

ME THESIS

Long-term Performance of Timber-Concrete Composite Flooring Systems

A thesis submitted in partial fulfilment of the requirements for Master of Engineering by research

Mulugheta Hailu University of Technology Sydney Faculty of Engineering and IT School of Civil & Environmental Engineering Centre for Built Infrastructure Research Broadway, NSW 2007

Principal supervisor:Prof. Keith CrewsCo-Supervisor:Dr Rijun Shrestha

September 2015

CERTIFICATE OF ORIGINAL AUTHORSHIP

I certify that the work in this thesis has not previously been submitted for a degree nor has it been submitted as part of requirements for a degree except as fully acknowledged within the text.

I also certify that the thesis has been written by me. Any help that I have received in my research work and the preparation of the thesis itself has been acknowledged. In addition, I certify that all information sources and literature used are indicated in the thesis.

Production Note: Signature removed prior to publication.

September 2015

TO MY WIFE NEBYAT

&

MY DAUGHTER MIKAL

Acknowledgements

I would never have been able to finish my dissertation without the guidance of my supervisors, help from friends, and support from my wife.

I would like to express my deepest gratitude to my principal supervisor, Prof. Keith Crews, for opening this opportunity to do research under his supervision and my cosupervisors Dr Rijun Shrestha and Dr Christophe Gerber, for their excellent guidance, caring, patience, and providing me with an excellent atmosphere for doing research. I would also like to thank Prof. Bijan Samali, for his encouragement and advice in the initial period of my enrolments.

This project was funded by STIC (Structural Timber Innovation Company) and I would like to thank them for their financial support and creating this research happen.

I would like to thank also Rami Haddad, Peter Brown together with all Civil engineering laboratory staff for their support and encouragement throughout the research period.

Finally, I would like to thank my wife, Nebyat, She was always there cheering me up and stood by me through the good times and bad and I would never been able to complete without her unfailing support.

List of journal papers

Hailu, M., Shrestha, R., Crews, K., 2015, "Long-term deflection of Timber composite beams in cyclic humidity conditions in bending: Experimental investigation", Journal of Construction and Building Materials, [*To be submitted*]

Hailu, M., Shrestha, R., Crews, K., 2015, "Short-term collapse test of TCC beam after long-term test: Experimental investigation", Journal of Construction and Building Materials, [*To be submitted*]

List of conference papers

Hailu, M., Gerber, C., Shrestha, R., Crews, K., 2012, "Long-term behaviour of Timber-Concrete Composite beams", in "12th WCTE, Proceedings of the World Conference on Timber Engineering, New Zealand, Auckland.

Hailu, M., Shrestha, R., Gerber, C. & Crews, K. 2012, "Residual strength of timberconcrete beams after long-term test", Proceedings, 22nd Australasian Conference on the Mechanics of Structures and Materials, ACMSM 22, Sydney, Australia, 11-14 December.

Hailu, M., Shrestha, R., Crews, K., 2013, "Long-term behaviour of Timber-Concrete Composite Beams in Cyclic Humidity Conditions", Composite Construction VII, Palm Cove, Queensland, Australia, 28-31 July.

Hailu, M., Shrestha, R., Crews, K. 2014, "Long-term deflection of Timber composite beams in cyclic humidity conditions in bending", in "14th WCTE', Proceedings of the World Conference on Timber Engineering, Quebec, Canada.

Hailu, M., Shrestha, Crews, K. 2014, "Timber composite floor beams under 2 years long-term load", Proceedings, 23rd Australasian Conference on the Mechanics of Structures and Materials, ACMSM 23, Byron Bay, Australia, 9-12 December 2014.

LIST OF NOTATIONS

Δ	Deflection (mid-span deflection)
ρ	density
Δ	elastic deflection of the system
δ	deflection
b	floor width
B_c	width of concrete topping
CO_2	carbon dioxide
d	diameter of the shear connector
D_C	theoretical full composite deflection
D_I	measured partial composite deflection
D_N	theoretical fully non-composite deflection
D_w	depth of LVL web
E	modulus of elasticity; efficiency of composite
E_{cj}	mean MOE of concrete at the appropriate age
EI	flexural stiffness
(EI) _{eff}	effective bending stiffness
E_x	mean modulus of elasticity of LVL in x-direction
<i>F</i> , <i>P</i>	point load
f'_b	characteristic bending strength
f'_c	characteristic compression strength parallel to grain
f'_p	characteristic compression strength perpendicular to grain
f'_s	characteristic shear strength
f'_{sj}	characteristic shear strength at joint details
f'_t	characteristic tensile strength
f_b	mean bending strength
f_c	mean compression strength
$f_{ m cm}$	mean value of the compressive strength of concrete at the relevant
	age
f_t	mean tensile strength
f_{v}	mean shear strength

g	acceleration due to gravity (9.81 m/s^2)
G	shear modulus
Ι	moment of inertia
k	stiffness
$K_{1}, K_{4}, k_{6}, K_{7}, K_{9}, K_{11}, K_{12}$	Modification factors for timber as per AS/NZS 1720
k17	factor for multiple nailed joints
Kserv	serviceability limit state stiffness
K_u	ultimate limit state stiffness
L, l	span
L_b	shear-free span between load points
т	mass of the floor ; mass per unit length; mass per unit area
M_i	initial mass of moisture content test piece
M_o	dry weight of moisture content test piece
N*t	Axial force on timber
M^*	Design bending moment
M^*t	Design bending moment on timber
$\boldsymbol{\varphi}N_R$	Resisting tensile strength
$\boldsymbol{\varphi}M_R$	Resisting bending moment
Q_k	strength of shear connectors
Se	spacing of the shear connectors at the ends of the beam
$S_{e\!f\!f}$	effective constant spacing of the shear connectors
S _m	spacing of the shear connectors in the middle of the beam
S _{min} , S _{max}	Minimum and maximum spacing of the connectors
T_c	thickness of concrete topping
T_f	thickness of LVL flange
T_w	thickness of LVL web
W	effective weight of the floor
V^*	Design shear force
W	maximum short-term deflection; uniformly distributed load per unit
	length (Chapter 7)

 $g_{{\boldsymbol{\cdot}} c}$

Partial safety factor for concrete

$g \cdot m$	Partial safety factor for timber
g . con	Partial safety factor for connection
g	reduction factor (gamma)

LIST OF ACRONYMS

BM	bird-mouth
CA	composite action
CoV	coefficient of variation
MOE	modulus of elasticity
FE	finite element
FEA	finite element analysis
FEM	finite element model
Glulam	glue laminated timber
LVDT	linear variable differential transformer
LVL	laminated veneer lumber
LWC	Light weight concrete
MC	moisture content
NS	normal screw
NZ	New Zealand
B-NS	Beam with normal screw connector
B-4N	Beam with four notch and with coach screw connector
B-6N	Beam with six notch and with coach screw connector
B-SFS	Beam with SFS screw as connector
Pty Ltd	proprietary limited
PSL	Parallel stranded lumber
RH	Relative air humidity
SCC	steel-concrete composite
SLS	serviceability limit state
STIC	structural timber innovation company
TCC	timber-concrete composite
TTC	Timber-timber composite
ULS	ultimate limit state
UTS	University of Technology Sydney

Table of contents

A	bstract	t		xix
1	Intr	oduc	tion	1
	1.1	His	tory and Background of Timber-Concrete composites	1
	1.2	Res	earch objectives and scope	3
	1.3	Res	earch Significance	4
	1.4	Lin	nitations	5
	1.5	Out	line of the thesis	5
2	Lite	eratu	re review	7
	2.1	Tin	ber-Concrete composite structures	7
	2.2	Cor	nposite action of timber-concrete composite systems	8
	2.3	Tin	ber-concrete connections	11
	2.3	.1	Nails	15
	2.3	.2	SFS-Screw (VB 48-75x100)	16
	2.3	.3	Notch-type connection with and without dowel	19
	2.4	Enł	ancement methods for timber-concrete composite structures	23
	2.5	Lor	ng-term tests on timber-concrete composites	24
	2.5.	.1	Summary of creep and mechano-sorptive behaviour of wood	24
	2.5	.2	Long-term experimental tests on TCC floors and beams	29
	2.5	.3	Long-term experimental tests on TCC connections only	38
	2.6	Eva	luation of the long-term behaviour of TCCs in accordance to Euro code	
	5	44		
	2.7	Cor	ncluding remarks	48
3	Tin	nber	Concrete Composite beams	49
	3.1	Cha	aracteristics of the composite beams	49
	3.2	Init	ial short term tests on TCC and LVL joists	52

3.2	2.1 Initial serviceability test on LVL joists	52
3.2	2.2 Initial Serviceability test on TCC beams	53
3.2	2.3 Composite efficiency of the TCC beams	55
3.3	Concluding remarks	61
4 Lo	ong-term testing of TCC beams	62
4.1	Test set-up	62
4.2	Environmental conditions	64
4.3	Moisture content	65
4.4	Long-term deflection of TCC beams - Discussion	68
4.5	Unloading of two TCC beams from long-term loads	
4.6	Concluding remarks	74
5 Cr	eep factor and evaluating the long-term deflection according to Euro code 5	
5.1	Relative deflection of the TCC beams	
5.2	Analytical fitted curve	77
5.3	Simplified evaluation of the long-term behaviour of TCCs in accordance to)
Euro	code 5 using gamma method	
5.4	Concluding remarks	
6 Re	sidual stiffness and strength tests after long-term test	82
6.1	Serviceability tests and loss in stiffness of TCC beams	
6.2	Ultimate strength tests	
6.3	Residual stiffness and strength of LVL joists	
6.4	Concluding remarks	102
7 Lo	ong-term performance of timber-timber composite floor modulus	103
7.1	Introduction and Composite beam properties	103
7.2	Long-term test results and discussions	104
7.3	Concluding remarks	110
8 Cc	onclusions	111

9 I	Future works	115
Refer	rences	116
Appe	endix A	128
Appe	endix B	131
Appe	endix C	133
Appe	endix D	143
Appe	endix E	148
Appe	endix F	159
Appe	endix G	162
Appe	endix H	175

List of figures

Figure 1: Timber-concrete composite floor (adopted from SFS-Holz Beton-Verbundsystem)2
Figure 2: The concept of composite action; (a) fully composite action, (b) partial composite
action and (c) No composite action
Figure 3: Graphical representation of the correlation between stiffness of a shear connection
and the effective bending stiffness of a composite floor (Dias 2005)11
Figure 4: Setting of a symmetrical push-out test
Figure 5: load-time curves for tests according to EN 26891(Dias 2005)
Figure 6: Examples of timber-concrete connections with: nails (A The concept of composite
); glued reinforced concrete steel bars (A2); screws (A3); inclined screws (A4); split
rings (B1); toothed plates (B2); steel tubes (B3); steel punched metal plates (B4); round
indentations in timber , with fastener preventing uplift (C1); square indentations, (C2);
cup indentations and pre-stresses steel bars (C3), nailed timber planks deck and steel
shear plates slotted through the deeper planks (C4), steel lattice glued to timber (D1);
and steel plat glued to timber (D2) (Ceccotti 1995)14
Figure 7: Typical load-slip behaviour for different types of joints. (Dias, 2005)
Figure 8: SFS VB screw 48-7.5x100 (Lukaszewska 2009) (all dimensions in millimetres) 17
Figure 9: Arrangement of the connectors in bending tests described by (Meierhofer 1992) 18
Figure 10: Beam with SFS screw as shear connector (Van Der Linden, 1999) (all dimension
in millimetres)
Figure 11: Timber-concrete connection with grooved holes and dowels (Linden, 1999)
(dimensions in mm)
Figure 12: Shear key connection detail (Gutkowski 2004) (dimensions in mm)
Figure 13: Semi prefabricated "M" section panel (Buchanan et al. 2008) (dimensions in mm)
Figure 14: Cross-section of the composite beam tested (Lukaszewska 2009)
Figure 15: Results from tensile tests made on pine (0.4x5x150 mm), loaded parallel to grain
(Eriksson, Noren 1965). The upper figure shows the strain (the initial elastic strain is
subtracted), measured on four samples, and the middle figure shows the free shrinkage-
swelling, measured on two samples. The lower figure shows the zero-load compensated
strain, i.e. the difference between the upper and the middle figure, here the medium
values of the four respectively the two samples have been used (Martensson 1994) 26

Figure 16: Geometrical characteristics of the composite beam tested by Bonamini, Uzielli &
Ceccotti (1990) (measured in mm)
Figure 17: Cross-section of the TCC tested at the EMPA laboratory, Dubendorf (kenel &
Meierhofer 1998)
Figure 18: Timber-concrete composite section (left) and loads disposition (right) (Bou Said
et al. 2004)
Figure 19: Comparison between calculated and measured mid-span deflections (Bou Said et
al. 2004)
Figure 20: Longitudinal view and cross-section of the composite beam tested by Ceccotti et
al. (2006) (dimensions in cm)
Figure 21: Mid-span vertical displacements for the timber beam and average value (Ceccotti
2006)
Figure 22; Longitudinal view (a) and cross-section (b) of the notched composite beam
(measured in cm) (Fragiacomo et al. 2007)
Figure 23: Trend in time of the mid-span deflection after the placement of the concrete (b)
and after the application of the dead load weights.(Fragiacomo et al. 2007)
Figure 24: The elevation of beam specimen 1a with SP+N* type during long-term
test.(Lukaszewska 2009)
Figure 25: SP+N* connection type (left) and SST+S* type of connection (right)
(Lukaszewska 2009)
Figure 26: Mid-span deflection of specimen 1a with SP+N* type during long-term
test.(Lukaszewska 2009)
Figure 27: Mid-span deflection of specimen 2a with SST+S* type during long-term
test.(Lukaszewska 2009)
Figure 28: Long-term mid-span deflection result (Yeoh 2009)
Figure 29: Half cross-section of the push-out specimens(left) and apparatus used in the long-
term test to apply a sustained load (right) (dimensions in mm) (Fragiacomo et al. 2007)
Figure 30: Three types of connectors for shear tests (Mueller et al. 2008)
Figure 31: Details of the three types of connection (Yeoh et al. 2011a)
Figure 32: Sustained load test on connections and the cross-section of the TCC beams (Yeoh
et al. 2010)
Figure 33: cross-section (left) and stress distribution (right) of a composite beam with
flexible connection (Eurocode 5)
Figure 34: Cross-section of the TCC beam (Typical) (measured in mm)

Figure 35: Longitudinal elevation of the TCC beam (measured in mm) (a) B-NS, (b) B-4N,
(C) B-6N, & (d) B-SFS
Figure 36: (1) Birds mouth with Ø16 mm coach screw, (2) Normal screw type-17 and (3)
SFS screw connections
Figure 37: MOE test on LVL only
Figure 38: TCC beam under short-term test
Figure 39: Load vs. mid-span deflection during serviceability test for B_NS
Figure 40: Load vs. mid-span deflection during serviceability test for B_4N
Figure 41: Load vs. mid-span deflection during serviceability test for B_6N
Figure 42: Load vs. mid-span deflection during serviceability test for B_SFS
Figure 43: Location of strain gauges during (a) short-term tests on TCC beams
Figure 44: Strain readings along mid-span cross section for B_NS (conc. = strain reading
on concrete, LVL= strain reading on the timber)
Figure 45: Strain readings along mid-span cross section for B_4N (conc. = strain reading
on concrete, LVL= strain reading on the timber)
Figure 46: Strain readings along mid-span cross section for B_6N (conc. = strain reading
on concrete, LVL= strain reading on the timber)60
Figure 47: Strain readings along mid-span cross section for B_SFS (conc. = strain reading
on concrete, LVL= strain reading on the timber)60
Figure 48: Test set up (measured in mm)
Figure 49 Beams under quasi-permanent loads (lead bars)
Figure 50: Changes in relative humidity, moisture content and temperature
Figure 51 LVL MC Test samples
Figure 52 Moisture content of LVL samples versus time
Figure 53: Mid-span deflection versus time
Figure 54: Mid-span deflection and MC versus time for B-6N and B-SFS beams
Figure 55 A comprehensive plot RH % and MC % and, mid-span deflection with time 70
Figure 56: The temperature and relative humidity curve during the long-term test
Figure 57: TCC beams unloaded after two years of long-term test
Figure 58: The relative creep of the TCC beams
Figure 59: Mid-span deflection and analytical fitted curve using logarithmic function
equation based on up to-date experimental results77
Figure 60: Mid-span deflection and analytical predicted deflection for 50 years using
logarithmic function equation based on up to-date experimental results
Figure 61: Test set up for serviceability and ultimate failure test of the TCC beams (typical)
(in mm)

Figure 62: Location of strain gauges along the mid span of the cross section
Figure 63: Total load (2P) versus mid-span deflection at serviceability for B_NS 84
Figure 64: Total load (2P) versus mid-span deflection at serviceability for B_4N 84
Figure 65: Strain profiles along the mid-span cross section from serviceability tests for B-NS
(tests done before and after the long-term test, LT= long-term test)
Figure 66: Strain profiles along the mid-span cross section from serviceability tests for B-4N
(tests done before and after the long-term test, LT= long-term test)
Figure 67: Total load (2P) versus mid-span deflection at ultimate stress for B_NS
Figure 68: Total load (2P) versus mid-span deflection at ultimate stress for B_4N
Figure 69: Tension failure of the joist B_NS
Figure 70: Tension failure of the joist B_4N
Figure 71: Total load (2P) versus slip B_NS
Figure 72: Total load (2P) versus slip B_4N
Figure 73 Connector close to the right support after the failure test (left) and before the
failure test (right) for B-4N
Figure 74 Connector close to the right support after failure for B-NS
Figure 75: Magnitude of the strain along the mid span cross section during ultimate test on
B_NS (the numbers from 1 to 9 refer to the strain gauge numbers given in Figure 62, (-
ve) strain in compression and (+ve) strain in tension
Figure 76: Magnitude of the strain along the mid span cross section during ultimate test on
B_4N [the numbers from 1 to 9 refer to the strain gauge numbers given in Figure 62, (-
ve) strain in compression and (+ve) strain in tension]
Figure 77: Strain profile along the mid span cross section of B-NS during ultimate test 94
Figure 78: Strain profile along the mid span cross section of B-4N during ultimate test 94
Figure 79: Set-up for bending tests of LVL joist
Figure 80: Set-up for tension test of LVL joist
Figure 81: Atypical cross section of the composite beams
Figure 82: Load versus deflection (Zabihi 2012, Zabihi 2014) 104
Figure 83: Long-term test set up and service loads
Figure 84: Timber composite beams in humidity chamber
Figure 85: Relationship between the Mid-span deflection, moisture content and relative
humidity of the chamber
Figure 86 Relationship between deflection and length of exposure cycle (Hearmon and Paton
1964)
Figure 87 Deflection of loaded beech beams, Curve A, specimen maintained at R.H.
93%;Curve B, specimen, specimen loaded dry and then 'cycled'; curve, specimen

loaded at R.H.93% and then 'cycled'. Solid line. R.H. zero; broken line,
R.H.93%.(Gibson, 1965)
Figure 88 Typical creep curves A, B and C, due to cycling of relative humidity between 90%
and 30%, adopted from Epmeier (2007)
Figure 89 the lengths of the coach screw, SFS and normal screw used in the connectors 131
Figure 90 Location of MC samples in the fog-room
Figure 91 General layout of TCC beams in fog-room
Figure 92 Relationship between air humidity and moisture content (top) and deflection
(bottom) with time
Figure 93 Relationship between deflection, moisture content and air humidity 146
Figure 94 Comparison of the MC measurement between small and large samples
Figure 95 Relative creep of TCC beams with time
Figure 96 Logarithmic curve fitting
Figure 97 Logarithmic curve fitting
Figure 98 Magnitude of the Strain measured on tests conducted before and after long-term
test for B-NS (LT= long-term test)
Figure 99 Magnitude of the Strain measured on tests conducted before and after long-term
test for B-4N (LT= long-term test)
Figure 100 Connector close to the right support before (right) and after (left) failure for B-4N
Figure 101 Connector at $L/4$ from the left support before (left) and after (right) failure for B-
4N
Figure 102 Failure patterns on the LVL for B-4N 172
Figure 103 all the four connectors' investigation after failure for B-4N (N1 left end support,
N2 left at L/4, N3 right at L/4 and N4 right support)
Figure 104 Connector close to the right support for B-NS
Figure 105: Strain distribution along the beam cross section during short-term test (Zabihi
2012)
Figure 106: Relationship between the Mid-span deflection, moisture content and relative
humidity of the chamber for timber only floor beams

List of tables

Table 1: Properties of concrete used (Pham 2010)	51
Table 2 Type of connectors, characteristic strength and slip moduli	51
Table 3: The Modulus of Elasticity of the Timber (LVL) (Pham 2010)	53
Table 4 TCC beams bending stiffness (Pham 2010)	54
Table 5 Theoretical bending stiffness of TCC beams at serviceability	55
Table 6 Composite action achieved by TCC beams	58
Table 7 Instantaneous elastic mid-span deflection measured	64
Table 8 Instantaneous elastic deflection and recovery after load removal	74
Table 9 Relative creep values after three years	76
Table 10 Theoretical bending stiffness's using Euro code 5	80
Table 11 Comparison between the predicted theoretical Mid-span deflections according	;
Eurocode 5 with the deflections from the experimental result	80
Table 12 Percentage loss in bending stiffness in TCC beams	85
Table 13 Summary of ultimate tests results for the TCC beams	87
Table 14 Comparison of the theoretical design capacity of the TCC beams using GAMM	1A
method with the failure loads (kN) from experimental results	97
Table 15 Modulus of Elasticity of LVL after long-term test	99
Table 16 Tensile strength of LVL after long-term test	100
Table 17 Percentage loss in MOE of LVL joists	101
Table 18 Relative creep values of the composite beams	109
Table 19 LVL properties (Carter Holt Harvey)	131
Table 20 Shear strength of the connectors used (Khorsandnia et al 2012)	132
Table 21 Slip moduli of the connectors used (Khorsandnia et al. 2012)	132
Table 22 Slip moduli of the connectors used (Gerber et al. 2011)	132
Table 23: Geometric properties of concrete and timber for all the TCC beams	133
Table 24: Properties of concrete used	133
Table 25 Theoretical effective serviceability bending stiffness for B-NS	134
Table 26 Theoretical effective serviceability bending stiffness for B-4N	136
Table 27 Theoretical effective serviceability bending stiffness for B-6N	138
Table 28 Theoretical effective serviceability bending stiffness for B-SFS	140
Table 29 Serviceability design load for TCC beam	144
Table 30 Weights (lead bars) on the TCC beams	144

Table 31: Transformed section properties for B_NS (typical)
Table 32: Bending stiffness theoretical and experimental 149
Table 33: Concrete design creep coefficient (t=3years after loading) 151
Table 34: Concrete design creep coefficient (t=0, instant of loading) 151
Table 35: Concrete design shrinkage coefficient
Table 36: Long-term bending stiffness of B-6N 152
Table 37: Long-term bending stiffness of B-SFS 155
Table 38: Predicted immediate mid span deflection of the TCC beam during loading (Euro
code 5)
Table 39: Predicted mid span deflection of the TCC beam at the end of life (Euro code 5) 158
Table 40 Magnitude of strain along mid span cross section during serviceability test (Pham,
2010)
Table 41 Magnitude of strain along mid span cross section during ultimate 159
Table 42: ULS analysis of beam B-NS 162
Table 43: ULS analysis of the beam B-4N 166
Table 44: Results of bending test on LVL joist cut from the TCC beam (B-4N) after the
ultimate test with 1260 mm clear span 173
Table 45: Results of bending test on LVL joist cut from the TCC beam (B-NS) after the
ultimate test with 1260 mm clear span
Table 46: Results of tension test on LVL joist cut from the TCC beam (B-4N) after the
ultimate test with 1000 mm clear length between the grips 173
Table 47: Results of tension test on LVL joist cut from the TCC beam (B-NS) after the
ultimate test with 1000 mm clear length between the grips 174
Table 48: Design load for L6-01 and L6-03 beams according AS/NZS 1170 175
Table 49: The transformed section properties of the timber composite beams 176
Table 50: The analytical long-term deflection for L6-01 and L6-03 beams using GAMMA
method and Euro code 5

Abstract

Timber concrete composites (referred to as TCC beams here onwards) consist of a concrete slab integrally connected to the timber joist by means of a shear connector. The coupling of a concrete layer on the compression side and timber on the tension side of cross-section results in efficient use of both materials. As the timber joist is mainly subjected to tension and bending while the concrete flange is mainly subjected to compression. The connection plays an important role for the composite action in determining the structural and serviceability performance of the system. Use of stiff and strong connection system contributes to a suitable bending strength and stiffness of the TCC together with other mechanical properties..

Design of timber-concrete composite systems requires verification of serviceability and ultimate limit states. With the increasing trend in long span and light-weight construction, design of these floors may be governed by serviceability limit states and deflection under long-term load is one of the serviceability criteria that need to be addressed.

The long term behaviour of timber-concrete structures depends on a number of phenomena taking place in its components. Phenomena such as creep and shrinkage effects in concrete, creep, shrinkage or swelling effects in timber and creep in connection affect long term strength, stiffness and deflection behaviour of timber-concrete composites. Creep due to variation in the moisture (mechano-sorptive creep) plays a major role in the long term behaviour of TCC floors. Few long-term experimental tests conducted so far have been reported in the literature.

The objectives and scope of this study are to conduct long-term experimental test on timber-concrete composite beams, analyse the results to determine the creep coefficient of the composite system and compare the experimental results with the analytical solutions in accordance with Eurocode 5, in which the effective modulus method is used to account the effect of creep.

To achieve the aforementioned objectives, a long-term laboratory investigation was started in August 2010 on four 5.8m span TCC beams with four different connector types. The specimens have been under sustained loads of 1.7kPa and subjected to a cyclic humidity conditions whilst the temperature remains quasi constant (22 °C). During the test, the mid-span deflection, moisture content of the timber beams and relative humidity of the air are continuously monitored. The long-term test is still continuing, two TCC beams were unloaded and tested to failure after 550 days, while the other two TCC beams are still being monitored and this report included experimental results up to the first 1400 days only. The long-term investigation on the two timber only composite floor beams commenced on March 2013 and the results are reported for the first 800 days from their commencement.