 μm. We estimate
the nonlinear waveguide parameter γ for optimized waveguide geometries. We find that γ can
become more than three orders of magnitude larger (∼ 7× 10 6/(Wkm)) than for state-of-
the-art highly nonlinear fibers (∼ 2× 103/(Wkm) [16]), and we infer that ultrafast all-optical
switching is feasible with non-resonant mm-scale SOI-based devices.

The paper is structured as follows: In Section 2, we define the effective area A eff for nonlinear
interaction in high index-contrast waveguides; mathematical details are given in the Appendix.
In Section 3, we describe the waveguide optimization method, and in Section 4 we present
optimal parameters for different types of SOI-based waveguides. Section 5 deals with differ-
ent interaction materials; we calculate γ for various waveguides, and we discuss application
examples. Section 6 summarizes the work.

2. Effective area for third-order nonlinear interaction

Figure 1 shows cross sections of the waveguides under consideration. The core domain D core

consists of silicon (ncore ≈ 3.48 for λ = 1.55 μm), the substrate domain D sub is made out of
silica (nsub ≈ 1.44), and the cover domain Dcover comprises a cladding material with refractive
index ncover < ncore. For the strip waveguide in Fig. 1(a), nonlinear interaction can either occur
within the waveguide core (“core nonlinearity”), or the evanescent part of the guided light
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Fig. 1. Waveguide cross-sections (a) Strip waveguide. For core or cover nonlinearity, the
nonlinear interaction domain Dinter is limited to the core domain (Dinter = Dcore) or to the
cover domain (Dinter = Dcover), respectively. (b) Slot waveguide. The nonlinear interac-
tion domain is limited to the cover domain (Dinter = Dcover).

interacts with a nonlinear cover material (“cover nonlinearity”). The slot waveguide depicted
in Fig. 1(b) enables particularly strong nonlinear interaction of the guided wave with the cover
material inside the slot.

For maximum nonlinear interaction in strip or slot waveguides, a set of optimal geometry
parameters w and h must exist: Given a nonlinear core and a linear cover, an increase of the
waveguide cross section decreases the intensity inside the core and thus weakens the nonlinear
interaction, while a decrease of the core size pushes the field more into the linear cover material
and again reduces nonlinear effects. If a linear core is embedded into a nonlinear cover, a very
small core produces a mode which penetrates the cover too deeply thus reducing the optical
intensity in the nonlinear material, while for a large core only a small fraction of light will
interact with the nonlinear cover.

Analytical descriptions of third-order nonlinear interaction in optical fibers are given in text-
books [15, 17]. The derivations are adapted to low index-contrast material systems, and it is
assumed that the nonlinear susceptibility is constant over the whole cross section. These ap-
proximations are excellent for optical fibers and other low-index-contrast systems, but they do
not hold for high index-contrast (HIC) waveguides. For example, in the analysis of low index-
contrast systems, it is usually assumed that ∇ ·E = ε∇ ·D, which requires ∇ε ≈ 0 in the entire
cross section of the waveguide (see for example Eq. (2.1.18) in [15]). This approximation is not
valid for HIC material systems, and the accuracy of standard equations for fibers is questionable
when applied to SOI waveguides. We therefore derive a relation for the nonlinear waveguide
parameter γ which is adapted to high index-contrast waveguides, where in addition only parts
of the cross section are nonlinear. The result is similar to the relations presented in [18]. The
mathematical details of the derivation are given in the Appendix.

In the following, the total domain D tot = Dcore ∪Dsub ∪Dcover denotes the total cross section
of the waveguide. Dtot includes a domain which is filled with the nonlinear interaction material
and which is referred to as Dinter. The quantity ninter denotes the linear refractive index of
the nonlinear material in this interaction domain D inter. For the case of core nonlinearity we
have Dinter = Dcore, ninter = ncore, and for cover nonlinearity D inter = Dcover, ninter = ncover has
to be used, see Fig. 1. We further approximate the third-order nonlinear susceptibility tensor
˜χ (3) by a scalar ˜χ (3) which is constant within Dinter. A simple relationship of the form γ ∝
˜χ (3)

/

(

n2
interAeff

)

can then be derived for the nonlinear waveguide parameter γ , see Eq. (16).

Denoting the electric and magnetic field vectors of waveguide mode μ by E μ(x,y) and Hμ(x,y),
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respectively, the effective area Aeff for third-order nonlinear interaction is given by (see Eq. (15)
in the Appendix)

Aeff =
Z2

0

n2
inter

∣

∣

∣

∣

∫∫

Dtot

Re
{

Eμ(x,y)×H �
μ (x,y)

} · ez dx dy

∣

∣

∣

∣

2

∫∫

Dinter

∣

∣Eμ (x,y)
∣

∣

4
dx dy

. (1)

Z0 =
√

μ0/ε0 = 377Ω is the free-space wave impedance, and e z is the unit vector pointing in
positive z-direction. For low-index contrast material systems with homogeneous nonlinearity,
Eq. (1), (15) reduces to the usual definition of an effective area [15, Eq. (2.3.29)] as is shown
in Eq. (17) of the Appendix.

The modal fields Eμ(x,y) and Hμ(x,y) are classified by the terms TE and TM. TE refers
to a waveguide mode with a dominant electric field component in x-direction (parallel to the
substrate plane), whereas the dominant electric field component of a TM mode is directed
parallel to the y-axis (perpendicular to the substrate plane).

3. Waveguide optimization method

To evaluate the integrals in Eq. (1), both the electric and the magnetic fields of the fundamental
waveguide modes are calculated using a commercially available vectorial finite-element mode
solver [19]. For core (cover) nonlinearity, the computational domain extends from −1.5 μm
to +1.5 μm (−2 μm to +2 μm) in the x-direction, and from −1 μm to +2 μm (−1.5 μm to
+2.5 μm) in the y-direction, terminated by perfectly matched layers of 0.4 μm thickness in all
directions. To improve accuracy, second-order finite elements are used. The size of the finite
elements outside the core region is Δx≈ Δy≈ 40nm, whereas the silicon strips and the gaps are
each divided into at least 10 elements both in the x- and in the y-direction. To better resolve the
discontinuities of the normal electric field components, two layers of 2nm wide finite elements
are placed on each side of each dielectric interface. For the structures operated in TM polariza-
tion, the fields are evaluated and stored on a rectangular grid with step size Δx store ≈ 5nm in the
x-direction and Δystore ≈ 2nm in the y-direction. For TE polarization, the values Δx store ≈ 2nm
in x-direction and Δystore ≈ 5nm in y-direction are chosen. The exact step sizes of the grids are
matched to hit the dielectric boundaries.

For optimization, the waveguide parameters w and h are alternately scanned in a certain
range. The resulting values for Aeff are slightly scattered due to numerical inaccuracies. There-
fore, a fourth-order polynomial is fitted to the data points, and the local minimum of the polyno-
mial is taken as a starting point for the next scan. The iteration is stopped when the geometrical
parameters repeatedly change by less than 0.5nm between subsequent iterations.

4. Optimal strip and slot waveguides

Third-order nonlinear interaction is maximized for five different cases: Core nonlinearities
in strip waveguides for both TE- and TM-polarization, cover nonlinearities in strip wave-
guides for both polarizations, and cover nonlinearities in TE-operated slot waveguides. For
the exploitation of core (cover) nonlinearities, different values of n cover ∈ {1.0,1.1, . . .2.5}
(ncover ∈ {1.0,1.1, . . .3.0}) are considered.

4.1. Strip waveguides and core nonlinearity

For the case of core nonlinearity, silicon is used as nonlinear interaction material. Silicon is
of point group m3m. If Kleinman symmetry is assumed, the susceptibility tensor has two in-

dependent elements, ˜χ (3)
1111 = ˜χ (3)

2222 = ˜χ (3)
3333 and ˜χ (3)

1122 = ˜χ (3)
1212 = ˜χ (3)

1221 = ˜χ (3)
2211 = · · · = ˜χ (3)

1133 =
· · · = ˜χ (3)

2233 = . . . , where the indices 1, 2 and 3 refer to the crystallographic [100], [010] and
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Fig. 2. TM-operated strip waveguide with core nonlinearity. Optimized geometrical pa-
rameters for a minimum effective area Aeff (a) Optimal strip width w and height h as a
function of the refractive index ncover of the linear cover material (b) Minimized effective
area Aeff of nonlinear interaction. (c) Dominant component (Eμ y) of the electric modal field
for ncover = 1.5
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Fig. 3. TE-operated strip waveguide with core nonlinearity. Optimized geometrical para-
meters for a minimum effective area Aeff (a) Optimal strip width w and height h as a
function of the refractive index ncover of the linear cover material (b) Optimized effective
area Aeff of nonlinear interaction (c) Dominant component (Eμ x) of the electric modal
field for ncover = 1.5

[001] directions. For an isotropic nonlinearity, ˜χ (3)
1122/˜χ (3)

1111 = 1/3, but for silicon a larger ratio

˜χ (3)
1122/˜χ (3)

1111 = 0.48±0.03 has been measured [20]. The assumption of an anisotropic nonlinear-
ity is thus not valid in the strict sense and implies that the components of the nonlinear polariza-
tion vector that are not oriented parallel to the exciting electric field vector are neglected. How-
ever, the error in calculating the nonlinear waveguide parameter γ is negligible: The TM (TE)
mode fields have a dominant Eμ y-component (Eμ x-component), resulting, e.g., in an inaccurate
x-component (y-component) of the nonlinear polarization. To calculate the overlap integral in
Eq. (14) these components are weighted with the weak E μ x-component (Eμ y-component) for
TM (TE). The overall error is thus very small compared to the contributions of the nonlinear
polarization’s y-component (x-component). The error in γ would increase, if the interaction be-
tween modes of orthogonal polarizations was of interest: The nonlinear polarization generated
by a TM (TE) mode is then projected onto a TE (TM) mode field. A small, but inaccurate
x-component (y-component) of the nonlinear polarization is thus weighted with the dominant
component Eμ x-component (Eμ y-component), whereas the large y-component (x-component)
of the nonlinear polarization is weighted by the weak E μ x-component (Eμ y-component). How-
ever, from a practical point of view, theses inaccuracies are small compared to the uncertainties
in measured nonlinearities of silicon, Table 1.

Figure 2 shows the results for core nonlinearity in a TM-operated strip waveguide. The dom-
inant electric field component (Eμ y) is discontinuous at the horizontal dielectric interfaces with
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a strong field enhancement in the low-index material. Therefore the optimal cross sectional
shape of the waveguide core must be narrow and high. This is confirmed by the results of the
optimization. It can further be seen that a high index contrast between the core and the cover
material always allows for higher field confinement and stronger nonlinear interaction within
the core. Effective nonlinear interaction areas as small as A eff = 0.054 μm2 can be obtained for
ncover = 1.0.

Figure 3 shows the results for core nonlinearity in a TE-operated strip waveguide. Using
analogous arguments as for the TM case, the optimal cross section of the waveguide core must
now be wide and flat. Again, a high index contrast between the core and the cover material
always allows for higher field confinement and stronger nonlinear interaction within the core.
For low values of ncover, the minimal effective area of nonlinear interaction is slightly smaller
for TE polarization than it was TM — for ncover = 1.0 we now find Aeff = 0.050 μm2. TE-
operated strip waveguides with silica cover (ncover = 1.44) and with nearly optimal width w =
400nm and height h = 200nm have previously been used in experiments [4, 21].

4.2. Strip waveguides and cover nonlinearity

The results for cover nonlinearity in TM-operated strip waveguides are shown in Fig. 4. The
dominant electric field component (Eμ y) is discontinuous at horizontal dielectric interfaces with
a strong field enhancement in the nonlinear low-index material. Under these circumstances, the

-X [μm]
1- 0 1

Y
 [μ

m
]

1-

0

1

Fig. 4. TM-operated strip waveguide with cover nonlinearity. Optimized geometrical pa-
rameters for a minimum effective area Aeff (a) Optimal strip width w and height h as
a function of the linear refractive index ncover of the nonlinear cover material (b) Mini-
mized effective area Aeff of nonlinear interaction (c) Dominant component (Eμ y) of the
electric modal field for ncover = 1.5
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Fig. 5. TE-operated strip waveguide with cover nonlinearity. Optimized geometrical pa-
rameters for a minimum effective area Aeff (a) Optimal strip width w and height h as
a function of the linear refractive index ncover of the nonlinear cover material (b) Mini-
mized effective area Aeff of nonlinear interaction (c) Dominant component (Eμ x) of the
electric modal field for ncover = 1.5
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optimal cross sectional shape of the waveguide is rather wide and flat except for very low
refractive indices of the cladding material. It is further found that there is an optimal refractive
index ncover ≈ 1.7 for which Aeff assumes a minimal value of 0.33 μm2. For lower indices, too
big a fraction of the electromagnetic field has to be guided within the waveguide core to prevent
leakage into the substrate. This part of the field does not contribute to the nonlinear interaction,
which makes the effective area bigger. For higher refractive indices, the field enhancement at the
dielectric interface decreases, which reduces the nonlinear interaction with the cover material.

In the case of a TE-operated strip waveguide with cover nonlinearity, discontinuous field
enhancement can be exploited at both sidewalls. This results in smaller effective nonlinear
interaction areas as can be seen from Fig. 5. The minimum of A eff now shifts to ncover ≈ 1.3 and
amounts to roughly 0.24 μm2.

4.3. Slot waveguides and cover nonlinearity

For a slot waveguide, most of the light is confined to the slot area, and reducing the slot width
wslot increases the intensity in the nonlinear material. Within the range of technologically fea-
sible slot widths, the effective nonlinear interaction area A eff therefore always decreases with
wslot and no optimal value for wslot can be found. For the design of slot waveguides, the mini-
mum slot width will be dictated by technological issues, e.g. the maximum aspect ratio that the
fabrication process can achieve, or the difficulty of filling a narrow slot with nonlinear inter-

-X [μm]
1- 0 1

Y
 [μ

m
]

1-

0

1

Fig. 6. TE-operated slot waveguide with cover nonlinearity. Optimized geometrical pa-
rameters for a minimum effective area Aeff (a) Optimal strip width w as a function of
the linear refractive index ncover of the nonlinear cover material for various slot widths
wslot ∈ {60nm, 80nm, . . . ,200nm} (b) Optimal strip height h (c) Minimized effective
area Aeff for nonlinear interaction (d) Dominant component (Eμ x) of the electric modal
field for ncover = 1.5 and wslot = 100nm. Click for an animation of Eμ x for wslot = 100nm
and increasing ncover (file size 700kB).
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action material. Therefore wslot ∈ {60nm, 80nm . . . 200nm} is fixed during the optimization
procedure.

Figure 6 shows the optimal parameters as a function of the refractive index n cover of the non-
linear cover material with the slot width wslot as a parameter. The width w of the individual
strips mainly depends on ncover, whereas the optimal height h shows substantial variations with
both ncover and wslot. For wslot ≥ 100nm, there is again an optimal refractive index n cover for
which Aeff is minimum. The existence of this minimum can be explained physically: For larger
refractive indices, the discontinuity-induced field enhancement at the dielectric interfaces de-
creases. For lower refractive indices, the increase in field enhancement is over-compensated by
the fact that a minimum fraction of the electromagnetic field has to be guided in the high-index
core material to prevent leakage into the substrate. This fraction of the field does not contribute
to the nonlinear interaction and thus increases Aeff. For wslot < 100nm, the guidance of the fun-
damental mode is always strong enough to prevent it from leaking into the substrate, and A eff

decreases monotonically as ncover decreases.
Similar arguments hold for explaining the behaviour of the optimal height: For decreasing

refractive indices, the height increases in the case of w slot ≥ 120nm to prevent leakage into
the substrate. For wslot < 120nm this does not seem to be crucial, and the optimal height
even decreases slightly for small values of ncover. Using slot waveguides with technologi-
cally feasible gap widths of 100nm results in effective nonlinear interaction areas as small
as Aeff = 0.086 μm2 or Aeff = 0.105 μm2 for ncover = 1.2 or ncover = 1.5, respectively.

5. Nonlinear parameters for different materials

The previous analysis shows that outstandingly small effective areas A eff can be obtained in
SOI-based waveguides, and it can be expected that, depending on the properties of the employed
materials, highly nonlinear integrated waveguides can be realized. We will now estimate the
nonlinear parameter Re{γ} for different interaction materials.

Nonlinear properties of optical materials are commonly described by a nonlinear refractive
index which depends on the intensity I of an optical wave, n = n 0 +n2I, and by a corresponding
intensity-dependent power absorption coefficient α = α 0 +α2I. The nonlinear refractive index
n2 and the TPA coefficient α2 are linked to the scalar third-order nonlinear optical susceptibility
˜χ (3) by [15, Eq. (2.3.13)]

n2 =
3Z0 Re

{

˜χ (3)
}

4n2
0

, (2)

α2 = −
3k0Z0 Im

{

˜χ (3)
}

2n2
0

. (3)

TPA leads to a strong decay of optical power along the direction of propagation and can there-
fore severely impair nonlinear parametric effects such as SPM, XPM and FWM [22]. A measure
of this impairment is the TPA figure of merit FOMTPA, which is the nonlinear phase shift re-
lated to the associated intensity change and may be expressed through the nonlinear parameter
γ , see Eq. (16),

FOMTPA = − 1
2π

Re{γ}
2Im{γ} =

n2

α2λ
. (4)

An optical power P0 launched into a waveguide of length L would account for a nonlinear phase
shift of Δφnl = Re{γ}P0L in the absence of loss. TPA reduces the power along the propagation
length, P(L) = P0/(1 + Δφnl

2π FOMTPA), thereby reducing the nonlinear phase shift. To achieve
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Material Re{γ}/

(Wm)−1 λ/nm n0 n2/(m2 /W) FOMTPA Ref.
TMstrip TEstrip

Silicon 449 487 1550 3.48 6×10−18 0.86 [9]
336 365 1540 3.48 4.5×10−18 0.37 [24]
322 349 1540 3.48 4.3×10−18 0.32 [24]

1080 1180 1550 3.48 14.5×10−18 1.56 [10]
374 406 1550 3.48 5×10−18 [11]

Table 1. Core nonlinearity. Calculated maximum nonlinearity parameters Re{γ} ∝ 1/Aeff
for optimized strip waveguides with a nonlinear silicon core and a linear air cladding
ncover = 1, operated in TM or TE polarization. The calculation is based on data for sili-
con at the specified wavelengths: Linear refractive index n0, nonlinearity coefficient n2 and
TPA figure of merit FOMTPA were taken from the references listed in the last column. —
The resulting nonlinear parameters Re{γ} ≈ 400/(Wm) are remarkably large. However,
the material suffers from non-negligible two-photon absorption leading to a figure of merit
FOMTPA ≈ 0.3 . . .0.9.

SPM-induced nonlinear phase-shifts Δφnl > 2π (Δφnl > π), the interaction material should sat-
isfy FOMTPA > 1 (FOMTPA > 0.5) [23].

Tables 1 and 2 list the calculated optimum nonlinear parameters Re{γ} as defined in Eq. (16)
for various nonlinear core and cover materials, polarizations and structures. In both tables these
calculations are based on material data at the specified wavelengths, namely on the linear re-
fractive index n0 and on the nonlinearity coefficient n2. In addition, the TPA figure of merit
FOMTPA is specified. All material data were taken from the references listed in the last col-
umn of both tables. For some materials, no FOMTPA data at 1550nm could be found. Some
nonlinearity data were only available from third-harmonic generation experiments, which is
indicated in Table 2 by an asterisk�) after the wavelength. In these cases the calculated maxi-
mum nonlinear parameter Re{γ} might be inaccurate, but should still reflect the correct order
of magnitude.

Table 1 refers to the case of core nonlinearity with silicon as the nonlinear core ma-
terial. Reported nonlinearity coefficients n2 for silicon range from 4.3 × 10−18 m2 /W to
14.5× 10−18 m2 /W. The nonlinear parameters Re{γ} have been calculated for optimized
strip waveguides with air as a cover material (ncover = 1.0). Optimal strip widths and heights
for TM-polarization, (“TMstrip”, Aeff = 0.054 μm2) and for TE-polarization (“TEstrip”, Aeff =
0.050 μm2) are obtained from Figs. 3 and 2. Depending on the value of n 2, the resulting nonlin-
ear waveguide parameters range from 322/(Wm) to 1180/(Wm). TPA figures of merit around
1 indicate that parametric effects such as SPM, XPM and FWM will usually be impaired by
TPA.

Table 2 refers to the case of cover nonlinearity. The interaction material must have a linear
refractive index ninter = n0 smaller than the index of silicon and provide low linear and nonlin-
ear absorption in the desired wavelength range. There is a vast choice of such materials, and
we have concentrated on the most prominent ones for which reliable data on nonlinear parame-
ters could be obtained. These materials are subdivided into three groups: Inorganic materials
(glasses), organic materials (polymers) and nanocomposites (e.g. artificial nanocrystals).

For each material, we have estimated the nonlinear parameter Re{γ} for three different cases:
A TM-operated strip waveguide (“TMstrip”), a TE-operated strip waveguide (“TEstrip”), and a
TE-operated slot waveguide with wslot = 100nm (“TEslot”). All these waveguides have geome-
tries optimized for the respective cover material, see Figs. 4, 5 and 6. The nonlinear parameter
Re{γ} denotes the contribution of the nonlinear cover material only — the contribution of the
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Material Re{γ}/

(Wm)−1 λ/nm n0 n2/(m2 /W) FOMTPA Ref.
TMstrip TEstrip TEslot

Inorganic materials
Pure silica glass 0.3 0.5 1.0 1550 1.45 2.48×10−20 �10 [15]
Lead silicate glass
Schott SF59 8.0 11 17 1060 1.91 6.8×10−19 [25]
Bismite glass 3.5 4.4 6.9 1550 2.02 3.2×10−19 [26]
Tellurite glass
Li2O-TiO2-TeO2 6.2 7.5 11 1900�) 2.2 6.53×10−19 [27]
Chalcogenide glass
As24S38Se38 74 86 120 1600 2.45 1.0×10−17 [28]
As39Se61 71 82 105 1500 2.81 1.6×10−17 3.8 [29]
As40Se60 102 117 151 1500 2.81 2.3×10−17 11 [29]

Organic materials
PDA 54 92 186 1319 ∼1.5 4.8×10−18 1.5 [30, 31]
PTA 22 38 78 1907�) 1.5 2×10−18 [23]
TEE 17 29 58 1907�) 1.5 1.5×10−18 [32]
PSTF66 31 54 109 1550 1.5 2.8×10−18 0.22 [33, 34]
DANS 94 149 293 1319 1.57 8×10−18 7.6 [35]
PTS (PDA) 2720 3820 6950 1600 ∼1.7 2.2×10−16 >27 [36, 37]
Nanocomposites
Si nanocrystals 22800 33100 61600 813 1.66 1.86×10 −15 5.6 [38]

1120 1910 4000 1500 1.5 ∼10−16 [7]
�) Third-order nonlinearity obtained by third-harmonic generation

Table 2. Cover nonlinearity. Calculated maximum nonlinearity parameters Re{γ} ∝ 1/Aeff
for optimized strip and slot waveguides with a linear silicon core and various nonlinear
cover materials, operated in TM or TE polarization. The calculation is based on cover
material data at the specified wavelengths: Linear refractive index n0, nonlinearity coeffi-
cient n2 and TPA figure of merit FOMTPA were taken from the references listed in the last
column. Three material groups are considered: Inorganic materials like glasses, organic
substances, and nanocomposites. — Most remarkable are the large nonlinear parameters
Re{γ} ≈ (70 . . .150)/(Wm) and Re{γ} ≈ 300/(Wm) for chalcogenide glasses and for the
side-chain polymer DANS, respectively, and the record value of Re{γ} ≈ 7000/(Wm) for
the single-crystalline organic material PTS, a number which is 1000 times larger than for
a higly nonlinear bismite glass. These material groups have also very good TPA figures of
merit in the order of FOMTPA ≈ 4 . . .27.

silicon core is not taken into account, and the values for Re{γ} as listed in Tab. 2 are to be
understood as lower bounds for the nonlinear parameter. While the waveguides discussed in
Tab. 1 are designed with a nonlinear core material, the structures in Tab. 2 have been optimized
for cover nonlinearity; the contribution of the silicon core is in this case significantly smaller
than could be inferred from Tab. 1.

The first group of nonlinear cover materials comprises different glasses. Silica glass (SiO 2) is
not a typical nonlinear material, but for comparison, we have calculated the corresponding non-
linear parameters. We note that the resulting values Re{γ} � 1.0/(Wm) are in the same order
of magnitude as the nonlinear parameters obtained for modern highly-nonlinear fibers based on
lead silicate glasses, Re{γ} = 1.86/(Wm) [16]. Lead silicate glasses, bismite glasses, tellurite
glasses and chalcogenide glasses feature high linear and high nonlinear refractive indices n 0 and
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n2. The high linear indices considerably reduce the discontinuity-induced field enhancement at
the dielectric interfaces, so that Aeff increases and the nonlinear parameter decreases. For the
slot waveguide, we find Aeff = 0.62 μm2 given ncover = 2.81, which is roughly a factor of 6 big-
ger than the value of Aeff = 0.104 μm2 for ncover = 1.5. Still, the nonlinear parameters Re{γ}
are nearly two orders of magnitude larger than for state-of-the-art highly nonlinear fibers [16].

The second group of nonlinear materials comprises nonlinear organic materials. Nonlineari-
ties in these materials can either arise from the polymer backbone, or from chromophore units
embedded in the host matrix or laterally attached to the backbone. For the conjugated polymers
PDA (polydiacetylene), PTA (polytriactelyene) and TEE (tetraethynylethene), nonlinearities
are roughly two orders of magnitude stronger than for SiO 2. Please note that the nonlinear re-
fractive indices for PTA and TEE have been measured via third-harmonic generation (THG) at
a pump wavelength of 1900nm, and the results cannot offhand be applied to SPM at 1550nm.
The order of magnitude might be correct, though. The organic dye functionalized main-chain
polymer PSTF66 exhibits large nonlinear losses, whereas the side chain polymer DANS (4-
dialkyamino-4’nitro-stilbene) exhibits TPA figures of merit that are suitable for devices based
on nonlinear phase shifts. For single-crystalline poly(p-toluene sulphonate) (PTS) polydiacety-
lene, nonlinear refraction is even four orders of magnitude stronger than for SiO 2, and nonlinear
parameters Re{γ} in the order of 6950/(Wm) can be expected for slot waveguides without se-
vere impairment by TPA. For strip waveguides, Re{γ} reduces by roughly 50%, but is still
about 3820/(Wm). Using single-crystal PTS as a nonlinear interaction material around a pre-
structured silicon waveguide core might also solve the problem of poor processability of single
crystal PTS.

Lastly, we consider the case where the slot waveguide is filled with artificial silicon nanocrys-
tals. At λ = 813nm this nanocomposite material exhibits huge nonlinearities (about five or-
der of magnitudes stronger than in SiO2) without impairment by TPA. It is questionable
which nonlinearities can be obtained at 1550nm, but even if only values of n 0 = 1.50 and
n2 = 10−16 m2 /W are assumed, as has been done by other authors [7], large nonlinear parame-
ters Re{γ} up to 4000/(Wm) can be expected.

6. Discussion

For state-of-the-art highly nonlinear fibers, the highest nonlinear parameters Re{γ} are in the
order of 2/(Wm) [16]. According to our estimations, a nonlinear parameter more than three or-
ders of magnitude larger can be expected for SOI-based strip and slot waveguides covered with
appropriate nonlinear interaction materials. Approximately one order of magnitude is gained
from the strong confinement of the electromagnetic field. Because waveguides with cover non-
linearities allow to choose from a broad spectrum of interaction materials, the extremely non-
linear PTS-system can be chosen, which leads to an additional improvement of approximately
two orders of magnitude compared to lead silicate glass.

Highly-nonlinear integrated strip and slot waveguides are viable for on-chip all-optical signal
processing as shall be illustrated by estimating the lengths required for a passive SPM/XPM-
based switch and a passive wavelength converter based on FWM.

The nonlinear phase shift Δφnl experienced by an optical signal through SPM or XPM in a
lossless waveguide is proportional to the optical power P and the interaction length L, Δφ nl =
Re{γ}PL or Δφnl = 2Re{γ}PL, respectively. For many nonlinear signal processing schemes,
a nonlinear phase shift of Δφnl = π is required. If an optical peak power of P = 100mW and a
slot waveguide with a nonlinear waveguide parameter of Re{γ}= 6950/(Wm) are assumed, a
nonlinear phase shift of π requires a slot waveguide with a length of L = 4.5mm or L = 2.3mm,
respectively. For Re{γ} = 3820/(Wm) as calculated for a TE-operated strip waveguide, the
length increases to L = 8.2mm or L = 4.1mm, again for SPM or XPM, respectively.
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Neglecting waveguide loss and pump depletion, and assuming phase matching, the conver-
sion efficiency for degenerate FWM is given by ηFWM =

(

Re{γ}PpmpL
)2

, where Ppmp de-
notes the pump power [15]. Assuming again a slot waveguide with Re{γ} = 6950/(Wm) and
Ppmp = 100mW, a conversion efficiency of 100% can be obtained for an estimated waveguide
length of L = 1.4mm. For a TE-operated strip waveguide with Re{γ} = 3820/(Wm), this
length increases to L = 2.6mm.

These results indicate that broadband, i. e., nonresonant ultrafast all-optical signal processing
is feasible with compact mm-long integrated devices based on highly nonlinear slot and strip
waveguides. We note that in all cases the assumed power levels are far too low to induce satu-
ration of the nonlinear phase shift due to a Kerr-induced decrease of the discontinuity-induced
field enhancement [39]. As with all nonlinear switching processes, the switching power and/or
the interaction length can be considerably reduced at the expense of bandwidth by using reso-
nant structures [7]. Compared to signal processing schemes based on active integrated devices,
e.g., semiconductor optical amplifiers, passive schemes need higher power levels. However,
passive Kerr-based devices are ultra-fast, do not exhibit pattern effects, and do not require ac-
tive cooling.

7. Summary

SOI-based nonlinear strip and slot waveguides are well suited for ultrafast all-optical signal
processing if an appropriate cover material is applied. A newly introduced effective area A eff for
third-order nonlinear interaction in high index-contrast waveguides with nonlinear constituents
serves as a basis for the optimization of different SOI-based waveguide structures with respect
to a maximum nonlinearity parameter γ . We provide universal optimal design parameters for
strip and slot waveguides covered with different nonlinear interaction materials, and we calcu-
late the resulting maximum nonlinear parameter γ . It is found that γ can be more than three
orders of magnitude larger compared with state-of-the-art highly nonlinear fibers. Estimating
the waveguide lengths for different nonlinear signal processing schemes, we infer that non-
resonant ultrafast nonlinear signal processing is possible with mm-scale integrated SOI-based
devices.
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Appendix: Third-order nonlinear interaction in high index-contrast waveguides

In this Appendix we derive the basic nonlinear propagation equation for a nonlinear high-index-
contrast waveguide. We start from Maxwell’s curl equations for the electric and the magnetic
field,

∇×H(r,t) =
∂D(r,t)

∂ t
(5)

∇×E(r,t) = −∂B(r,t)
∂ t

, (6)

where B = μ0 H and where the electrical displacement D = ε0n2E + P(nl) contains the third-
order nonlinear polarization P(nl). Assuming a medium response that is local in space, P (nl) can
be written in tensor notation,

P(nl)(t) = ε0

∫∫∫

χ (3) (τ1,τ2,τ3)
... E(t − τ1)E(t − τ2)E(t − τ3)dτ1 dτ2 dτ3, (7)
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where
... denotes the tensor product; the spatial argument r was omitted. The optical signal prop-

agating in the μ th mode of the waveguide is described in slowly-varying envelope approxima-
tion (SVEA) of a carrier signal at frequency ωc,

Eμ(r,t) = Re

{

Aμ(z,t)
Eμ(x,y,ωc)

√

Pμ
ej(ωct−βμ (ωc)z)

}

, (8)

Hμ(r,t) = Re

{

Aμ(z,t)
Hμ(x,y,ωc)

√

Pμ
ej(ωct−βμ (ωc)z)

}

. (9)

Here, Aμ(z,t) is the complex envelope, Eμ(x,y,ωc) and Hμ(x,y,ωc) denote the vectorial elec-
tric and magnetic mode profiles in a transverse plane of the waveguide, β μ (ωc) is the associated
propagation constant of the carrier wave, and P μ is used for power normalization of the nu-
merically computed mode fields,

Pμ =
1
2

∫ ∞

−∞

∫ ∞

−∞
Re

{

Eμ(x,y,ωc)×H �
μ (x,y,ωc)

} · ez dx dy. (10)

In this definition, Aμ(z,t) has the dimension
√

W, and the power of the signal averaged over

some optical periods is given by
∣

∣Aμ(z,t)
∣

∣

2
. We further need the orthogonality of the transverse

mode fields [40],

1
4

∫ ∞

−∞

∫ ∞

−∞
[(Eμ ×H �

μ ′)+ (E �
μ ′ ×Hμ)] · ez dx dy = Pμ δμ,μ ′ , (11)

where we have omitted the arguments (x,y,ωc).
Three approximations are involved in the following analysis: First, we assume that the non-

linear polarization is weak compared to the linear contribution and can therefore be treated as
a small perturbation that changes the complex amplitude A μ(z,t) during propagation. Second,
the SVEA is used, and we assume that the nonlinear response of the medium is instantaneous
on the time-scale of the pulse envelope Aμ(z,t), which allows us to simplify the triple convo-
lution integral in Eq. (7) into a normal tensor product for the mode fields. Third, the dispersion
relation of the waveguide is approximated by a second-order Taylor expansion about the carrier
frequency ωc,

β (ω) = βμ +(ω −ωc)β
(1)
μ +

1
2
(ω −ωc)2β (2)

μ , (12)

where β (n)
μ = dn βμ

dωn

∣

∣

∣

ω=ωc
. We note that there are no restrictions for the shape of the mode fields,

for the refractive index profile of the waveguide or for the spatial distribution of χ (3).
The derivation of the nonlinear propagation equation for a single monochromatic signal in-

volves several algebraic modifications which will be described only briefly. We first insert the
nonlinear polarization according to Eq. (7) into the right-hand side of Eq. (5). We then use a
mode expansion according to Eq. (8) (Eq. (9)) on the left-hand side of Eq. (6) (Eq. (5)) and
apply the identity ∇× (ΦF ) = Φ(∇×F )+(∇Φ)×F , where Φ = Aμ(z,t)ej[ωct−β (ωc)z] rep-
resents a scalar function, and F = Eμ(x,y,ωc)/

√

Pμ (F = Hμ(x,y,ωc)/
√

Pμ ) is a vector
field. The amplitudes associated with the μ th mode on the right-hand side are then projected
out by taking the scalar product of both sides with H �

μ (x,y,ωc) (E �
μ (x,y,ωc)) followed by an

integration over the entire cross section. The resulting equations are then added and Eq. (11) is
applied. We finally obtain the nonlinear Schrödinger equation,

∂Aμ(z,t)
∂ z

+ β (1)
μ

∂Aμ(z,t)
∂ t

− j
1
2

β (2)
μ

∂ 2Aμ(z,t)
∂ t2 = − jγ

∣

∣Aμ(z,t)
∣

∣

2
Aμ(z,t), (13)
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where the nonlinear parameter γ is given by

γ =
3ωcε0

16P2
μ

∫∫

[

˜χ (3) (ωc : ωc,ωc,−ωc)
... Eμ (ωc)Eμ (ωc)E �

μ (ωc)
]

·E �
μ (ωc)dxdy. (14)

The spatial arguments (x,y) have been again omitted. The quantity ˜χ(3) is the frequency-domain
representation of the nonlinear susceptibility tensor.

For many cases of practical interest, only the core or the cover material have a χ (3)-
nonlinearity, which is usually isotropic. The third-order nonlinear susceptibility tensor χ (3) can
then assumed to be zero outside a nonlinear interaction domain D inter (refractive index ninter),
and it is nonzero and constant inside D inter. Further, ˜χ (3) may be approximated by a scalar

˜χ (3), so that ˜χ(3) ... EμEμE �
μ = ˜χ (3)

∣

∣Eμ
∣

∣

2
Eμ holds. To evaluate only the effects of the waveguide

geometry, the strength of the nonlinear interaction of the guided modes can then be compared
to a hypothetical plane wave in bulk nonlinear material with the same nonlinear susceptibility
χ (3) and the same refractive index as D inter.

This leads to the concept of an effective nonlinear interaction area A eff: In a waveguide with a
nonlinear interaction region D inter the cross-sectional power P is transported. Relating P to the
effective area Aeff leads to an effective intensity I = P/Aeff. This intensity I should be attributed
to a plane wave which propagates in a homogeneous medium with the same optical properties
as seen in Dinter. For this effective area we find

Aeff =
Z2

0

n2
inter

∣

∣

∣

∣

∫∫

Dtot

Re
{

Eμ(x,y)×H �
μ (x,y)

} · ez dx dy

∣

∣

∣

∣

2

∫∫

Dinter

∣

∣Eμ (x,y)
∣

∣

4
dx dy

. (15)

The nonlinear waveguide parameter γ then simplifies to the expression

γ =
3ωcε0Z2

0

4Aeff n2
inter

˜χ (3). (16)

For complex values of ˜χ (3)the nonlinear parameter γ will be also complex, and parametric χ (3)-
processes (e.g. SPM, XPM, FWM) will be impaired by nonparametric processes (e.g. TPA).

For low index-contrast material systems, the approximation n core ≈ ncover ≈ ninter holds, and
the longitudinal field components become negligible. The transverse components of the mode
fields Eμ (x,y) and Hμ (x,y) may then be approximated by a scalar function F(x,y), E μ (x,y) ≈
F(x,y)ex, Hμ (x,y) ≈ ninter

Z0
F(x,y)ey. If we further assume a homogeneous nonlinearity, then

Dinter = Dtot, and Eq. (15) can be simplified to

Aeff ≈

(

∫∫

Dtot

|F(x,y)|2 dx dy

)2

∫∫

Dtot

|F(x,y)|4 dx dy
. (17)

This relation is identical with the usual definition of an effective area A eff [15, Eq. (2.3.29)].
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