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Abstract

Visual tracking plays a key role in many computer vision systems. In

this thesis, we study online visual object tracking and try to tackle

challenges that present in practical tracking scenarios. Motivated by

different challenges, several robust online visual trackers have been

developed by taking advantage of advanced techniques from machine

learning and computer vision.

In particular, we propose a robust distracter-resistant tracking ap-

proach by learning a discriminative metric to handle distracter prob-

lem. The proposed metric is elaborately designed for the tracking

problem by forming a margin objective function which systemati-

cally includes distance margin maximization, reconstruction error con-

straint, and similarity propagation techniques. The distance metric

obtained helps to preserve the most discriminative information to sep-

arate the target from distracters while ensuring the stability of the

optimal metric.

To handle background clutter problem and achieve better tracking

performance, we develop a tracker using an approximate Least Ab-

solute Deviation (LAD)-based multi-task multi-view sparse learning

method to enjoy robustness of LAD and take advantage of multiple

types of visual features. The proposed method is integrated in a parti-

cle filter framework where learning the sparse representation for each

view of a single particle is regarded as an individual task. The under-

lying relationship between tasks across different views and different

particles is jointly exploited in a unified robust multi-task formulation

based on LAD. In addition, to capture the frequently emerging outlier

tasks, we decompose the representation matrix to two collaborative

components which enable a more robust and accurate approximation.



In addition, a hierarchical appearance representation model is pro-

posed for non-rigid object tracking, based on a graphical model that

exploits shared information across multiple quantization levels. The

tracker aims to find the most possible position of the target by jointly

classifying the pixels and superpixels and obtaining the best config-

uration across all levels. The motion of the bounding box is taken

into consideration, while Online Random Forests are used to provide

pixel- and superpixel-level quantizations and progressively updated

on-the-fly.

Finally, inspired by the well-known Atkinson-Shiffrin Memory Model,

we propose MUlti-Store Tracker, a dual-component approach consist-

ing of short- and long-term memory stores to process target appear-

ance memories. A powerful and efficient Integrated Correlation Filter

is employed in the short-term store for short-term tracking. The in-

tegrated long-term component, which is based on keypoint matching-

tracking and RANSAC estimation, can interact with the long-term

memory and provide additional information for output control.
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