Study of seismic control systems on the behaviour of industrial storage racks

by

Samin Sorourian

A thesis submitted for the fulfilment of the requirements for the degree of Master of Engineering

School of Civil and Environmental Engineering Faculty of Engineering and Information Technology University of Technology Sydney

2014

Certificate of authorship/originality

I certify that the work in this thesis has not previously been submitted for a degree nor has it been submitted as part of requirements for a degree except as fully acknowledged within the text.

I also certify that the thesis has been written by me. Any help that I have received in my research work and the preparation of the thesis itself has been acknowledged. In addition, I certify that all information sources and literature used are indicated in the thesis.

Samin Sorourian

Sydney, December 2014

Acknowledgment

This thesis would not have been completed without the guidance, advice and support of a number of individuals whose contribution I would gratefully like to acknowledge.

I would like to express my sincere gratitude and thanks to my supervisor, Dr. Ali Saleh. The project would not be completed without his constant encouragement, support, and invaluable suggestions. I would like to thank my co-supervisor Professor Bijan Samali as well for his assistance and guidance and support.

I would like to express my thanks to DEXION for their financial support of this research. They also provided all materials and storage racks for seismic tests.

I would also like to convey my thanks to University of Technology Sydney (UTS) Civil Engineering Laboratories staff, specially the laboratories manager Mr Rami Haddad, senior project engineer Mr Peter Brown and technical officer Mr David Dicker who kindly helped me in project experimental stages.

Furthermore, I am grateful to many of my colleagues and friends who assisted me during my studies. Special thanks must go to my friend and supporter, Mr Nariman Khodadoust who helped me during the most difficult time in my life to not give up to achieve my goal.

Lastly, I would like to extend my love and gratitude to my dearest family for their support and encouragement. I want to sincerely thank them from the bottom of my heart and acknowledge that without them none of this could have happened and I was not able to achieve most of the things I have in my life.

Hereby, I would like to dedicate this thesis to my family for being such great support in my life.

Abstract

Steel storage racks are structures which are used in factories and warehouses to store goods and merchandises. They consist of uprights, beams and braces made of cold-formed steel, and although they are very light in comparison with conventional structures, they are designed to carry very heavy loads. Storage racks are designed to resist horizontal loads in orthogonal directions using two different frame systems: moment resisting frames in down aisle direction and braced frames in cross aisle direction. The design of racks is different from typical buildings because they are made of slender thin walled members, hence, making them sensitive to global, local, and distortional buckling if overloaded. Moreover; the connections demonstrate highly nonlinear behaviours under loading. Due to the aforementioned reasons, the design of racks poses major challenges for engineers especially in seismic regions where mitigating the vulnerability of racks is important.

The objective of this numerical and experimental research was to investigate the seismic behaviour of storage racks and to establish the effectiveness of two alternative control systems to improve the performance of the racks under seismic loads. The control systems studied are new generation passive dampers: (i) a pounding tuned mass damper (PTMD) and (ii) a base isolation system. Full scaled shake table testing was performed at the University of Technology, Sydney (UTS) to study the dynamic behaviour of storage racks and to verify the numerical models. As part of the research, numerical models based on the Finite Element Method (FEM) were developed and applied to conduct parametric analyses of the racks in order to compare the seismic response of cross aisle braced frames of different heights with and without control devices. The FEM results showed that PTMD dampers enhance by up to 40% the seismic behaviour of racks under 5 meters height while the base isolation system was more effective for tall racks. Financial support for this research was provided by Dexion.

Key words: Rack storages, down aisle, cross aisle, Base isolation, PTMD

Ce	Certificate of authorship/originalityii		
Li	st of Figure	28	vii
Li	st of Tables	5	xi
1	Introductio	Introduction	
	1.1 Overvie	W	1
	1.2 Objectiv	es and scope of research	4
	1.3 Research	h methodology	5
	1.3.1	Experimental investigation	6
	1.3.2	Numerical modelling	7
	1.4 Layout of	of the Thesis	9
2	Literature	review	12
	2.1 Overvier	W	12
	2.1.1	Rack storage systems	12
	2.1.2	Dampers	13
	2.2 Storage	racks	15
	2.2.1	Beam end Connector	16
	2.2.2	Upright and base plate	19
	2.2.3	Bracing (Shear frame)	21
	2.2.4	Base Isolated storage rack	24
	2.3 Damper	s and Isolators	
	2.3.1	Base Isolation	26
	2.3.2	Tuned mass damper	
	2.3.3	Tuned Liquid damper	31
	2.3.4	Pounding Tuned Mass Damper (PTMD)	
3	Experimer	ntal Program	
	3.1 Overvie	w of tests	
	3.2 Rack ge	ometry and properties	40
	3.3 Laborato	bry equipment and instrumentation	42
	3.3.1	Shake table	42
	3.3.2	Instrumentation	42
	3.4 Testing	protocol	43
	3.4.1	Down Aisle Tests	44
	3.4.2	Cross Aisle	51
	3.5 Conclus	ions	54
4	Numerical	Modelling	
	4.1 Introduc	tion	56
	4.2 Overvie	w of models analysed by Finite Elements	57
	4.2.1	Types of Numerical Analyses	60
	4.2.2	Geometry and properties of FE model of experimental rack	60
	4.3 Full 3D	FE model of experimental storage rack	60
	4.3.1	Modal Analysis	61
	4.3.2	Seismic Time-history Analyses	61
	4.4 Cross A	isle Direction	67
	4.4.1	Cross-aisle frame definition	68
	4.4.2	FE model of cross-aisle frame (ABAQUS)	70
	4.4.3	Static cross-aisle frame response comparison with experimental results	74

CONTENTS

	4.4.4	Validation of dynamic response of FE model	76
	4.5 Parametr	ic studies of Control Devices	80
	4.5.1	PTMD (Pounding Tuned Mass Damper)	
	4.5.2	Shear frame with Base isolation	
	4.5.3	Comparison between PTMD and Base isolation on Shear frame	
	4.6 Conclusi	ons	
5	Conclusion 5.1 Overall S 5.2 Recomm	ns and Future research Summary and conclusions endations for Further Research:	
6	References		
7	Appendix 7.1 Down air 7.2 Down air 7.3 Down air	Asle direction 20%sle direction 60%sle direction 70%	
	7.4 Down ai	sle direction 80%	

List of Figures

Figure 1.1. The normalised elastic acceleration response spectrum (FEM 10.2.08)	3
Figure 1.2. a) The tested frame b) LVDT and accelerometer attached to frame	7
Figure 2.1. Typical Rack storage (Dexion Design Manual)	13
Figure 2.2. (a) Column deformation in shear (b) column deformation in bending, (c) connect	ction
deformation and (d) global joint deformation (Bernuzzi & Castiglioni 2001)	17
Figure 2.3. (a) Hook failure monotonic test (b) hook failure cyclic test (Aguirre 2005)	17
Figure 2.4. (a) Conventional cantilever method (b) Double method (Bajoria & Talikoti 200	6).18
Figure 2.5. Experimental test setup (Prabha et al. 2010)	19
Figure 2.6. (a) EN-15512 Method (b) Proposed method by Gilbert and Rasmussen	21
Figure 2.7. (a) Total deformation, (b) pure bending deformation and (c) pure shear deforma	tion
	23
Figure 2.8. Alternative test set-up to measure shear stiffness (Gilbert et al. 2012)	24
Figure 2.9. Innovative Base isolation for steel storage rack (Filiatrault et al. 2008)	25
Figure 2.10. Differences between Fixed base and base isolated structure (Halling 1995)	27
Figure 2.11. a) Laminated rubber bearing b) lead core rubber bearing (Wu 2003)	28
Figure 2.12. Sliding Isolation Bearing (Fenz & Constantinou 2008)	29
Figure 2.13. The concept of using base isolation in cross aisle direction (Kelly 2001)	30
Figure 2.14. Schematics of TMD system	31
Figure 2.15. Schematic model of a pounding tuned mass damper (Zhang et al. 2012)	32
Figure 2.16. Schematics of PTMD system	33
Figure 2.17. linear spring model (Muthukumar & DesRoches 2006)	33
Figure 2.18. Kelvin model (Muthukumar & DesRoches 2006)	34
Figure 2.19. Hertz model (Muthukumar & DesRoches 2006)	34
Figure 2.20. Hertz nonlinear model (Muthukumar & DesRoches 2006)	35
Figure 3.1. Rack frame on shake table; Down aisle direction	38
Figure 3.2. Rack frame on shake table; Cross aisle direction	39
Figure 3.3. Geometry of two level rack storage specimen	41
Figure 3.4. a) Connected base plate to shake table surface b) Position of base plates	41
Figure 3.5. a) Attaching blocks to pallets with rods and bolts b)Wrapping pallets around be	ams
with chains	42
Figure 3.6. a) Accelerometer attached to the block b) Accelerometer attached to the frame	43
Figure 3.7. a) LVDT attached to the frame b) LVDT attached to the block	43
Figure 3.8. FRF of Sine sweep test along Down aisle direction after 20% El-Centro test	44
Figure 3.9. FRF of Sine weep test Down aisle before seismic tests and after 60%, 70% and	80%
of El-Centro test	45

Figure 3.10. Hand exciting to measure damping	46
Figure 3.11. Accelerometer's positions in down aisle test	47
Figure 3.12. LVDT's positions in down aisle test	48
Figure 3.13. a) Acceleration b) Displacement measured at 20% of El-Centro earthquake	49
Figure 3.14. a) Acceleration b) Displacement measured at 80% of El-Centro earthquake	50
Figure 3.15. FRF of Cross aisle Sine sweep test before seismic tests and after 10% of El-Cen	tro
test	51
Figure 3.16. Hand Exciting to measure damping in cross aisle	52
Figure 3.17. Accelerometer's position in Cross aisle test phase1	53
Figure 3.18. LVDT's position in Cross aisle test	53
Figure 4.1. 3D beam element model of experimental storage rack in SAP2000	57
Figure 4.2. Overview of FE Models	58
Figure 4.3. Location of top accelerometer and LVDT	62
Figure 4.4. a) Acceleration b) Displacement of 20% of El-Centro, experimental and numerica	al
	64
Figure 4.5. a) Acceleration b) Displacement of 60% of El-Centro, experimental and numerica	al
	65
Figure 4.6. a) Acceleration b) Displacement of 70% of El-Centro experimental and numerica	166
Figure 4.7. a) Acceleration b) Displacement of 80% of El-Centro experimental and numerica	167
Figure 4.8. Experimental 3D frame	69
Figure 4.9. Schematic details of experimental model	70
Figure 4.10. Element families used in ABAQUS	71
Figure 4.11. Shear frame modelled in ABAQUS	72
Figure 4.12. Meshed elements	72
Figure 4.13. Material behaviour used in the FEM analysis for column, base plate and anchor	
bolts	73
Figure 4.14. Test arrangement for measuring shear stiffness of cross aisle frame	75
Figure 4.15. Boundary conditions of experimental shear test in UTS laboratory (Saleh 2012c)) 75
Figure 4.16. Comparison between numerical and experimental results of shear test	76
Figure 4.17. Free vibration of shear frame	77
Figure 4.18. Free vibration of cross aisle frame numerical and experimental results	78
Figure 4.19. Displacements of top story experimental and numerical results at 10 % of El-	
Centro (1940)	79
Figure 4.20. Displacements of top story experimental and numerical results at 20 % of El-	
Centro (1940)	79
Figure 4.21. Displacements of top story experimental and numerical results at 30 % of El-	
Centro (1940)	80

Figure 4.22.	Cross-aisle frame model using beam and link elements	81
Figure 4.23.	PTMD configuration	82
Figure 4.24.	Sequence of impact between the middle bar and rubber layer	83
Figure 4.25.	PTMD behaviour with different gaps	84
Figure 4.26.	PTMD equivalent spring-mass-gap	84
Figure 4.27.	Model of Cantilever column	85
Figure 4.28.	El-Centro (1940) Time history	86
Figure 4.29.	Kobe (1995) Time history	86
Figure 4.30.	a) Acceleration b) displacement of single column	87
Figure 4.31.	Dynamic response under the El-Centro (1940) earthquake: (a) acceleration; (b)	
displacemen	t; (c) base-shear force	89
Figure 4.32.	Displacement RMS under El-Centro (1940) earthquake	90
Figure 4.33.	Base-shear RMS under El-Centro (1940) earthquake	91
Figure 4.34.	Displacement peak value under El-Centro (1940) earthquake	92
Figure 4.35.	Displacement RMS under Kobe (1995) earthquake	93
Figure 4.36.	Base-shear RMS under Kobe (1995) earthquake	93
Figure 4.37.	Displacement peak value under Kobe (1995) earthquake	94
Figure 4.38.	Displacement RMS of 2.8m shear frame under El-Centro (1940) earthquake	95
Figure 4.39.	Base-shear RMS of 2.8m shear frame under El-Centro (1940) earthquake	95
Figure 4.40.	Displacement peak value of 2.8m shear frame under El-Centro (1940) earthquak	e
		96
Figure 4.41.	Displacement RMS of 2.8m shear frame under Kobe (1995) earthquake	97
Figure 4.42.	Base-shear RMS of 2.8m shear frame under Kobe (1995) earthquake	98
Figure 4.43.	Displacement peak value of 2.8m shear frame under Kobe (1995) earthquake	98
Figure 4.44.	Displacement RMS of shear frames under El-Centro (1940) and Kobe (1995)	
earthquake	1	00
Figure 4.45.	Base Shear force RMS of shear frames under El-Centro (1940) and Kobe (1995))
earthquake	1	01
Figure 4.46.	Peak value reduction of shear frames under El-Centro (1940) and Kobe (1995)	
earthquake	1	01
Figure 4.47.	Analytical model of shear frame rack with base isolation	03
Figure 4.48.	Hysteretic Response of East Base Isolator, Cross-Aisle Seismic Test, 100% of D	E
test level, Te	est Series 1A (Filiatrault et al. 2008)	03
Figure 4.49.	Displacement RMS of shear frames with base isolation system under El-Centro	
(1940) and k	Kobe (1995)1	05
Figure 4.50.	Base shear force RMS of shear frames with base isolation system under El-Cent	ro
(1940) and k	Xobe (1995) earthquakes1	06

Figure 4.51.	Displacement RMS of shear frames with PTMD and Base isolation under El-
Centro (1940)) earthquake
Figure 4.52.	Base shear force RMS of shear frames with PTMD and Base isolation under El-
Centro (1940)) earthquake
Figure 4.53.	Displacement RMS of shear frames with PTMD and Base isolation under Kobe
(1007) (1	1
(1995) earth	Juake
(1995) eartho Figure 4.54.	Base shear force RMS of shear frames with PTMD and Base isolation under Kobe

List of Tables

Table 2.1. C	Comparison between RMI, finite element and experimental tests (Sajja et al. 2008) 2	22
Table 3.1. N	Number and type of experimental tests	40
Table 3.2. S	Section properties	41
Table 3.3. D	Down aisle frequencies at different earthquake intensity	45
Table 3.4. N	Maximum Down aisle top acceleration and displacement at different earthquake	
intensities E	El-Centro (1940) earthquake	48
Table 3.5. C	Cross aisle frequencies at different earthquake intensity	51
Table 4.1. V	Vibration modes of SAP model and experimental test in down aisle direction	51
Table 4.2. n	numerical and experimental results of top acceleration and top displacement	63
Table 4.3. S	Section properties	69
Table 4.4. N	Material properties	69
Table 4.5. N	Material properties	73
Table 4.6. D	Detailed properties of shear frames10	02
Table 4.7. 1	Natural frequency of racks before and after applying isolation system10	05

NOTATIONS

The symbols used in this thesis, including their definitions, are listed below.

Α	Cross-sectional area
a_g	Design horizontal ground acceleration
С	Impact damping
C ₁	Damping of mass
Co	Damping of structure
d	Distance between the centroidal axes of uprights
Ε	Modulus of elasticity of steel
F	Applied action
f_u	Specified ultimate strength of steel
f_y	Specified yield strength of steel
G	Shear modulus of rubber
h	Total height of upright frame
Ι	Moment inertia
Κ	Bulk modulus of rubber
K ₀	Equivalent stiffness of structure
<i>K</i> ₁	Equivalent stiffness of damper
Se(T)	Ordinate of the elastic spectrum (normalized by g)
T _B	Lower limit of the constant spectral acceleration branch
T_C	Upper limit of the constant spectral acceleration branch
T_D	Period value defining the beginning of the spectrum constant displacement
	range
ε_y	Steel Yield tensile strain
ε_p	Steel tensile plastic strain
ε _u	Steel maximum tensile strain
η	Damping spectrum correction factor
η_d	Reduction ratio of displacement
η_f	Reduction ratio of shear force
σ_y	Steel yielding stress
σ_u	Steel ultimate stress

- β Impact stiffness parameter
- δ Horizontal deflection of the frame
- Δ Deflection of base plate at base of shear frame