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Abstract

Visual tracking plays a key role in many computer vision systems. In

this thesis, we study online visual object tracking and try to tackle

challenges that present in practical tracking scenarios. Motivated by

different challenges, several robust online visual trackers have been

developed by taking advantage of advanced techniques from machine

learning and computer vision.

In particular, we propose a robust distracter-resistant tracking ap-

proach by learning a discriminative metric to handle distracter prob-

lem. The proposed metric is elaborately designed for the tracking

problem by forming a margin objective function which systemati-

cally includes distance margin maximization, reconstruction error con-

straint, and similarity propagation techniques. The distance metric

obtained helps to preserve the most discriminative information to sep-

arate the target from distracters while ensuring the stability of the

optimal metric.

To handle background clutter problem and achieve better tracking

performance, we develop a tracker using an approximate Least Ab-

solute Deviation (LAD)-based multi-task multi-view sparse learning

method to enjoy robustness of LAD and take advantage of multiple

types of visual features. The proposed method is integrated in a parti-

cle filter framework where learning the sparse representation for each

view of a single particle is regarded as an individual task. The under-

lying relationship between tasks across different views and different

particles is jointly exploited in a unified robust multi-task formulation

based on LAD. In addition, to capture the frequently emerging outlier

tasks, we decompose the representation matrix to two collaborative

components which enable a more robust and accurate approximation.



In addition, a hierarchical appearance representation model is pro-

posed for non-rigid object tracking, based on a graphical model that

exploits shared information across multiple quantization levels. The

tracker aims to find the most possible position of the target by jointly

classifying the pixels and superpixels and obtaining the best config-

uration across all levels. The motion of the bounding box is taken

into consideration, while Online Random Forests are used to provide

pixel- and superpixel-level quantizations and progressively updated

on-the-fly.

Finally, inspired by the well-known Atkinson-Shiffrin Memory Model,

we propose MUlti-Store Tracker, a dual-component approach consist-

ing of short- and long-term memory stores to process target appear-

ance memories. A powerful and efficient Integrated Correlation Filter

is employed in the short-term store for short-term tracking. The in-

tegrated long-term component, which is based on keypoint matching-

tracking and RANSAC estimation, can interact with the long-term

memory and provide additional information for output control.
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Chapter 1

Introduction

1.1 Background

With the exponential growth in computing power of modern computers and the

significant cost-reduction of high quality camera devices, the development of in-

telligent computer vision applications, such as robotics, video surveillance, au-

tomatic control, vehicle navigation, and human computer interaction (HCI), has

aroused increasing interest in both academic and industry. In particular, a lot of

intelligent visual systems are designed based on object analysis. For example, in a

video surveillance system, it is often necessary to analyze the trajectories, behav-

iors and identities of pedestrians in order to understand what is happening in a

controlled area. In general, these systems consist of three components, which are

the detector for finding the objects of interest, the tracker for recovering trajec-

tories of detected objects in consecutive frames, the high-level model for identity

recognition, behavior recognition, or system control [186]. Visual tracking plays

a key role in all these systems, since the performance of them depends heavily on

the information provided by a robust visual object tracker.

In a computer vision system, object detection, which is also called object-

class detection, is used to discover objects of interest in a given video source. A

lot of research aims at developing accurate detectors for specific objects, such

as face [191], pedestrian [46] and vehicle [162]. On the other hand, some works

focus on the detection of generic object [55, 164] and make no restriction on

1



#1 #38 #71

Figure 1.1: An example of online visual object tracking discussed in this thesis.
Given a bounding box of an object in the first frame of a video, the task of a
tracker is to locate the target in subsequent video frames.

the object to detect. Although some knowledge-based methods (e.g. based on

symmetry or color) [33, 128] and template-based methods [17] are proposed for

specific object-class detection, most of modern detectors [46, 164] make use of a

large number of training samples and adopt varied training methods to obtain

the model parameters off-line.

Given the detections found by an employed detector, it is also critical for the

system to recover the trajectories of respective objects (i.e. tracking) in order to

conduct more meaningful analysis and give appropriate response. Practically, it is

not appropriate to simply combine near detections for tracking since the outputs

of detectors are usually unreliable and sparse. Therefore, tracking is generally

done by a certain tracker (or trackers). In particular, some tracking approaches

are constructed based on associating the data of detections and global trajectory

optimization over a temporal window [18, 80]. On the other hand, a large group

of works [8,68,131], namely online object tracking, assume that the ground-truth

location of a target is already given in a particular frame of video. For example,

the ground-truth can be obtained by a detector or manual setting. Therefore,

the goal of online tracking remains to estimate the locations of the target in the

subsequent frames.

In this thesis, we mainly study the online visual object tracking, namely

model-free tracking. In particular, we focus on generic object tracking and as-

sume that there is no available prior knowledge about the target. Also, we study

only Single Object Tracking (SOT), which can be regarded as a special case of

Multiple Object Tracking (MOT) [19]. Given an annotation of the target (i.e.

bounding box in this thesis) in the first frame, the task of a tracker is to estimate
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Figure 1.2: Some examples of challenges in online visual object tracking.

the target locations using the same annotation in subsequent video frames. An

example of online visual object tracking studied in this thesis is shown in Fig. 1.1.

It should be noted that online visual trackers do not employ off-line training sam-

ples, which is different from the ones in [18,80]. Therefore, in order to handle the

appearance changes of objects, all parameter updates are performed on-the-fly

by using the samples selected by the tracker itself, which can be regarded as a

self-learning problem [200].

Online visual tracking has been studied for several decades. Many trackers

have been proposed [181, 185] and show promising results. However, designing

a universally effective tracker remains extremely difficult due to the presence of

various challenges and the difficulty to well balance them simultaneously. These

challenges are frequently referred to:

- Robustness to occlusion [96]

- Robustness to scale changes [42]

- Robustness to illumination variation [56]

- Robustness to motion blur [182]

- Robustness to rotation

3



- Robustness to noises

- Tracking objects Leaving the Field of View (FOV) [88]

- Tracking non-rigid objects [60]

- Background clutter

- The presence of distracters [45]

- Update problem (drift) [129]

1.2 Literature survey of Online Visual Tracking

There are extensive papers related to tracking as well as some comprehensive

reviews that can be found in the literature [34, 115, 160, 185, 186]. However, the

field has grown at an amazing speed over the past decades, hence making a

completed review throughout all tracking methods intractable. In this section,

we instead focus on the review of some representative works and the existing

works that are most related to this thesis. In particular, we summarize existing

work according to their mechanisms in appearance modeling.

Typically, an online visual object tracker consists of three important compo-

nents [115], which are: motion model, searching model, and appearance model.

In general, a motion model uses a series of measurements observed over time,

containing noise, and performs the dynamic state estimation during tracking. It

is usually constructed by employing some stochastic filters such as Kalman fil-

ters [89], or Particle Filters (PFs) [48, 82], while a searching model is used to

provide the output, which is usually completed by maximizing a posterior esti-

mation based on prediction of motion model [131] or exhausting search in a local

region [8].

Given specific motion model and searching model, the performance of a tracker

highly depends on the construction of appearance model. Therefore, a large

amount of recent works focus on developing a robust appearance model that is

able to differentiate the target from background and adapts appearance changes

over time. Specifically, existing methods can be generally categorized into two

groups, generative and discriminative methods.
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1.2.1 Generative Methods

Generative methods, such as subspace learning-based methods [75,150] and sparse

representation-based methods [131], aim to build an appearance model to rep-

resent the tracking target. In this framework, tracking can be considered as

searching a candidate with the most similarity to the target. The appearance

models can be learned or updated to capture the appearance changes in consec-

utive frames. In practice, generative trackers often have better descriptive power

and demand a small training set; however, since these methods focus on only

the target domain and never consider the impact of background, they are usually

hard to survive in a cluttered scene, especially with the presence of distracters.

1.2.1.1 Subspace Learning-based Methods

In general, subspace learning methods treat the target as a whole “thing” instead

of a set of independent features [150]. In the process of subspace learning, the

relevant covariance of all features are learned and thus embedded into a compact

subspace. The likelihood of a candidate being the target is measured as the

probability that the candidate is generated from the learned subspace. It is

related to the distance from the candidate to the learned subspace, i.e. the

candidate with a smaller distance to the subspace is more likely to be the target.

Black and Jepson [23] proposed an eigentracker that used an eigen subspace

learned by well-known Principal Component Analysis (PCA) to track a rigid

object and get promising performance. However, the limitation of their framework

is obvious that the subspace needs to be pre-trained offline, thus the various views

of the target should be collected and fed to the training phase in advance, which

makes it hard to track unseen objects and unable to update itself adaptively.

To overcome the adaptability problem, Ross et al. [150] introduced incremental

PCA [29] to learn low-dimensional subspace representation of the target online.

In their framework, the tracking results are successively collected and used to

update the eigen subspace in an incremental manner, which enable it to utilize

the information available online and significantly improve the computational ef-

ficiency. For the observation model, the likelihood of a candidate generated from

the learned subspace is jointly governed by two Gaussian distributions related to
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the specific distances, which are respectively the distance from the candidate to

the subspace and the distance from the projected sample to the subspace center.

Traditional PCA methods treat images as vectors, which may neglect the

spatial information within each image matrix and the local spatial relationships

[174]. Therefore, Li et al. [116] employed high-order tensor analysis to treat

images as matrices and developed a tracking approach based on Incremental

Tensor Subspace Analysis (ITSA). It is well known that tensor subspace analysis

can further reduce the spatial-temporal redundancies and therefore obtain more

compact low-order representations. Moreover, Gai and Stevenson [57] argued

that the Probabilistic Principal Component Analysis (PPCA) adopted in [150] is

based on classic Gaussian density, which has light tails and is sensitive to outliers.

To resolve this problem, they developed a visual tracking system based on a full

Bayesian Student’s t-distribution PCA. The shape of the observation distribution

can be adaptively adjusted by updating the set of auxiliary latent variables and

thus gets heavier tails to resist outlier noise.

By contrast to the methods [116, 150] that use the image-as-vector or image-

as-matrix representations, Li et al. [117] and Wu et al. [180] turned to represent

object appearance as covariance matrices that are constructed by image features.

Given an image region R, the corresponding covariance matrix can be represented

as

CR =
1

N − 1

N∑
i=1

(f i − μN)(f i − μN)
T (1.1)

where {f i}i=1,...,N denote the d -dimensional feature points obtained by a fea-

ture extraction function, μN is the statistic mean of f i, and N is the number

of pixels within R. In Riemannian geometry, the distance between two points

corresponding to two covariance matrices can be more easily computed using the

Log-Euclidean Riemannian Metric compared to the original Riemannian Metric.

Based on this covariance matrix descriptor of image, Li et al. [117] developed an

incremental algorithm to learn the Log-Euclidean Riemannian subspace, which

was similar to the incremental PCA approach presented in (Ross et al. 2008). By

contrast, Wu et al. [180] suggested an incremental method to update the covari-

ance matrices instead and gave the samples different weights according to their

importances varying over time.
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Figure 1.3: An example of target templates and trivial templates used in L1
tracker [131]. Original figure is from (Mei & Ling 2009) [131].

1.2.1.2 Sparse Representation-based Methods

Sparse representation [47], which is also referred to as Compressive Sensing (CS),

has recently aroused considerable attention in the computer vision community.

One of the most representative works was presented in [179], which successfully

employed sparse representation to tackle the face recognition problem. Based

on the compressive sensing theory, if a testing face belongs to a specific image

class (a specific person) from the training images, then this testing face can be

sparsely represented by a linear combination of training face images from an over-

complete dictionary; meanwhile the coefficients should concentrate on the images

from the same class as the testing image, while other coefficients of the images

from different classes should tend to be sparse and zeros. Consequently, the

proposed framework can recognize the identity of the testing face image based

on prior knowledge of the training dictionary. Comparing with previous face

recognition algorithms, sparse representation demonstrates superior performance

as well as simplicity in feature extraction [179].

Inspired by the success in face recognition, Mei and Ling [131] first introduced

the sparse representation framework to the tracking domain and sparsely repre-

sented the tracking target by a linear combination of target templates and trivial

templates, as

y = Tc + [I,−I]e , s.t. w � 0 , (1.2)

where T ∈ Rd×n are n columns of target templates, I ∈ Rd×d and −I are trivial

templates referred to as a set of unit vectors (both positive and negative), c
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represents the sparse coefficients corresponding to the target templates, e is the

coefficients for trivial templates, and and � is an element-wise operator, which

constrains each element at the left side to be greater or equal to the one at

the right side. Fig. 1.3 visualizes a set of example target templates and trivial

templates.

In order to obtain a sparse solution of c, Mei and Ling [131] proposed to solve

the L1-regularized least squares problem

w = argmin
w

‖Mw − y‖22 + λ‖w‖1 , s.t. w � 0 , (1.3)

where M = [T, I,−I] is an over-complete dictionary, w = [cT , eT ]T is the ob-

tained sparse representation, y ∈ Rd is a given candidate of target, λ is the

parameter to control the sparsity of w . The observation likelihood of a candidate

is measured by the loss function based on the reconstruction error, i.e. Euclidean

distance between the derived combination of target templates and the candidate

patch. For the motion model, they employ a particle framework to guide the

tracking process and iteratively generate candidate patches according to observa-

tion likelihoods. A template update strategy is also proposed, which enables the

tracker to handle slight appearance variation and pose changes. Comparing to

previous trackers, L1 tracker experimentally shows promising performance, espe-

cially in some scenarios including occlusion and corruption due to the employment

of trivial templates that model noise and occluded pixels.

Although L1 tracker [131] shows its robustness in some scenarios, solving L1

minimization (1.3) is computationally complex, and the computation time grows

linearly along with the increase of particle sample number, which make L1 tracker

fail to achieve real-time performance. Therefore, some researches focus on im-

proving the computation efficiency of L1 framework, such as [113], [133] and [13].

In [133], Mei et al. exploited the reconstruction error bound of L2 norm and

utilize it to develop a new resampling approach named Bounded Particle Re-

sampling (BPR), which effectively excludes some unpromising particle samples,

decreases the amount of samples fed to L1 minimization and results in accel-

erating the tracking speed as well. An occlusion detection method, which tries

to utilize the information given by trivial coefficients (the coefficients of trivial
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templates obtained by L1 minimization), has also been proposed to improve the

template update strategy, based on the fact that occlusion would result in partial

density in trivial coefficients. In contrast, Li et al. [113] focused on decreasing the

dimension of image representation (image features) by transforming original fea-

tures to a low dimension compressive feature space through a random generated

orthogonal matrix, which is based on the superior signal recovery ability of CS.

Meanwhile, a customized Orthogonal Matching Pursuit (OMP) algorithm is also

adopted to accelerate the computation of L1 minimization in their framework.

As a consequence, their proposed tracker demonstrates a real-time performance

as well as an acceptable tracking ability. Subsequently, Bao et al. [13] proposed

a real-time L1 tracker by introducing the accelerated proximal gradient approach

to solve the L1 minimization problem with guaranteed quadratic convergence.

Instead of improving the computation efficiency of L1 tracker, some work

aims to improve the robustness. In [195], a multi-task learning [37] approach is

applied to tracking by learning a joint sparse representation of all the particles in a

particle filter framework. Compared to the original L1 tracker [131] that pursues

the sparse representation independently, Multi-Task Tracking (MTT) achieves

more robust performance by exploiting the interdependency between particles.

In addition, [196] also tries to exploit the interdependency between particles and

cast the tracking problem as a low-rank matrix learning problem, where a better

performance over L1 tracker is obtained.

1.2.1.3 Kernel-based Methods

In [40], a novel generative appearance model is proposed by Comaniciu et al. to

tracking by employing kernel density estimation to construct kernel-based visual

representations. Spatial kernels are used to regularize the color histogram-based

feature representation of the target by intuitively giving bigger weights to the

features near the target center, and thus to spatially smooth the similarity func-

tions. In this way, tracking can be reformulated as a gradient-based optimization

problem instead of exhaustive searching or employing a stochastic framework, e.g.

particle filter, which significantly improves the computational efficiency. Mean

Shift (MS) is usually adopted to solve the gradient ascent optimization algorithm,
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which iteratively calculates the mean shift vector and moves the candidate posi-

tion towards the maximum similarity until convergence is achieved.

However, the approach proposed by Comaniciu et al. [40] has several draw-

backs: 1) the target template is formed by a single frame, which apparently

restricts the adaptability of the tracker and leads it to fail in some scenarios

where the target undergoes significant appearance variation or pose change; 2)

the tracking result is sensitive to the selected kernel. In particular, the selection

of bandwidth demonstrates a great impact on the tracker’s performance in a spe-

cific scenario; 3) the MS algorithm can be adopted to search the local optimum

as the tracking result, which is based on the assumption that the displacement

between successive frames is not significant. However, this assumption can be

violated in some cases.

To address the fixed template problem and place further emphasis on the

contour of the tracking target, Yilmaz employed a modified level set method

to get the contour of the tracking object and then built an asymmetric kernel

based on the learned level set function, which is different from the traditional

symmetric kernel-based methods [187]. Moreover, the object centroid, orientation

and scale are all successively updated during the mean shift iteration, which

enables better performance when the target undergoes gentle appearance changes.

In [107], Leichter et al. proposed an affine kernel based method instead of the early

isotropical kernel. Similar to [187], the tracker in [107] also exploits both color

and color edge information provided by the tracked object and adaptively fits the

target’s affine transformation in the course of tracking. In addition, an extension

of their method was proposed in [108]. In [108], the target reference color is

gradually updated on-the-fly, which effectively enhances the adaptive ability of

the previous method [107]. On the other hand, Shen et al. [157] proposed a

multi-bandwidth MS procure to overcome the sensitivity problem of [40]. In

order to achieve a real-time performance, an accelerated version of the algorithm

is proposed as well. In this version, they over-relax the step adaptively, which

significantly reduces the number of iterations required to achieve convergence.
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1.2.2 Discriminative Methods

In contrast to generative trackers that try to model the target appearance only,

discriminative methods aim to learn some decision bounds and thus separate

targets from background. A number of discriminative approaches, which are

frequently used in machine learning area, have been introduced to tracking, such

as Support Vector Machine (SVM) [7], Boosting [63], Random forest [86], decision

tree. In this section, we will have a brief review of some representative trackers

related to discriminative models.

1.2.2.1 SVM-based Methods

Support Vector Machines (SVMs) are powerful supervised learning approaches

that have been extensively used for classification and regression in many practical

applications and have proven to be effective. In [7], Avidan developed a gradient-

based tracking approach termed Support Vector Tracking (SVT), which combined

an offline-trained SVM classifier with an optic-flow-based tracker. In contrast to

an optic-flow-based tracker that minimizes an intensity difference loss function

between a pair of successive frames, SVT tries to iteratively maximize the SVM

classification score in a coarse-to-fine manner. If the motions of the target are

small, one can maximize classification score by iteratively computing the motion

parameters based on the first-order Taylor approximation. However, when the

motions are assumed to be large, a pyramid scheme should be adopted, and

the optimization problem starts from a subsampled version problem. SVT takes

advantage from both computational efficiency of optic-flow-based tracking [11]

and the discriminative power of SVM classifiers.

Although SVT demonstrated success in tracking moving vehicles, it still re-

mained with many problems to solve. One of its main problems is that the em-

ployment of a pre-trained SVM classifier makes it hard to implement SVT in the

general tracking problem, since training a SVM classifier requires a large training

set, which is usually hard to obtain and expensive. Tang et al. [166] accounted for

this by employing a semi-supervised SVM in a co-training framework. By using a

co-training framework, a few labeled samples are initially fed to train SVM clas-

sifiers based on two types of relatively independent features, respectively. The
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target positions are then found as the global maximum of a combined confident

map built by weighted outputs of the two classifiers. Subsequently, the result

with a confidence level higher than a manually defined threshold is added to up-

date the classifiers respectively so that the classification ability of the proposed

tracker is generally improved. Based on a similar SVM model used in [166], Li

et al. [114] further developed a graph mode-based contextual kernel for SVMs,

which captures the higher-order contextual information among both labeled and

unlabeled samples.

By contrast to [7, 11, 166] that uses binary labels for SVM training, Hare

et al. [68] elaborately considered the structural information of training samples

by assigning them with structured labels and presented a tracker named Struck

based on a kernelized structured output SVM classifier. In particular, Struck is

one of the best performing trackers and has been highlighted in several recent

studies [146, 160, 181].

1.2.2.2 Boosting-based Methods

Boosting is another popular tool for classification. It strategically selects a set

of weak learners to create a single strong one [155] and has been widely used

in the computer vision community due to its powerful discriminative learning

capability. Specifically, Viola and Jones [171] successfully introduced Adaptive

Boosting (AdaBoost) for face detection, which is undoubtedly a great achievement

in computer vision.

In terms of tracking, Grabner et al. [63] proposed a tracker based on AdaBoost

and the mechanism of ensemble tracking presented in [6]. The tracker selects

discriminative features online and uses them to construct several weak classifiers,

which are the basic components of a strong ensemble classifier. It considers both

the information from the foreground and background and therefore has superior

discriminative ability compared to some generative methods. Nevertheless, in

[63], the positive and negative samples are selected based on results of the previous

trained classifier. Therefore, errors may be accumulated gradually due to the

continual updates of the classifier, and the tracker is prone to suffer from the

drifting problem.
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Later, Grabner et al. [64] and Li et al. [112] tackled the drifting problem by

using the popular semi-supervised learning schemes. In [64], the labeled samples

are first used to construct a fixed prior for the online classifier training, while

Li et al. [112] specifically considered the distribution changes of the tracking

target, which was called “Covariate Shift”, and developed a new semi-supervised

online boosting method, i.e. CovBoost. Instead of using the semi-supervised

methods, Babenko et al. [8] introduced Multiple Instance Learning (MIL) method

to tracking. The proposed method not only takes advantage from the traditional

boosting methods in feature selection ability, but also overcomes the ambiguous

labeling problem by intuitively putting all promising positive samples into a single

positive bag during training.

1.2.2.3 Randomized Learning-based Methods

Random forests [30] and random ferns [145] are also popular ensemble learning

methods for classification. In principle, these methods randomly select features to

build multiple decision units and outputs the labels based on the weighted-sum.

Random forests and random ferns have been widely used in the computer vision

community due to the following merits: First, they are powerful for nonlinear

classification without the use of kernels; Second, they are excellent in accuracy

and very efficient in both the training and testing frames. In particular, they can

be easily parallelized and further speeded up with parallel implementations. In

addition, these methods are more robust to the label noise compared to Boosting

[30], which is more desirable in some scenarios, such as online tracking.

To take advantage of randomized learning methods, Saffari et al. [153] ex-

tended the classic off-line random forest to the online version and use it for track-

ing. In particular, they propose a novel on-line growing procedure for decision

trees, which is based on on-line bagging and extremely randomized forests. The

proposed tracker achieved better performance compared to the on-line Boosting-

based trackers according to their report. In [58], a random forest is combined

with generalized Hough transform and a class-specific decision forest, i.e. Hough

forest, is trained for detection. The latter, Godec et al. [59] extended the off-line

Hough forest and developed an on-line Hough forest for tracking. In order to
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overcome the drawback of bounding-box representation, which may include too

many background pixels, they also adopt the GrabCut [151] approach to segment

the target within the detected bounding-box to get a better update.

In [86, 88], Tracking-Learning-Detection (TLD), developed by Kalal et al.,

employs random ferns to train an ensemble classifier online due to its computa-

tional efficiency and flexibility. The independence of each component classifier

is enforced by using different pixel comparison features. Moreover, Kalal et al.

introduced a theory called P-N learning to improve the performance of the clas-

sifier by exploiting the structured unlabeled data. The structured data is defined

as examples with no prior-known labels but their labels are restricted and can

be inferred during training. In P-N learning, the learning process is guided by

two constraints, i.e. positive (P) constraints and negative (N) constraints, which

are the spatial occurring conditions of respective labels. The learned classifier

is iteratively performed on the structured data and is updated by the labeling

results that are restricted by P-N constraints.

1.3 Summary of Contributions

In this thesis, we aim to tackle challenges that are present in practical tracking sce-

narios in videos and to develop robust online visual trackers that achieve superior

performance over existing trackers, by taking advantage of advanced techniques

in machine learning including distance metric learning [124], sparse representa-

tion [179], multi-view learning [184], multi-task learning [36], conditional random

field [72]. We elaborately design trackers that specifically handle distracter, back-

ground clutter, non-rigid deformation, appearance update problems and present

them respectively in Chapter 2, Chapter 3, Chapter 4 and Chapter 5.

In particular, in Chapter 2, we propose a robust distracter-resistant tracking

approach by learning a discriminative metric that adaptively learns the impor-

tance of features on-the-fly. The proposed metric is elaborately designed for the

tracking problem by forming a margin objective function which systematically

includes distance margin maximization and reconstruction error constraint that

acts as a force to push distracters away from the positive space and into the neg-

ative space. Due to the variety of negative samples in the tracking problem, we
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specifically introduce the similarity propagation technique that gives distracters

a second force from the negative space. Consequently, the discriminative metric

obtained helps to preserve the most discriminative information to separate the

target from distracters while ensuring the stability of the optimal metric. We

seamlessly combine it with the popular L1 minimization tracker. The proposed

tracker is therefore not only resistant to distracters, but also inherits the merit

of occlusion robustness from the L1 tracker.

In Chapter 3, we present a tracking approach using an approximate Least Ab-

solute Deviation (LAD)-based multi-task multi-view sparse learning method to

enjoy robustness of LAD and take advantage of multiple types of visual features.

The proposed method is also integrated in a particle filter framework where learn-

ing the sparse representation for each view of a single particle is regarded as an

individual task. The underlying relationship between tasks across different views

and different particles is jointly exploited in a unified robust multi-task formula-

tion based on LAD. In addition, to capture the frequently emerging outlier tasks,

we decompose the representation matrix to two collaborative components which

enable a more robust and accurate approximation. We show that the proposed

formulation can be effectively approximated by Nesterov’s smoothing method and

efficiently solved using the Accelerated Proximal Gradient method.

In Chapter 4, we propose a hierarchical appearance representation model for

tracking, based on a graphical model that exploits shared information across

multiple quantization levels. The tracker aims to find the most probable position

of the target by jointly classifying the pixels and superpixels and obtaining the

best configuration across all levels. The motion of the bounding box is taken

into consideration, while Online Random Forests are used to provide pixel- and

superpixel-level quantizations and are progressively updated on-the-fly. By ap-

propriately considering the multilevel quantizations, our tracker exhibits not only

excellent performance in non-rigid object deformation handling, but also its ro-

bustness to occlusions.

In Chapter 5, we adopt cognitive psychology principles to design a flexible

representation that can adapt to changes in object appearance during tracking.

Inspired by the well-known Atkinson-Shiffrin Memory Model, we propose MUlti-

Store Tracker (MUSTer), a dual-component approach consisting of short- and
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long-term memory stores to process target appearance memories. A powerful and

efficient Integrated Correlation Filter (ICF) is employed in the short-term store

for short-term tracking. The integrated long-term component, which is based

on keypoint matching-tracking and RANSAC estimation, can interact with the

long-term memory and provide additional information for output control.
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Chapter 2

Distracter-Resistant Tracking via

Dual-Force Metric Learning

Distracters pose great challenge in designing a robust visual tracking algorithm.

They are background regions that have similar appearance to the target. When

the target undergoes appearance change such as out-of-plane rotation, the dis-

tance between the new appearance and target templates is getting larger while

the distance between the new appearance and the distracter is getting smaller.

Therefore, the tracker can easily lock onto the distracter and fail to track the

target in the following frames. In this chapter, we propose a robust distracter-

resistant tracking approach by learning a discriminative metric that adaptively

learns the importance of features on-the-fly. The proposed metric is elaborately

designed for the tracking problem by forming a margin objective function which

systematically includes distance margin maximization and reconstruction error

constraint that acts as a force to push distracters away from the positive space

and into the negative space. Due to the variety of negative samples in the track-

ing problem, we specifically introduce the similarity propagation technique that

gives distracters a second force from the negative space. Consequently, the dis-

criminative metric obtained helps to preserve the most discriminative information

to separate the target from distracters while ensuring the stability of the optimal

metric. We seamlessly combine it with the popular L1 minimization tracker. Our

tracker is therefore not only resistant to distracters, but also inherits the merit
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of occlusion robustness from the L1 tracker. Quantitative comparisons with sev-

eral state-of-the-art algorithms have been conducted in many challenging video

sequences. The results show that our method resists distracters excellently and

achieves superior performance.

2.1 Introduction

Designing a robust tracker is a challenging task due to the extremely varied

factors, such as illumination, rotation, occlusion, and background clutter. For-

tunately, numerous tracking algorithms have been invented to overcome these

difficult problems and provide many inspiring ideas [8, 98, 131].

Most of the existing tracking algorithms employ the Euclidean distance metric

for template matching; for example, the tracking result of the L1 tracker [131]

is the candidate that has the minimum reconstruction error, while the error is

defined as the Euclidean distance ‖ Ta− y ‖22 between the target candidate and

the reconstructed image using target templates, where T is the target templates,

a is the sparse coefficients obtained by solving the L1 minimization, and y is

the tracking candidate. Euclidean distance is independent of the input data and

hence weights features equally. This is problematic, especially when tracking

the target in cluttered and distractive scenes. Distracters that have a similar

appearance to the target constantly emerge from the background. When the

target undergoes appearance change, the Euclidean distance between the target

and the distracters can be smaller than the distance between the target and its

templates. Fig. 2.1 (c) and (d) illustrate this problem. In this scenario, we

track a multi-pose tiger doll (target) against a cluttered background in which the

tiger and the board (distracter, marked by green rectangle) in the background

are similar in appearance. When the tiger moves in the sequential frames and

experiences out-of-plane rotation or transformation, the initial target becomes

closer to the board in terms of appearance. Consequently, the tracker locks

onto the board and obtains an inaccurate update in the target template set.

This phenomenon frequently happens in the tracking process and therefore many

trackers fail to achieve a satisfactory performance. This motivates us to learn

the optimal distance metric that takes into account the second order statistics,
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(a) (b)

(c) (d)

Figure 2.1: Some examples of distracters. Red windows highlight the tracking
objects, while green windows are the areas which have the greatest similarity to
the objects (calculated by Euclidean distance) and can easily be locked onto.

i.e. the covariance information carried by a collection of data, and assigns proper

weights to features so that the learned metric can differentiate the target from

distracters in the background.

Learning a distance metric can be regarded as finding the optimal selection

matrix, because ‖ x− y ‖2Σ�0= (x− y)TΣ(x− y) = (x− y)TUUT (x− y) =

‖ UT (x − y) ‖2F , where U is the feature transformation matrix, Σ � 0 means

Σ is a semi-positive definite matrix, and ‖ · ‖F is the Frobenius norm. Since

a suitable distance metric encodes the geometric information of the data distri-

bution and improves the performance of learning algorithms, learning a distance

metric has attracted intensive attention. In recent years, dozens of algorithms

have been developed for different purposes. For example, Principal Component

Analysis (PCA) maximizes the mutual information between the original space

and the transformed space. Linear Discriminant Analysis (LDA) maximizes the
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trace of between-class scatter matrix and minimizes the trace of within-class scat-

ter matrix in the transformed space simultaneously. Both PCA and LDA assume

samples are Gaussian distributed, so they cannot discover the local geometry of

the non-Gaussian distributed data. Since data are intrinsically distributed on a

low-dimensional manifold embedded in a high-dimensional ambient space, some

manifold learning based approaches have been proposed, such as Locally Linear

Embedding (LLE) [152] and Laplacian Eigenmaps (LE) [16]. However, exist-

ing distance metric learning approaches are not specifically designed for visual

tracking and thus cannot solve problems encountered in tracking. In particular,

positive samples for representing the target are usually scarce and are embed-

ded in either a compact space or a local dimensional manifold (considering the

transformation, rotation and illumination changes). In contrast, negative sam-

ples collected from the background are massive and various in visual tracking,

and may contain samples (distracters) that are visually similar to the positive

samples.

In this chapter, we solve the distracter problem by developing a dual-force

metric learning algorithm that adaptively learns the importance of features. The

metric is learned from image patches sampled from both the foreground and back-

ground. By incorporating distracters into the negative sample space, the metric

automatically adjusts weights for different features to best differentiate the target

from distracters. Since the old distracters can move out of view, and since new

distracters may appear, the metric will adapt itself to the new environment by

adding new distracters to the training samples. In particular, the proposed met-

ric is induced from three functional parts which are 1) the margin maximization

for enlarging the distance between the target and distracters, 2) the similarity

propagation for simultaneously connecting distracters with negative samples and

the target with positive samples, and 3) the neighborhood embedding for char-

acterizing the local geometry of positive samples. The first two functional parts

form the dual force to push distracters away from positive samples. The problem

can be efficiently solved by employing eigenvalue decomposition. The dual-force

metric can be seamlessly combined with the L1 tracker to take advantage of both

the descriptive power of L1 minimization and the discriminative power of the

metric. Our tracker is thus not only resistant to distracters, but also inherits the
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merit of occlusion robustness from the L1 minimization.

2.2 Related Work

Existing tracking algorithms can be generally classified into two groups: genera-

tive methods or discriminative methods. Generative trackers [12, 75, 150] try to

build an appearance model to represent the tracking target. In this framework,

tracking can be seen as a search for the candidate with the greatest similarity to

the target. Template models are learned or updated to capture the appearance

changes in consecutive frames. In [150], Ross et al. proposed a tracking method

to incrementally learn a low-dimensional subspace of the target representation

and efficiently update to adapt the appearance changes using the incremental

singular value decomposition, the observation likelihood is then jointly governed

by two Gaussian distributions related to the specific distances, the distance from

the candidate observation to the subspace and the distance from the projected

sample to the subspace center, respectively. Though generative trackers often

have better descriptive power and demand a small training set, they only focus

on the target domain and never consider the impact of the background, which

makes it difficult for them to survive in a cluttered scene with distracters present,

as shown in Fig. 2.2 (a).

In contrast to generative trackers, discriminative methods formulate tracking

as a classification problem. They utilize both the foreground and background

information and train a classifier online to extract the target from the back-

ground [5, 8]. In [8], Babenko et al. introduced the Multiple Instance Learning

(MIL) method to overcome the ambiguous labeling problem in the tracking pro-

cedure. However, these models are vulnerable when drifting or occlusion occurs,

since unexpected results are put into training, which may ruin the classification

models. Because of the respective merits of generative and discriminative meth-

ods, Yu et al. [189] proposed a hybrid algorithm which simultaneously maintains

these two types of models, generative model and discriminative model, and co-

trains them incrementally to adapt the object appearance variations. Moreover,

the use of generative model allows their tracker to reacquire the target after com-

plete occlusion. Other algorithms also solved the tracking problem by adaptively

22



learning a discriminative metric, such as methods presented in [85, 177]. In [85],

Jiang et al. proposed a new tracking approach that incorporates an adaptive

metric into a differential tracking method. It obtains a closed-form solution to

the motion estimation of the moving object. Fig. 2.2 (b) shows the mutual effects

of training samples in these methods.

Recently, Mei et al. [131] proposed a new generative L1 tracker based on sparse

representation which is solved by employing L1 minimization with non-negativity

constraints. Promising results have been reported and some extensions have fol-

lowed [113,120,133]. In [133], Mei et al. exploited the reconstruction error bound

of L2 norm and utilize it to develop a new resampling approach named Bounded

Particle Resampling (BPR), which effectively excluded some unpromising parti-

cle samples, decreased the amount of samples fed to L1 minimization, resulted

in accelerating the tracking speed. By contrast, Li et al. [113] focused on de-

creasing the dimension of image representative (image features) by transforming

original features to a low dimension compressive feature space through a random

generated orthogonal matrix, which was based on the superior signal recovery

ability of CS. Meanwhile, a customized Orthogonal Matching Pursuit (OMP)

algorithm was also adopted to accelerate the computation of L1 minimization

in their framework. As a consequence, their proposed tracker demonstrated a

real-time performance as well as an acceptable tracking ability. Although taking

advantage of sparse representation helped the L1 tracker to overcome many chal-

lenging issues like occlusion, it was still fragile in resisting distracters in many

tracking scenarios.

Our method is also related to the works in [45, 54]. In [45], distracters are

detected and tracked along with the target in the sequence to prevent the tracker

from drifting. This can add significant computational expense as the number of

distracters increases in a cluttered background. To overcome the spatial distrac-

tions, Fan et al. [54] searched the attention regions (ARs) with discriminative

power for Hough voting-based tracking. Moreover, an alternative class of ap-

proaches to the distracter challenge is presented in [24, 35, 39, 53, 83, 158]; these

approaches make use of richer feature sets and focus on salient features. In [39],

canonical Linear Discriminant Analysis (LDA) is applied to an extended feature

set to find discriminative features for meanshift-based tracking. In [35], Cannons
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(a) (b) (c)

Figure 2.2: Mutual effects of negative and positive samples in different methods:
(a) Typical generative trackers, which only focus on the positive space. Some
patches from the background that are similar to the target may be selected. (b)
Most discriminative methods, which only create mutual effects between positive
and negative space. Some negative samples are pushed away from positive sam-
ples during optimization, while some hard negative samples may be still near the
positive space. (c) Our metric. Distances between positive and negative samples
are maximized. Similarity is propagated in the negative space and therefore con-
nections are built between samples to effectively separate positive and negative
samples.

et al. exploited both the appearance and motion information, and simultaneously

modeled the spatial structure and dynamics of a tracking target by employing

the spatiotemporal energy measurements.

Our work is mostly different from theirs in the formulation and original inspi-

ration. We focus on designing a superior metric which well utilizes the information

in the tracking procedure and can be seamlessly integrated into generative meth-

ods like [131]. Our method adds distracters to the negative sample space through

similarity propagation and prevents them from being selected as the target during

the tracking process. In the objective function of our metric, each negative sample

can be regarded as receiving one force from the positive space (implemented by

margin maximization) and another force from the negative space (implemented

by similarity propagation). Therefore, we call our tracker the Dual-Force Metric

Learning-based Distracter-Resistant Tracker (DFMLDR).
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2.3 Particle Filter

The particle filter (PF) [48], also known as the sequential Monte Carlo method,

is a Bayesian sequential importance sampling technique, which provides a conve-

nient framework for estimating the posterior distribution of state variables and

for simulating a dynamic system, such as the tracking process. The sophisti-

cated PF has been extensively used in object tracking due to its nonlinear and

non-Gaussian model assumption which regardless of the underlying distribution.

Let yt denote the state variable describing the location and shape of a target

at time frame t. Given all the available observations x1:t = {x1, . . . ,xt} until

the current frame t, the predicting distribution of the target is inferred using the

Bayes rule as

p(yt|x1:t−1) =

∫
p(yt|yt−1)p(yt−1|x1:t−1)dyt−1, (2.1)

p(yt|x1:t) ∝ p(xt|yt)p(yt|x1:t−1), (2.2)

where p(yt|yt−1) is the state transition distribution, and p(xt|yt) is the obser-

vation likelihood estimated by the appearance model. In practice, the posterior

probability is approximated by a finite set of n samples, i.e. particles, {yi
t}ni=1

with importance weight wi
t. At each frame, the weight wi

t is updated by the

observation likelihood p(xt|yi
t) following the strategy of the bootstrap filter [48],

wi
t ∝ wi

t−1p(xt|yi
t). (2.3)

Subsequently, a set of n equally weighted particles are resampled according

to the importance weights using state transition distribution p(yt|yt−1).

In this chapter, we let yt = (α1, α2, α3, α4, tx, ty) to describe the 2D affine

transformation of the target, where (α1, α2, α3, α4) are the affine transformation

parameters and (tx, ty) are the translation parameters, which is analogous to the

previous work [133]. The state transition distribution p(yt|yt−1) is simulated

independently by the Gaussian distribution model, while the observation likeli-

hood p(xt|yt) reflecting the similarity between a target candidate and the target

template is estimated by the reconstruction error described in Section 2.5.2. To
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model the observation likelihood p(xt|yt), a region corresponding to state yt is

first cropped from the current frame. Multiple features are then extracted from

the region and normalized to form a 1D feature vector xt.

2.4 Dual-Force Metric Learning

In many generative methods, the similarity between a tracking candidate u and

its approximation v using a combination of target templates is measured by

Euclidean distance d as

d2 = ||v− u||22. (2.4)

By introducing a measure matrix G to (2.4) as

d2 =‖ v− u ‖2Σ�0= (v− u)TΣ(v− u), (2.5)

where (2.5) includes (2.4) as a special case by setting Σ to the identity matrix I.

The Euclidean metric treats different features equally and assumes that different

features are independent of one another. Apparently, the Euclidean metric is not

optimal for visual tracking. Since Σ � 0 is symmetric and positive semi-definite,

then (2.4) can be rewritten as

d2 = (v− u)TUUT (v− u), (2.6)

where Σ = UUT , and UT can be regarded as the projection matrix.

In this chapter, we learn an effective projection matrix UT that 1) maximizes

the margin between positive and negative samples, 2) propagates similarities for

simultaneously connecting distracters with negative samples and the target with

positive samples, and 3) embeds the neighborhood information to incorporate the

local geometry of positive samples. In contrast to the proposed dual-force metric,

Li et al. [113] replaced UT with a hashing matrix for reducing the computational

cost.
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2.4.1 Dual-Force Formulation

2.4.1.1 Margin Maximization

We divide the training samples X = {x1,x2, · · · ,xn} into two sets: X+ =

{x1,x2, · · · ,xnp} and X− = {x1,x2, · · · ,xnn}, which respectively contains np

positive samples from the target, and nn negative samples from the background,

where n = np+nn. Analogous to [20,167], we define the margin maximization by

maximizing the average distance between positive and negative samples and min-

imizing the average distance between positive samples in the transformed space

U∗ = argmax
U

1

np × nn

∑
xi∈X+

∑
xj∈X−

‖ UT (xi − xj) ‖2 −

λ

np × np

∑
xi∈X+

∑
xj∈X+

ci,j ‖ UT (xi − xj) ‖2,
(2.7)

where ci,j is set as exp(−‖xi−xj‖2
σ

) according to Laplacian Eigenmaps (LE) [16]

for locality preservation, λ ≥ 0 is the margin factor.

The distance maximization tries to find the most discriminative features be-

tween the target and distracters and thus enables our tracker to resist the selec-

tion of distracters. However, as we can see from (2.7), there is no restraint on

the negative samples. More specifically, the margin maximization (2.7) only tries

to maximize average pairwise distances among the positives and the negatives,

while there is no reason to preserve the manifold of the negative space. Since

negative samples collected from the background are massive and various, some

negative samples from distracters can still be close to the positive space. Besides,

although the collected positive samples come from the target space, they can be

corrupted by noise or occlusions. We therefore consider similarity propagation to

enhance the robustness.

2.4.1.2 Similarity Propagation

To obtain a more reliable distance metric for tracking, we should give more re-

straint to each sample. One common way to build the pairwise connection is to
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 2.3: Figures to illustrate the effect of similarity propagation. (a) Without
negative samples, the tracker locks onto the distracter (highlighted by dashed
rectangle window). (b) to (h) Iteration of similarity propagation. The distracter
is linked by other negative samples when convergence is reached. The cyan points
denote the center locations of negative samples.
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develop the neighborhood information by neighborhood preserving, so we begin

by introducing a k-neighbor graph, which can be denoted by the neighborhood

indicator matrix

Nk
i,j =

⎧⎨
⎩1, xj is the k nearest neighbor of xi

0, otherwise
. (2.8)

Note that Nk is an asymmetric matrix and Nk
i,i = 0 for i = 1, · · · , n. Then the

original neighborhood preserving can be formulated as

U∗ = argmin
U

1

2

n∑
i,j=1

Nk
i,j ‖ UT (xi − xj) ‖2 . (2.9)

Although the above formula (2.9) tries to preserve neighborhood information, the

setting of k is a problem. If k is large, it does not emphasize the more similar pairs

in the k neighborhood, whereas if k is small, only limited connections are built.

We therefore apply similarity propagation to build more connections according

to the different pairwise similarity, and achieve a better result. The similarity

propagation follows the general propagation scheme [124], [199] and is related to

the spreading activation networks [159] and diffusion framework [94].

In (2.8), the Nk
i,j can be considered as indicating the pairwise similarity be-

tween samples xi and xj. Let us first set k = 2 to find the nearest neighbors in

the respective set and build a strong similarity matrix S = N2
∗ (we denote it as

N2
∗ rather than N2, since it does not find the nearest neighbors in the whole set)

. We then set k = 6 to build a weak similarity matrix C = N6. Since we wish

to build as many connections as possible, we propagate the strong similarity to

all samples using the weak similarity and with the aim of learning an intrinsic

similarity matrix N∗.

Before the propagation, we set all diagonal entries of S to 1. Now we regard

any Si,j = 1 in S as original positive energies, and we expect to propagate them

to other entries where Si,j = 0 following the paths built in the weak similarity
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matrix C. The propagation procedure can be formulated as [124]

S
(t+1)
i = (1− α)S(0) + α

∑ns

j=1 Ci,jS
(t)
j∑ns

j=1 Ci,j

, (2.10)

where S
(t)
i denotes the ith row of S(t), where t = 0, 1, · · · is the time stamp, α

is the trade-off parameter and the initial state S(0) = S. Let P = D−1C as the

well-known transition probability matrix in Markov random walk models, where

D is a diagonal matrix whose diagonal entries equal the sums of corresponding

row elements in C, i.e., Di,i =
∑n

j=1 Ci,j , then (2.10) can be rewritten as

S(t+1) = (1− α)S(0) + αPS(t). (2.11)

Since 0 < α < 1 and all entries in S(0) are less than one, the convergence can be

reached. It can be obtained by

S∗ = lim
t→∞

S(t) = (1− α)(I − αP )−1S(0). (2.12)

Note that S∗ we obtain here is asymmetric, so we simply symmetrize it and remove

small values of the symmetrized matrix to build our final similarity matrix N∗,

i.e.,

N∗ = [
S∗ + S∗T

2
]≥θ, (2.13)

in which the operator [S]≥θ zeros out the entries of S whose absolute values are

smaller than 0 < θ < 1. The effect of similarity propagation is shown in Fig. 2.3.

Then, we can replace Nk in (2.9) with N∗ and add the similarity restraint to

(2.7). Finally, we get the objective function of our distance metric:

U∗ = argmax
U

1

np × nn

∑
xi∈X+

∑
xj∈X−

‖ UT (xi − xj) ‖2 −

λ

np × np

∑
xi∈X+

∑
xj∈X+

ci,j ‖ UT (xi − xj) ‖2 −

β

n× n

∑
xi∈X

∑
xj∈X

N∗
i,j ‖ UT (xi − xj) ‖2,

(2.14)
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where β ≥ 0 is the margin factor. After adding the similarity propagation con-

straint, each negative sample can be regarded as being affected by two different

types of forces. One force is from the positive space and pushes them into the

negative space, while the other force is from the negative space and drags them

into the negative space. Corrupted positive samples, such as targets with strong

occlusion, may build connections with negative samples during the similarity

propagation procedure and be dragged into the negative space. This helps to

enhance the robustness of the obtained metric.

To solve the objective function, we first build a unified matrix M , in which

each entry Mi,j encodes a pairwise weighting factor in (2.14). This can easily be

obtained by building a weighting matrix separately for each part and then adding

them, as

Mi,j =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

βN∗i,j
n×n

+
λci,j

np×np
, xi,xj ∈ X+

βN∗i,j
n×n

, xi,xj ∈ X−
βN∗i,j
n×n

+ 1
np×nn

, others

. (2.15)

Then, we rewrite (2.14) as

U∗ = argmax
U

1

2

∑
xi∈X

∑
xj∈X

Mi,j ‖ UT (xi − xj) ‖2

= argmax
U

tr[UTX(H −M)XTU ]

= argmax
U

tr[UTXLXTU ]

= argmax
U

tr[UTAU ],

(2.16)

where H is a diagonal matrix whose diagonal entry equals the sum of the corre-

sponding row elements in M , i.e., Hi,i =
∑n

j=1 Mi,j, L = (H − M) is known as

the graph Laplacian, and A = XLXT .

2.4.2 Reconstruction Error Constraint

Since many generative tracking algorithms utilize combination of templates to

reconstruct the target model, and the geometry of positive samples should be
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preserved in the measure space, we apply reconstruction error constraint to posi-

tive samples X+. According to Neighborhood Preserving Embedding (NPE) [71],

we minimize the reconstruction error for xi to obtain the neighbor reconstruction

weight wi,j of xj , i.e.,

wi,j = argmin
wi,j

np∑
i=1

‖ xi −
∑

1≤j 	=i≤np

wi,jxj ‖2 . (2.17)

We impose
∑

1≤j 	=i≤np
wi,j = 1 and wi,i = 0, then the solution of wi,j can be

obtained by constructing the the local Gram matrix C(i) of sample xi, where

C
(i)
m,n = (xi − xm)

T (xi − xn) is the entry (m,n) in C(i) and 1 ≤ n,m �= i ≤ np.

So wi,j =
∑

n C
−1
j,n/

∑
m,n C

−1
m,n, where the C−1

m,n is the entry (m,n) in the inverse

matrix of C(i).

In the transformed space, we use wi,j to reconstruct UTxi and minimize the

reconstruction error, as

U∗ = argmin
U

np∑
i=1

‖ UTxi −
∑

1≤j 	=i≤np

wi,jU
Txj ‖2

= argmin
U

tr[UTXp(I −W T )(I −W T )TXpU ]

= argmin
U

tr(UTBU),

(2.18)

where B = Xp(I −W T )(I −W T )TXp.

To combine (2.16) with (2.18), we have the final metric objective function as

U∗ = argmax
U

tr(UTAU)− γ(UTBU)

= argmax
U

tr[UT (A− γB)U ]

= argmax
U

tr(UTC0U),

(2.19)

where γ is the margin factor, and C0 = (A−γB). By imposing UTU = Id, we ob-

tain U by applying the standard eigenvalue decomposition on C0, and the solution

comprises the d largest eigenvectors associated with the d largest eigenvalues.
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2.5 Distracter-Resistant Tracker

Though the proposed metric learning method has already obtained robust dis-

criminative power, it still should be combined with an existing tracking frame-

work to cast tracking problems. In this section, we begin with a brief review of

the L1 minimization framework. We then introduce the integration of our Dual-

force distance metric and L1 framework to develop our robust distracter-resistant

tracker.

2.5.1 L1 Minimization Tracking

In the L1 tracking framework [131], the appearance of a target object observation

y is assumed to be approximately expressed by the combination of templates

through a regularized L1 minimization function with nonnegativity constraints

min
c

‖ Bc− y ‖22 +λ ‖ c ‖1 , s.t. c � 0 , (2.20)

where B =
[
T, I,−I

]
is composed of target template set T and trivial template

sets I and −I. Each column in T is a target template generated by reshap-

ing the pixels of a candidate patch into a column vector; and each column in

the trivial template sets is a unit vector that has only one nonzero element.

c =
[
a
, e+
, e−


]

is composed of target coefficients a and positive and nega-

tive trivial coefficients e+ and e−, respectively. The �1-regularized least squares

problem (2.20) can be efficiently addressed by the interior-point method described

in [91] or the accelerate gradient algorithm presented in [37].

Finally, the observation likelihood is derived from the reconstruction error of

y as

p(y|x) = 1

Γ
exp{−ρ ‖ Ta− y ‖2} , (2.21)

where x is the state variables of the candidate, a is obtained by solving the L1

minimization (2.20), ρ is a constant controlling the shape of the Gaussian kernel,

and Γ is a normalization factor. Then the target is predicted as the candidate

with the maximum observation likelihood, while the observation likelihoods of all

the candidates are fed to update the particle filter and generate the particles for
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next frame. For more details of the original L1 tracker, please refer to [131].

2.5.2 Distracter-Resistant Tracker

To train our proposed metric learning method, we should maintain two differ-

ent training sets, i.e., positive samples X+ , negative samples X−, respectively.

We impose the template set as positive samples directly. For further positive

samples, they can be obtained by sliding the output window and collecting the

samples near the target like many other tracking algorithms [8, 85]. However,

this method sometimes would be unreliable if the output is not the real target.

In our observation from the experiments, the first m candidates with the most

likelihood always locate very near to the real target even when the wrong result

occasionally appears. Therefore, we collect further positive samples by exploiting

the information provided by (2.21), and these samples can be regarded as the

bound of positive and negative space. Note that we only maintain the positive

samples collected from last frame. For negative ones, we collect them from the

background in each frame, and then put them into the larger negative set, which

we call total negative set Xt−. The Xt− would be updated gradually, since the

volume is fixed and the oldest samples would be removed in each frame. For

efficiency, we obtain X− by sampling nn negative samples from Xt− instead of

using the whole Xt−.

To implement our proposed metric to the L1 framework, we replace the Eu-

clidean distance metric in (2.20), (2.21) with our dual-force distance metric. How-

ever, we rebuild the identity matrix in the transformed space instead of trans-

forming the trivial templates because we expect it to bring the same function as

it does in the original space. The objective function of our tracker is written as

c∗ = argmin
c

‖ B∗c− UTy ‖22 +μ ‖ c ‖1, s.t. c � 0, (2.22)

where B∗ = [UTT, I,−I] is the new template set. Meanwhile (2.21) should be

modified to

p(y|x) = 1

Γ
exp{−ρ ‖ UTTa− UTy ‖2} , (2.23)

and we still update the template weights and target template as [131].
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To increase efficiency, we also employ Bound Particle Resampling (BPR),

proposed in [133], to our tracker. By adopting BPR, only candidates with high

likelihood computed by Least Squares (LS) will be subjected to solving the com-

putationally expensive L1 minimization without sacrificing resampling precision.

Since the amount of time saved depends on the dissimilarity among the candi-

dates, our metric preserves the discriminative information and therefore enhances

the time-reducing power of BPR; thus, more samples would be excluded from solv-

ing the L1 minimization. Furthermore, after projecting both the target templates

and candidate samples in (2.20) to the low dimensional transformed space, the

computation time of BPR and L1 minimization for each sample is saved. As a

result, though training a distance metric costs extra time in each frame, the total

time cost does not increase significantly compared to BPR-L1 in [133], while our

tracker is much faster than the original L1 tracker [131] and achieves a remarkable

performance improvement.

2.6 Experiments

We implemented our Dual-Force Metric Learning-based Distracter-Resistant Tracker

by combining the proposed metric learning method with the L1 tracker [133] as

presented in section 2.5. Without code optimization, the tracker runs at 0.8s per

frame on average on a PC (2.9GHz Intel Xeon E5-2690,32GB RAM). We tested

the performance on several challenging sequences1. In some of the sequences,

many existing trackers, such as L1 tracker, failed due to the presence of back-

ground distracters. The compared trackers included Fragments-based tracking

(Frag) [2] , Increment Visual Tracking (IVT) [150], Multiple Instance Learning

(MIL) tracker [8], Visual Tracking Decomposition (VTD) [98] and Bounded Par-

ticle Resampling-based L1 tracker (BPR-L1T) [133]. All of these trackers are

popular and extensively mentioned in the literature. We obtained the compared

tracking results by running the code provided by the original authors. Note that

1The box and board sequences were from http://gpu4vision.icg.tugraz.at/index.

php?content=subsites/prost/prost.php. The tiger1 and tiger2 sequences were from http:

//vision.ucsd.edu/~bbabenko/project_miltrack.shtml. The david indoor sequence was
from http://www.cs.toronto.edu/~dross/ivt/. animal and shaking sequences were from
http://cv.snu.ac.kr/research/~vtd/. Our thanks to the authors for their contribution.
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all image are resized to 320 × 240 for comparison and all trackers start from a

manually selected position of the target in the first frame.

2.6.1 Qualitative Comparison

The Board sequence tracks a board from a cluttered background. The board is

hung by a rope and rotated by around 40 degrees. The traditional rectangular

window used by Frag, VTD and MIL may contain many pixels from the back-

ground and result in locking on the background or drifting from the center of the

target. BPR-L1T, IVT and our tracker-adopting affine window can all effectively

track the target until fully out-of-plane rotation occurs. However, our tracker

can track the board well even if it undergoes the rotation, because we adaptively

learn the metric by selecting the important features and update the template. A

number of tracking results are presented in Fig. 2.4 (A).

The Box sequence tracks a box from the same background as the board se-

quence. Although there is no severe rotation in this sequence, it is also never-

theless challenging due to the existence of many traps in the background, i.e.

distracters. Specifically, the MIL and BPR-L1T lock on the distracter even from

frame 33, as shown in Fig. 2.4 (B). Frag loses the target when the box undergoes

slightly out-of-plane rotation. All trackers lose the target between frame 460 and

frame 486 because of the full occlusion; however, VTD and our tracker wait for

the reappearance of the target, while IVT starts to track the background and

drifts away. With the exception of our tracker, BPR-L1T and other trackers con-

tinuously lock on the distracters for the whole sequence. This demonstrate the

superiority of our proposed metric.

The David Indoor sequence is a classical sequence which contains many chal-

lenges such as illumination and pose changes. Most trackers successfully track

the target when the illumination changes, except for VTD. Following the person’s

change of pose, IVT also shrinks to a smaller window and tracks part of the tar-

get. Compared to BPR-L1T, our tracker performs more stably when faced with

the pose changes. A number of tracking results are presented in Fig. 2.4 (C).

The Tiger1 and Tiger2 sequences track a tiger doll from a cluttered back-

ground undergoing many challenges, i.e. occlusion, multiple poses, motion blur
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(A) Board (B) Box
#028 #077 #281 #033 #235 #460

#411 #502 #588 #493 #546 #913

(C) David indoor (D) Tiger1 & Tiger2
#007 #058 #138 #033 #068 #320

#168 #208 #306 #162 #200 #270

(E) Animal (F) Shaking
#002 #007 #020 #007 #059 #110

#037 #046 #052 #229 #282 #365

(G) ThreePastShop1cor
#001 #150 #310 #436 #564 #597

Frag IVT MIL VTD BPR−L1T Ours

Figure 2.4: Qualitative results of DFMLDR compared with different algorithms.
Frame numbers are shown in the top left of each figure. Note that (D) contains
the results of two sequences, i.e. the first row for Tiger1 and the second row for
Tiger 2.

and out-of-plane rotations. Frag, IVT, DVT, MIL and BPR-L1T all suffer from

these challenges and lock on the background, which has a similar appearance to
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the target. In Tiger1, IVT locks on the background and even moves off-screen.

Our tracker outperforms other trackers in both these sequences due to the robust

distracter resistance of our proposed metric. A number of clips of the results are

shown in Fig. 2.4 (D).

The results of the Animal and Shaking sequences are shown in Fig. 2.4 (E)

and Fig. 2.4 (F) respectively. In these two sequences, the target has severe

motion blur caused by abrupt movement. Only MIL and our tracker perform

well in the animal sequence. The shaking sequence is much harder to track due

to the significant pose and illumination changes. Frag, IVT, BPR-L1T all fail

to track the singer in this sequence when these challenges occur. Our tracker

survives because the metric discriminatively resists distracters and the NPE part

in our metric can well preserve the manifold of the target space.

The ThreePastShop1cor sequence tracks one of three men walking through a

corridor. The results are shown in Fig. 2.4 (G). As the target moves from far

to near, IVT, BPR-L1T and our tracker gradually enlarge the tracking window

and result in a satisfactory performance. Other trackers drift from the center and

lock ons part of the person’s body.

2.6.2 Quantitative Comparison

To quantitatively evaluate the performance of each tracker, two types of evalua-

tion methodologies have been adopted in the section. As done in [8] and [131], we

calculate the distance between the centers of the tracking result and the ground

truth for each frame and plot this center location error versus frame number. We

refer to this as “position error”. For a perfect result, the position error should

be zero. As shown in Fig. 2.5, the error curves of our tracker are generally lower

than those of other trackers and are more closer to zero. This means our tracker

effectively tracks the target in all tested sequences. Moreover, the average po-

sition errors are summarized in Tab. 2.1 for the clearer comparison. It shows

that our tracker achieves the best performance in six tested sequences and overall

beats the compared trackers the other five selected trackers.
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Figure 2.5: Position error (in pixel) plot of each tracker on eight tested sequences
for quantitative comparison.
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Table 2.1: Average position error (pixels). Bold indicates best performance.

Frag IVT MIL VTD L1T Ours

Board 17.9 11.9 26.8 41.3 14.5 6.3
Box 34.1 59.8 48.0 42.8 80.1 7.9
David indoor 20.5 20.1 16.0 53.8 26.1 8.6
Tiger1 38.6 122.3 26.3 55.5 20.7 6.7
Tiger2 37.5 46.1 16.9 38.5 25.8 6.2
Animal 67.6 143.9 3.7 104 23.1 4.3
Shaking 115.4 112.2 8.2 8.4 59.9 6.7
ThreePastShop1cor 10.0 3.8 21.9 10.0 3.1 3.4

2.7 Conclusion

In this chapter, we have presented a novel dual-force distance metric which is

elaborately designed for distracter-resistant tracking. The proposed metric sys-

tematically includes the normalized margin maximization, the similarity propa-

gation and the reconstruction error constraint, in which the normalized margin

maximization gives a force to separate positive samples and negative ones while

the similarity propagation gives another force to drag negative samples into neg-

ative space. Thus we call it Dual-Force distance metric. We seamlessly integrate

our metric with the L1 minimization framework and takes advantage perfectly

of both the descriptive power of L1 minimization with occlusion robustness and

the discriminative power of our metric with distracter resistance. We tested our

tracker on several challenging sequences and compared it with other five popular

trackers including original BPR-L1 tracker to validate its superiority.
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Chapter 3

Robust Tracking via Multi-Task

Multi-View Joint Representation

3.1 Introduction

Various sparse representation based methods have been proposed to solve track-

ing problems and most of them employ Least Squares (LS) criteria to learn the

sparse representation. In many tracking scenarios, traditional LS based methods

may not perform well due to the presence of heavy tailed noise. In this chapter,

we present a tracking approach using an approximate Least Absolute Deviation

(LAD)-based multi-task multi-view sparse learning method to enjoy robustness

of LAD and take advantage of multiple types of visual features, such as intensity,

color and texture. The proposed method is integrated in a particle filter frame-

work where learning the sparse representation for each view of the single particle

is regarded as an individual task. The underlying relationship between tasks

across different views and different particles is jointly exploited in a unified ro-

bust multi-task formulation based on LAD. In addition, to capture the frequently

emerging outlier tasks, we decompose the representation matrix to two collabo-

rative components which enable a more robust and accurate approximation. We

show that the proposed formulation can be effectively approximated by Nesterov’s

smoothing method and efficiently solved using the Accelerated Proximal Gradi-

ent method. The presented tracker is implemented using four types of features
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and is tested on numerous synthetic sequences and real-world video sequences

including the CVPR2013 Online Object Tracking Benchmark (OOTB) [181] and

ALOV++ dataset [160]. Both the qualitative and quantitative results demon-

strate the superior performance of the proposed approach compared with several

state-of-the-art trackers.

Online object tracking is an important research topic in computer vision and

is related to many practical applications, such as video surveillance and vehicle

perception. Given an annotation of the object in the first frame, the task of a

tracker is to estimate the target locations using the same annotation in subsequent

video frames. Many model-free trackers [115], [181] have been designed to handle

generic object tracking where the prior knowledge about the target is absent.

Generally, designing a universally effective tracker is extremely difficult due to

the presence of various challenges, such as appearance variations, occlusions and

illumination changes.

In the community of visual tracking, the Least Squares (LS) criterion, i.e.

Euclidean distance, is usually used to approximate the sparse representation for

tracking [133], [195]. LS performs well when the data distribution is Gaussian. It

is popular because of its differentiability and smoothness properties and it can be

efficiently solved by gradient-based methods [138]. However, the noise in many

real tracking scenarios is heavy-tailed, such as in the cases of background clutter,

Laplace noise and salt & pepper noise, where LS based methods may degrade

seriously since these kinds of noise can not be well estimated by LS. According

to [67], [69], Least Absolute Deviation (LAD) is much more robust than LS,

especially in the presence of heavy-tailed noise.

On the other hand, tracking problems can involve data that is represented

by multiple views1 of various types of visual features including intensity [134],

color [39], edge [98], wavelet [83] and texture. Relying on these multiple sources

of information can significantly improve tracking performance as a result of their

complementary characteristics [10, 49, 98, 123]. Given these cues from multiple

views, an important problem is how to integrate them and build an appropriate

1Regarding the term multi-view learning [149,183], we follow the machine learning conven-
tion, in which views refer to different feature subsets used to represent particular characteristics
of an object.
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model to explore their mutual dependencies and independencies.

Sparse representation has recently been introduced for tracking [133], in which

a tracking candidate is sparsely represented as a linear combination of target

templates and trivial templates. In particle filter-based tracking methods, parti-

cles around the current state of the target are randomly sampled according to a

zero-mean Gaussian distribution. Each particle shares dependencies with other

particles. Original multi-task learning in [36] aims to improve the performance

of multiple related tasks by exploiting the intrinsic relationship among them.

In [195], learning sparse representation of each particle is viewed as an individual

task. However, [195] assumes that all tasks share a common set of features, which

generally does not hold in visual tracking applications, since outlier tasks often

exist. Outlier tasks are a set of minority tasks that do not share a common set

of features with the majority of tasks. Furthermore, [133] and [195] only use the

intensity feature to model the appearance change of the target. The intensity

appearance model with L1 minimization is very robust to partial occlusion and

other tracking challenges [133]. However, it is very sensitive to shape deformation

of targets such as non-rigid objects.

To overcome the above problems, we propose to take advantage of LAD and

employ other visual features such as color, edge, and texture to complement inten-

sity in the appearance representation, and to combine a multi-view representation

with a robust multi-task learning [61] (Fig. 3.1). Within our proposed framework,

the sparse representation for each view is learned as a linear combination of atoms

from an adaptive feature dictionary which enables the tracker to capture differ-

ent statistics carried by different views. To exploit the interdependencies shared

between different views and particles, we impose the �1,2-norm group-sparsity reg-

ularization on the representation matrix to learn the joint sparse representation

for all views and over all particles, where learning the sparse representation for

each view of a single particle is regarded as an individual task. The LAD in-

stead of LS reconstruction error is used to learn the sparse representation and to

improve the robustness of the learned representation. We decompose the sparse

representation into two collaborative parts, thereby enabling them to learn repre-

sentative coefficients and detect outlier tasks simultaneously. The proposed LAD

formulation is effectively approximated by Nesterov’s smoothing method [139].
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Figure 3.1: Flowchart to illustrate the proposed multi-task multi-view tracking
framework.

An efficient Accelerated Proximal Gradient (APG) [138] scheme is employed to

obtain the optimal solution via a sequence of closed-form updates. Although

discriminative approaches can be sometimes more effective, generative methods

often have better performance when the size of labeled data is small [140]. Many

trackers are built on discriminative approaches [9, 39, 68, 79, 194], but there are

also many generative [13,84,133,195] or even hybrid [198] methods which demon-

strate superior performance in various scenarios. It should be noted that this

work aims to improve the previous generative approaches [133, 195] by consider-

ing the multi-view setting in the sparse representation framework and exploring

the relationship between different views among different particles. Although em-

ploying the discriminative setting in the current framework might further improve

the performance, it is beyond the scope of this chapter.

Our contribution is four-fold: 1) we utilize multiple types of features in a

sparse representation-based framework for tracking. Compared to previous re-

lated trackers [113] [132] [195], the new tracker is not only able to take advantage

of the robustness to occlusion from sparse representation, but also introduces
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complementary multiple-view representation for robust appearance modeling; 2)

we treat every view in each particle as an individual task and jointly consider the

underlying relationship shared among different views and different particles in

a multi-task learning framework; 3) to capture the outlier tasks that frequently

emerge in the particle sampling process, we employ a robust multi-task scheme

by decomposing the coefficient matrix into two collaborative components; and 4)

outlier rejection helps identify outlier tasks and improves resampling efficiency

by setting posterior probabilities of outliers to zero and making sure they are

not sampled in the resampling process; 5) instead of using the popular LS cri-

terion, we propose to take advantage of LAD which is more robust than the LS

method especially when the data is contaminated by outliers and noise and use

LAD reconstruction error during the sparse representation learning; 6) due to the

non-smoothness of Manhattan norm used in the LAD criterion, the APG method

cannot be directly used, which is different from the case in [77]. Therefore, we

approximate LAD using Nesterov’s smoothing method [139], and then efficiently

solve the optimization using the APG scheme.

3.2 Related Work

An extensive review on tracking and multi-view learning is beyond the scope

of this chapter. We refer readers to some recently published surveys [115, 185]

for more details about existing trackers, and an extensive survey on multi-view

learning can be found in [184]. In this section, we review the works of relavance

to our method including popular single-view based trackers, multi-view based

trackers and sparse representation based trackers, multi-task learning, and LAD.

Numerous existing trackers use single feature only and solve tracking in various

ways. For instance, Comaniciu et al. [40] introduced a spatial kernel to regularize

the color histogram-based feature representation of the target, which enables

tracking to be reformulated as a gradient-based optimization problem solved by

mean-shift. Multiple Instance Learning (MIL) tracker proposed by Babenko et

al. [9] is equipped with a Haar feature pool to model the target appearance.

In [150], Ross et al. presented a tracking method that incrementally learns a

low-dimensional subspace representation based on intensity features. In [86],
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Kalal et al. proposed a new tracking paradigm that combines the classical Lucas-

Kanade based tracker with an online learned random-forest based detector using

pixel-wise comparison of features. The learned detector is notable for enabling

reacquisition following tracking failures.

The above trackers nevertheless tend to be vulnerable in particular scenarios

due to the limitations of the adopted features. Various methods aim to over-

come this problem by taking advantage of multiple types of features to enable

a more robust tracker [98, 136, 161, 188]. In [21], two complementary features,

color histogram and intensity gradient, are jointly considered to track a person’s

head. In [136], Moreno-Noguer et al. proposed a probabilistic framework allowing

the integration of multiple features for tracking by considering cue dependencies.

Kwon and Lee [98] proposed a method termed Visual Tracking Decomposition

(VTD) which employs Sparse Principal Component Analysis (SPCA) to con-

struct multiple basic observation models (basic trackers) based on multiple types

of features. In [100], the visual tracker sampler (VTS) is further proposed by the

authors to sample the basic trackers and probabilistically determine the accep-

tance of them.

Sparse representation was recently introduced for tracking in [133] which casts

tracking as a sparse representation problem in a particle filter framework [82]

which was later used in [78, 113, 119, 135]. In [195], a multi-task learning [37]

approach is applied to tracking by learning a joint sparse representation of all

the particles in a particle filter framework. Compared to the original L1 tracker

[133] that pursues the sparse representation independently, Multi-Task Track-

ing (MTT) achieves more robust performance by exploiting the interdependency

between particles. In addition, [196] also tries to exploit the interdependency

between particles and cast the tracking problem as a low-rank matrix learning

problem. Multi-task learning has also been successfully applied to face recogni-

tion [44] and image classification [190]. In [190], a multi-task covariate selection

model is used to classify a query image using multiple features from a set of train-

ing images, and a class-level joint sparsity regularization is imposed on class-level

representation coefficients.

A well-known alternative of the popular Least Squares (LS) is the Least Abso-

lute Deviation (LAD) [90]. In [69], Harter comprehensively discussed the method
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of LS and its alternatives, and proposed that LAD is more robust than the LS

method especially when the data is contaminated by outliers. In addition, a lot of

works have been proposed to exploit the robustness of LAD in the linear approx-

imation problems [14, 67, 156, 175]. In [175], Wang et al. proposed the LASSO

Regularized Least Absolute Deviation (RLAD) regression that takes advantage

of both the LAD and the LASSO. In [67], Guan et al. also exploited the LAD and

propose a Manhattan Non-negative Matrix Factorization (MahNMF) for model-

ing the heavy-tailed Laplacian noise. The effectiveness of the proposed method

was tested on both synthetic and real-world datasets, such as face images, natural

scene images, surveillance videos and multi-model datasets.

Motivated by the above advances, in this chapter, we propose a Multi-Task

Multi-View Tracking (MTMVT) method based on sparse representation to exploit

the related information shared between particles and views in order to obtain

improved performance. Moreover, we propose to employ the LAD and minimize

the Sum of Absolute Errors (SAE) regularized by the group sparsity for the joint

spare representation learning. In the rest of this chapter, we denote the proposed

Multi-Task Multi-View Tracking method using Least Squares as MTMVTLS and

the Multi-Task Multi-View Tracking method using Least Absolute Deviation as

MTMVTLAD.

3.3 Multi-task Multi-view Sparse Tracker

The L1 tracker [133] tackles tracking as finding a sparse representation in the

template subspace. The representation is then used in a particle filter framework

for visual tracking. However, appearance representation based only on intensity

is prone to failure in difficult scenarios such as tracking non-rigid objects. Em-

ploying multiple types of features has proven to be beneficial for tracking because

the ensemble of multiple views provides a comprehensive representation of the

target appearance undergoing various changes such as illumination and deforma-

tion. However, combining multiple views by simply concatenating features into a

high-dimensional feature vector is not a good option, since different features have

different statistical properties [184]. Inspired by previous works [190,195], the de-

pendencies of these views as well as the intrinsic relationship of sampled particles
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should be jointly considered. In this section, we propose to employ other visual

features such as color, edge, and texture to complement intensity in the target

appearance representation, and to combine a multi-view representation with a

robust multi-task learning [61] to solve the visual tracking problem.

3.3.1 Sparse Representation-based Tracker

In [133], the sparse representation of intensity feature x is formulated as the

minimum error reconstruction through an L1-regularized minimization problem

with nonnegativity constraints

min
w

‖ Mw− x ‖22 +λ ‖ w ‖1 , s.t. w � 0 , (3.1)

where M =
[
D, I,−I

]
is an over-complete dictionary that is composed of target

template set D and positive and negative trivial template sets I and −I, and �
is an element-wise operator, which constrains each element at the left side to be

greater or equal to the one at the right side. Each column inD is a target template

generated by reshaping pixels of a candidate region into a column vector; and the

trivial templates I is modeled using an identity matrix. w =
[
a
, e+
, e−


]

is

composed of target coefficients a and positive and negative trivial coefficients e+,

e− respectively.

Finally, the observation likelihood is derived from the reconstruction error of

x as

p(x|y) = 1

Γ
exp{−α ‖ Da− x ‖2} , (3.2)

where a is obtained by solving the L1 minimization (3.1), α is a constant con-

trolling the shape of the Gaussian kernel, and Γ is a normalization factor.

3.3.2 Robust Multi-task Multi-view Sparse Learning with

Least Absolute Deviation

We consider n particle samples, each of which has K different views (e.g., color,

shape and texture). Learning the sparse representation for each view of a single

particle is regarded as an individual task, so there are a total of nK tasks to tackle
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Figure 3.2: Illustration for the structure of the learned coefficient matrices P
and Q, where entries of different color represent different learned values, and the
white entries in P and Q indicate the zero rows and columns. Note that this
figure demonstrates a case that includes four particles and three views, where the
second particle is an outlier whose coefficients in Q comprise nonzero values.

for the joint sparse representations. For each view index k = 1, . . . , K, denote

Xk ∈ R
dk×n as the feature matrix which is a stack of n columns of normalized

particle image feature vectors of dimension dk, where dk is the dimension for the

kth view. We denote D(k) ∈ R
dk×N as the target dictionary in which each column

is a target template from the kth view, whereN is the number of target templates.

The target dictionary is combined with trivial templates Idk ∈ R
dk×dk to construct

the complete dictionary M(k) = [D(k), Idk ] ∈ R
dk×hk , where hk = N + dk.

Motivated by [61], we jointly evaluateK feature view matrices {X(1), . . . ,X(K)}
with n particles and learn the latent representations {W, . . . ,W(K)}. The decom-

posed matrices W(k)s enable different views of particles to have different learned

representations, and therefore exploit the independency of each view and capture

the different statistical properties. Moreover, each representation matrix W(k) is

constructed by two collaborative components P(k) and Q(k), where P(k) is regu-

larized by row sparse constraint, which assumes that all particles share the same

basis, while Q(k) is regularized by column sparse constraint, which enables the

capture of outlier tasks.
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The same columns from each view in the dictionary should be activated to

represent the particle in a joint sparse manner, since the corresponding columns

represent the same sample of the object. Therefore, the corresponding decom-

posed weight matrices P(k)s and Q(k)s from all the views can be stacked horizon-

tally to form two bigger matrices P and Q, respectively. Each of them consists

of the coefficients across all the views. Group lasso penalty �1,2 is applied to row

groups of the first component P for capturing the shared features among all tasks

over all views, where we define ‖P‖1,2 =
∑

j(
∑

i P
2
j,i)

1/2, and Pj,i denotes the en-

try in the jth row and ith column in the matrix P. The same group lasso penalty

is imposed on column groups of the second component Q to identify the outlier

tasks simultaneously. The multi-view sparse representations for all particles can

be obtained by solving the following problem

min
W,P,Q

K∑
k=1

fL(M
(k)W(k) −X(k)) + λ1‖P‖1,2 + λ2‖Q
‖1,2 , (3.3)

where fL(X) is a cost function measuring the reconstruction errors during the rep-

resentation learning,W(k) = P(k)+Q(k),P = [P(1), . . . ,P(K)],Q = [Q(1), . . . ,Q(K)],

and λ1 and λ2 are the parameters controlling the sparsity ofP andQ, respectively.

Fig. 3.2 illustrates the structure of the learned matrices P and Q.

Note that the stacking of P(k)s and Q(k)s requires that M(k)s have the same

number of columns. However, we can pad the matricesM(k)s with zero columns to

make them the same number of columns in order to apply (3.3). The coefficients

associated with the zero columns will be zeros based on the sparsity constraints

from �1 regularization and do not impact the minimization function in terms of

the solution. Without loss of generality, we assumeM(k)s are sorted in descending

order of the number of columns hk, that is, h1 ≥ h2 ≥ . . . ≥ hK . The new M̂
(k)

is defined as the zero padded matrix of M(k), that is, M̂
(k)

= [M(k),0(k)], where

0(k) ∈ R
dk×(h1−hk) and every element in 0(k) is zero. We can replace M(k) in (3.3)

with M̂
(k)

and solve the same minimization problem.

For the cost function fL(MW−X), a conventional selection is based on the

Frobenius norm fL(MW −X) = 1
2
‖MW −X‖2F , which employs the Euclidean

distance to measure the reconstruction error, i.e., minimizing the problem based
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Figure 3.3: A schematic example of the learned coefficients. We visualize the
learned coefficient matrices P and Q for all particles across all views, which are
color histograms, intensity, HOG and LBP, respectively. Each matrix consists
of four column parts corresponding to four different views, where the brighter
color represents larger value in the corresponding matrix element. The seventh
template in the dictionary is the most representative (which is circled in green in
the shown intensity templates D(2)) and results in brighter values in the seventh
row of P across all views (they are associated by the line with two arrows), while
some columns in Q have brighter values which indicate the presence of outliers.

on LS criterion. Then, the problem in (3.3) can be explicitly written as

min
W,P,Q

K∑
k=1

1

2
‖M(k)W(k) −X(k)‖2F + λ1‖P‖1,2 + λ2‖Q
‖1,2 . (3.4)

The LS is popular due to its useful properties, namely smoothness and dif-

ferentiability, which enables application of efficient gradient based methods, such

as APG [37], as presented in our previous work [77]. However, as discussed

in [67,69], LAD is much more robust than the ordinary LS in many applications,

especially in the presence of heavy-tailed noise. The LAD estimate also arises as

the maximum likelihood estimate if the errors have a Laplace distribution. To

use LAD, we replace the Frobenius norm with the Manhattan norm, the problem

(3.3) becomes

min
W,P,Q

K∑
k=1

‖M(k)W(k) −X(k)‖M + λ1‖P‖1,2 + λ2‖Q
‖1,2 . (3.5)
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In particular, the problem in (3.5) minimizes the Sum of Absolute Errors

(SAE) regularized by the group sparsity prior. Although the problem (3.5) is

still convex, each term in (3.5) is typically non-smooth. The APG method can no

longer be used. Fortunately, we will show Nesterov’s smoothing method [139] can

be used to smooth the Manhattan norm in Section 3.3.4, and thus the problem

(3.5) can still be solved efficiently.

For a more intuitive view of the proposed formulation, we visualize a schematic

example of the learned sparse coefficients in Fig. 3.3, The W can be decomposed

in both horizontal and vertical directions. Vertically, W = [A
,E
]
 consists

of target coefficients A and trivial coefficients E respectively, while horizontally,

W = P +Q consists of information sharing matrix P and outlier identification

matrix Q.

3.3.3 The General Form and Special Cases

Before presenting the optimization method of (3.5), we would like to have a

brief discussion about the proposed problem (3.3) in this section. The proposed

optimization problem (3.3) can be generalized as

min
W,P,Q

K∑
k=1

fL(M
(k)W(k) −X(k)) + λ1||P||p,q + λ2||Q
||p,q , (3.6)

where ‖P‖p,q = (
∑

j((
∑

i(Pj,i)
q)1/q)p)1/p is the �p,q norm of P, and Pj,i represents

the element in the jth row and ith column of P. To restrict a small number of

dictionary templates to be selected by all particles across all views, let p = 1,

then we get ‖P‖1,q =
∑

j(
∑

i(Pj,i)
q)1/q, which encourages P to be row sparse.

For the options of q, we select three widely studied mixed norms q ∈ {1, 2,∞} as

discussed in MTT [195]. Now we discuss (3.6) with different combinations of λ2,

q, K and fL, which yields different trackers. If we restrict our tracker to the case

of λ2 = +∞ and K = 1 for a single view multi-task problem, then we get Q = 0.

So, (3.6) is degenerated to

min
P

fL(MP−X) + λ1||P||1,q , (3.7)
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where both the LS and LAD can be used. We note that if the LS is employed,

where fL(MP −X) = 1
2
‖MP −X‖2F , (3.7) is exactly the same as the objective

function used in MTT [195]. Furthermore, if we let q = 1, the obtained formu-

lation is intrinsically the same as (3.1), which is used in the L1 tracker [133]. In

this way, both the MTT tracker and the L1 tracker can be regarded as special

cases of the proposed MTMVT in the single view setting. Meanwhile, the LAD

versions of MTT and L1 trackers can be naturally obtained within the proposed

formulation in (3.7).

Here we discuss another single view version (K = 1) of MTMVT by appro-

priately setting λ2 > 0, in which some nonzero columns of Q will be obtained if

outliers exist. Specifically, if we set q = 2, the MTT tracker with outlier handling

can be obtained as follows

min
P,Q,W

fL(MW−X) + λ1||P||1,2 + λ2||Q
||1,2 , (3.8)

where W = P +Q, and the component P exploits the underlying relationships

of majority particles, while the component Q is able to capture the outlier tasks

simultaneously, which yields more robust representations.

3.3.4 Optimization with Approximated Least Absolute De-

viation

In this section we show how to solve the proposed problem (3.5) efficiently. Firstly,

the Manhattan norm is approximated by a smooth function using the method

presented in [67, 139], and then gradient-based method is applied to obtain the

solution using a small number of closed-form updates.

Due to the separability property of Manhattan norm, we consider the following

loss function of a single task

g(M,w,x) = ‖Mw− x‖1 , (3.9)

where x ∈ R
d is the single view observation for a particle, M ∈ R

d×h is the

dictionary, and w ∈ R
h is the sparse representation. As shown in [67], Nesterov’s

smoothing method [139] can be used to approximate (3.9) and obtain a closed-
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form smoothed function as

gθ(M,w,x) =
d∑

j=1

‖Mj,·‖1ψθ(
|Mj,·w− x(j)|

‖Mj,·‖1 ) , (3.10)

where Mj,· is the jth row of M, x(j) is the jth entry of vector x, and θ > 0 is

a parameter controls the smoothness. The larger the parameter θ the smoother

the approximate function gθ(M,w,x), but the worse the approximate accuracy.

The function ψθ is a piecewise function defined as

ψθ(δ) =

⎧⎨
⎩

δ
2θ
, 0 ≤ δ ≤ θ

δ − θ
2
, δ > θ

. (3.11)

According to [139], gθ(M,w,x) is well defined and continually differentiable

at any w ∈ R
h. Moreover, gθ(M,w,x) is convex and its gradient with respect to

w can be obtained as

∇wgθ = M
μ , (3.12)

where μ ∈ R
d is the Lagrange multiplier vector and

μ(j) = med(−1,+1,
Mj,·w− x(j)

θ‖Mj,·‖1 ) , (3.13)

where med(·) is the median operator.

By applying Equation (3.10), the problem (3.5) can be approximated as

min
W,P,Q

K∑
k=1

Gθ(M
(k),W(k),X(k)) + λ1‖P‖1,2 + λ2‖Q
‖1,2 , (3.14)

where Gθ(M
(k),W(k),X(k)) =

∑n
i=1 gθ(M

(k),w
(k)
i ,x

(k)
i ) is the cost function for

the kth view of the n particles.

Let us denote by

�(P,Q) =
K∑
k=1

Gθ(M
(k),W(k),X(k)) , (3.15)
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r(P,Q) = λ1‖P‖1,2 + λ2‖Q
‖1,2 . (3.16)

Note that now the objective function in (3.14) is a composite function of two parts,

a differential empirical loss function �(P,Q) and a convex non-smooth regular-

ization r(P,Q), which has been extensively studied [37,61,138]. The Accelerated

Proximal Gradient (APG) method [37] is employed because of its well-known ef-

ficiency. In contrast to traditional subgradient-based methods that converge at

sublinear rate, APG can obtain the globally optimal solution at quadratic con-

vergence rate, which means APG achieves O(1/m2) residual from the optimal

solution after m iterations.

We can apply the composite gradient mapping [138] to (3.14) and construct

the following function

Φ(P,Q;R,S) =�(R,S) + 〈∇R�(R,S),P−R〉
+ 〈∇S�(R,S),Q− S〉+ η

2
‖P−R‖2F

+
η

2
‖Q− S‖2F + r(P,Q) .

(3.17)

In Φ(P,Q;R,S) comprises the regularization term r(P,Q) and the approxi-

mation of �(P,Q) by the first order Taylor expansion at point (R,S) regularized

as the squared Euclidean distance between (P,Q) and (R,S), where η is a pa-

rameter controlling the step penalty and ∇R�(R,S) and ∇S�(R,S) denote the

partial derivatives of �(R,S) with respect to R and S. Recall that ∇R�(R,S)

= ∇S�(R,S) = ∇W�(R,S), so the partial derivatives ∇R�(R,S) and ∇S�(R,S)

can be computed in closed-form by Equation (3.12).

In the mth APG iteration, (R(m+1),S(m+1)) is computed as a linear combina-

tion of (P(m),Q(m)) and (P(m−1),Q(m−1)), so (R(m+1),S(m+1)) stores the historical

aggregation of (P,Q) in the previous iterations, which is conventionally called
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aggregation step. As suggested in [37], we set

R(m+1) = P(m) + αm(
1− αm−1

αm−1

)(P(m) −P(m−1)) ,

S(m+1) = Q(m) + αm(
1− αm−1

αm−1

)(Q(m) −Q(m−1)) ,
(3.18)

where αm can be set to α0 = 1 for m = 0 and αm = 2
m+3

for m ≥ 1, and P(0),

Q(0), R(1) and S(1) are all set to zero matrix for the initialization. Once given

the aggregation (R(m),S(m)), the solution for the mth iteration is obtained by

computing the following proximal operator

(P(m),Q(m)) = argmin
P,Q

Φ(P,Q;R(m),S(m)) . (3.19)

With simple manipulations, the optimization problem (3.19) can be decom-

posed into two subproblems for P and Q respectively, as

P(m) = argmin
P

1

2
‖P−U(m)‖2F +

λ1

η
‖P‖1,2 , (3.20)

Q(m) = argmin
Q

1

2
‖Q−V(m)‖2F +

λ2

η
‖Q
‖1,2 , (3.21)

where U(m) = R(m) − 1
η
∇R�(R

(m),S(m)) and V(m) = S(m) − 1
η
∇S�(R

(m),S(m)).

Following the decomposition, an efficient closed-form solution can be attained

respectively for each row of P(m) and each column of Q(m) in the above subprob-

lems (3.20) and (3.21) according to [122],

P
(m)
j,· = max(0, 1− λ1

η‖U(m)
j,· ‖

)U
(m)
j,·

Q
(m)
·,i = max(0, 1− λ2

η‖V(m)
·,i ‖

)V
(m)
·,i ,

(3.22)

where P
(m)
j,· denotes the jth row of P(m) and Q

(m)
·,i denotes the ith column of Q(m).

Finally, the solution of (3.14) can be obtained by iteratively computing (3.22) and

updating (U(m), V(m)) until the convergence of (P, Q). The procedure of the

presented algorithm is summarized in the Algorithm 1 .
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Algorithm 1 Optimization algorithm

Input: Features of K views for n candidate samples X, dictionary M, P(0) and
Q(0), η, λ1, λ2

Output: P, Q
1: Initial m = 1, P(0) = 0, Q(0) = 0, R(1) = 0, S(1) = 0
2: while not converged do
3: Compute ∇R�(R

(m),S(m)) and ∇S�(R
(m),S(m)) using Equation (3.12)

4: Compute U(m) = R(m) − 1
η
∇R�(R

(m),S(m))

5: Compute V(m) = S(m) − 1
η
∇S�(R

(m),S(m))

6: Compute P(m) and Q(m) using Equation (3.22)
7: αm = 2

m+3

8: R(m+1) = P(m) + αm(
1−αm−1

αm−1
)(P(m) −P(m−1))

9: S(m+1) = Q(m) + αm(
1−αm−1

αm−1
)(Q(m) −Q(m−1))

10: m = m+ 1
11: end while

3.3.5 Outlier Rejection

Although a majority of particles will share the same dictionary basis, some outlier

tasks may exist. The proposed MTMVT in (3.3) is capable of capturing the

outliers by introducing the coefficient matrix Q. In particular, if the sum of the

�1 norm of the coefficients for the corresponding ith particle is larger than an

adaptive threshold γ, as
K∑
k=1

| Q(k)
i |> γ , (3.23)

where Q
(k)
i is the ith column of Q(k), then it will be identified as an outlier and its

observation likelihood will be set to zero. Therefore, the outliers will be ignored

in the particle resampling process and the samples will be more efficiently used

to focus on locating the target position. By denoting the number of detected

outliers as no, the threshold γ is updated as follows

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
γnew = γoldκ, no > No

γnew = γold/κ, no = 0

γnew = γold, 0 < no ≤ No ,

(3.24)
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Figure 3.4: Examples of detected outliers. The green bounding boxes denote the
outliers and the red bounding box denotes the tracked target. The outliers are
detected out of 400 sampled particles. There are two outliers in the left frame
and six outliers in the right frame.

where κ is a scaling factor, and No is a predefined threshold for the number of

outliers. We select γ = 1, κ = 1.2 and No = 20 based on experiments. Fig. 3.4

illustrates examples with detected outliers.

3.3.6 Tracking using Robust Multi-task Multi-view Sparse

Representation

In reference to the tracking result, the observation likelihood of the tracking

candidate i is defined as

pi =
1

Γ
exp{−α

K∑
k=1

‖ D(k)A
(k)
i −X

(k)
i ‖2} , (3.25)

where A
(k)
i ∈ R

N is the coefficients of the ith candidate corresponding to the

target templates of the kth view. The tracking result is the particle that has

the maximum observation likelihood. It should be noted that both MTMVTLS

and MTMVTLAD employ (3.25) to estimate the observation likelihood although

different criterion are used to learn the sparse representation.

3.3.7 Template update

In the course of tracking, object appearance remains the same only episodically,

but eventually the template is no longer an accurate model of the object appear-
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Algorithm 2 Tracking via Robust Multi-Task Multi-View Sparse Representation

Input: Particle set Yt−1 = {yi
t−1}ni=1, current complete dictionary Mt−1 =

{M(1)
t−1, · · · ,M(K)

t−1} for K views
Output: Estimated target y∗

t , particle set Yt = {yi
t}ni=1, updated complete dic-

tionary Mt = {M(1)
t , · · · ,M(K)

t } for K views
1: /*Yt ← Yt−1 */
2: for i = 1 to n do
3: Draw particle yi

t from yi
t−1 using the state transition distribution

4: end for
5: for k = 1 to K do
6: Extract the features X(k) according to Yt

7: end for
8: Estimate the robust joint sparse representation W,P,Q using (3.3)
9: Detect outliers using (3.23) and set pi = 0 for all outliers

10: For the remaining particles, compute pi using (3.25))
11: Find the best candidate y∗

t using argmax
i

pi

12: Mt ← Update templates
13: /*Resampling*/
14: Yt ← Resample {yi

t}ni=1 with respect to {pi}ni=1

ance. To handle appearance variations, the target dictionary D is progressively

updated using an approach similar to [133, 195]. In particular, each target tem-

plate in D is assigned a weight which represents its importance. At each frame,

the norm of the learned coefficients A
(k)
i s for the target particle is used to update

the recorded weight of each template in D. Once the angle between the tracked

target and the most representative template (the template with the largest co-

efficient norm) is larger than a predefined threshold β, the template with the

smallest recorded weight is replaced by the tracked target. We summarize the

proposed tracking algorithm in Algorithm 2.

3.4 Experiments

In this section, we introduce the implementation details of the proposed trackers

and report the experimental results by extensively evaluating the proposed track-
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(A) Shaking (B) Kitesurf
#00031 #00062 #00264 #00024 #00034 #00084

(C) Girl (D) David1

#00093 #00253 #00437 #00002 #00361 #00664

(E) Faceocc2 (F) Jumping

#00164 #00354 #00593
#00078 #00111 #00208

(G) Gym (H) Bolt

#00128 #00391 #00717 #00025 #00159 #00293

(I) Skating1 (J) Singer1
#00166 #00214 #00377 #00131 #00224 #00300

(K) Basketball (L) David2
#00022 #00484 #00624 #00025 #00102 #00192

(M) DH (N) Shop
#00069 #00397 #00481 #00198 #00212 #00377

Figure 3.5: Qualitative results of MTMVTLS and MTMVTLAD compared to
different algorithms. Frame indexes are shown in the top left of each figure.

ing methods on numerous video sequences1 including a comprehensive tracking

1 Some of the sequences are publicly available in the following websites: http://vision.

ucsd.edu/~bbabenko/project_miltrack.shtml;
http://www.cs.toronto.edu/~dross/ivt/; http://cv.snu.ac.kr/research/~vtd/;
http://www4.comp.polyu.edu.hk/~cslzhang/CT/CT.htm [193];
http://www.eng.tau.ac.il/~oron/LOT/LOT.html [144];
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benchmark [181], which is recently published in CVPR2013 1. We also evaluated

MTMVTLAD on the ALOV++ [160], which is another large dataset specifically

constructed for tracking evaluations.

3.4.1 Implementation Details

To evaluate the effectiveness of the MTMVTLS and MTMVTLAD, they were

implemented using four complementary features as four different views. We em-

ployed four popular features: color histograms, intensity, histograms of oriented

gradients (HOG) [41] and local binary patterns (LBP) [142]. HOG is a gradient-

based feature that captures edge distribution of an object. Local binary patterns

(LBP) is powerful for representing object texture. Moreover, to ensure the quality

of extracted features, a simple but effective illumination normalization method

used in [165] is applied before the intensity feature extraction. The unit-norm

normalization is applied to the extracted feature vector of each particle view

respectively.

For all reported experiments, we set λ1 = λ2 = 0.5 for MTMVTLS, λ1 = 1.25,

λ2 = 1 and θ = 0.1 for MTMVTLAD, respectively. For both MTMVTLS and

MTMVTLAD, we set the number of particles n = 400 (the same for L1T and

MTT), the number of template samples N = 10. The template of intensity is set

to one third of the size of the initial target (half size for those whose shorter side is

less than 20). The color histogram, HOG, LBP are extracted in a larger template

that doubles the size of the intensity template. The threshold for template update

β is set to 60.

Currently, the proposed tracker MTMVTLAD is implemented using Mat-

lab without special code optimization. The computational time of the proposed

tracker mainly consists of two parts: feature extraction and the optimization

solved by Algorithm 1. The feature extraction can be significantly accelerated

using parallel programming based on GPU. However, we did not explore GPU

programming, leaving this step for the future work. In Algorithm 1, the compu-

tational complexity of each iteration is dominated by the gradient computation

http://lrs.icg.tugraz.at/research/houghtrack/ [59]
126th IEEE Conference on Computer Vision and Pattern Recognition, 2013
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in Step 3 of complexity O(nKdh). Therefore, the runtime of tracker depends on

the dimensionality of features, the number of particles, and the number of views.

Practically, in the experiment on EXTsequences reported in Tab. 3.4, it runs at

1.8s per frame on average on this multi-core system: 2.9GHz Intel Xeon E5-2690,

32GB RAM.

3.4.2 Evaluation on Publicly Available Sequences

In this section, we validate the effectiveness of the proposed trackers by exten-

sively performing the experiments on 21 publicly available sequences. All origi-

nal sized images are used in contrast with resizing to the same size implemented

in [77]. The titles of used sequences are listed in Table 3.1. Firstly, we qualita-

tively compare MTMVTLS and MTMVTLAD with five other popular trackers:

Struck [68], L1 Tracker (L1T) [133], Multi-Task Tracking (MTT) [195], track-

ing with Multiple Instance Learning (MIL) [9], Incremental Learning for Visual

Tracking (IVT) [150], and Visual Tracking Decomposition (VTD) [98]. It should

be noted that VTD is a multi-view tracker which employs hue, saturation, in-

tensity, and edge templates for the features. We conducted the experiments by

running source codes provided by the original authors. The recommended pa-

rameters are set for initialization.

The Shaking, Kitesurf, Girl, Faceocc2, David1 and Jumping sequences track

human faces under different circumstances and challenges. The experimental

results show that both MTMVTLS and MTMVTLAD are able to handle the scale

changes, pose changes, fast motion, occlusion, appearance variation, illumination

change and angle variation problems encountered in face tracking tasks. For

example, the Shaking sequence captures a person performing on stage. The task is

to track his face under significant illumination changes and appearance variations.

IVT drifts from the target quickly due to the severe appearance variation. Struck

and MTT are prone to drift during the illumination change. In contrast, our

trackers are more robust to the illumination changes as a result of the employment

of rich feature types. In the David1 sequence, a moving face is tracked, which

presents many challenges such as pose and scale changes. Compared to L1T

and MTT, MTMVTLS and MTMVTLAD successfully track the target under
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different challenges due to the robustness of the additional features. From the

experiments, we find that IVT is vulnerable to the appearance variations, while

VTD is prone to drift in occlusion scenarios. Some representative frames can be

found in Fig. 3.5(A - F).

In Fig. 3.5(G - N), we show some example frames for a group of eight se-

quences, where the tasks are to track the human bodies in different settings.

In particular, the DH, Gym, Bolt, Skating1 and Basketball sequences track fast

moving human bodies in sport scenarios. In the DH sequence, Struck, L1T ,

MTT and IVT lose the target because of the distracting background and fast

motion. VTD is prone to drift and only track part of the target. In the Gym,

Bolt, Skating1 and Basketball sequences, the poses of targets changes rapidly

and the appearance deforms frequently, which make them more challenging for

existing trackers. Both L1T and IVT fail on all the sequences. Struck fails on

the Skating1 sequences due to the severe pose and illumination changes. MTT

loses the targets soon on the Bolt and Gym sequences due to the deformation of

the targets. VTD succeeds in the Skating1 and Basketball sequences because of

the benefit of multiple types of features but drifts apart from the target in the

Bolt sequence. Besides, VTD fails in the David2 and Shop sequences with the

presence of occlusion. By contrast, MTMVTLS and MTMVTLAD successfully

track all these targets in our experiments, which indicates the proposed tracker

is not as sensitive to shape deformation as previous single view trackers, due to

the effective use of the complementary features and the capability of detecting

outliers. Moreover, MTMVTLAD appears to be more robust than MTMVTLS in

the Singer1 and Basketball sequences, where MTMVTLS tends to include some

background into the bounding box.

In the last group of seven sequences, the tasks are varying from tracking

animal in wild or car in road, to tracking moving dolls or object indoor. Some

representative frames of these sequences are shown in Fig. 3.6(A - G). The Animal

sequence shown in Fig. 3.6(A) tracks the head of a fast running deer. The main

challenges are the fast motion and background clutter. In the Animal sequence,

MTT, VTD, MTMVTLS and MTMVTLAD succeed in tracking the target over

the whole sequence, while MIL and Struck are only able to track a part of the

target though does not lose it. IVT gradually drifts from the target after the
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Figure 3.6: Qualitative results of MTMVTLS and MTMVTLAD compared to
different algorithms. Frame indexes are shown in the top left of each figure.

third frame and totally loses the target in the sixth frame. L1T fails in the

presence of fast motion and motion blur. The multi-task manner appears to

make MTT, MTMVTLS and MTMVTLAD more robust than L1T. In the Tiger1,
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Table 3.1: Average overlap & success rates (percentages)

Sequence Struck L1T MTT IVT VTD MIL MTMVTLS MTMVTLAD

Shaking 0.31 (0.15) 0.58 (0.59) 0.30 (0.12) 0.02 (0.01) 0.72 (0.96) 0.57 (0.58) 0.75 (0.99) 0.76 (0.99)
Kitesurf 0.17 (0.23) 0.49 (0.61) 0.31 (0.32) 0.20 (0.26) 0.03 (0.05) 0.74 (0.89) 0.70 (0.95) 0.71 (0.95)
Girl 0.73 (0.96) 0.60 (0.76) 0.71 (0.98) 0.34 (0.28) 0.34 (0.30) 0.37 (0.24) 0.74 (0.97) 0.70 (0.95)
David1 0.64 (0.83) 0.36 (0.36) 0.51 (0.53) 0.57 (0.55) 0.27 (0.22) 0.29 (0.05) 0.72 (0.97) 0.72 (0.97)
Faceocc2 0.79 (1.00) 0.68 (0.74) 0.80 (1.00) 0.68 (0.76) 0.60 (0.65) 0.72 (0.99) 0.77 (0.98) 0.77 (0.98)
Jumping 0.64 (0.83) 0.10 (0.07) 0.23 (0.15) 0.36 (0.47) 0.10 (0.10) 0.52 (0.45) 0.70 (0.95) 0.71 (0.93)
Gym 0.62 (0.75) 0.03 (0.03) 0.20 (0.16) 0.20 (0.19) 0.66 (0.90) 0.43 (0.43) 0.58 (0.78) 0.62 (0.85)
Bolt 0.49 (0.46) 0.01 (0.01) 0.01 (0.01) 0.01 (0.01) 0.14 (0.09) 0.62 (0.82) 0.67 (0.84) 0.62 (0.86)
Skating1 0.46 (0.57) 0.29 (0.33) 0.17 (0.15) 0.06 (0.06) 0.67 (0.92) 0.19 (0.19) 0.67 (0.89) 0.64 (0.91)
Singer1 0.31 (0.22) 0.65 (0.92) 0.77 (1.00) 0.44 (0.37) 0.79 (1.00) 0.31 (0.21) 0.55 (0.50) 0.68 (0.94)
Basketball 0.38 (0.45) 0.12 (0.02) 0.17 (0.20) 0.16 (0.08) 0.72 (0.94) 0.26 (0.24) 0.62 (0.78) 0.68 (0.92)
David2 0.68 (0.91) 0.39 (0.52) 0.42 (0.56) 0.26 (0.35) 0.37 (0.51) 0.37 (0.46) 0.69 (0.94) 0.67 (0.92)
DH 0.45 (0.54) 0.14 (0.09) 0.47 (0.62) 0.07 (0.08) 0.53 (0.49) 0.53 (0.46) 0.59 (0.83) 0.56 (0.67)
Shop 0.45 (0.36) 0.76 (0.99) 0.79 (0.99) 0.57 (0.41) 0.32 (0.36) 0.25 (0.34) 0.76 (1.00) 0.76 (0.99)
Animal 0.56 (0.73) 0.05 (0.06) 0.60 (0.80) 0.03 (0.04) 0.70 (0.97) 0.37 (0.27) 0.58 (0.87) 0.61 (0.89)
Bird2 0.59 (0.55) 0.53 (0.57) 0.09 (0.09) 0.39 (0.48) 0.10 (0.13) 0.35 (0.19) 0.67 (0.91) 0.71 (0.95)
Tiger1 0.38 (0.47) 0.18 (0.15) 0.32 (0.33) 0.11 (0.13) 0.13 (0.12) 0.59 (0.70) 0.71 (0.94) 0.71 (0.93)
Lemming 0.52 (0.62) 0.11 (0.15) 0.27 (0.35) 0.26 (0.36) 0.45 (0.56) 0.35 (0.37) 0.62 (0.81) 0.67 (0.89)
Sylv 0.75 (0.99) 0.66 (0.91) 0.76 (1.00) 0.55 (0.76) 0.66 (0.78) 0.76 (0.96) 0.72 (0.94) 0.75 (0.96)
Cliffbar 0.34 (0.41) 0.42 (0.48) 0.59 (0.62) 0.34 (0.44) 0.48 (0.67) 0.53 (0.52) 0.70 (0.88) 0.63 (0.80)
Car4 0.49 (0.38) 0.54 (0.46) 0.74 (1.00) 0.85 (1.00) 0.53 (0.56) 0.28 (0.27) 0.86 (1.00) 0.86 (1.00)

Average 0.51 (0.59) 0.37 (0.42) 0.44 (0.52) 0.31 (0.34) 0.44 (0.54) 0.45 (0.46) 0.68 (0.89) 0.69 (0.92)

The quantitative comparison on the 21 sequences. The figures outside the brackets and the figures inside the brackets are
the average overlap and the success rates, respectively. The RED number indicates the best performance, while the GREEN
indicates the second best. The ranking is primarily based on the success rates. If the success rates scores are equal, then we
compare the average overlap.

Lemming and Sylv sequences, the tasks are to track moving dolls in indoor scenes.

Almost all the trackers compared can track the doll in the earlier part of the Sylv

sequence. However, IVT loses the target when it undergoes pose changes. The

Tiger1 and Lemming sequences are much harder due to the significant appearance

changes, occlusion, in-plane rotations and distractive background, so all trackers

continuously lock in the background except MTMVTLS and MTMVTLAD. Our

trackers faithfully tracks the dolls, and obtain the best performances. Some

example shots of these three sequences are shown in Fig. 3.6(C - E). In the Car4

sequence, MTT, IVT, MTMVTLS and MTMVTLAD perfectly track the moving

car despite the dramatic illumination and scale changes, which are shown in

Fig. 3.6(G). By contrast, VTD and MIL lose the target and L1T tends to include

much of the background area into the bounding box when the car is moving under

the bridge, which leads to significant illumination changes.

To quantitatively evaluate the performance of each tracker, we compute the

bounding box overlap So of rt and rg in each frame, where rt is the bounding box

outputted by a tracker and rg is the ground truth bounding box. The bounding

box overlap is defined as So =
|rt∩rg |
|rt∪rg | , where ∩ and ∪ denote the intersection and
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union of two regions, respectively. For more comprehensive comparison, we also

compute the success rate Ro by counting the percentage of frames whose overlap

So is bigger than a threshold to = 0.5. The average overlap as well as the success

rate Ro of the eight comparative trackers on the 21 sequences are summarized in

Tab. 3.1. It can be clearly seen that the proposed MTMVTLS and MTMVTLAD

achieve the best average performances over all tested sequences compared to the

other five popular trackers. Moreover, MTMVTLAD appears to be more robust

than MTMVTLS and achieves a slightly better performance in this dataset.

3.4.3 Evaluation on Noisy Sequences

In the previous section, we compare the proposed trackers with five other track-

ers on 21 challenging sequences. Most of these sequences are captured under

restricted environment without the contamination of noise. However, in the real-

world setting, the video images may be contaminated by various of noise, which

makes the tracking task even harder. In this section, we tested the proposed

trackers on the sequences contaminated by different types of synthetic noise and

real-world noise, e.g., snow and rain. The composition of the tested sequences

and the qualitative comparison are detailed below.

3.4.3.1 Evaluation on Noisy Video Sequences

In reality, the targets and the scene can be contaminated by many kinds of noise.

To evaluate robustness to noise, we contaminated the above 21 sequences with

different types of synthetic noise including Gaussian, Laplace and salt & pepper

noise to simulate the noise in real world and evaluate our proposed tracker on

them. By synthesizing noisy images, we can choose different additive noise and

control the noise level at the same time so we can better understand robustness

of our method to noise. Similar approach that adds synthetic noise to the video

sequences to test robustness of the tracking method has been adopted in [172].

Each type of noise is generated by four sets of different parameters indicating

four light-to-heavy levels, and 12 additional groups of sequences are created,

i.e., 252 (21 × 12) sequences in total. The parameters to generate the synthetic

noise are summarized in Tab. 3.2. Some examples of the contaminated sequences
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(A) Singer1 (Gaussian 4)

#00097 #00132 #00187

(B) Shaking (Laplace 4)

#00044 #00063 #00092

(C) Animal (salt & pepper 4)

#00012 #00023 #00044

L1T MTT IVT VTD MIL MTMVTLS MTMVTLAD

Figure 3.7: Some examples of the contaminated sequences.

as well as the qualitative results are illustrated in Fig. 3.7. To quantitatively

compare the tracking performance on the 12 datasets, we summarized the average

success rates in Tab. 3.3. From Tab. 3.3, we can see all trackers to some extent

degraded in terms of performance on these noisy datasets. In particular, L1T

and MTT appear to be more sensitive to the noise due to the use of single type

of feature and the heuristic strategy used for template update. Interestingly, IVT

may have sightly better performance in some of the contaminated video datasets

compared to the performance on the original dataset. This phenomenon, in which

addition of some noise to the input data during training may sometimes improve

the generalization and therefore boost the performance, has been noted in [22].

VTD, MTMVTLS and MTMVTLAD achieve better performances on average

compared to L1T, MTT and IVT because of the adoption of multiple types of

features. MIL is comparable to VTD in terms of average performance since MIL

appears to be insensitive to the noise levels. This suggests that the Haar feature

associated with Multiple Instance Learning is just robust to our synthetic noise.

On average, MTMVTLAD achieves better performance than MTMVTLS and
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obtain the best average performance over all comparative trackers and 12 tested

datasets.

Table 3.2: Parameters of synthetic dataset
Dataset Mean Variance Noise density

Gaussian 1 0.02 0.01 –
Gaussian 2 0.02 0.05 –
Gaussian 3 0.02 0.1 –
Gaussian 4 0.02 0.5 –
Laplace 1 0.02 0.01 –
Laplace 2 0.02 0.05 –
Laplace 3 0.02 0.1 –
Laplace 4 0.02 0.5 –
salt & pepper 1 – – 0.01
salt & pepper 2 – – 0.05
salt & pepper 3 – – 0.1
salt & pepper 4 – – 0.5

3.4.3.2 Evaluation on EXTsequences

To further evaluate the robustness of the proposed tracker to noise in real world,

we collect nine more video sequences which are taken in extreme weather. We

call this set of sequences as EXTsequences. The first group of six sequences deals

with tracking moving vehicles in bad weather (e.g. storm, snow) and associated

challenges, e.g. occlusion by the windshield wiper, illumination changes and scale

changes. Some example frames as well as the tracking results can be found in

Fig. 3.8(A - F). The second group of three sequences deals with tracking human

faces undergoing appearance variation due to in-plane rotation. For some example

Table 3.3: Average success rates in the contaminated datasets.

Sequence L1T MTT IVT VTD MIL MTMVTLS MTMVTLAD

Gaussian1 0.36 0.50 0.36 0.53 0.41 0.73 0.83
Gaussian2 0.42 0.35 0.38 0.49 0.37 0.69 0.70
Gaussian3 0.34 0.29 0.37 0.47 0.42 0.65 0.66
Gaussian4 0.15 0.03 0.29 0.29 0.41 0.42 0.45
Laplace1 0.45 0.45 0.34 0.54 0.40 0.83 0.80
Laplace2 0.36 0.37 0.35 0.53 0.42 0.73 0.73
Laplace3 0.34 0.31 0.37 0.49 0.41 0.59 0.63
Laplace4 0.29 0.11 0.29 0.39 0.43 0.51 0.49
Sault & Peppr1 0.38 0.58 0.42 0.54 0.44 0.87 0.88
Sault & Peppr2 0.36 0.43 0.39 0.45 0.44 0.82 0.82
Sault & Peppr3 0.33 0.36 0.39 0.51 0.42 0.68 0.78
Sault & Peppr4 0.21 0.04 0.25 0.26 0.43 0.38 0.37

Average 0.33 0.32 0.35 0.46 0.42 0.66 0.68

The RED number indicates the best performance, while the Green indicates the second best.
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frames, see Fig. 3.8(G - H). In these sequences, the visibility of faces is severely

affected by snowstorm and spray. However, MTMVTLS and MTMVTLAD are

able to track the targets faithfully. To quantitatively evaluate the performance,

we again summarize the average overlap and the success rates in Tab. 3.4.

The quantitative results demonstrate that MTMVTLAD is robust to noise and it

obtains the best average performance compared to other state-of-the-art trackers.

Table 3.4: Average overlap & success rates (percentages)

Sequence Frames L1T MTT IVT VTD MIL MTMVTLS MTMVTLAD

Storm 455 0.44 (0.33) 0.63 (0.54) 0.45 (0.48) 0.83 (0.98) 0.56 (0.46) 0.86 (1.00) 0.85 (1.00)
Winter1 998 0.81 (1.00) 0.84 (1.00) 0.81 (1.00) 0.67 (0.76) 0.60 (0.62) 0.81 (1.00) 0.83 (1.00)
Winter2 533 0.86 (1.00) 0.85 (1.00) 0.73 (1.00) 0.68 (1.00) 0.63 (0.88) 0.88 (1.00) 0.88 (1.00)
Snow1 290 0.05 (0.06) 0.35 (0.46) 0.20 (0.23) 0.24 (0.08) 0.47 (0.48) 0.72 (0.98) 0.80 (0.96)
Snow2 4435 0.86 (1.00) 0.72 (1.00) 0.74 (0.85) 0.86 (1.00) 0.24 (0.29) 0.88 (1.00) 0.89 (1.00)
DarkCar 147 0.76 (1.00) 0.53 (0.39) 0.55 (0.50) 0.62 (0.56) 0.45 (0.32) 0.62 (0.89) 0.61 (0.83)
Antarctica 580 0.50 (0.58) 0.24 (0.25) 0.01 (0.01) 0.61 (0.75) 0.17 (0.10) 0.60 (0.92) 0.62 (0.93)
Skiing1 486 0.74 (0.99) 0.77 (0.98) 0.46 (0.67) 0.73 (0.95) 0.31 (0.36) 0.78 (0.99) 0.82 (1.00)
Skiing2 846 0.51 (0.38) 0.72 (0.89) 0.02 (0.02) 0.17 (0.21) 0.04 (0.04) 0.76 (0.89) 0.74 (0.90)

Average - 0.61 (0.70) 0.63 (0.72) 0.44 (0.53) 0.60 (0.70) 0.39 (0.39) 0.77 (0.96) 0.78 (0.96)

The quantitative comparison on EXTsequences. The figures outside the brackets and the figures inside the brackets are the
average overlap and the success rates, respectively. The RED number indicates the best performance, while the GREEN
indicates the second best. The ranking is primarily based on the success rates. If the success rates scores are equal, then we
compare the average overlap.

3.4.4 Evaluation on CVPR2013 OOTB

To evaluate the overall performance of the proposed tracker under different sce-

narios and demonstrate the improvement with respect to previous methods, in

this section, we conduct the experiments on the the CVPR tracking bench-

mark [181] and compare the proposed tracker with numerous state-of-the-art

trackers and its own baseline methods. The CVPR tracking benchmark is a

comprehensive tracking benchmark, which is designed for tracking performance

evaluation. It consists of 50 fully annotated sequences. Each sequence is tagged

with the attributes indicating to the presence of different challenges: Illumina-

tive Variation (IV), Scale Variation (SV), Occlusion (OCC), Deformation (DEF),

Motion Blur (MB), Fast Motion (FM), In-Plane-Rotation (IPR), Out-of-Plane-

Rotation (OPR), Out-of-View (OV), Background Clutters (BC) and Low Res-

olution (LR). To evaluate the strength and weakness of different methods, the

sequences are categorized according to the attributes, and 11 challenge subsets
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(A) Storm (B) Winter1
#00006 #00217 #00320 #00211 #00457 #00998

(C) Winter2 (D) Snow1
#00001 #00231 #00533 #00020 #00118 #00232

(E) Snow2 (F) DarkCar
#00961 #01422 #02825 #00005 #00069 #00147

(G) Antarctica (H) Skiing1&2
#00160 #00249 #00311

#00328 #00483 #00846

L1T MTT IVT VTD MIL MTMVTLS MTMVTLAD

Figure 3.8: Qualitative results of MTMVTLS and MTMVTLAD compared to
different algorithms on EXTsequences. Frame indexes are shown in the top left
of each figure.

are created. In [181], the evaluation is based on two kinds of metrics, i.e., the

precision plot and success plot. To obtain the precision plot, we calculate the

Center Location Error (CLE), which is the distance between the centers of the

tracking result and the manually labeled ground truth for each frame. The preci-

sion plot shows the percentage of frames whose CLE is within a given threshold

and uses a representative precision score for ranking by choosing an appropriate

threshold (r = 20). Another metric is to compute the bounding box overlap So

which has been defined in Section 3.4.2. The number of frames whose overlap So

is larger than the given threshold to is counted. The success plot shows the ratios

of successful frames at the thresholds varied from 0 to 1. In success plot, the

ranking is based on the area under curve (AUC) instead of a specific threshold.

For the comparative trackers, it currently includes 29 popular tracking algorithms

including the Struck, MTT, IVT, VTD, MIL, which have been tested in previous

sections, and the L1APG [13] (a newer version of L1T). For more details about

the benchmark, we refer readers to the original paper [181].
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3.4.4.1 Comparison with trackers on CVPR2013 Tracking Benchmark

We run the one-pass evaluation (OPE) on the benchmark using the proposed

trackers MTMVTLS and MTMVTLAD and compare them with the 29 popular

tracking methods previously evaluated in [181]. We also compare the proposed

trackers with the latest version of LRT [197], which has similar motivation as

our our methods. In [197], the consensus between particles are enforced through

low-rank minimization.

It should be noted that we strictly follow the protocol proposed by the authors

and use the same parameters for all the sequences. For comparison, we use the on-

line available 1 tracking results and the unified tool provided by [181] to compute

the evaluation plots. For the results of [197], we downloaded the code from the

authors’ website 2 In the CVPR tracking benchmark, the proposed MTMVTLAD

and MTMVTLS achieve overall the best and the second best performance using

the precision plot as the metric, which is shown Fig. 3.9. MTMVTLS and MT-

MVTLAD also rank in the top ten from all 32 trackers over all challenge subsets

using either the measurement of precision plots or success plots. According to

the results, MTMVTLS and MTMVTLAD are more robust to background clut-

ter, deformation, in-plane rotation and out-plane rotation challenges compared to

other 30 trackers because the proposed methods can effectively take advantage of

complementary features. Moreover, MTMVTLAD takes the first places in 6 out

of 11 challenge subsets when using the success plot as the metric because LAD

is advantageous to learn more appropriate representations. We show the success

plots of the BC and DEF subsets in Fig. 3.10, but omit other figures due to the

space limits.

3.4.4.2 Comparison with baseline methods

In previous sections, we have demonstrated the superior performance of MTMVT-

LAD compared to MTMVTLS and other state-of-art trackers. However, it is also

important to compare MTMVTLAD with its baseline variants to demonstrate

1http://visual-tracking.net/
2http://nlpr-web.ia.ac.cn/mmc/homepage/tzzhang/Project_Tianzhu/zhang_

IJCV14/RobustVisualTrackingViaConsistentLow-RankSparse.html and ran it on all
sequences using the default parameters.
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Figure 3.9: Precision plots and success plots on the CVPR2013 tracking bench-
mark. The values appearing in the legend of the precision plot are the preci-
sion scores in the threshold of 20, while the ones in Success plots are the AUC
scores. Only the top 10 trackers are presented, while the other trackers can be
found in [181]. The trackers appearing in the legend are as follows: Struck [68],
SCM [198], TLD [86], LRT [197], VTD [98], VTS [99], CXT [45], CSK [74],
ASLA [84].

the component-wise contributions to the performance of the proposed tracker.

Firstly, we validate the improvement brought by the robust multi-task multi-

view representation by testing it in both single view and multi-view settings

and comparing it with their corresponding baseline variants. To this end, we

implement two multi-task single view (K = 1) trackers based on (3.4) and de-

note them respectively as MTSVTLS and MTSVTLS(-), where MTSVTLS(-) is

constructed by removing the functional component Q (no outlier handling). It

should be noted that the formulation of MTSVTLS(-) is the same as MTT [195]

since MTT is a special case of the proposed general form (3.6) discussed in Section

3.3.3. MTSVTLS and MTSVTLS(-) are both using intensity feature only, similar

to MTT [195]. We also implement a multi-task multi-view tracker MTMVTLS(-)

similar to MTMVTLS but removing the functional component Q. To test the

improvement brought by the LAD formulation, we construct the correspond-

ing LAD-based version and denote them by MTSVTLAD, MTSVTLAD(-) and

MTMVTLAD(-) respectively. We ran these variants on the CVPR benchmark
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Figure 3.10: The success plots for BC and DEF subsets of CVPR2013 tracking
benchmark. The value appearing in the title is the number of sequences in the
specific subset. The values appearing in the legend are the AUC scores. Only the
top 10 trackers are presented, while the other trackers can be found in [181]. The
trackers appearing in the legend are as follows: DFT [105] , LSK [119], CPF [147].

2013 and compared MTMVTLAD with them using the success plot. As shown in

Fig. 3.11 (a), the multi-view based trackers significantly outperform the trackers

based on the single view, which demonstrates the advantage of using complemen-

tary information. Also, comparing to the trackers without the outlier handling,

the trackers which explicitly take into account outliers generally achieve better

AUC scores, which suggests that outliers should be specifically considered during

the multi-task representation learning. Last but not least, the LAD based trackers

outperform the corresponding LS based trackers, which validates the robustness

of the learned representation based on LAD criterion.

As discussed previously, directly concatenating multiple features into a long

feature vector is not a good way to handle multiple features. To validate this

point, we concatenate multiple features and implement a baseline tracker based

on the formulation (3.5), where we let K = 1. We call it as MTMVConT-

LAD. Using the concatenated features, we also implement several variants in-

cluding MTMVConTLAD(-), which is the same as MTMVConTLAD but removes

the functional component Q (no outlier handling), and three trackers MVCon-

LADL1, MVConLADL2, MVConLADEN, which use L1, L2, and Elastic Net
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Figure 3.11: The success plots of MTMVTLAD and its baseline variants on the
CVPR2013 tracking benchmark. The values appearing in the legend are the AUC
scores.

regularizers [201], respectively. It should be noted that all these variants can

be easily implemented based on the method presented in Section 3.3.4, along

with the soft thresholding [15] for L1 regularizer. We also ran these variants

on the CVPR benchmark 2013 and compare MTMVTLAD with them using

the success plot, which is shown in Fig. 3.11 (b). It shows MTMVConTLAD

and MTMVConTLAD(-) outperform MVConLADL1, MVConLADL2, MVCon-

LADEN, which validates expected improvements brought by considering all par-

ticles in a multi-task setting. Also, MTMVConTLAD does not perform as good

as the proposed MTMVTLAD, which suggests that the multiple features should

not be concatenated directly.

3.4.5 Evaluation on ALOV++ Dataset

Recently, Smeulders et al. have developed the Amsterdam Library of Ordinary

Videos dataset [160], named ALOV++, which consists of 14 challenge subsets,

315 sequences of which focuses on systematically and experimentally evaluating

trackers’ robustnesses in a large variety of situations including light changes, low

contrast, occlusion, etc. In [160], survival curves based on F -score were proposed
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to evaluate trackers’ robustnesses. To obtain the survival curve of a tracker, a F -

score for each video is computed as F = 2(precision · recall)/(precision + recall),

where precision = ntp/(ntp + nfp), recall = ntp/(ntp + nfn), and ntp, nfp, nfn

denote the number of true positives (overlap So >= 0.5), false positives and false

negatives in a video. A survival curve shows the performance of a trackers on

all videos in the dataset. The videos are sorted according to the F -score. By

sorting the videos, the graph gives a comparative view in cumulative rendition

of the quality of the tracker on the whole dataset. We refer the reader to the

original paper [160] and the author’s website1 for details about the dataset and

the evaluation tools.

To evaluate the proposed MTMVTLAD tracker on ALOV++ dataset, we

downloaded the videos and ground truth data from the websitefootnote 1, and

ran MTMVTLAD on all of the 315 sequences using the ground truth of the

first frame as initialization. We compare our tracker with 19 popular trackers2

evaluated in [160]. We show in Fig. 3.12 the survival curves of the top ten

trackers and the average F -scores over all sequences. As shown in Fig. 3.12, the

average F -score of MTMVTLAD in ALOV++ dataset is 0.67, which is better

than Struck [68] with 0.66 and is also much better than 0.62 of VTS [99], another

multi-view based tracker. In ALOV++ dataset, MTMVTLAD achieves the best

overall performance over 20 compared trackers using the evaluation metric of

average F -score. For better understanding of the overall performance of the

proposed tracker, we also report the respective average F-scores of MTMVTLAD

in 14 ALOV++ challenge subsets in Fig. 3.13.

3.4.6 Discussion

The experimental results demonstrate robust tracking performance of our ap-

proach. However, our tracker can indeed fail in some scenarios, which are shown

in Fig. 3.14. Our tracker can fail when the objects undergo very large pose

transformation caused by rotation or scale changes. For example, Fig. 3.14 (a)

shows two failure cases of MTMVTLAD on Skiing and MotorRolling sequences

1http://imagelab.ing.unimore.it/dsm/
2Please refer to [160] and the references within for the details about the compared trackers.

The evaluation results of these trackers were obtained from the authors of [160].
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Figure 3.12: The survival curves for top ten trackers in ALOV++ dataset. The
average F -scores over all sequences are specified in the legend. The trackers
appearing in the legend are as follows: Struck [68], FBT [141], VTS [99], TLD [86],
L1O [135], NCC [31], MIL [9], L1T [133], IVT [150]

of CVPR2013 benchmark where MTMVTLAD loses the targets when the targets

undergo rotations and/or change their appearance and scale. Another failure case

of MTMVTLAD is on the LongDuration subset of ALOV++ dataset. On this

subset, the trackers run on 10 long sequences where some of targets may move

completely out of the frame and then reappear. MTMVTLAD does not perform

well and obtains a low F -score on this subset as shown in Fig. 3.14 (b). It is

possible that the tracker locks on an irrelevant patch when the target is fully

occluded. We expect our future investigation to address this failure mode of the

proposed tracker.

3.5 Conclusion

In this chapter, we have presented a LAD-based robust multi-task multi-view

sparse learning method for particle filter-based tracking. By appropriately intro-

ducing the l1,2 norm regularization, the method not only exploits the underlying

relationship shared by different views and different particles, but also captures the

frequently emerging outlier tasks which have been previously ignored. The pro-

posed regularized LAD problem is effectively approximated by Nesterov’s smooth-

ing method and efficiently solved by the APG. We implemented our method using
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Figure 3.13: The respective average F-scores of the proposed MTMVTLAD
tracker in 14 ALOV++ challenge subsets.

Figure 3.14: Failure cases of MTMVTLAD. (a) Failure cases on Skiing and Mo-
torRolling sequences of CVPR2013 benchmark. (b) Failure case in the LongDu-
ration subset of ALOV++ dataset. The numbers appear on the top of each bar
is the tracker’s average F -score over 10 sequences of the LongDuration subset.

four types of complementary features, i.e. intensity, color histogram, HOG and

LBP, and extensively tested it on numerous challenging sequences including pub-
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licly available sequences, synthetic noisy sequences, real-world noisy sequences

and two comprehensive tracking datasets. The experimental results demonstrate

that the proposed method is capable of taking advantage of multi-view data and

correctly handling the outlier tasks. Compared to several popular trackers, our

tracker demonstrates superior performance. Moreover, the proposed method can

potentially be extended to handle data obtained from sensors other than cam-

eras.
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Chapter 4

Non-rigid Object Tracking using

Multilevel Quantizations

Most object tracking methods only exploit a single quantization of an image

space: pixels, superpixels, or bounding boxes, each of which has advantages and

disadvantages. It is highly unlikely that a common optimal quantization level,

suitable for tracking all objects in all environments, exists. We therefore propose

a hierarchical appearance representation model for tracking, based on a graphical

model that exploits shared information across multiple quantization levels. The

tracker aims to find the most possible position of the target by jointly classi-

fying the pixels and superpixels and obtaining the best configuration across all

levels. The motion of the bounding box is taken into consideration, while On-

line Random Forests are used to provide pixel- and superpixel-level quantizations

and progressively updated on-the-fly. By appropriately considering the multilevel

quantizations, our tracker exhibits not only excellent performance in non-rigid ob-

ject deformation handling, but also its robustness to occlusions. A quantitative

evaluation is conducted on two benchmark datasets: a non-rigid object tracking

dataset (11 sequences) and the CVPR2013 Online Object Tracking Benchmark

(OOTB). Experimental results show that our tracker overcomes various tracking

challenges and is superior to a number of other popular tracking methods.
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Figure 4.1: Illustration of the structure of the proposed hierarchical appearance
representation model (left) and a practical example (right). In the proposed
framework, a node in the Conditional Random Field (CRF) models each pixel,
superpixel, and bounding box. At the pixel level, each pixel receives a measure-
ment from a Random Forest and connects to the corresponding superpixel at the
middle level. At the superpixel level, each superpixel also obtains a probability
output by another Random Forest and suggests the pixels within the same su-
perpixel to share the same label. At the bounding box level, different candidate
bounding boxes (green) are considered, and the best position (red) with the best
configuration is found. (a) shows the tracking result (in red bounding box) at
Frame #226 in the Basketball sequence. (b) displays the superpixelization of the
image. (c) and (d) are the output of the pixel-level RF and final labeling result,
respectively, while (e) and (f) are the output of the superpixel-level RF and final
labeling result.

4.1 Introduction

Online object tracking is a classic topic in computer vision and is used in many

practical applications, such as video surveillance and autonomous driving. Given

the position of the target in one frame, a tracker should be able to track the

target in subsequent frames and be able to overcome various challenges, such as

appearance variations, occlusions and illumination changes. Building an effective

tracker is therefore extremely difficult, especially without prior knowledge of the

appearance of the object to be tracked. However, a number of trackers have been

proposed and show promising results [115, 181,185].

Many tracking methods operate by making a single quantization choice in an
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image space, i.e., using pixels [50], superpixels [176], or bounding boxes [150], each

of which has its pros and cons. For example, a tracker built on pixel-level quan-

tization may be able to capture and thus better handle non-rigid deformation,

but performs relatively poorly in scenarios where there is excessive background

clutter due to the lack of holistic appearance of the target. In contrast, trackers

that utilize higher-level quantization, such as bounding box-based matching, are

robust to occlusions but tend to fail when the target undergoes non-rigid defor-

mation. Therefore, a single optimal quantization level suitable for all objects in

all environments is unlikely to exist.

Motivated by the above observation, in this chapter, we propose a novel hier-

archical appearance representation formulation of object tracking based on Con-

ditional Random Fields (CRFs), which unifies multiple disparate quantizations

of the image space. Based on the information derived from different quantiza-

tion levels (pixel, superpixel, bounding box), we integrate them into a princi-

pled framework to optimize the decision-making. At the lowest level, an Online

Random Forest (ORF) [153] equipped with color-texture features is employed

to provide a soft label of each pixel, which indicates the probability that the

pixel belongs to the target. At the middle level, superpixels are generated by

considering various cues such as the spatial relationship and feature similarity

between pixels, which suggests a consistent pixel labeling within each superpixel.

Besides, another ORF based on normalized histogram features of superpixels is

also trained on the mid-level quantization. At the highest level, a bounding

box-level regularization term is introduced, which enables to flexibly incorporate

other information of a given bounding box, such as shape and motion, or even the

measurement given by other trackers. The model bridges the hierarchical appear-

ance representations by fusing multilevel quantization information and efficiently

solves the optimization with the use of dynamic graph cuts [93]. However, the

contribution of this chapter is not limited to the application of the novel hierar-

chical appearance representation framework to object tracking. We also address

appearance variations by exploiting color-texture features and powerful, yet effi-

cient, ORFs. These ORFs are strategically updated in the framework to capture

appearance changes due to deformation or illumination over time. The proposed

method is illustrated in Fig. 4.1.
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4.2 Related Work

There has been recent progress in visual object tracking research, with several

ideas that focus on various challenges being proposed; these are extensively dis-

cussed in elsewhere [115, 185]. In addition, standard benchmark datasets and

quantitative evaluation metrics have been developed [59,181] to facilitate research

in this area.

Some existing approaches use the pixel level of the image space to explore low-

level cues for tracking. For instance, Avidan [6] proposed an ensemble tracker to

track the object based on the result of the pixel-level classification. Although the

discriminative setting enables the tracker to distinguish foreground from back-

ground, the pixel-based representation still limits robustness to a cluttered back-

ground and heavy occlusion [176]. More recently, Duffner and Garcia proposed

the PixelTrack [50], which also addresses tracking at the pixel-level. The tracker

works by combining a Hough voting-based detector with a soft segmentation ap-

proach similar to [3]. Although an efficient implementation is achieved, the tracker

appears to be sensitive to the initialization and is prone to fail in grayscale se-

quences due to the dependence on the segmentation performance and the lack of

global information.

Compared to pixel-level representations, mid-level visual cues provide more

information about the local structure of images, while retaining the flexibility

to model non-rigid deformation [2, 38, 97, 176]. In particular, Adam et al. [2]

employed an appearance model and used local patches to handle partial occlusion.

Superpixel tracking [176] aims to explore the mid-level cues and use the superpixel

as the object representation. The normalized color histogram of each superpixel

is extracted, and a confidence map is obtained by the superpixel-level, rather

than pixel-level, classification [6]. In [38], the target is represented by a set of

different regions. The regions are modeled by a Gaussian mixture model in a

joint feature-spatial space, and the motion of the target is modeled by the level

set evolution.

Many trackers are built to exploit high-level visual information using holistic

appearance models [9, 74, 133, 150]. In [150], Ross et al. presented a track-

ing method that incrementally learns a low-dimensional subspace representa-
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tion of the target. The L1 tracker, proposed by Mei et al. [133], and its vari-

ations [78, 113, 135, 195] appear to be robust to the illumination changes and

occlusions but sensitive to non-rigid deformation. Babenko et al. [9] employ

Multiple Instance Learning (MIL) to overcome the label ambiguity problem, in

which the training samples are collected as bag of image patches. Random Forests

(RFs) [30] have become increasingly popular in computer vision due to their at-

tractive properties, and have been used in tracking [88, 153, 154]. Specifically,

Saffari et. al [153] proposed an online version of RFs, which grows extremely

randomized trees online, rather than offline. The Online RFs (ORFs) are then

adopted for tracking by utilizing the features captured at the bounding box level,

and this method has demonstrated better performance over the online boost-

ing [62].

Multilevel data fusing has been exploited for image segmentation and label-

ing using Conditional Random Fields (CRFs) or Markov Random Fields (MRFs)

[72, 81, 102, 173, 178]. In [102], a single optimization framework is presented in

which a hierarchical random field model allows integration of features computed

at different levels of the quantization hierarchy. In [72], labeling information from

local image statistics, regional label features, and global label features are com-

bined in order to label images with a predefined set of class labels. In [81], a hier-

archical two-stage CRF model is used to combine parametric and nonparametric

image labeling methods. In [103, 178], integration of object detection and pixel-

wise scene labeling boosts the performance of both tasks, since they are mutually

beneficial. Also, previous works have addressed tracking problems by combin-

ing multilevel information [92, 172, 198]. For example, in [198], a collaborative

model is proposed to combine a Sparsity-based Discriminative Classifier (SDC)

with Sparsity based Generative Model (SGM), which collaboratively considers

holistic object templates and local image patches for target representations. Mo-

tivated by these advances, here we propose the Multilevel Quantization Tracker

(MQT), which explores the quantization hierarchy from coarse to fine and uni-

fies the information derived from multiple quantization levels in a coherent CRF

framework. In this way, each quantization level benefits from other levels and, as

a consequence, the overall performance of each individual level is enhanced.

83



4.3 Tracking with Multilevel Quantizations

The proposed tracker combines multilevel quantizations as a single graphical

model to produce an efficient and robust solution to online object tracking. We

first introduce the general multilevel quantization model and then describe other

important components of the tracker, including feature extraction, online color-

texture forests, ORF training, and occlusion handling.

4.3.1 Multilevel Quantizations Model

The whole model is built on multiple quantizations from three hierarchical ap-

pearance representation levels, namely pixels, superpixels and bounding boxes.

We first extract information at each level before fusing them using a graphical

model so as to perform inference.

Pixel is the finest quantization level in an image, and is the most obvious

choice for quantization. Let each pixel i ∈ P (P denotes the set of pixels) be

represented as a d-dimensional feature vector fi ∈ R
d that consists of some local

information, and associated with a unique binary label xi ∈ {0 (background), 1

(foreground/object)}. The pixel-level unary energy function is defined as:

φp
i (xi) = − log p(xi;H

p), (4.1)

where p(xi;H
p) denotes the probability that pixel i is labeled as class xi, output

by an ORF with parameters Hp, which are updated online (Section 4.3.3). An

example of p(xi;H
p) output by an ORF is shown in Fig. 4.1(c).

Superpixels provide very useful mid-level support for image understanding

tasks (e.g., [1, 111]). In order to exploit mid-level information, we employ the

SLIC (Simple Linear Iterative Clustering) algorithm [1] to cluster the pixels and

generate superpixels as shown in Fig. 4.1(b). For each superpixel k ∈ S (S

denotes the set of superpixels), we also assign a binary label yk ∈ {0, 1}, which is

similar to xi at pixel level. Again, an ORF is trained to output the probability

that the superpixel belongs to the foreground or background, using the features

extracted from each superpixel (Fig. 4.1(e)). Similarly, superpixel-level energy
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function is defined as:

φs
k(yk) = − log p(yk;H

s), (4.2)

where the symbols are analogous to those in (4.1).

At the highest level, like many existing online trackers [68, 150], we use a

bounding box to delimit the object of interest. Let B(z) denote the bounding

box with pose parameters z and energy function ϕ(B(z)) encode the occurrence

likelihood of the target in bounding box B(z). In contrast to other online trackers

(e.g., [74,133,150]) which optimize merely ϕ(B(z)) to get the tracking solution, we

unify ϕ(B(z)) with information from the other quantization levels, as explained

above. The choice of ϕ(B(z)) is modular and it can vary from simple matching

techniques [32] to sophisticated classification models [68].

In our experiments, we use the Median Flow Tracker (MFT) [87] for the

bounding box level quantization. MFT uses the feature matching to estimate

the motion of target. Moreover, it measures the discrepancies of the forward

and backward tracking in consecutive frames and reports failure when the target

is lost [88]. We assign 0 to the tracking result zM if failure is detected. The

bounding box energy function ϕ(B(z)) is defined as:

ϕ(B(z)) =

{
0 , zM = 0

D2(B(z),B(zM)), otherwise
(4.3)

where D(B(z),B(zM)) is the distance between the centers of two bounding boxes

B(z) and B(zM) (the results of MFT) in the image.

Given the above three levels, we adopt a Conditional Random Field (CRF)

model to fuse the information from different levels. Each unit (pixel, superpixel,

bounding box) at different levels is represented by a node in the graph, and use

corresponding unary potential functions to encode those terms in (4.1), (4.2),

and (4.3). Then we capture the interactions between these nodes via connecting

them using CRF’s edges with appropriate potential functions.

Firstly, we associate an edge between a pair of neighboring pixel nodes (4-

neighborhood system is considered in the experiment) and the following potential
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function to encode the interaction between the labeling of the pixels:

ψi,j(xi, xj) =

{
exp(−‖fi−fj‖2

σ2 ), if xi �= xj

0 , otherwise
(4.4)

where ‖fi − fj‖ is the distance between xi and xj in the feature space, and σ is a

parameter controlling the shape of the monotonically decreasing function, which

is similar to [27]. We use Epp to denote all such edges between neighboring pixels.

One important fact regarding the pixel- and superpixel-level quantizations is

that the pixels in the same superpixel tend to share the same superpixel label.

Hence, for each pixel i in superpixel k, we associate an edge using the Potts model

as its potential function:

ξi,k(xi, yk) =

{
1, if xi �= yk

0, otherwise
(4.5)

which penalizes the inconsistency in labeling between superpixels and pixels. We

use Esp to denote all such edges.

We also connect all pixel nodes with the bounding box node. The pairwise

potential function wi(z, xi) is used to encourage consistency between pixel labeling

and the pose of the bounding box:

wi(z, xi) =

{
d(z, i), if (xi = 1, i ∈ P

(Out)
B(z) ) or (xi = 0, i ∈ P

(In)
B(z))

0 , otherwise
(4.6)

where d(z, i) represents the minimum normalized distance (which considers the

size of bounding box and is detailed in Section 4.4.1) between the pixel i to the

boundary of the bounding box B(z); P
(In)
B(z) and P

(Out)
B(z) denote the set of pixels

inside and outside the bounding boxes, respectively. The choice of function is

based on the observation that the pixels inside the bounding box tend to belong

to the object, while the pixels outside the bounding box tend to belong to the

background. Moreover, the closer the pixel is to the boundary, the more ambigu-

ous the pixel label is. The pixel is penalized for having different label from what

is expected, using a cost that is proportional to the distance between the pixel

and the boundary of the bounding box, which is similar to the idea in [172].
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Finally, given an image I, the joint probability of the realization (z,x,y) =

(z,x = (xi)i∈P,y = (yk)k∈S) of all random variables in the CRF model is formu-

lated as a Gibbs distribution P (z,x,y|I) = e−E(z,x,y). The corresponding Gibbs

energy E(z,x,y) is defined as the sum of the above unary potentials and pairwise

potentials:

E(z,x,y) =μϕ(B(z)) +
∑
i∈P

φp
i (xi) + α

∑
k∈S

φs
k(yk) + λ

∑
i∈P

ωi(xi, z)

+ β
∑

{i,k}∈Esp

ξi,k(xi, yk) + γ
∑

{i,j}∈Epp

ψi,j(xi, xj),
(4.7)

where μ, α, λ, β, γ are the weight coefficients which balance the importance of

each potential term.

In the tracking problem, we aim to determine the optimal pose parameters z

for the bounding box. Since the minimization of E(z,x,y) with respect to x and

y can be efficiently solved using the well-known graph cuts [28] for each possible

z, we define an auxiliary function Ê(z) and search for the optimal z∗ for Ê(z)

using any off-the-shelf optimization algorithm:

z∗ = argmin
z

{Ê(z) = min
x∈{0,1}|P|,y∈{0,1}|S|

E(z,x,y)}. (4.8)

For example, one can use the local dense sampling search as done in [9, 68]. In

this chapter, we simply adopt the Nelder-Mead Simplex Method [104] to directly

search for the solution. Note that during the search of z in the problem (4.8), the

update of z only causes small change1 in ωi, which motivates the use of dynamic

MRF algorithms [92] (e.g., dynamic graph cuts [93]) to efficiently obtain the value

of Ê(z) and significantly accelerate the optimization.

4.3.2 Online Color-Texture Forests

The selection of features and an appropriate online learning process has been

shown to be very important for tracker performance [6, 77, 150, 153]. In this

section, we elaborate on online color-texture forests, which are used to obtain

1μϕ(B(z)) would change but would not affect the optimum of E(z,x,y) with respect to x
and y.
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pixel- and superpixel-level potentials in (4.1) and (4.2).

The color feature is one of the most widely used visual features in tracking.

The most important advantages of color feature are power of representing visual

content of images, simplicity in extracting color information of images and high

efficiency, independent of image size and orientation. However, only using color

feature is difficult to tackle many real-world tracking scenarios, such as distrac-

tive background clutter and drastic illumination change. We combine texture

with color as a complementary feature for tracking to better represent object

appearance. For each pixel, we extract RGB (3-dim), CIELAB (3-dim) and tex-

ture features (48-dim) as the pixel-level representation with 54 dimensions. The

texture feature is generated by the Leung-Malik (LM) Filter Bank [110], which

consists of the first and second derivatives of Gaussians at 6 orientations and 3

scales, 8 Laplacian of Gaussian (LOG) filters, and 4 Gaussian filters. With re-

spect to the superpixel level, we utilize normalized histogram-based features to

capture the photometric properties of each superpixel, similar to [176].We extract

a 64-bin normalized histogram in the HSV color space and a 10-bin normalized

histogram based on uniform rotation-invariant local binary patterns (LBPs) [142],

to form a 74 dimensional color-texture feature for each superpixel.

Random forests consist of a set of randomized decision trees. In each decision

tree, an internal node corresponds to a random test on an input feature, which

determines to which child node the feature should go. Therefore, a feature vector

is presented to the root of a tree and it follows a specific path to a leaf node,

which stores a histogram (occurrence frequency of each class) obtained during the

training phase. Given a test sample f, the probability is estimated by averaging

the probabilities of all the trees:

p(class = c|f) = 1

N

N∑
n=1

pn(class = c|f),

where N denotes the number of the trees, and pn(class = c|f) is the probability

that the feature belongs to class c output by the tree n.

RFs have demonstrated great promise in various computer vision tasks includ-

ing object recognition [109] and image classification [26]. We adopt the Online
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Algorithm 3 Tracking with Multilevel Quantizations

Input: The target bounding box B(z∗1) in the first frame; T frames to track.
Output: Estimated target position B(z∗t ), where t = 2, 3..., T is the frame index.

1: /*Initialization*/
2: Apply Grabcut [151] to find the positive and negative samples.
3: Train pixel- and superpixel-level RFs using the collected samples.
4: /*Start to track*/
5: for t = 2 to T do
6: /*Pixel level*/
7: Extract features for each pixel i and obtain the pixel-level measurement

p(xi;H
p).

8: /*Superpixel level*/
9: Apply SLIC [1] to generate superpixels.

10: Extract features for each superpixel k and obtain the superpixel-level mea-
surement p(yk;H

s).
11: /*Bounding box level and combine multilevel quantizations*/
12: Estimate the motion of target using MFT [87] and obtain B(zMt ).
13: Find the target B(z∗t ) by solving (4.8) using [104] with dynamic graph

cuts [93].
14: if not occluded then
15: Update Hp of the pixel-level RF using X+

p , X
−
p .

16: Update Hs of the superpixel-level RF using X+
sp, X

−
sp.

17: end if
18: end for

Random Forests [153] to incorporate the high-dimensional color-texture feature

for our online tracking. The resulting online color-texture forest turns out to

provide very discriminative classification results for our potential functions.

4.3.3 ORF Training and Occlusion Handling

To train the two RFs for pixels and superpixels, a key issue is how to get

positive and negative samples for training. In the first frame, given the target

bounding box, Grabcut [151] is adopted to automatically determine the pixels

corresponding to the object which are then used as positive examples for training

the RF for pixels. This generally improves the accuracy compared to treating all

pixel inside the bounding box as foreground, since the object may not occupy the
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whole bounding box due to its shape. To deal with cases that object is not well

segmented by Grabcut, we check the percentage of pixels with foreground labels

in the bounding box. If it is greater than 70%, the result of Grabcut is accepted,

otherwise it is rejected and all the pixels inside the bounding box are used as

the positive samples. On the other hand, all the pixels outside the bounding box

are used as negative samples. For superpixels, they are labeled using a voting

scheme, i.e., the label of the superpixel is decided by the majority of the pixels

inside it.

During the tracking, the ORFs are progressively updated to handle the ap-

pearance changes. Since pixels and superpixels are labeled in the whole formula-

tion by jointly exploiting the information from multiple levels during the tracking,

we only treat the pixels and superpixels as candidate positive samples if they are

inside the target bounding box B(z∗) and labeled as positive by our tracker us-

ing (4.8). The pixels and superpixels outside the bounding box are treated as

candidate negative samples. Moreover, only the candidate samples that are not

classified with a high confidence or incorrectly classified by their respective RFs

are assigned to RFs for updates. A similar strategy is employed in [88]. More

specifically, the final positive sample set X+
p and negative sample set X−

p for the

pixel-level RF update are respectively determined as:

X+
p = {i|xi = 1, p(xi = 1;Hp) < ε+p , i ∈ PIn

B(z∗)}, (4.9)

X−
p = {i|p(xi = 1;Hp) > ε−p , i ∈ POut

B(z∗)}, (4.10)

where ε+p , ε
−
p (and ε+sp, ε

−
sp below) are the predefined thresholds. For the superpixel-

level RF, the positive sample set X+
sp and negative sample set X−

sp are similarly

determined as

X+
sp = {k|yk = 1, p(yk = 1;Hs) < ε+sp, k ∈ SIn

B(z∗)} , (4.11)

X−
sp = {k|p(yk = 1;Hs) > ε−sp, k ∈ SOut

B(z∗)} , (4.12)

where Sin
B(z∗) and SOut

B(z∗) denote the set of superpixels inside and outside the bound-
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#036 #049 #085

Figure 4.2: Occlusion handling on the Jogging sequence. The index is specified in
the top-left of each frame, and the two figures between each frame are the corre-
sponding outputs of the pixel-level RFs and labels xi, respectively. The occlusion
is detected from the Frame #049, from which point the RFs stop updating until
the target moves out of occlusion.

ing box B(z∗), respectively. Noted that in (4.11) and (4.12), the voting scheme

previously presented is still used to determine whether a superpixel is inside or

outside the bounding box.

As discussed in previous works [6,176], it is also important to take occlusions

into account during updates, especially when the target is temporarily out-of-

view. The pixel labeling provided by our approach also can be used to handle

occlusions: a flag of occlusion is trigged if the percentage of foreground pixels

inside the found bounding box is less than a predefined threshold θ (0.3). In this

case, the RFs are kept unchanged without update. An example of the occlusion

handling is shown in Fig. 4.2. Finally, a systematic view of the whole algorithm

is summarized in Algorithm 3.

4.4 Experiments

In this section, we first present implementation details about important aspects

of MQT, including the parameter setting for evaluation. We then present a set of

qualitative experimental results as well as quantitative comparison with several

state-of-the-art trackers on two benchmarks.

4.4.1 Implementation Details

Similar to [6,176], the optimal tracking result at each frame is achieved by search-

ing in a region centered around the target bounding box determined from the
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Table 4.1: Non-rigid object tracking: percentage of correctly tracked frames.

HT [59] TLD [88] PixelTrack [50] SPT [176] MQT P S B P&S P&B S&B

Cliff-dive 1 100.00 69.12 100.00 100.00 100.00 100.00 97.06 100.00 100.00 100.00 100.00
Motocross 1 100.00 15.38 57.69 29.49 43.59 30.13 30.13 40.38 44.87 66.67 35.26
Skiing 100.00 6.85 100.00 17.28 100.00 100.00 7.41 9.88 98.77 98.77 9.88
Mountain-bike 100.00 81.36 94.55 100.00 100.00 100.00 4.39 39.04 100.00 100.00 18.86
Cliff-dive 2 100.00 8.20 32.79 100.00 100.00 100.00 78.69 50.82 100.00 100.00 62.30
Volleyball 45.12 42.28 100.00 46.55 100.00 100.00 28.46 25.00 60.16 100.00 28.66
Motocross 2 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00
Transformer 38.71 33.06 94.35 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00
Diving 21.21 24.68 88.74 41.56 97.84 13.42 35.06 24.24 96.54 13.85 55.84
High Jump 77.87 35.25 94.26 19.67 98.36 84.43 8.20 8.20 90.16 91.80 41.80
Gymnastics 98.87 84.75 99.09 21.90 100.00 96.87 95.57 29.47 98.17 97.13 59.06

Average 80.16 45.54 87.41 61.50 94.53 84.08 53.18 47.91 89.88 88.02 55.60

Note: The left panel shows the comparison between different trackers. Right panel summaries the results of baseline performance,
where P, S, B are the trackers using single quantization of pixel (RF), superpixel (RF), and bounding box (MFT), respectively,
and P&S the tracker using the two quantizations from pixel and superpixel, etc.

previous frame, as illustrated in Fig. 4.1(b). As in [9, 68, 74], we use a bounding

box with a fixed size during the tracking in the current implementation. In order

to track objects with different resolutions using the same parameters, we resize

the image and let the short side of the target bounding box in the first frame

to have a length of 35 pixels. After tracking, the results of MQT are projected

back to the original image for fair comparison. To obtain meaningful superpixels

of appropriate size, the regularized size of SLIC [1] is set to 17. Regarding the

parameters of the proposed model in (4.7), we set σ = 0.1, α = 5, β = 0.3,

λ = 2, γ = 0.1, and μ = w×h
1002

, where w and h are the width and the height of the

target bounding box, respectively. The minimum normalized distance d(z, i) in

(4.6) is computed by measuring minimum distance between the pixel i and the

boundary of bounding box B(z) in a resized coordinate system, in which the size

of target bounding box becomes w′ = h′ = 1. The number of trees T is set to 15

for both pixel- and superpixel-level RFs. Other parameters specific to the sample

selection in ORF model training are ε+p = 0.8, ε−p = 0.3, ε+sp = 0.5, ε−sp = 0.5. It

should be noted that we strictly follow the protocols proposed in [50,181] and fix

all parameters for all video sequences in the following evaluations. We use the

initial bounding box given by the dataset as the starting point for our tracker.

The tracker was implemented using Matlab & C++ without intensive program

optimization. The average time cost for all testing sequences is 1.1s per frame

on a cluster node (3.4GHz, 8 Cores, 32GB RAM, less than 19% CPU used), con-

sisting of: feature extraction (0.13s), SLIC (0.10s), RF prediction (0.18s), RF
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update (0.38s), and dynamic graph cuts (0.30s). It should be noted that paral-

lel programming can be easily adopted for some key components (e.g., feature

extraction, graph cuts, and ORF) to significantly reduce the run-time.

4.4.2 Tracking non-rigid Objects

We first evaluate the performance of our tacker on the non-rigid object tracking

dataset, which was first collected by [59] and was recently used to test a state-

of-the-art tracking method [50]. This dataset consists of 11 sequences, where

significant non-rigid deformation of objects is present. Quantitative results on a

set of representative frames are shown in Fig. 4.3. For quantitative comparison,

we compare MQT with a set of state-of-the-art methods1, including PixelTrack

[50], Hough Tracker (HT) [59], TLD [88], and the Superpixel Tracker (SPT) [176],

by computing the success rate, defined as the percentage of frames in which the

object is successfully tracked. In each frame, the overlap measure (i.e., half of the

DICE coefficient) So =
|Rt∩Rg |
|Rt∪Rg | is computed, where Rt is the bounding box output

by a tracker and Rg is the ground truth bounding box. The tracking is considered

successful is So is larger than a given threshold to. For a fair comparison, we use

the same protocol as in [50] by setting to to 0.1. The quantitative results of the

comparative trackers are summarized in the left panel of Tab. 4.1.

As pointed out in [50], one of the most difficult videos for the PixelTrack is

Motocross 1, where the motor-bike does a complete flip, changes its size rapidly,

and the background is very cluttered. The rapid size change poses great chal-

lenge to our tracker given a fixed size bounding box we adopt. The quantitative

evaluation shows that our tracker successfully tracks objects in almost all of the

sequences in this dataset, and significantly outperforms the other four methods.

Our tracker is demonstrated to be a promising method for tracking non-rigid

objects, possessing the advantage of multilevel appearance representation incor-

porated in a graphical model, compared to the methods (e.g., PixelTrack, SPT,

TLD) based on only a single level representation.

Moreover, to better understand the importance of different components in

1The performance of SPT is evaluated by using the code released by Wang et al. [176], and
the data for the other three competitors’ is from [50].
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(A) (B)
#003 #048 #068 #036 #129 #220

#019 #036 #053 #018 #053 #122

#003 #035 #053 #159 #379 #677

Figure 4.3: Qualitative results of MQT on the non-rigid object tracking dataset.
Frame numbers are shown in the top left of each figure. Each column contains re-
sults of three sequences: (A) Cliff-dive 1, Cliff-dive 2, Mountain-bike; (B) Diving,
High Jump, Gym.

the proposed framework, we also conducted the baseline experiments to evalu-

ate performance on parts of our tracker by switching off some components and

summarized the average performance in the right panel of Tab. 4.1.

4.4.3 Evaluation on CVPR2013 OOTB

(A) (B)
#0017 #0326 #0357 #0492 #0706

#0037 #0112 #0252 #0064 #0211 #0348

MQT SCM Struck TLD ASLA

Figure 4.4: Qualitative results of MQT compared to different trackers on the
CVPR2013 benchmark. Only top five trackers on success plots are presented.
Frame numbers are shown in the top left of each figure. Each column contains
results of two sequences: (A) Basketball, David3; (B) David, Tiger1.

The second experiment is conducted on the CVPR2013 tracking benchmark

[181], which is an up-to-date comprehensive benchmark specifically designed for
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evaluation of tracking performance. The whole dataset consists of 50 fully anno-

tated sequences. Each sequence is tagged with a number of attributes indicating

to the presence of different challenges, e.g. Occlusion (OCC), Deformation (DEF).

To evaluate the strength and weakness of different methods, the sequences are

categorized according to those attributes and 11 challenge subsets are therefore

created. In [181], the evaluation is based on two different metrics: the precision

plot and success plot. The precision plot shows the percentage of frames on which

the Center Location Error (CLE) of a tracker is within a given threshold r, where

CLE is defined as the center distance between Rt and Rg, and a representative

precision score (r = 20) is used for ranking. Another metric is to compute the

bounding box overlap So introduced in the previous experiment (Section 4.4.2),

and the success plot shows the ratios of successful frames at a given threshold

to varied from 0 to 1. In success plot, the ranking is based on the area under

curve (AUC) instead of using a specific threshold. For the comparative trackers,

it currently includes 29 popular tracking algorithms, and most of them operated

on a single choice of quantization. For more details about the benchmark, we

refer readers to the original paper [181].

We run the One-Pass Evaluation (OPE) [181] on the benchmark using the

proposed MQT. For comparison, we use the online available1 tracking results

and the unified tool provided by [181] to compute the evaluation plots. In this

experiment, the proposed MQT achieves overall the best performance using both

the metrics, which is shown in Fig. 4.5. MQT also ranks in the top ten from all

30 trackers over all challenge subsets using either the measurement of precision

plots or success plots and takes the first places in the nine out of the eleven

challenge subsets when using the success plots as measurement. According to

the results, MQT is more robust to background clutter, deformation, occlusion

challenges compared to the other 29 trackers. We show the success plots of the

some challenge subsets in Fig. 4.6, but omit other figures due to the space limits.

Finally, qualitative comparison with the top-rank trackers is shown in Fig. 4.4

for more intuitive demonstration. Note that, due to the adoption of a fixed-size

bounding box and the lack of strong holistic-appearance model, the predicted

bounding box will only partially capture the target in the presence of heavy

1http://visual-tracking.net/
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Figure 4.5: Quantitative comparison on CVPR2013 benchmark. The perfor-
mance score for each tracker is shown in the legend. For each figure, only the top
10 trackers are presented. The trackers appearing in the legend are as follows:
MQT (ours), Struck [68], SCM [198], TLD [88], VTD [98], VTS [99], CXT [45],
CSK [74], ASLA [84], LOT [144], LSK [119].

occlusion and scale changes, which can be interpreted from Fig. 4.5 and Fig. 4.6.

4.5 Conclusions and Future Work

In this chapter, we propose a tracking method based on a hierarchical appear-

ance representation using multilevel quantization. The different levels of the

representation are incorporated into a Conditional Random Field model using a

coherent framework. By exploiting all the quantization levels, the method uti-

lizes and integrates the information contained at each representation level by

explicitly modeling the interactions and constraints between them; this results in

significantly improved performance compared to other state-of-the-art tracking

methods based on a single quantization. Moreover, Online Random Forests are

used to update the appearance model in different levels of the tracker, in order

to capture changes in object appearance over time. The experimental results

demonstrate that the proposed method is capable of taking advantage of multi-

level information and significantly boosting tracking performance. In the future,

we will improve our tracker by considering the scale change of the target and
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Figure 4.6: Success plots for some challenge subsets of CVPR2013 tracking bench-
mark. The performance score for each tracker is shown in the legend. The value
appears in the title is the number of sequences in that subset. Only the top
10 trackers are presented. The trackers appearing in the legend are as follows:
OAB [62], TM-V [39], DFT [105], CPF [147], MIL [9].

extend it by taking more sophisticated high-level information into consideration.
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Chapter 5

Robust Tracking using

Multi-store Memory Model

Variations in the appearance of a tracked object, such as changes in geome-

try/photometry, camera viewpoint, illumination, or partial occlusion, pose a ma-

jor challenge to object tracking. Here, we adopt cognitive psychology principles

to design a flexible representation that can adapt to changes in object appearance

during tracking. Inspired by the well-known Atkinson-Shiffrin Memory Model, we

propose MUlti-Store Tracker (MUSTer), a dual-component approach consisting

of short- and long-term memory stores to process target appearance memories.

A powerful and efficient Integrated Correlation Filter (ICF) is employed in the

short-term store for short-term tracking. The integrated long-term component,

which is based on keypoint matching-tracking and RANSAC estimation, can in-

teract with the long-term memory and provide additional information for output

control. MUSTer was extensively evaluated on the CVPR2013 Online Object

Tracking Benchmark (OOTB) and ALOV++ datasets. The experimental results

demonstrated the superior performance of MUSTer in comparison with other

state-of-art trackers.
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5.1 Introduction

Object tracking is relatively easy for humans. Humans respond quickly to visual

information by recognizing temporal consistency and memorizing useful visual

features to recover from tracking failures when the target leaves field-of-view.

Memory is one of the most powerful, but least well understood, functions of the

human brain. With the sophisticated memory system, humans are capable of

adapting to complex environments and behaving stably and consistently when

facing temporal issues. We hypothesize that the principles of biological memory

can be exploited to design solutions to tracking problems, which can be regarded

as a time-series motion estimation problem.

Although how human memory works is still not fully understood, several

memory models have been proposed. We focus on the well-known Atkinson-

Shiffrin Memory Model (ASMM, also known as the multi-store model, outlined

in Figure 5.1), which was proposed by Atkinson and Shiffrin in 1968 [4] to explain

the basic structure and function of memory. The ASMM proposes that memory

exists as three separate stages: sensory memory, short-term memory, and long-

term memory. First, external stimuli are delivered to the “sensory register”, at

which point the original input signals are transformed into chemical and physical

signals for processing within the biological system. Acceptable input information

is then sent to the short-term store, where information undergoes the processes

of encoding, rehearsing, retrieving, and responding, after which the system can

output a reasonable and appropriate response. However, the short-term store

does not retain information for a long time. Long-term memorizing is actually

performed by the long-term store; if a particular pattern is received repeatedly,

the long-term store is activated and the pattern information is retained. Once

memorized, the pattern is maintained for a certain period of time but forgotten if

not reinforced. As a result, the information inside the long-term store is a stable

and consistent representation of current event sequences.

By combining short-term processing and long-term maintenance, this memory

model produces sensitive and stable responses to complex inputs. When the

external environment is continuous and steady, short-term store processing is fast

and produces immediate responses. On the other hand, if the model encounters
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Figure 5.1: The Atkinson-Shiffrin memory model represented by an illustrative
neural network. Nodes and their connections inside the short- and long-term
stores represent the possible structure of the neural network inside the human
brain.

a sudden change in input, information remembered by the long-term store is

retrieved, which helps to stabilize the output. This cooperation allows humans
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to take reasonable actions in response to different and changing environments.

The online tracking research community have developed a number of trackers.

Some [68,73,79,101,143] are highly sensitive and accurate in the short term, while

others [88,106,148,163] are relatively conservative but robust over the long term.

In other words, some trackers can be regarded as short-term systems while others

can be regarded as long-term systems. The power of ASMM to track objects

by co-operation between the long- and short-term memory stores has motivated

us to design a tracker that integrates a short- and long-term system to boost

tracking performance.

In this chapter, we propose the MUlti-Store Tracker (MUSTer) based on the

ASMM. MUSTer consists of one short-term store and one long-term store that

collaboratively process the image input and track the target. An Integrated

Correlation Filter (ICF), which stores short-term memory and depends on spa-

tiotemporal consistency, is employed in the short-term store to perform short-term

tracking via two-stage filtering. In addition, we integrate a complementary com-

ponent based on keypoint matching-tracking and RANSAC estimation that can

interact with the keypoint feature database in the long-term store and control the

final output and the short-term memory states. To maintain a reasonable key-

point feature database size, we adopt the well-known forgetting curve to model

the remembering-forgetting loop and, in doing so, retain useful features.

5.2 Related Work

Online object tracking has long been a popular topic in computer vision. A large

number of trackers have been proposed [115, 185], and the recent publication

of benchmark datasets containing large numbers of sequences and standardized

quantitative evaluation metrics is accelerating the pace of development in this

field [95, 160, 181].

Various approaches that form the basis of existing trackers can be used to

model short-term memory of the target appearance. In [150], Ross et al. proposed

to incrementally learn a low-dimensional subspace of the target representation.

Later, Mei et al. [133] introduced sparse representations for tracking, subsequently

adopted in many trackers [77,195], in which the memory of the target appearance
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Figure 5.2: System flowchart of the proposed tracker based on the Atkinson-
Shiffrin Memory Model. The short-term processing in short-term store is con-
ducted by an ICF via two-stage filtering. Another set of short-term procedures
including keypoint matching, keypoint tracking and RANSAC estimation is con-
ducted by a conservative long-term component in short-term store, and it is able
to interact with the long-term memory located in the long-term store. Both the
results of short-term processing and long short-term processing are obtained by
a controller, which decides the final output and the ICF update.

is modeled using a small set of target instances. In contrast to the generative

approaches used in [150] and [133], discriminative methods [6,7,9,68,74,78] have

been proposed that consider both foreground and background information. In

particular, Struck [68] is one of the best performing trackers and has been high-

lighted in several recent studies [146, 160, 181]. In [68], Hare et al. introduced

structured SVM for tracking and trained a classifier using samples with structured

labels. The correlation filter-based trackers [25, 42, 43, 73, 74, 118] are becoming

increasingly popular due to their promising performance and computational effi-

ciency. However, most of these trackers depend on the spatiotemporal consistency

of visual cues and adopt relatively risky update schemes; therefore, they can only

handle short-term tracking.

Some long-term tracking approaches [45,88,106,148,163] have also been pro-

posed with promising results. For instance, TLD [88] employs two experts to

identify the false negatives and false positives to train a detector. The experts

are independent, which ensures mutual compensation of their errors to alleviate
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“drifting”. In [148], Pernici and Bimbo modeled the target appearance using

oversampled local features. They used transitive matching to find the target

keypoints and, in addition, performed occlusion detection to avoided updating

errors. In [163], long-term tracking was conducted based on a self-paced learning

scheme in which the target appearance was conservatively learned by selecting

trustworthy frames.

Some systems have a similar architecture to ASMM. In 1997, Hochreiter and

Schmidhuber introduced a special kind of artificial neural network called Long

Short Term Memory [76]. In this neural network, memory blocks are made up of

two kind of units which are called “constant error carousels” and “multiplicative

gate units”. The constant error carousels memorize information and the multi-

plicative gate units control the information flow. These memory blocks can be

regarded as the long-term store of ASMM. Together with pure feed-forward net-

works, which play the short-term role, long short-term memory systems show the

great potential for various memory-intensive tasks, such as speech recognition [66]

and music composition [52]. This makes the use of memory models for object

tracking more convincing.

5.3 The Proposed Multi-store Tracker

The MUSTer framework is based on the ASMM (Figure 5.2), which consists of

a short-term store, a long-term store, and the corresponding processing units.

An Integrated Correlation Filter (ICF) is employed in the short-term store to

perform short-term processing and track the target based on short-term memory

and spatiotemporal consistency. This component generally works accurately and

efficiently in relatively stable scenarios. In addition, another relatively conser-

vative long-term component based on keypoint matching-tracking and RANSAC

estimation is introduced to conduct the long short-term processing on the fly.

This interacts with the short-term memory stored in an active set of keypoints

using forward-backward tracking, and it also retrieves the long-term memory for

matching and updates the long-term memory based on the RANSAC estimation

results and the forgetting curve. During tracking, the outputs of both the short-

term and long short-term processing are sent to a controller, which decides the
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final MUSTer output and the ICF update. Specifically, the short-term memory

in ICF is reset when the short-term processing output is highly inconsistent with

the long-term memory encoded by the output of the long short-term processing.

This enables the recovery of the short-term tracking after dramatic appearance

changes such as severe occlusion, the object leaving field-of-view, or rotation.

The following subsections detail successively all components in MUSTer: ICF

short-term processing, the short-term processing of keypoints by the long-term

component, the updating of long-term memory based on the forgetting curve,

and finally, the output controller and ICF updater.

5.3.1 Short-term Integrated Correlation Filters

The short-term component is used to provide instant responses to the image input

based on short-term memory. Recently, the robustness of correlation filter-based

short-term trackers [42, 73, 118] has been recognized by [95]. For accurate and

efficient short-term processing performance, we employ Integrated Correlation

Filters (ICFs), which are based on the Kernelized Correlation Filters (KCFs)

[73] and the Discriminative Scale Space Correlation Filter (DSSCF) [42]. The

ICF is a two-stage filtering process that performs translation estimation and

scale estimation, respectively, which is similar to the pipeline described in [42]

and [118]. Here, ICF serves as the short-term component, where the short-term

memory of ICF consists of the learned coefficients and templates for the filters.

In KCF, a classifier f(x) = 〈w, φ(x)〉 is trained on a M × N image patch x

centered by the target bounding box BT’s center and p times larger than BT.

Instead of using dense sliding windows to extract training samples, the classifier

considers all the cyclic shift versions xi for training, where i ∈ {0, ...,M − 1} ×
{0, ..., N−1}. Each example xi is assigned with a score in yi ∈ [0, 1] generated by

a Gaussian function in terms of the shifted distance, and the classifier is trained

by minimizing the regression error:

min
w

∑
i

(〈w, φ(xi)〉 − yi)
2 + λ‖w‖2, (5.1)

where φ(x) is the mapping to a Hilbert space, and λ ≥ 0 is the regulariza-
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tion parameter controlling the model simplicity. Employing a kernel κ(x,x′) =

〈φ(x), φ(x′)〉, the classifier can be derived as f(x) =
∑

i αiκ(xi,x), where α is

the dual variable of w. Let us denote the Discrete Fourier Transform (DFT) of a

vector with a hat “ˆ”, e.g., α̂ = F (α), and denote the complex conjugate with

α̂∗. According to [43] and [73], if the employed kernel is shift invariant, e.g., an

RBF kernel, α̂∗ can be obtained based on the favorable properties of circulant

matrices:

α̂ =
ŷ

k̂xx + λ
, (5.2)

where kxx is a vector whose ith element is κ(xi,x). In particluar, for image data

with C feature channels, a concatenation x = [x1; ...;xC ] can be constructed, and

the kernel correlation kxx based on a Gaussian kernel can be efficiently computed

by element-wise products and simple summation over the feature channels in the

Fourier domain:

kxx′ = exp(− 1

σ2
(‖x‖2 + ‖x′‖2 − 2F−1(

C∑
c=1

x̂c � (x̂′c)∗))), (5.3)

where � denotes the operator of element-wise products, and c is the index of the

feature channels.

During the first-stage filtering for translation estimation, given a M ×N can-

didate image patch z as the search space, all cyclic patches of z can be evaluated

via

f(z) = F−1((k̂xz)� α̂), (5.4)

where f(z) is the filtering response for all the cyclic versions of z, and the transla-

tion is estimated by finding the location with the highest response. In our tracker,

the candidate image patch z is centered by using the tracking result Bo of the last

frame. To adapt to the short-term appearance changes of the target, the filter

coefficients α and the target template x are updated in an interpolating man-

ner with learning rate γ. In our implementation, we employ the 31-dimensional

HOG descriptors [55], as in [73]. Moreover, for color image sequences, we further

extract 10-dimensional color attributes [43, 169] as complementary features and

combine them with the HOG descriptors to further boost performance.
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To cope with scale changes, a one-dimensional DSSCF [42] is also trained

and the second-stage filtering is performed for scale estimation. To evaluate the

trained DSSCF, S image patches centered around the location found by the KCF

filter are cropped from the image, each of size asMT × asNT, where MT ×NT is

the current size of the target, a is the scale factor, and s ∈ {−S−1
2
, ..., S−1

2
}. All

S image patches are then resized to the template size for the feature extraction.

Finally, the final output Bs from the short-term processing is given as the image

patch with the highest filtering response. Similar to KCF, the model parameters

are also updated in an interpolating manner with learning rate μ. We refer readers

to [42] for more details and the implementation of DSSCF.

5.3.2 Short-term Processing of Keypoints

The goal of the long-term component is to conservatively learn the appearance

of the target and to refresh the short-term memory when a mistake made by the

short-term component is detected.

Local Scale-Invariant Features [125] are a powerful tool used in various com-

puter vision tasks including recognition [125] and scene alignment [121]. In par-

ticular, some promising trackers [65,137,148] have been proposed to model the ob-

ject appearance based on Local Scale-Invariant Features (i.e., keypoints). There-

fore, we employ a long-term component based on keypoint matching-tracking and

RANSAC estimation to take advantage of the flexibity and shape generalizability

of the keypoint-based appearance models.

The long-term memory of the target appearance is modeled by a total feature

database M = T ∪ B that consists of a foreground (target) feature database T

and a background feature database B:

T = {(di,p
o
i )}NT

i=1, B = {di}NB

i=1 . (5.5)

Here, di ∈ R128 is the 128-dimensional Scale-invariant Feature Transform (SIFT)

descriptors [126] of the keypoints. NT and NB are the respective numbers of de-

scriptors. Each target descriptor di ∈ T is also associated with the corresponding

coordinates po
i ∈ R2 that remember the keypoint location in the original target

template, and can be used for estimating the transformation of target state. The
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background feature database is important to reduce erroneous matching of target

keypoints and can help to detect the occlusions.

In addition to the filtering function of ICF, another set of short-term proce-

dures conducted in the short-term store is to consecutively process the keypoints

by retrieving the long-term memory stored in M and the short-term memory

stored in an active set. In each frame, a SIFT detector based on the difference of

Gaussians [126] is applied to an image search area to extract a set of keypoints

with large responses. The set of detected keypoints associated with their SIFT

descriptors is denoted as PD = {(dk,pk)}ND
k=1, where pk ∈ R2 is the coordinates

of a keypoint.

Matching Keypoints. We search the total memory database M for the

nearest neighbors of each dk ∈ PD based on the Euclidean distance. We define the

matching confidence of dk and its nearest neighbor1 d1N
k as the cosine similarity

C(dk,d
1N
k ) between two descriptors. The candidate matching keypoint can be

found if the matching confidence is larger than a predefined threshold, denoted

as θT for the matching of target points and θB for that of background points.

The different threshold settings are used to control the different recalls for the

matching of foreground and background keypoints. In practice, the precision of

the matching of target points is more important since they are used to estimate

the current state of the target. Therefore, it is important to reject outliers during

target point matching as discussed in [126, 148]. To further reject outliers, we

employ the distinct non-parametric nearest neighbor classifier [126] by computing

the ratio of the distances:

r(dk) =
d(dk,d

1N
k )

d(dk,d2N
k )

, (5.6)

where d2N
k is the second nearest neighbor of dk. The matched point d1N

k is clas-

sified as an inlier if r(dk) is smaller than a threshold θr. Finally, the detected

feature points (dk,pk) ∈ PD are classified into one of the three following sets:

the matched target keypoints PT, the matched background keypoints PB and

1For simplicity, we denote the nearest and the second nearest neighbors of dk in M by d1N
k

and d2N
k , respectively.
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unmatched keypoints PN, according to the formula below:

⎧⎪⎨
⎪⎩

pk ∈ PT, d1N
k ∈ T, C(dk,d

1N
k ) > θT, r(dk) < θr

pk ∈ PB, d1N
k ∈ B, C(dk,d

1N
k ) > θB

pk ∈ PN, otherwise .

(5.7)

Once the matched target keypoints (dk,pk) ∈ PT are determined, we further find

their corresponding coordinates po
k in the original template, which are then added

into PT so as to get the final complete version, i.e., PT = {(dk,p
o
k,pk)}Nm

k=1.

Forward-Backward Tracking. In addition to matching keypoints and in-

spired by [137], we also maintain an active set of keypoints Pt−1
A = {(po

i ,p
t−1
i )}NA

i=1,

where pt−1
i is the coordinates of the point in the t− 1 frame and po

i is the corre-

sponding coordinates of pt−1
i in the original template. This active set can be also

regarded as the short-term memory of MUSTer, and it provides additional infor-

mation for long short-term processing. To obtain the coordinates of pt−1
i in frame

It, the optical flow can be computed using the Lucas-Kanade (LK) method [127].

To improve robustness, we employ a Forward-Backward (FB) tracker [88] to ob-

tain a set of keypoints with reliable tracking results. In the FB tracker, the

forward optical flow from pt−1
i to pt

i and the backward optical flow from pt
i to

p′t−1
i are computed using two consecutive frames: It−1 and It. The displacement

d(pt−1
i ,p′t−1

i ) between pt−1
i and p′t−1

i is then used to identify any tracking failures.

Ideally, d(pt−1
i ,p′t−1

i ) should be small if the tracking is successful. Therefore, a

threshold θfb is defined and a failure is detected if d(pt−1
i ,p′t−1

i ) > θfb. Finally,

we can obtain a set of remaining active keypoints Pt
A = {(po

i ,p
t
i)}N

′
A

i=1 that contain

the keypoints successfully tracked by the FB tracker.

RANSAC Estimation. Once the matched and tracked keypoints are ob-

tained, a candidate set PC is formed consisting of the keypoints in PT and Pt
A,

which is used to estimate the target state. Similar to [137,148], we only consider

the similarity transformation, which is more reliable than homography trans-

formation for tracking generic objects, especially in cases where the planarity

assumption does not hold [137]. In the case of the similarity transformation,

the state of the target can be defined as st = {xt, yt, st, βt}, which are the pa-

rameters of translations, scale, and rotation angle, respectively. To predict the
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target state st, a transformation Fst letting Fst(p
o
i ) → pi can be estimated us-

ing PC = {(po
i ,pi)}NC

i=1. However, mistakes in matching and tracking keypoints

cannot always be avoided, especially when the background is cluttered or rapidly

changing. Therefore, we employ the RANSAC estimator to compute Fst by ran-

domly proposing putative solutions and identifying inliers and outliers. In our

implementation, we use the robust MLESAC estimator [70,168], which works by

maximizing the likelihood rather than just the number of inliers.

Confidence of Matching. Once the resulting transformation Fst is esti-

mated, a target bounding box Bl defined by the current state can be computed.

Meanwhile, a set of inlier keypoints PI = {pi}NI
i=1 can also be obtained, where

the number of inliers NI is an important evidence predicting tracking success; in

general, the more inliers included in Fst , the more confident the result. Therefore,

we can define a binary variable GC that indicates the tracking success and set it

as:

GC =

{
True, NI > θI

False, otherwise ,
(5.8)

where θI is a predefined threshold controlling recall strictness.

Occlusion Handling. In the proposed framework, the long-term memory

is progressively updated on the fly. Therefore, it is important to consider cases

of occlusion, which have been discussed previously [96, 148]. In particular, we

consider the set P(Bl), which consists of the keypoints inside target bounding box

Bl, and the set PO of occluding keypoints is defined as the matched background

keypoints inside Bl, i.e., PO = P(Bl) ∩ PB. Intuitively, if there is no occlusion,

the number of occluding points NO = |PO| should be small and close to zero.

In contrast, when the target is occluded, the number of occluding keypoints is

likely to be high and close to the number of keypoints belonging to the target.

Therefore, we can consider the ratio of NO and NG and define a binary variable

GO that indicates occlusion occurrence:

GO =

{
True, NO/NG > θo

False, otherwise ,
(5.9)

where NG = |PG| is the number of keypoints in PG, and PG = P(Bl) ∩ PT is
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the matched target keypoints inside the region of Bl. In our implementation, we

empirically set θo = 0.5.

Update the Active Set. The active set Pt
A that stores the short-term

memory is updated at each frame. However, we should not track the keypoints

if an occlusion is detected since the keypoints may gradually lock onto occluding

objects or the background. Therefore, we set Pt
A = ∅ if GO = True. Otherwise,

we set Pt
A = PI, which are the inliers found by the RANSAC estimator. However,

when the target is stable or moving slowly, most of the keypoints in Pt
A would

be successfully tracked and identified as inliers, and meanwhile matched target

keypoints would continually be added to Pt
A. This might lead to a very large Pt

A

and thus computational inefficiency. Therefore, we design a strategy to find the

redundant points in Pt
A and let the candidate set of RANSAC PC = PT∪(Pt

A\PR),

where PR denotes the set of redundant keypoints. This approach is based on the

assumption that the matched keypoints are more reliable and, therefore, have

higher priority. The redundant points are found using the quantization IDs.

Specifically, a virtual grid is built upon the original target template, and each

target keypoint can be assigned a quantization ID according to its corresponding

coordinates po
i in the original template. Finally, the redundant points in PA are

found by searching the repetitive quantization IDs in PT.

5.3.3 Long-term Memory Updates

The use of keypoints as the appearance model allows natural handling of in-

plane rotation. For instance, the keypoint database is not updated in [137] but

performance is still reasonable. However, it is still crucial to update on the fly

to generalize the appearance model to handle out-of-plane rotation, severe scale

changes, and appearance variations of the target [148].

To maintain relatively reliable memory of the target appearance, the mem-

ory database M is updated conservatively only when the short-term process-

ing is confident about the result (GC = True) and claims there is no occlusion

(GO = False). Both the target keypoint database T and the background key-

point database B need to be updated. In particular, we consider the unmatched

points that are important for capturing any changes in visual structure. During
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the update, we add the unmatched keypoints inside the Bl to T, and those outside

Bl to B, as follows:

T = T ∪ (PN ∩ P(Bl))

B = B ∪ (PN ∩ (PD \ P(Bl)) .
(5.10)

While the human brain is good at remembering, as well as forgetting. The

remembering-forgetting interplay helps us effectively manage the valuable and

finite memory capacity when handling massive quantities of input signals each

day. To avoid the unbounded growth of the memory database M, a certain

capacity should be set for T and B, and features should be forgotten over time.

To model remembering-forgetting, we employ the famous forgetting curve [51]

to maintain M and forget unimportant features according to the retention of

features. The forgetting curve hypothesizes a decline in memory retention and

shows how information is lost over time when there is no attempt to retain it.

The memory retention r over time can typically be modeled using an exponential

function:

r = exp(− τ

Γh
) , (5.11)

where h is the relative strength of the memory, τ is the relative period of for-

getting, and Γ is a constant controlling the scale of the timespan. In (5.11),

the speed of decline in memory retention is decided by the relative strength h.

For information with high relative strength h, the decline in memory retention

becomes slow and it is more possible to be remembered over time. The relative

strength of information can be increased using certain methods such as repeti-

tive retrieving. In MUSTer, each feature in di ∈ M is assigned a set of memory

variables (ri, τi, hi), where the memory retention ri of features can be updated

according to their corresponding τi and hi. To model the process of forgetting,

during each update term, all relative periods τi of di ∈ M are increased by 1.

Moreover, for the retrieved background features d1N
k ∈ B where dk ∈ PB, and

foreground features d1N
k ∈ T where dk ∈ (PT ∩ PI), the corresponding relative

strength hi is increased by 1 and the relative period τi is set to 0. In this way,

the recalled features are renewed and strengthened in memory, while frequently

recalled features obtain a high relative strength and become hard to forget. Once
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the numbers of features in the respective databases exceed a predefined memory

capacity, NT > ΘT or NB > ΘB, the features with low retention are removed and

completely forgotten by the model.

5.3.4 Output and Short-term Memory Refreshing

Once the different processing procedures are performed in the short-term store,

the results of filtering Bs and the result of the long short-term processing Bl

together with the state variables GC and GO can be obtained by a controller. As

mentioned earlier, short-term filtering is generally accurate in relatively stable

scenarios. Therefore, if the results Bs and Bl are to some extent consistent

(indicating that the long-term memory agrees with the output of the short-term

tracker), or the long-term component is not confident about the result (GC =

False), or an occlusion is detected (GC = True), the tracking result Bo is output

as Bo = Bs, and the short-term filters are updated using Bo and the predefined

learning rates γ = γo and μ = μo. Otherwise, the tracking result is output as

Bo = R(Bl), where R(·) is a function to rotate a bounding box along its center

and in the same orientation as Bs. Moreover, the short-term memory should be

refreshed. We use Bo to update the short-term filters and set the learning rates

γ and μ as 1 for the update, which cleans up all the previous short-term memory

stored in the filters. In particular, the inconsistency of Bs and Bl is detected by

the Intersection Over Union (IOU) metric U(Bs,Bl) =
|Bs∩Bl|
|Bs∪Bl| with a threshold

θU .

5.4 Experiments

The proposed tracker1 was implemented using Matlab & C++ (OpenCV). The

average time cost on OOTB is 0.287s/frame on a cluster node (3.4GHz, 8 cores,

32GB RAM) The parameters mentioned in Section 5.3 are specified as follows:

θU = 0, the learning rate γo and μo for the ICF are set to 0.02 and 0.01 respec-

tively, and the padding size p in KCF is set to 1. The thresholds for matching

1The code to reproduce the experiments is available in https://sites.google.com/site/

multistoretrackermuster/
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MUSTer MEEM Struck KCF SCM TLD

Figure 5.3: Tracking results of selected algorithms in representative frames.
Frame indexes are shown in the top left of each figure. The showing examples are
from sequences Couple, Lemming, Jumping, Jogging, Singer2, Bolt, respectively.

keypoints are set as θT = 0.8, θB = 0.9, θr = 0.85, and θI = 8. The threshold

θfb for FB Tracker is set to 4. The Γ in the forgetting curve model is set to 10,

while the memory capacities ΘT and ΘB of keypoint databases are both set to

2000. Note that the protocols proposed in [181] were strictly followed and all

parameters were fixed for all video sequences in the following evaluations. For

each sequences, we simply use the ground truth of the first frame given by the

dataset for initialization.

5.4.1 Evaluation on CVPR2013 OOTB

In this section, we report the evalution on the CVPR2013 Online Object Tracking

Benchmark (OOTB) [181] and compare MUSTer with a number of state-of-the-

art trackers. OOTB is a popular comprehensive benchmark specifically designed

for evaluating performance. OOTB contains 50 fully annotated sequences which

extensively used by previous work. In [181], the evaluation for the robustness of

trackers is based on two different metrics: the precision plot and success plot.

The precision plot shows the percentage of successfully tracked frames on which

the Center Location Error (CLE) of a tracker is within a given threshold TC ,

113



0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Overlap threshold

S
uc

ce
ss

 ra
te

Success plots

MUSTer [0.641]
MEEM [0.576]
ICF [0.572]
DSST [0.554]
MQT [0.529]
KCF [0.514]
MTMVTLAD [0.514]
MTMVTLS [0.505]
SCM [0.499]
Struck [0.474]

0 10 20 30 40 50
0

0.2

0.4

0.6

0.8

1

Location error threshold

P
re

ci
si

on

Precision plots

MUSTer [0.865]
MEEM [0.835]
ICF [0.767]
KCF [0.740]
DSST [0.737]
MQT [0.723]
MTMVTLAD [0.699]
MTMVTLS [0.676]
CN [0.661]
Struck [0.656]

Figure 5.4: Quantitative comparison on CVPR2013 OOTB. The performance
score for each tracker is shown in the legend. For each figure, only the top 10
trackers are presented.

and a representative precision score at TC = 20 is used for ranking the trackers.

The success plot also counts the percentage of successfully tracked frames, by

measuring the Intersection Over Union (IOU) metrics for trackers on each frame.

In success plot, the threshold of IOU is varied from 0 to 1, and the ranking of

trackers is based on the Area Under Curve (AUC) score. For more details about

OOTB and the adopted metrics, we refer readers to [181].

We run the One-Pass Evaluation (OPE) on the benchmark using the proposed

MUSTer and use the online available software1 provided by [181] to compute the

evaluation plots. For the competitor trackers, we first consider those 29 popular

approaches whose results are available in OOTB, such as Struck [68], TLD [88],

SCM [198], VTD [98], VTS [99], and ASLA [84]. And on top of these, we include

recent correlation filter-based trackers CN [43], KCF [73], DSST [42], which is the

best performing tracker in [95], and further include very recent state-of-the-art

trackers MEEM [192], the LGT [170] based on coupled-layer visual model, and

MTMVTLS, MTMVTLAD [130] and MQT proposed in previous chatpers. Last

but not least, we also compare quantitatively with the short-term ICF presented

in Section 5.3.1, so as to demonstrate the importance of the long-term component

in our proposed tracker.

1http://visual-tracking.net/
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Figure 5.3 shows a qualitative comparison with selected trackers on several

representative videos/frames. To quantitatively compare all 37 trackers, we show

the precision plot and success plot in Figure 5.4, which indicates that MUSTer

achieves overall the best performance using both the metrics and significantly

outperforms the second best tracker MEEM with 11% performance gain using

the metric of AUC score. As discussed in [181], the AUC score that measures

the overall performance in success plot is more accurate than the precision score

at one threshold of precision plot. Therefore, the experimental result clearly

demonstrates the superior performance of the proposed tracker. In addition,

MUSTer also significantly outperforms its baseline short-term component ICF,

other correlation filter-based trackers DSST and KCF, and the well-known long-

term tracker TLD, which validates the important role of the long-term component

in MUSTer and the effectiveness of the proposed tracking framework based on

ASMM.

5.4.2 Evaluation on ALOV++ Dataset

To further validate the robustness of MUSTer, we conducted the second evalua-

tion on a larger dataset [160], namely ALOV++ (Amsterdam Library of Ordinary

Videos), which is recently developed by Smeulders et al.. It consists of 14 chal-

lenge subsets, totally 315 sequences and focuses on systematically and experimen-

tally evaluating trackers’ robustnesses in a large variety of situations including

light changes, low contrast, occlusion, etc. In [160], survival curves based on

F -score were proposed to evaluate trackers’ robustnesses and demonstrated its

effectiveness. A survival curve shows the performance of a tracker on all videos

in the dataset. The videos are sorted according to the F -score. By sorting the

videos, the graph gives a bird’s eye view in cumulative rendition of the quality of

the tracker on the whole dataset. We refer the reader to the original paper [160]

and the author’s website1 for details about the dataset and the evaluation tools.

To evaluate MUSTer on ALOV++ dataset, we ran MUSTer on all the 315

sequences using the ground truth of the first frame as initialization and the same

parameters as the previous evaluation shown in Section 5.4.1. We compare our

1http://imagelab.ing.unimore.it/dsm/
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Figure 5.5: Survival curves for top ten trackers on AlOV++ dataset. The average
F -scores over all sequences are specified in the legend.

tracker with 19 popular trackers1 that were evaluated in [160]. In addition, we also

ran MEEM, ICF, DSST, KCF on ALOV++, which rank on the top five trackers

in the previous evaluation. The survival curves of the top ten trackers and the

average F -scores over all sequences are shown in Figure 5.5, which demonstrates

that MUSTer achieves the best overall performance over 24 compared trackers in

this comparison.

5.5 Conclusion

In this chapter, we propose the MUlti-Store Tracker (MUSTer) based on the

Atkinson-Shiffrin Memory Model to handle tracking memory problems. MUSTer

consists of two important but relatively independent components and exploits

them to process the image input according to the short- and long-term memories

of the target being tracked. In the short-term store, an Integrated Correlation

Filter (ICF), which stores the short-term memory and depends on spatiotempo-

ral consistency, is employed to provide an instant response via two-stage filtering.

In addition, a complementary component based on keypoint matching-tracking

and RANSAC estimation is integrated, which is able to interact with the key-

1We refer the reader to [160] and its references for the details about the compared trackers.
The evaluation results of these 19 trackers were obtained from the author of [160].
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point feature database in the long-term store and control the final output and the

short-term memory states. To maintain a reasonable keypoint feature database

size, the well-known forgetting curve is employed to model the remembering-

forgetting loop and retain the most useful features. The experimental results on

two large datasets demonstrate that the proposed tracker is capable of taking ad-

vantage of both the short-term and long-term systems and boosting the tracking

performance.

117



Chapter 6

Conclusions

Visual tracking plays a key role in many computer vision systems, such as robotics,

video surveillance, automatic control, vehicle navigation, and human computer

interaction (HCI). In this thesis, we tackled challenges that are present in practi-

cal tracking scenarios in videos and developed robust online visual trackers that

achieve superior performance over existing trackers, by taking advantage of ad-

vanced techniques in machine learning including distance metric learning [124],

sparse representation [179], multi-view learning [184], multi-task learning [36],

conditional random field [72].

In particular, we developed a novel dual-force distance metric which is elabo-

rately designed for distracter-resistant tracking. The proposed metric systemat-

ically includes the normalized margin maximization, the similarity propagation

and the reconstruction error constraint, in which the normalized margin maxi-

mization gives a force to separate positive samples and negative ones while the

similarity propagation gives another force to drag negative samples into negative

space. We seamlessly integrate our metric with the L1 minimization framework

and takes advantage perfectly of both the descriptive power of L1 minimization

with occlusion robustness and the discriminative power of our metric with dis-

tracter resistance. We tested our tracker on several challenging sequences and

compared it with five other popular trackers including original BPR-L1 tracker

to validate its superiority.

We also developed a LAD-based robust multi-task multi-view sparse learning

method for particle filter-based tracking. By appropriately introducing the l1,2
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norm regularization, the method not only exploits the underlying relationship

shared by different views and different particles, but also captures the frequently

emerging outlier tasks which have been previously ignored. The proposed reg-

ularized LAD problem is effectively approximated by the Nesterov’s smoothing

method and efficiently solved by the APG. We implemented our method using

four types of complementary features, i.e. intensity, color histogram, HOG and

LBP, and extensively tested it on numerous challenging sequences including pub-

licly available sequences, synthetic noisy sequences, real-world noisy sequences

and two comprehensive tracking datasets. The experimental results demonstrate

that the proposed method is capable of taking advantage of multi-view data and

correctly handling the outlier tasks. Compared to several popular trackers, our

tracker demonstrates superior performance.

For non-rigid object tracking, we proposed a tracking method based on a hi-

erarchical appearance representation using multilevel quantization. The different

levels of the representation are incorporated into a Conditional Random Field

model using a coherent framework. By exploiting all the quantization levels,

the method utilizes and integrates the information contained at each representa-

tion level by explicitly modeling the interactions and constraints between them;

this results in significantly improved performance compared to other state-of-the-

art tracking methods based on a single quantization. Moreover, Online Random

Forests are used to update the appearance model in different levels of the tracker,

in order to capture changes in object appearance over time. The experimental

results demonstrate that the proposed method is capable of taking advantage of

multilevel information and significantly boosting tracking performance.

To handle tracking memory problems, we proposed the MUlti-Store Tracker

(MUSTer) based on the Atkinson-Shiffrin Memory Model. MUSTer consists of

two important but relatively independent components and exploits them to pro-

cess the image input according to the short- and long-term memories of the

target being tracked. In the short-term store, an Integrated Correlation Fil-

ter (ICF), which stores the short-term memory and depends on spatiotemporal

consistency, is employed to provide an instant response via two-stage filtering.

In addition, a complementary component based on keypoint matching-tracking

and RANSAC estimation is integrated, which is able to interact with the keypoint
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feature database in the long-term store and control the final output and the short-

term memory states. To maintain a reasonable keypoint feature database size,

the well-known forgetting curve is employed to model the remembering-forgetting

loop and retain the most useful features. The experimental results on two large

datasets demonstrate that the proposed tracker is capable of taking advantage of

both the short-term and long-term systems and very promising performance.
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