A Dissertation submitted in fulfillment of the requirements for the degree of Doctor of Philosophy

Fusion of Optical Images with Radar Images Constructed using Pulsed Doppler Beamforming to Enhance Object Tracking

Creating a novel five layer image augmented with radial velocity and distance properties

Jiajia Shi

Autumn 2015

University of Technology, Sydney, Faculty of Engineering and Information Technology Center for Real Time Information Networks

Supervisor Prof. Robin Braun

Co-supervisor Dr. Bruce Moulton

Date of the graduation TBA

CERTIFICATE OF ORIGINAL AUTHORSHIP

I certify that the work in this thesis has not previously been submitted for a degree nor has it been submitted as part of requirements for a degree except as fully acknowledged within the text. I also certify that the thesis has been written by me. Any help that I have received in my research work and the preparation of the thesis itself has been acknowledged. In addition, I certify that all information sources and literature used are indicated in the thesis.

Signature of Student:

Date:

My Contributions

Papers

- Braun, R., Shi, J.: Combining Computer Vision with 1 Dimensional Doppler Radar to provide a low cost robotic vehicle tracking system. In: Proceedings of the 1st Asia-Pacific Conference on Computer-Aided System Engineering, APCAST 2012, p.25
- Shi, J., Braun, R.: Crossed linear arrays using Doppler radar beam-forming for detecting single moving targets. In: Proceedings of the 2nd Asia-Pacific Conference on Computer-Aided System Engineering, APCASE 2014, p.118
- Shi, J., Braun, R.: Image construction using beam forming. In: Proceedings of the 2nd Asia- Pacific Conference on Computer-Aided System Engineering, APCASE 2014, p.121
- Shi, J., Braun, R.: "Crossed Linear Arrays Using Doppler Radar Beamforming for Detecting Single Moving Targets". Book series: Studies Computational Intelligence, Vol. 595, Grzegorz Borowik et al: Computational Intelligence and Efficiency in Engineering Systems, 978-3-319-15719-1, 334637
- Shi, J., Braun, R.: "Image Construction Using Low Cost Airborne Beamforming". Book series: Studies Computational Intelligence, Vol. 595, Grzegorz Borowik et al: Computational Intelligence and Efficiency in Engineering Systems, 978-3-319-15719-1, 334637

Patents

- Provisional Patent Disclosure DISC-UTS-000433 Radar Enhanced Optical Images
- To be applied for Sensor minimization using fusion of radar imaging and optical imaging

Contents

AI	ostrac	stract		9
1	Intr	oductio	on	11
	1.1	Backg	round	12
		1.1.1	Tracking system	12
		1.1.2	Benefits of sensor fusion	12
		1.1.3	Image fusion in tracking system	12
	1.2	Motiv	ation of research	13
		1.2.1	Using beamforming to create image layers	13
		1.2.2	Fusion of radar and optical image	14
		1.2.3	New image format	14
	1.3	Applie	cations	16
	1.4	Resear	rch scope	19
	1.5	Summ	nary of contributions	19
	1.6	Design	n constraints	22
	1.7	Resear	rch question, propositions and approach	23
		1.7.1	Research question	23
		1.7.2	Research propositions	23
		1.7.3	Research approach	24
	1.8	Outlin	ne of thesis	25
2	Lite	rature	review and fundamentals of tracking methods	29
	2.1	Introd	luction	29
	2.2	Image	es created by different types of sensors	29
		2.2.1	Optical imaging	29
		2.2.2	Synthetic aperture radar	30
		2.2.3	Synthetic aperture sonar	30
		2.2.4	Acoustic camera	30
		2.2.5	Medical ultrasonography	30
		2.2.6	Comparison of different types of imaging	31
	2.3	Princi	ples of radar	31
		2.3.1	Principles of pulsed radar	31
		2.3.2	Principles of Doppler radar	32
	2.4	Radar	used in tracking system	34
		2.4.1	Acoustic pulsed radar	34
		2.4.2	Electromagnetic Doppler radar	35
		2.4.3	Acoustic Doppler radar	36

	2.5	Optica	al imaging in tracking system	36
		2.5.1	Image pre-processing	36
		2.5.2	Background subtraction	37
		2.5.3	Image segmentation	38
		2.5.4	Feature extraction and presenting	39
	2.6	Princi	ple of sensor fusion	40
		2.6.1	Sensor fusion levels	40
		2.6.2	Sensor fusion methods	41
		2.6.3	Image fusion methods	42
	2.7	Evalua	ation of the system	43
		2.7.1	Evaluation measure for image pixels	43
		2.7.2	Evaluation measure for position, velocity and acceleration .	43
3	Ima	ge cons	truction of the fourth layer with distance using pulsed beam-	-
	forn	ning - A	Addresses Proposition 1	45
	3.1	Introd	uction	45
	3.2	System	n structure	46
	3.3	Mediu	m constraints and assumptions	47
		3.3.1	Comparison of airborne ultrasonic radar with sonar and radar	
				47
		3.3.2	Velocity of sound	47
		3.3.3	Attenuation of ultrasonic waves	48
		3.3.4	Carrier frequency	49
		3.3.5	Far field assumption	50
		3.3.6	Narrow bandwidth assumption	50
		3.3.7	Noise type	51
	3.4	Linear	array beamforming	51
		3.4.1	Sensor spacing	52
		3.4.2	Time domain beamforming	53
		3.4.3	Interpolation beamforming	56
		3.4.4	Frequency domain beamforming	56
		3.4.5	Window function	59
		3.4.6	Multiple target tracking using frequency domain beamforming	g 60
	3.5	Two d	imensional beamforming	63
		3.5.1	Full rectangular array beamforming	65
		3.5.2	Two line multiplication beamforming	68
		3.5.3	Crossed array beamforming	68
		3.5.4	Other structure of 2D beamforming radar array	71
		3.5.5	Window function to reduce side lobe	71
		3.5.6	Performance when adding noise	76
	~ ~	3.5.7	Removal of ambiguities	80
	3.6	Distan	nce detection	80
		3.6.1	Triangular method	80
		3.6.2	Pulsed mode to detect distance	82
		3.6.3	Signal verification	86

	3.7	Relationship with optical image		86
		3.7.1 Relationship of sensor number and resolution		88
		3.7.2 Frame rate		89
		3.7.3 Pixel reflection		89
		3.7.4 Coordinate system		90
	3.8	Example of fourth image layer		92
		3.8.1 Simulation setting		92
		3.8.2 Simulation on sparse rectangular array		93
	3.9	Proposed algorithms		105
		3.9.1 Sensor array structure		105
		3.9.2 Procedure to construct the pulsed beamforming image		105
		3.9.3 Simulation results of the example frame		107
4	Ima	ge construction of fifth laver with dynamic information using Do	əlaac	er
	bear	mforming - Addresses Proposition 2		111
	4.1	Introduction		111
		4.1.1 Benefit of Doppler processing		111
		4.1.2 Classification of Doppler radar		112
	4.2	Doppler signal subtraction methods		112
		4.2.1 Subtraction of the Doppler signals		113
	4.3	Linear array beamforming processing of Doppler signals		116
		4.3.1 Frequency domain Doppler beamforming		116
		4.3.2 Simulation of linear array Doppler beamforming		119
		4.3.3 Window function		120
		4.3.4 Relationship between the sensor space and resolution .		125
	4.4	Separating of multiple targets with different velocities		126
		4.4.1 FFT filtering		126
		4.4.2 FIR Filter bank		126
	4.5	Two dimensional beamforming on Doppler signals		128
		4.5.1 Full rectangular array beamforming		128
		4.5.2 Two line multiplication beamforming		131
		4.5.3 Crossed array beamforming		131
		4.5.4 Remove zero frequency components		140
		4.5.5 Window functions to reduce side lobe		140
		4.5.6 Performance when added noise		147
	4.6	Mode switch between pulsed beamforming radar and Doppler be	am-	
		forming radar \ldots		151
	4.7	Example of fifth image layer		152
		4.7.1 Simulation setting \ldots		152
		4.7.2 Simulation on sparse rectangular array		153
	4.8	Proposed algorithms		165
		4.8.1 Sensor array structure		165
		4.8.2 Procedure to construct the pulsed beamforming image		165
		4.8.3 Simulation of the example frame		167

5	Fusi	on of p	ulsed Doppler beamforming radar imaging with optical imag	5-
	ing	to enha	nce target tracking - Addresses Proposition 3	171
	5.1	Introd	uction	171
	5.2	Radar	and camera calibration and image fusion $\ldots \ldots \ldots \ldots$	172
		5.2.1	Calibration of optical image and radar	172
		5.2.2	Image registration	173
	5.3	Scenar	tio 1: Fusion of video camera frames with Doppler beamform-	
		ing rac	dar to enhance moving object detection $\ldots \ldots \ldots \ldots$	173
		5.3.1	Introduction	173
		5.3.2	Background	174
		5.3.3	Frame differencing	175
		5.3.4	Doppler beamforming	177
		5.3.5	Fusion of optical frame differencing with Doppler beamform-	
			ing images	178
		5.3.6	Simulation and implementation	181
		5.3.7	Conclusions	188
	5.4	Scenar	io 2: Fusion of crossed array Doppler beamforming radar	
		with o	ptical image to enhance golf ball tracking	188
		5.4.1	Introduction	188
		5.4.2	Design constraints	189
		5.4.3	Computation load and memory consumptions for sensors .	189
		5.4.4	Background	191
		5.4.5	Restriction of application	191
		5.4.6	Doppler beamforming	191
		5.4.7	Template matching	192
		5.4.8	Frame differencing	192
		5.4.9	Decision making strategy	193
		5.4.10	Simulation and implementation	193
		5.4.11	Conclusion	196
	5.5	Scenar	tio 3: Fusion of optical image with Doppler beamforming	
		radar t	to enhance tennis ball in/out decision making	196
		5.5.1	Introduction	196
		5.5.2	Design constraints	202
		5.5.3	The Hawk-eye system	202
		5.5.4	Background	204
		5.5.5	System implementation	204
		5.5.6	Region of interest	206
		5.5.7	Image processing sub-system	206
		5.5.8	Simulation and implementation	209
		5.5.9	Further work and conclusions	212
	5.6	Scenar	tio 4: fusion of optical image and beamforming radar to track	
		target	in 3D position \ldots	213
		5.6.1	Introduction	213
		5.6.2	Design constraints	213
		5.6.3	Background	214

	5.7	$5.6.4 \\ 5.6.5 \\ 5.6.6 \\ Scenar \\ 5.7.1 \\ 5.7.2 \\ 5.7.3 \\ 5.7.4 \\ 5.7.5 \\ 5.7.6 \\ \end{cases}$	Optical image and radar image model	216 217 218 218 218 219 220 220 220 220 223
6	Hard	lware c	construction and experiments	225
	6.1	Introd	uction	225
	6.2	Hardw	are implementation	225
		6.2.1	System structure	225
		6.2.2	Ultrasonic transducer	227
	6.3	Contro	oller and programing	228
		6.3.1	Altera DE1 board and Cyclone II FPGA chips	228
		6.3.2	Signal generator and ADC system diagram	230
		6.3.3	FPGA Programming	231
	6.4	The P	CB board layout	233
	6.5	Experi	iments	236
		6.5.1	Attenuation of ultrasonic sound	237
		6.5.2	Experiments on the linear array - pulsed beamforming	237
		6.5.3	Experiments on the linear array - Doppler beamforming	239
		6.5.4	Conclusion of the experiment	241
7	Con	clusion	and future work	243
	7.1	Thesis	summary and validation of research propositions $\ . \ . \ .$.	243
	7.2	Thesis	$limitations\ldots$	248
	7.3	Recom	umendation and further work	249
Ac	know	ledgme	ents	251
Bil	bliogr	aphy		253

List of Figures

1.1	Example of RGB image layers
1.2	Example of radar image layers 17
1.3	Proposed five image layers 18
2.1	Principle of Pulsed radar [1] 32
2.2	Doppler effects
2.3	Procedure of radar signal processing 34
2.4	Procedure of optical imaging in tracking 37
2.5	Fusion system
2.6	Sensor fusion levels 41
3.1	System structure of the proposed radar
3.2	The far-field approximation $[2]$
3.3	Narrow band approximation [2]
3.4	Beamforming calculation
3.5	Time domain beamforming procedure
3.6	Interpolation beamforming procedure
3.7	Frequency domain beamforming 58
3.8	The beam pattern of frequency domain beamforming 59
3.9	Linear frequency domain beamforming with Gaussian window 60
3.10	Linear frequency domain beamforming with Dolph-Chebyshev win-
	dow
3.11	Two objects tracking with interference
3.12	Two objects tracking without interference
3.13	Resolution of two object tracking 1
3.14	Resolution of two object tracking 2
3.15	Resolution of two object tracking 3
3.16	Beamforming full rectangular array simulation
3.17	2 dimensional beamforming $\ldots \ldots \ldots$
3.18	Two line multiplication beamforming
3.19	Crossed array beamforming, one object
3.20	Two objects with ambiguities
3.21	Two objects without ambiguities
3.22	Rectangular sensor arrays
3.23	2 by 2 cells arrays
2 94	

3.25	Crossed array beamforming simulation with Dolph-Chebyshev win- dow	77
3.26	Noise analysis, $SNR = 10dB$, left figure is the result and right figure is the difference	77
3.27	Noise analysis, $SNR = 0dB$, left figure is the result and right figure is the difference	78
3.28	Noise analysis, $SNR = -10 dB$, left figure is the result and right figure is the difference	78
3.29	Noise analysis, $SNR = -20 \text{ dB}$, left figure is the result and right figure is the difference	79
3.30	RMS error analysis with SNR	79
3.31	Triangular calculation	81
3.32	Three dimensional triangular calculation	83
3.33	Pulsed radar	84
3.34	Simulation on the matched filter	87
3.35	Beamforming width	88
3.36	The coordinate system	91
3.37	The supposed optical image	92
3.38	Image in radar resolution	93
3.39	5 by 5, hole size is 1 by 1 \ldots	94
3.40	9 by 9, hole size is 1 by 1 \ldots	95
3.41	13 by 13, hole size is 1 by 1 \ldots	96
3.42	7 by 7, hole size is 2 by 2 \ldots	97
3.43	10 by 10, hole size is 2 by 2 \ldots	98
3.44	13 by 13, hole size is 2 by 2 \ldots	99
3.45	9 by 9, hole size is 3 by 3 \ldots	100
3.46	13 by 13, hole size is 3 by 3 \ldots	101
3.47	11 by 11, hole size is 4 by 4 \ldots	102
3.48	16 by 16, hole size is 4 by 4 \ldots	103
3.49	21 by 21, hole size is 4 by 4 \ldots	104
3.50	Proposed pulsed beamforming algorithm	106
3.51	Target one pulsed beamforming image	107
3.52	Target two pulsed beamforming image	108
3.53	Target three pulsed beamforming image	108
3.54	Proposed example pulsed beamforming image	109
4.1	Sub-sampling of Doppler signals	115
4.2	Beamforming calculation	117
4.3	Doppler beamforming	120
4.4	One moving object	121
4.5	One stationary object and one moving object	122
4.6	Two moving objects	123
4.7	Linear array Doppler beamforming with Gaussian windows	124
4.8	Linear array Doppler beamforming with Dolph-Chebyshev windows	124
4.9	Filter bank with equal bandwidth $\ldots \ldots \ldots \ldots \ldots \ldots$	127

$\begin{array}{c} 4.10\\ 4.11\end{array}$	Filter bank with unequal bandwidth	128
4.12	object	130
4.13	ing objects (1)	132
	ing objects (2) \ldots \ldots \ldots \ldots \ldots \ldots \ldots	133
4.14	Two line multiplication with two moving objects (1)	134
4.15	Two line multiplication with two moving objects (2)	135
4.16	Crossed array Doppler beamforming with two moving objects using the FFT filtering (1)	136
4.17	Crossed array Doppler beamforming with two moving objects using the FFT filtering (2)	137
4.18	Crossed array Doppler beamforming with two moving objects using the FIR filter banks (1)	138
4 19	Crossed array Doppler beamforming with two moving objects using	100
1.10	the FIR filter banks (2)	139
4.20	Doppler beamforming with ZF components (1)	141
4.21	Doppler beamforming with ZF components (2)	142
4.22	Doppler beamforming without ZF components (1)	143
4.23	Doppler beamforming without ZF components (2)	144
4.24	Crossed array Doppler beamforming Simulation with Gaussian win-	
	dows	145
4.25	Crossed array Doppler beamforming simulation with Dolph-Chebyshe	v
	windows	146
4.26	Noise analysis SNR=10dB	147
4.27	Noise analysis SNR=0dB	148
4.28	Noise analysis SNR=-10dB	149
4.29	Noise analysis SNR=-20dB	150
4.30	RMS errors changing with SNR	151
4.31	The supposed optical image	152
4.32	3 by 3 , note size is 1 by 1	154
4.00	13 by 13 hole size is 1 by 1 \dots	156
4 35	7 by 7 hole size is 2 by 2	157
4 36	10 by 10 hole size is 2 by 2	158
4.37	13 by 13, hole size is 2 by 2	159
4.38	9 by 9, hole size is 3 by 3 \ldots	160
4.39	13 by 13, hole size is 3 by 3 \ldots	161
4.40	11 by 11, hole size is 4 by 4	162
4.41	16 by 16, hole size is 4 by 4	163
4.42	21 by 21, hole size is 4 by 4	164
4.43	Final Doppler beamforming algorithm	166
4.44	The target one (right bird) Doppler beamforming image	167
4.45	The target two (human) Doppler beamforming image	168

4.46	The proposed example Doppler beamforming image $\ldots \ldots \ldots$	169
5.1	Frame differencing procedure	176
5.2	The small moving leaves can be removed by the connected compo-	
	nent method [3]	177
5.3	Multi-scale image fusion procedure	180
5.4	Single moving object (1)	182
5.5	Single moving object (2)	183
5.6	Single moving object with tree leaves and walking people (1)	184
5.7	Single moving object with tree leaves and walking people (2)	185
5.8	Multiple moving objects (1)	186
5.9	Multiple moving objects (2)	187
5.10	The moment when the player is hitting the ball	194
5.11	After hitting the ball	195
5.12	Template match	197
5.13	Template match 2	198
5.14	Two balls are flying	199
5.15	Two balls template match 1	200
5.16	Two balls template match 2	201
5.17	Control points in tennis courts	205
5.18	Process of the ball tracking system	207
5.19	Kalman filtering	210
5.20	Region of interest	210
5.21	Sample RoI and the detected line edges	211
5.22	Pre-bounce and post-bounce trajectory	212
5.23	The predicted position	213
5.24	State vector fusion	215
5.25	Measurement fusion	216
5.26	Measurements from image and Radar	217
5.27	Short-time-fourier-transform spectrum of a human reflection	221
5.28	Spatial-time analysis	222
6.1	System structure the proposed system	226
6.2	Piezoelectric equivalent circuits [4]	228
6.3	Altera DE1 Board [5] \ldots	229
6.4	Blocks inside FPGA	231
6.5	Signal generator and ADC system diagram	232
6.6	Schematic diagram of the designed board	234
6.7	Top view of the PCB	235
6.8	Bottom view of the PCB	236
6.9	Attenuation of 40kHz ultrasonic	237
6.10	Received signals	238
6.11	Two peaks of the received signals	238
6.12	AoA of two objects	239
6.13	Received signals	240

6.14	Two peaks of the received signals						240
6.15	Beam pattern of linear array Doppler beamforming	•	•			•	241

List of Tables

2.1	Comparison of different types of imaging	
3.1	Comparison of airborne acoustic radars, sonars and radars [6] 48	;
3.2	Comparison time domain and frequency domain [7]	;
3.3	Possible outcomes for the Detection Algorithm	;
3.4	Relationship between sensor number and resolution)
3.5	Relationship between angle of view and focal length 90)
3.6	Reflection points in Fig. 3.38	F
5.1	Difficulties in moving object detection	Ł
5.2	FPGA resources)
5.3	Comparison of state vector fusion with measurement fusion 218	;
۳.4	Real possible affecting factors [8] 219)

Abstract

Target tracking that detects the presence, color, contour, position, velocity, and acceleration is very important in intelligent systems. Single or multiple sensor fusion methods have been developed to improve the tracking quality. There are algorithms to fuse radar and optical images at a decision-making level. However, not many algorithms have been applied to radar image and optical image fusion. This thesis investigates the fusion of these two images. A new five-layer image format is proposed.

Beamforming, a radar signal processing method, has been applied to remote sensing. This suggests the idea that beamforming can be used to create images similar to optical images, with additional information such as range and radial velocity. The radar image can be fused with the optical image to enhance target tracking.

This thesis attempts to prove this proposition. First a tracking system with an optical imaging subsystem and a radar imaging subsystem was designed. Optical images were captured by a high-quality webcam, and radar images were captured by a system designed and built by the author. The radar subsystem is a short-range airborne acoustic radar which contains the transmitter and receiver board, FPGA board and a PC. All the channels need to work simultaneously. The data rate and computation load were very high when the number of sensors increased. For a low-cost development, the resources of FPGA are very limited. Hardware construction is central to this thesis.

Next was the development of a mathematical model of the range layer using pulsed beamforming. The performance with multiple targets was evaluated. The relationship between angle resolution and sensor number was investigated. Linear sensor array beamforming was extended to two dimensions to create the image. It was shown that the targets could be clearly extracted. The required resources increased linearly as resolution improved while on the contrary for a full rectangular array the required resources increased exponentially. Improved image resolution with fewer resources was investigated. Structures included two-line multiplication beamforming, crossed array beamforming, and other sparse structures. Their performances were tested with added noise. Results showed that the algorithms were robust. Sparse rectangular sensor arrays may have ambiguity. The pulsed mode was adopted to detect the distance. A matched filter was used to maximize SNR and minimize false alarms.

In addition to pulsed beamforming, Doppler Beamforming was adopted to provide radial velocity information, which is important for detecting moving objects. This can remove stationary "clutter" from the image. The performance of linear sensor array beamforming was analyzed for both single and multiple targets. Sensor spacing and angle of arrival were investigated. Then the beamforming was extended to two dimensions. Full rectangular array beamforming, two-line multiplication beamforming, crossed sensor array beamforming and sparse rectangular array beamforming and were studied. FFT filtering methods and filter bank methods were investigated. The processing algorithm and the example image were provided.

Five fusion scenarios for the proposed new image format are discussed.

- Scenario 1 is the fusion of video camera frames with Doppler beamforming radar to enhance moving object detection. The fusion of frame differencing with Doppler beamforming was studied.
- Scenario 2 is using imaging to reduce the ambiguity of crossed array beamforming. The template matching and frame differencing were used to process the region which may contain targets. Then a decision making strategy for reducing ambiguity was introduced.
- Scenario 3 is the fusion of optical imaging with Doppler beamforming radar to enhance tennis ball tracking. The region of interest was marked by the radar. The optical imaging was used to judge the in/out of the tennis ball.
- Scenario 4 is the fusion of optical imaging with pulsed beamforming radar to track a target in 3D position. The Kalman filter was studied and two fusion algorithms were researched.
- Scenario 5 is using Doppler beamforming radar to improve gait analysis. The micro-Doppler characteristics are used to analyze human movement. Then Doppler processing was combined with Doppler beamforming to relate the Doppler frequency to the body part, which can be projected into the optical image.

The experiments show that the creation of a range image layer and a radial velocity image layer are successful. The proposed two extra image layers can be combined with a traditional RGB image to enhance object tracking. The disadvantage is that the data rate is very high when the sensor number is increased. In two dimensional beamforming, there is ambiguity in some shapes of sensor arrays. A sparse rectangular array can be used to reduce the sensor number with fewer ambiguities. The ambiguities can be removed by fusion of different layers in the new image format. The new image format and the fusion algorithms can bring great value to the area of surveillance, sports, medical care and computer-human interaction.