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Abstract

Recent years have witnessed a dramatic increase of information due to
the ever development of modern technologies. The large scale of infor-
mation makes data analysis, particularly data mining and knowledge
discovery tasks, unprecedentedly challenging. First, data is becom-
ing more and more interconnected. In a variety of domains such as
social networks, chemical compounds, and XML documents, data is
no longer represented by a flat table with instance-feature format,
but exhibits complex structures indicating dependency relationships.
Second, data is evolving more and more dynamically. Emerging ap-
plications such as social networks continuously generate information
over time. Third, the learning tasks in many real-life applications be-
come more and more complicated in that there are various constraints
on the number of labelled data, class distributions, misclassification

costs, or the number of learning tasks etc.

Considering the above challenges, this research aims to investigate

theoretical foundations, study new algorithm designs and system frame-
works to enable the mining of complex graph streams from three

aspects, including (1) Correlated Graph Stream Mining, (2) Graph

Stream Classifications, and (3) Complex Task Graph Classification.

In particular, correlated graph stream mining intends to carry out
structured pattern search and support the query of similar graphs
from a graph stream. Due to the dynamic changing nature of the
streaming data and the inherent complexity of the graph query pro-
cess, treating graph streams as static datasets is computationally
infeasible or ineffective. Therefore, we proposed a novel algorithm,
CGStream, to identify correlated graphs from a data stream, by us-

ing a sliding window, which covers a number of consecutive batches



of stream data records. Experimental results demonstrate that the
proposed algorithm is several times, or even an order of magnitude,

more efficient than the straightforward algorithms.

Graph stream classification aims to build effective and efficient clas-
sification models for graph streams with continuous growing volumes
and dynamic changes. We proposed two methods for complex graph
stream classification. Due to the inherent complexity of graph struc-
ture, labelling graph data is very expensive. To solve this problem, we
proposed a gLLSU algorithm, which aims to select discriminative sub-
graph features with minimum redundancy by using both labelled and
unlabelled graphs for graph streams. The second approach handles
graph streams with imbalanced class distributions and noise. Both
frameworks use an instance weighting scheme to capture the under-
lying concept drifts of graph streams and achieve significant perfor-

mance gain on benchmark graph streams.

Complex task graph classification aims to address the graph classifi-
cation problems with complex constraints. We studied two complex
task graph classification problems, cost-sensitive graph classification
of large-scale graphs and multi-task graph classification. As in medical
diagnosis the misclassification cost/risk for different classes is inher-
ently different and large scale graph classification is highly demanded
in real-life applications, we proposed a CogBoost algorithm for cost-
sensitive classification of large scale graphs. To overcome the limi-
tation of insufficient labelled graphs for a specific learning task, we
further proposed effective algorithms to leverage multiple graph learn-
ing tasks to select subgraph features and regularize multiple tasks to

achieve better generalization performance for all learning tasks.
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