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ABSTRACT 
 
Ageing and degradation of the infrastructures, especially critical infrastructures (such as 

power plants, high-rise buildings, long-span bridges, dams, airports, railway tracks, etc.) 

impose a major concern that affects national assets of each country and endangers public 

safety. On this point, structural health monitoring (SHM) potentially provides solution to 

the problem by evaluating the integrity of the infrastructures to determine their current 

health state. Basically, structural health monitoring deals with early warning on the state of 

health of infrastructures, localisation and quantification of damage in the structures and 

prediction of their remaining service life. This, consequently reduces asset management 

costs, effectively prolongs operational lifetime and ensures public safety. Hence, getting 

access to a robust paradigm to deal with aforementioned concerns is a major challenge 

introduced here. Despite high level of research activities in this field, few robust methods of 

indicating an adverse condition of a structure in service has been demonstrated as effective, 

which is the motivation for this research work. 

 The main objective of this study is to investigate a more robust scheme of damage 

identification, including damage detection and damage localisation, to overcome some of 

the shortcomings with the current methods. In this regard, firstly, a background on the 

existing methods is presented in Chapter 1 to evaluate the advantages and limitations with 

the current methods. According to the literature, frequency response-based damage 

identification methods are superior to conventional modal-based approaches as they are less 

error prone and provide abundance of information in a wide range of frequencies; hence, 

this study starts with developing a more robust frequency response function (FRF) – based 

damage identification method in Chapter 2 to detect and localise structural damage in 

single or multiple states. The novelty of the approach is implementation of two-dimensional 

discrete wavelet transform (2-D DWT) along with the second derivative of the 

reconstructed operational mode shapes obtained by FRFs to enhance the sensitivity of the 

approach to damage. Based on the numerical results of this stage, it can be concluded that 

the method’s performance is quite acceptable once the level of undesirable noise is 

negligible; however, by increasing the level of uncertainty in the system, the performance 

of the method deteriorates. Therefore, to overcome this problem, the harmful effects of 
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measurement noise on FRFs are investigated in Chapter 3 and its undesirable effect is 

suppressed by employing a novel idea using Gaussian Kernel on FRFs. The numerical and 

experimental damage identification results obtained by the presented noise-suppression 

approach demonstrate its efficiency to cope with the issue of noise. At this stage, and 

although, the method is performing well, in terms of its sensitivity to damage as well as its 

robustness against noise, it still needs to be modified; in real-life applications the source of 

excitation is random and this important issue has not been taken into account in the 

methodology described in Chapter 3. Hence, in Chapter 4, the issue of stochastic systems is 

investigated and a novel spectral-based approach is presented to deal with the issue of 

random excitation in damage identification process. In this regard, the frequency 

distribution of the power spectral density of the time responses is analysed by introducing 

the spectral moments which represent some major statistical properties of a stochastic 

process. The efficiency of the approach is validated by several numerical case studies.  

The method presented in Chapter 2 to Chapter 4 is a frequency-based approach and, 

therefore, raw time measured responses are first required for transfer from time domain into 

the frequency domain before further analysis. In some applications, it might be 

advantageous to deal with directly measured time responses without transferring them into 

the frequency domain. In this regard, in Chapter 5, a novel time series-based damage 

identification method is presented based on the idea of symbolic time series analysis. The 

main idea of the method is to generate the symbol sequences by mapping the time data 

from the state space into the constructed symbol space and then study any change in the 

statistical properties of the obtained symbol sequences by developing the probability 

vectors. This method is very easy to implement, is robust against noise and it has shown a 

considerable sensitivity to slight structural damage. The efficiency of the method is 

successfully demonstrated by several numerical and experimental investigations.  

The scope of Chapter 1 to Chapter 5 of this thesis is mainly on structural damage 

identification; however, it might be of great interest to obtain a reliable and representative 

model of the structure considering the effects of structural damage. This is of considerable 

demand, as in many applications, it is required to estimate the serviceability and remaining 

life of a structure after damage occurrence. Because of this, the author explores the issue of 
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finite element model updating in Chapter 6 to investigate how a reliable model of the 

structure can be obtained. A particular damage case is investigated and the idea of thin 

layer interface elements is introduced and implemented. It is demonstrated, that by updating 

the finite element model of the structure, using this technique, the reliability of the model 

significantly improves.  

According to this journey from Chapter 1 to Chapter 6, more robust schemes of damage 

identification are developed and verified both in time and frequency domains; and, some 

future works are suggested by the author in Chapter 7 to conclude the work and motivate 

other researchers to pursue the work further. 
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