An Evolutionary Game Theoretic Approach for Stable Clustering in Vehicular Ad hoc Networks (VANETs)

Ammara Anjum Khan

A thesis presented for the degree of Master of Engineering (By Research)

Supervised by Professor Mehran Abolhasan

Faculty of Engineering and Information Technology (FEIT)
Centre For Real Time Information Networks (CRIN)
University of Technology

Sydney
July, 2015
"Nothing is impossible if you have faith in God and you set your mind to it"

(Ammara Khan)
Abstract

Finding and maintaining efficient routes for data dissemination in VANETs is a very challenging problem due to the highly dynamic characteristics of VANETs. Clustering in Vehicular Ad hoc Networks (VANETs) is one of the control schemes used to provide efficient and stable routes for data dissemination in VANETs. The rapid changes in the topology of VANETs have instigated frequent cluster formation and reorganization which has seriously affected route stability in Vehicular Ad hoc Networks. Considerable work has been reported into the development of clustering protocols while keeping in view the highly dynamic topology of VANETs, but the objective of imbuing the system with a stable underlay is still in the infant stage. The analytical models used for studying the behaviour of Vehicular Ad hoc Networks have been scarced due to distributed, highly dynamic and self-organizing characteristics of VANETs. In contrast, game theory is emerging as a novel analytical tool that can be used to tackle the technical challenges concerning the current and future problems in wireless and communication networks. A two-layer novel Evolutionary Game Theoretic (EGT) framework is presented to solve the problem of in-stable clustering in VANETs. The aim of this research is to model the interactions of vehicular nodes in VANETs, to retain a stable clustering state of the network with evolutionary equilibrium as the solution of this game. A stable clustering scenario in VANETs is modelled with a reinforcement learning approach to reach the solution of an evolutionary equilibrium. Performance of the proposed “evolutionary game based clustering algorithm” is empirically investigated in different cases and the simulation results show that the system retains cluster stability.
Declaration

I certify that the work in this thesis has not previously been submitted for a degree nor has it been submitted as part of requirements for a degree except as fully acknowledged within the text.

I also certify that the thesis has been written by me. Any help that I have received in my research work and the preparation of the thesis itself has been acknowledged. In addition, I certify that all information sources and literature used are indicated in the thesis.

Signature:

________________________
Ammara Anjum Khan
Dedication

To my beloved mother Najma khan and my father Salah Uddin Khan.
Acknowledgements

Thanks to ALMIGHTY ALLAH for giving me strength and ability to understand learn and complete this thesis. No doubt he is the best disposer of all affairs.

Life is the name of ongoing struggles and efforts. Being thankful gives us an appreciation for what we have. People, things and events come and go in ones life for some reason. Every person is a paragon in his entirety and it is important to treasure people. Besides, the completion of this dissertation is really a credo to learn the love, support, and faith of the people in my life.

First of all, I overwhelmingly pay my immeasurable appreciation and deepest gratitude to the soul of honour Professor Mehran Abolhasan for his never-ending guidance and supervision throughout the development of this thesis. I consider myself extremely fortunate to be mentored by him throughout my graduate career. Most of all I pay my extolment to his never ending patience and prodigious attitude to provide a desperate courage throughout this work. Without his guidance and persistent help this work would not have been possible.

I am extremely grateful to prof. Wei Nei for his great assistance and valuable ideas throughout this work. Without his instructions and help, this work might not have been accomplished.

Bundle of thanks also goes to my colleagues and friends whom I have benefited from their support, healthy and technical discussions, their friendship and advices over the years.

Encouragement plays a vital role to get motivated. I am also thankful to my friends for their moral support and for inspiring me to see the light and positive aspects of every situation. A very special thanks goes to my true friend Huma Ismail. I am really grateful to my sister Sabahat and my brothers Nadeem and Faheem for
their encouragement and belief in my abilities that leads me to accomplish this task.

A bundle of thanks goes to my love ‘ my husband Adnan Majeed ’ for his precious love and moral support who was always standing by me in my hard times during this work. Thanks for his patience and special care he provided to the kids while I was at work. I could not have gotten through the last moments of this degree without his love and support. I’m lucky to have him in my life.

To my most adorable kids Usman and Rameen, their acts and smiles served as a livener and braced me up to get back to the work. Thanks for the special prayers they made for me to accomplish this work. I am lucky to have such beautiful and adorable kids in my life.

Above all, though my gratitudes and appreciations are not enough to pay to my parents for their lasting support in all terms and aspects of my life. Nevertheless, thank you Mum for your prayers and thank you Dad for everything. My father is no more in this world but he once taught me that nothing in this world is impossible, all you need is to strengthen up your will power and I still remember that. I will be enthralled by his prayers till the day I breath my last.
# Contents

## 1 Introduction

1.1 Thesis Statement .............................................. 1  
1.2 Thesis Organization ............................................ 2  
1.3 Contributions and publications ............................... 5  

## 2 Literature Review  

2.1 Vehicular Ad hoc Networks ................................. 7  
   2.1.1 Application Areas ....................................... 7  
   2.1.2 Basic Components of Vehicular Communication (VC) ..... 8  
   2.1.3 Vehicular Communication Infrastructure VCI ............ 11  
   2.1.4 Distinguishing Features of VANETs ..................... 13  
2.2 Network layer operations in VANETs ....................... 15  
2.3 Clustering .................................................. 23  
   2.3.1 Cluster Structure ....................................... 23  
   2.3.2 Clustering in VANETs .................................... 23  
   2.3.3 Benefits of Clustering in VANETs ....................... 24  
2.4 VANET Clustering Protocols .................................. 25  
2.5 Challenges of VANET Clustering ............................. 32  
2.6 IEEE 802.11p ................................................. 35  
2.7 Game Theory ............................................... 35  
2.8 Applications of Game Theory in Wireless Networks ........ 37  
2.9 Introduction to Evolutionary Game Theory (EGT) ........... 39  
2.10 Why Evolutionary Game Theory (EGT) ....................... 40  
2.11 Summary .................................................. 43
## 3 Proposed Two Layer Evolutionary Game Theoretic Framework

3.1 Introduction .................................................. 44  
3.2 Proposed two layer Game Framework .......................... 45  
3.3 Main components of proposed Game Framework ............... 46  
3.4 Upper layer Evolutionary Game Framework ................... 47  
3.5 Lower layer Evolutionary Potential Game Theoretic(EPGT) Framework 48  
  3.5.1 Utility function ........................................... 48  
  3.5.2 Objective of Utility function ............................... 50  
  3.5.3 Cluster Formation .......................................... 51  
  3.5.4 Cost Function .............................................. 51  
  3.5.5 Propagation Model ......................................... 51  
3.6 Flow chart .................................................... 53  
3.7 System Model and Assumptions ................................. 54  
3.8 Solution Approach ............................................ 55  
3.9 List of Parameters ............................................. 57  
3.10 Summary .................................................... 59

## 4 Performance Evalutaion

4.1 Performance Evaluation using static scenarios .................. 60  
  4.1.1 Simulation Setup in static scenarios ....................... 60  
  4.1.2 Assumptions ................................................. 61  
  4.1.3 Network Configuration Parameters ........................ 62  
  4.1.4 Results and implications of static scenarios .............. 63  
4.2 Performance Evaluation Using Mobility ........................ 68  
  4.2.1 Manhattan Grid Mobility Model ............................. 68  
  4.2.2 Simulation Setup of Mobility ............................... 68  
  4.2.3 Assumptions ................................................. 70  
  4.2.4 Network Configuration Parameters ........................ 71  
  4.2.5 Results and Implications of Mobility ...................... 71  
4.3 Summary .................................................... 78

## 5 Conclusions and Suggested Future Research

5.1 Conclusions .................................................. 79
List of Figures

2.1 A schematic of ITS services in VANETs [1] ......................... 9
2.3 Components of Vehicular Communication [3] ..................... 10
2.4 A Vehicular Communication Infrastructure Scenario [4] ........... 12
2.5 An example of Single hop and Multihop IVC System in VANETs . 12
2.6 Vehicular Communication Infrastructure VCI ....................... 13
2.7 Network layer operations in VANETs ................................. 23
2.8 Basic Structure of Clustering ........................................ 24
2.9 Some investigations on routing protocols in VANETs with and without clustering [5] ......................................................... 35
2.11 Applications of game theory .......................................... 37
3.1 Two layer proposed game framework ................................. 46
3.2 Schematic of two layer proposed game framework .................. 49
3.3 Flow chart of proposed Game ......................................... 53
4.1 A snapshot of proposed EPGT running simulation in a static scenario 61
4.2 Proposed EPGT running simulation in a static scenario with 2 clusters ................................................................. 64
4.3 Stability convergence of System with two clusters .......... 64
4.4 Proposed EPGT running simulation in a static scenario with 5 clusters ................................................................. 64
4.5 Stability convergence of System with five clusters .......................... 64
4.6 Proposed EPGT running simulation in a static scenario with 10 clusters ................................................................. 65
4.7 Stability convergence of System with ten clusters ...................... 65
4.8 Proposed EPGT running simulation in a static scenario with 15 clusters ................................................................. 65
4.9 Stability convergence of System with fifteen clusters ............... 65
4.10 Proposed EPGT running simulation in a static scenario with 20 clusters ................................................................. 66
4.11 Stability convergence of System with twenty clusters ............. 66
4.12 Utility Curve at lower price ..................................................... 66
4.13 Concave Utility Curve ............................................................ 67
4.14 Optimum Number of clusters .................................................. 67
4.15 A snapshot of proposed EPGT running simulation of VANET in the Manhattan grid Mobility ................................................. 69
4.16 Proposed EPGT running simulation using Manhattan grid with two clusters ................................................................. 72
4.17 Stability convergence with two clusters using Manhattan grid ... 72
4.18 Proposed EPGT running simulation using Manhattan grid with five clusters ................................................................. 73
4.19 Stability convergence with five clusters using Manhattan grid ... 73
4.20 Proposed EPGT running simulation using Manhattan grid with ten clusters ................................................................. 73
4.21 Stability convergence with ten clusters using Manhattan grid .... 73
4.22 Proposed EPGT running simulation using Manhattan grid with fifteen clusters ............................................................. 74
4.23 Stability convergence with fifteen clusters using Manhattan grid ... 74
4.24 Proposed EPGT running simulation using Manhattan grid with twenty clusters ............................................................... 74
4.25 Stability convergence with twenty clusters using Manhattan grid ... 74
4.26 Utility Curve at lower price ..................................................... 75
4.27 Concave Utility Curve ............................................................ 76
4.28 Optimum Number of clusters ........................................ 76
4.29 Comparison of Concave utility curve at different speeds .......... 77
4.30 Comparison of Concave utility curve at different speeds .......... 77
# List of Tables

3.1 Basic components of proposed game with respect to VANET clustering 47

3.2 List of parameters .................................................. 57

4.1 Network configuration parameters in static scenarios ............... 62

4.2 Network Configuration Parameters using mobility .................. 71

A.1 List of acronyms ....................................................... 83