
Complex Graph Stream Mining

Shirui Pan

Faculty of Engineering and Information Technology

University of Technology Sydney

A thesis submitted for the degree of

Doctor of Philosophy

October 2015

CERTIFICATE OF
AUTHORSHIP/ORIGINALITY

I certify that the work in this thesis has not previously been submitted

for a degree nor has it been submitted as part of requirements for a

degree except as fully acknowledged within the text.

I also certify that the thesis has been written by me. Any help that I

have received in my research work and the preparation of the thesis

itself has been acknowledged. In addition, I certify that all informa-

tion sources and literature used are indicated in the thesis.

Signature of Student

——————————————————————

Acknowledgements

I would like to express my earnest thanks to my supervisors, Profes-

sor Chengqi Zhang and Professor Xingquan Zhu, who have provided

tremendous support and guidance for my research in the past four

years. Prof Zhang provided me an opportunity to study in the stim-

ulating and interactive centre for Quantum Computation and Intelli-

gent Systems (QCIS), where I met and leant a lot from many smart

and sharp people. I benefit significantly from his unselfish help and

invaluable suggestion on my research career. I would like to thank

Prof Xingquan Zhu for his continuous guidance and supervisions dur-

ing my Ph.D. study. Discussing a problem with him has been always

a pleasure and eye-opening experience. He always gives me sufficient

freedom and encouragement to think and explore my research interest.

His vision, creativeness and enthusiasm in solving challenging prob-

lems has greatly encouraged me and inspired my works. Without his

endless patience, generous support, and constant guidance, this thesis

could not have been accomplished.

I would also like to thank all the people that had a positive influence

on my day-to-day enjoyment of the job. My office-mates, past and

present: Jia Wu, Yifan Fu, Guodong Long, Jing Jiang, Peng Zhang,

Tianyi Zhou, Wei Bian, Wei Wang, Xun Wang, Ting Guo, Lian-

hua Chi, Meng Fang, Mingsong Mao, Zhibin Hong, Hongshu Chen,

Shaoli Huang, Haishuai Wang, Mingming Gong, Sujuan Hou, Qin

Zhang, Maoying Qiao, Zhiguo Long, Hua Meng, Zhe Xu, Bozhong

Liu, Tongliang Liu, Junyu Xuan, and Jiang Bian. They are the ones

who have given me support during both joyful and stressful times, to

whom I will always be thankful.

I also wish to express my appreciation to the financial support I gained

for my study. Special thanks go to China Scholarship Council (CSC),

University of Technology Sydney (UTS), centre for Quantum Com-

putation and Intelligent Systems (QCIS), ICDE student travel grant,

and CIKM student travel grant.

Finally, and above all, I want to thank my family for their continuous

support. I especially thank my wife, Yu Zheng, who took care of the

daily life of our little baby, Yixin Pan, and myself, and shared all

my pain, sorrow and joy in every moment of my research. I would

like to thank my parents, brothers, and sisters for their unconditional

encouragement and support, both emotionally and financially. No

words could possibly express my deepest gratitude for their endless

love, self-sacrifice and unwavering help. To them I dedicate this dis-

sertation.

Abstract

Recent years have witnessed a dramatic increase of information due to

the ever development of modern technologies. The large scale of infor-

mation makes data analysis, particularly data mining and knowledge

discovery tasks, unprecedentedly challenging. First, data is becom-

ing more and more interconnected. In a variety of domains such as

social networks, chemical compounds, and XML documents, data is

no longer represented by a flat table with instance-feature format,

but exhibits complex structures indicating dependency relationships.

Second, data is evolving more and more dynamically. Emerging ap-

plications such as social networks continuously generate information

over time. Third, the learning tasks in many real-life applications be-

come more and more complicated in that there are various constraints

on the number of labelled data, class distributions, misclassification

costs, or the number of learning tasks etc.

Considering the above challenges, this research aims to investigate

theoretical foundations, study new algorithm designs and system frame-

works to enable the mining of complex graph streams from three

aspects, including (1) Correlated Graph Stream Mining, (2) Graph

Stream Classifications, and (3) Complex Task Graph Classification.

In particular, correlated graph stream mining intends to carry out

structured pattern search and support the query of similar graphs

from a graph stream. Due to the dynamic changing nature of the

streaming data and the inherent complexity of the graph query pro-

cess, treating graph streams as static datasets is computationally

infeasible or ineffective. Therefore, we proposed a novel algorithm,

CGStream, to identify correlated graphs from a data stream, by us-

ing a sliding window, which covers a number of consecutive batches

of stream data records. Experimental results demonstrate that the

proposed algorithm is several times, or even an order of magnitude,

more efficient than the straightforward algorithms.

Graph stream classification aims to build effective and efficient clas-

sification models for graph streams with continuous growing volumes

and dynamic changes. We proposed two methods for complex graph

stream classification. Due to the inherent complexity of graph struc-

ture, labelling graph data is very expensive. To solve this problem, we

proposed a gLSU algorithm, which aims to select discriminative sub-

graph features with minimum redundancy by using both labelled and

unlabelled graphs for graph streams. The second approach handles

graph streams with imbalanced class distributions and noise. Both

frameworks use an instance weighting scheme to capture the under-

lying concept drifts of graph streams and achieve significant perfor-

mance gain on benchmark graph streams.

Complex task graph classification aims to address the graph classifi-

cation problems with complex constraints. We studied two complex

task graph classification problems, cost-sensitive graph classification

of large-scale graphs and multi-task graph classification. As in medical

diagnosis the misclassification cost/risk for different classes is inher-

ently different and large scale graph classification is highly demanded

in real-life applications, we proposed a CogBoost algorithm for cost-

sensitive classification of large scale graphs. To overcome the limi-

tation of insufficient labelled graphs for a specific learning task, we

further proposed effective algorithms to leverage multiple graph learn-

ing tasks to select subgraph features and regularize multiple tasks to

achieve better generalization performance for all learning tasks.

Contents

Contents i

List of Figures vii

List of Tables xi

Nomenclature xii

1 Introduction 1

1.1 Motivations and Significances . 1

1.2 Research Problems . 5

1.2.1 Graph Stream Search . 5

1.2.2 Graph Stream Classification 6

1.2.3 Complex Task Graph Classification 6

1.3 Thesis Contributions . 7

1.3.1 Graph Stream Search . 7

1.3.2 Graph Stream Classification 7

1.3.3 Complex Task Graph Classification 8

1.4 Thesis Overview . 8

1.5 Publications . 10

2 Literature Review 13

2.1 Correlated Graph Search . 13

2.2 Graph Classification . 14

2.2.1 Similarity-based methods 14

2.2.2 Vector representation-based methods 14

i

CONTENTS

2.2.3 Graph-based Learning for a Single Network 17

2.3 Imbalanced Data Classification 17

2.4 Data Stream and Graph Stream Classification 18

2.5 Cost-sensitive Learning . 19

2.6 Multi-task Learning . 20

2.7 Key techniques . 21

2.7.1 gSpan Algorithm . 21

2.7.2 Column generation Algorithm 21

2.7.3 Cutting Plane Algorithm 22

3 Preliminary 23

3.1 Definitions . 23

3.2 Notations . 26

3.3 Benchmark Graph Datasets . 26

I Graph Stream Query 33

Graph Stream Search: Overview 35

4 Continuous Correlated Graph Query for Data Streams 37

4.1 Introduction . 37

4.2 Preliminaries and Problem Definition 40

4.2.1 Preliminaries . 40

4.2.2 Problem definition . 41

4.2.3 Challenges and Solutions 42

4.3 Frequency lower bound for candidate generation 44

4.3.1 Frequency lower bound . 45

4.3.2 Estimation the increment of γ 48

4.4 Correlation upper bound and Heuristic rules for candidate pruning 49

4.4.1 Maximum Value of the Numerator 50

4.4.2 Minimum Value of the Denominator 51

4.4.3 Loose correlation upper bound 52

4.4.4 Heuristic Rule . 52

ii

CONTENTS

4.5 Algorithm . 53

4.6 Experimental Result . 56

4.6.1 Experiment setup . 56

4.6.2 System runtime performance 57

4.6.3 Query Precision . 63

4.7 Conclusions . 64

II Graph Stream Classification 65

Graph Stream Classification: Overview 67

5 Graph Stream Classification using Labeled and Unlabeled Graphs 69

5.1 Introduction . 69

5.2 Problem Definition & Overall Framework 72

5.2.1 Overall Framework . 73

5.3 Minimum Redundancy Subgraph Feature Selection 74

5.3.1 Informativeness of the Feature Set 75

5.3.2 Informative Subgraph Feature Selection 78

5.3.3 Minimum Redundancy Subgraph Feature Selection 79

5.4 gSLU Algorithm . 84

5.5 Experiments . 87

5.5.1 Experimental Settings . 87

5.5.2 Experimental Results . 88

5.6 Conclusion . 97

6 Imbalanced and Noisy Graph Stream Classification 99

6.1 Introduction . 99

6.1.1 Imbalanced Graph Classification 99

6.1.2 Graph Stream Classification 100

6.2 Overall Framework . 102

6.3 Learning from a Local Chunk with Noisy and Imbalanced Graphs 105

6.3.1 Framework of Linear Boosting Algorithm 105

6.3.2 gBoost Algorithm for Balanced graph classification 106

iii

CONTENTS

6.3.3 Objective Function for Imbalanced and Noisy Data 107

6.3.4 Linear Boosting with Graph Data 108

6.4 gEBoost algorithm . 114

6.5 Experiments . 117

6.5.1 Experimental Settings . 117

6.5.2 Experimental Results . 120

6.6 Conclusion . 132

III Complex Task Graph Classification 133

Complex Task Classification: Overview 135

7 Cost-sensitive Learning for Large Scale Graph Classification 137

7.1 Introduction . 137

7.1.1 Cost-Sensitive Graph Classification 137

7.1.2 Fast Training for Large Scale Graphs 139

7.2 Problem Definition and Overall Framework 141

7.2.1 Overall Framework . 143

7.3 Cost-Sensitive Learning for Graph Data 143

7.3.1 Optimal Cost-sensitive Loss Function 144

7.3.2 Cost-Sensitive Formulation for Graphs 146

7.3.3 Boosting for Cost-sensitive Learning on Graphs 147

7.3.4 Cost-sensitive Subgraph Exploration 149

7.4 Fast Training for Large Scale Graphs 151

7.4.1 From l-Slacks to 1-Slack Formulation 151

7.4.2 Cutting-plane Algorithm for Fast Training 152

7.5 Time Complexity Analysis: Theoretical Aspect and Practice . . . 154

7.5.1 Time complexity of Subgraph Mining 154

7.5.2 Time complexity of LP Solving 155

7.6 Experiments . 156

7.6.1 Experimental Settings . 156

7.6.2 Experimental Results . 158

7.7 Conclusion . 166

iv

CONTENTS

8 Joint Structure Feature Exploration and Regularization for Multi-

Task Graph Classification 167

8.1 Introduction . 167

8.2 Problem Definition & Preliminaries 172

8.2.1 Preliminaries . 172

8.3 Multi-task Graph Classification 173

8.3.1 Regularized Multi-task Graph Classification Formulation . 173

8.3.2 Multi-task Graph Classification: Challenges and Solution

Sketch . 175

8.3.3 Optimal Subgraph Candidate Exploration 177

8.3.4 Multi-task Graph Classification Algorithm 179

8.3.5 Multi-Task Driven Subgraph Mining 182

8.4 Experiment . 185

8.4.1 Experimental Settings . 185

8.4.2 Experimental Results . 187

8.5 Discussion . 195

8.6 Conclusion . 197

9 Conclusions and Future Work 199

9.1 Summary of This Thesis . 199

9.2 Future Work . 200

Appendix A 203

A.1 Duality of Eq.(6.4) . 203

A.2 Duality of Eq. (7.7) . 204

A.3 Equality of Eq. (7.7) and Eq. (7.10) 204

A.4 Duality of Eq.(7.10) . 205

References 207

v

CONTENTS

vi

List of Figures

1.1 Examples of graphs for different applications. 2

1.2 An illustrated example of correlated graph search 3

1.3 Graph representation for a scientific paper 4

2.1 Subgraph-based methods for graph classification 15

3.1 Graph and Subgraph Examples. 24

4.1 A framework of sliding window based correlated graph query for

data streams . 41

4.2 System runtime consumption with respect to different θ values. . 59

4.3 System accumulative runtime consumption with respect to differ-

ent θ values. 60

4.4 System accumulative runtime consumption with respect to differ-

ent w values. 61

4.5 Comparison on different w values. (A) and (B), system runtime

in each time point; (C) and (D), system accumulative runtime in

each time point. 61

4.6 System accumulative runtime consumption with different |Dj| values. 62

4.7 Comparison on differentm values. (A) system runtime, (B) system

accumulative runtime. 62

4.8 Query precisions with respect to different parameters settings. . . 63

5.1 An example demonstrating subgraph correlations 70

5.2 A framework for semi-supervised graph data stream classification 73

vii

LIST OF FIGURES

5.3 An illustrated example for subgraph selection with minimum re-

dundancy . 81

5.4 Comparison of the proposed minimum redundancy subgraph fea-

ture selection with other algorithms. 89

5.5 Accuracy w.r.t. different number of labeled graphs on DBLP stream 90

5.6 Accuracy w.r.t. different seizes of labeled graphs on NCI stream . 91

5.7 Average accuracy (and standard deviation) v.s. labeled graph sizes

|Dl
t| with chunk size |Dt|=800, feature size m = 20. 92

5.8 Accuracy w.r.t. different number of features on DBLP stream . . 93

5.9 Accuracy w.r.t. different number of features on NCI stream with

each chunk containing 800 graphs, and the size of labeled data in

each chunk is 30. The number of features selected in each chunk:

(A) 10; (B) 20; (C) 30. 94

5.10 Averaged accuracy (and standard deviation) v.s. number of fea-

tures m, with chunk size |Dt|=800, feature size m = 20. 94

5.11 Accuracy w.r.t. different chunk sizes on DBLP stream with each

chunk containing 30 labeled graphs, and the number of features in

each chunk is 50. The batch sizes vary as: (A) 1000; (B) 800; (C)

600. 95

5.12 System accumulated runtime v.s. number of graphs processed over

stream. (|Dt| = 800, |Dl
t| = 10%|Dt|, and m=20). 96

5.13 System accumulated runtime v.s. different chunk sizes |Dt|, |Dl
t| =

10%|Dt|. m=20; (A) Results on DBLP stream; (B) Results on NCI

stream. 96

6.1 A framework for imbalanced noisy graph stream classification. . . 103

6.2 The proposed boosting framework for learning from noisy and im-

balanced graphs in each chunk . 104

6.3 A conceptual view of graph weighting scheme for imbalanced graph

stream classification . 115

6.4 Comparison of different algorithms for imbalanced graph stream

classification . 121

viii

LIST OF FIGURES

6.5 AUC w.r.t. different noise levels on NCI stream with ensemble size

k=10 and chunk size Dt= 1500. (A)Z = 5; (B) Z = 15. 123

6.6 AUC w.r.t. different noise levels on DBLP stream with ensemble

size k=10 and chunk size Dt= 800. (A)Z = 5; (B) Z = 15. . . . 123

6.7 AUC w.r.t. different noise levels on Twitter stream. Figures on the

left panel are plotted with respect to uniform intervals of chunks in

the x-axis, and figures on the right panel are plotted with respect

to uniform intervals of weeks in the x-axis. 124

6.8 Averaged AUC values (and standard deviation) v.s. different noise

degrees Z, with ensemble size k=10. 126

6.9 AUC w.r.t. different ensemble sizes on DBLP stream with chunk

size |Dt|=800. 127

6.10 AUC w.r.t. different ensemble sizes on Twitter stream. Figures

on the left panel are plotted with respect to uniform intervals of

chunks in the x-axis, and figures on the right panel are plotted

with respect to uniform intervals of weeks in the x-axis. 128

6.11 AUC w.r.t. different chunk size on NCI stream with ensemble size

k=10. (A) |Dt| = 1000; (B) |Dt| = 2000. 129

6.12 AUC w.r.t. different chunk size on DBLP stream with ensemble

size k=10. (A) |Dt| = 600; (B) |Dt| = 1000. 129

6.13 System accumulated runtime v.s. number of graphs processed over

stream. (A) NCI stream; (B) DBLP stream; (C) Twitter stream. . 131

6.14 System accumulated runtime v.s. different chunk sizes |Dt|. 132

7.1 Training time w.r.t. different number of graphs on NCI-1 dataset

for gBoost [120] and igBoost algorithm [109]. Runtime of exist-

ing graph classification algorithms exponentially grows w.r.t. the

increase of the training set size. 139

7.2 The proposed fast cost-sensitive boosting for graph classification

framework . 142

ix

LIST OF FIGURES

7.3 Different loss functions and formulations with respect to support

vector machines (SVMs): (A) Standard Hinge Loss, (B) Cost-

sensitive Hinge Loss with C1 = 4 and C−1 = 2, and (C) Different

SVM formulations with Standard Hinge Loss and Cost-sensitive

Hinge Loss (cf.[91]). 145

7.4 Experimental Results. (A) Average cost, (B) Time Complexity. 159

7.5 Runtime performance in each iterations. Runtime consumption for

(A) gBoost, (B) igBoost, (C) CogBoost-a, and (D) CogBoost-1. . 162

7.6 Average Cost with respect to different C1 value 163

7.7 Average cost (left y-axis) and algorithm runtime (right y-axis) with

respect to different ε values (x−axis). (A) NCI-1, and (B) NCI-33 164

8.1 The comparisons of the Top 5 most discriminative subgraphs for

each graph classification task . 169

8.2 Accuracy comparisons on training and test graphs with 50 training

graphs for each task . 170

8.3 The classification accuracy of each single task w.r.t. the number

of training graphs in each task. 189

8.4 The AUC values of each single task w.r.t. the number of training

graphs in each task. 190

8.5 Pruning effectiveness with different pruning modules on NCI tasks

for subgraph mining. A) Running time; B) Number of enumerated

subgraphs. 194

x

List of Tables

1.1 Structure of the thesis with reference to the chapters. 9

3.1 Important notations used in the chapter 27

3.2 Description of Graph Datasets Used in the Thesis 28

3.3 DBLP-balanced used in this thesis 29

3.4 DBLP-imbalanced graph stream used in experiments 30

4.1 Effectiveness of Pruning in CGStream with θ = 0.8 (seconds)[Acc.

Time - accumulative runtime] . 58

5.1 Pairwise t-test results with labeled graph sizes |Dl
t|. A, B, and C

denote gSLU, gSemi+Stream, and IG+Stream, respectively. . . . 92

5.2 Pairwise t-test results with various feature size m. A, B, and C

denote gSLU, gSemi+Stream, and IG+Stream, respectively. . . . 95

6.1 NCI cancer screen datasets used in the experiments 118

6.2 Average AUC values and standard deviations on DBLP Streams

w.r.t Different Imbalance Degrees 130

7.1 Average Time Consumption in Each Iteration (Seconds) 164

8.1 Accuracies on 9 NCI graph classification tasks w.r.t different num-

bers of training graphs in each task 188

8.2 AUC values on 9 NCI graph classification tasks w.r.t different num-

bers of training graphs in each task 188

8.3 Accuracies on PTC tasks . 191

8.4 AUC values on PTC tasks . 191

xi

LIST OF TABLES

8.5 Running statistics w.r.t different K values for MTG-�21 (50 train-

ing graphs for each task, Smax = 150) 192

8.6 Results w.r.t. different γ values for MTG-�1 (50 training graphs

for each task, Smax = 15) . 193

xii

Chapter 1

Introduction

1.1 Motivations and Significances

Data mining is a fundamental task and has drawn increasing interest in the last

decade, due to the ever increasing of gigantic data and the demand for discovering

useful information from large scale data. Traditionally, data mining algorithm

performs on data represented by a flat table with instance-feature format. How-

ever, due to the rapid development of electronic devices, networking, and social

media technologies, recent years have witnessed an increasing number of appli-

cations where data are no longer represented in simple instance-feature format,

but exhibit as complex network structures indicating dependency relationships.

Typical examples (some are illustrated in Figure 1.1) include an XML webpage

(i.e. an instance) which points to (or is pointed to) several other XML web-

pages [116], a scientific publication with a number of references [2], posts and

responses generated from social networking sites (e.g. Tweets generated from

Twitter [114]), and chemical compounds with molecules (i.e. nodes) linked to-

gether through some bounds (i.e. edges) [29, 40]. To discover knowledge from

such network of information, graphs are natural tools to model and capture the

relationships in the networks.

In real-life applications, data are becoming more and more dynamic. Instead

of being a static dataset, data are generated and evolving dynamically. Such

continuous flow of data is known as data streams [3, 5, 60]. Mining from data

1

1. INTRODUCTION

Figure 1.1: Examples of graphs for different applications.

streams usually has high requirements in terms of memory and time consumption.

On the one hand, the system for handling data streams is never large enough to

store all the streaming data for multiple scanning. On the other hand, most

streaming scenarios need the results in a timely fashion. Another challenge for

mining from data streams is that the underlying data distribution is gradually or

rapidly changing over time, which is known as concept drifts [133, 141]. Concept

drifts impose vast difficulty on the classification task of data streams because the

decision concept will gradually or suddenly change over time, which means that

a learned model of historical data will become outdated and need to be revised

very soon.

The situations become more complicated when the learning tasks at hand

are subject to various restrictions on the number of labeled data, distributions,

misclassification cost, or number of learning tasks. Due to the inherent complexity

of the graph data and the costs involved in the labeling process, collecting a large

number of labeled graphs for a specific task is expensive [7]. Furthermore, the

labeled graphs data in many scenarios usually have imbalanced class distributions

and the misclassification costs are unequal for different classes of data.

Considering the interconnected characteristic of networks, the dynamic nature

of streams, and the inherent complexity of learning tasks, this research aims to fo-

cus on complex graph stream mining, which essentially enriches the research

of big data mining [148] in three perspectives (volume, velocity, and variety,

that is, the“3V” properties of big data). From the view of variety, this research

2

Figure 1.2: An illustrated example of correlated graph search. Given a query graph,
correlated graph search can return some co-occurence subgraph patterns to the query.
For instance, E-F simultaneously appears with the query graph A-B-C in the original
graph database.

extends several fundamental data mining problems from traditional vector data

to more complex structure data. From the perspectives of volume and velocity,

this thesis proposes effective graph stream algorithms for handling dynamically

increasing and changing graph data. The research explores three tasks of complex

graph stream mining: (1) Graph Stream Query, (2) Graph Stream Classification,

and (3) Complex Task Graph Classification. All of them are well motivated in a

variety of applications.

• Continuous Correlated Graph Query for Data Streams. The in-

ternet has produced massive structure data representing users’ browsing

patterns in recent years. In this scenario, each user’s browsing history in a

large website can be represented as a network (graph). While user browsing

patterns are dynamically flowing and evolving over time, a useful task is

to discover some correlated graphs from the graph streams. The correlated

graphs reveal the co-occurrent patterns shared by different users. Such

group of users usually shares some common interests. Analyzing correlated

graphs helps website owners understand user behaviors so that they can

improve the website structures, and detect abnormal behaviors, which are

very important in E-commerce [74]. The correlated graph query problem

can be modeled as in Figure 1.2.

3

1. INTRODUCTION

Figure 1.3: Graph representation for a scientific paper (P.100) in DBLP. The rectangles
are paper ID nodes and circles are keyword nodes. Paper P.100 cites (connects) paper
P.101 and P.102, and P.100 has keywords Data, Stream, and Mining in its title. Paper
P.101 has keyword Query in its title, and P.102’s title includes keywords Large and
Batch. For each paper, the keywords in the title are linked to each other. More
information is given in Section 3.3.

• Graph Stream Classification. Numerous applications have emerged in

recent years calling for dynamic graph stream classification. For instance,

in a scientific network, each publication can be represented as a network

(graph), where nodes are papers or keywords and edges are citations be-

tween papers or keyword relationships. A typical publication in DBLP

dataset modeled as a graph is illustrated in Figure 1.3 . The scientific

publications are continuously being published, and therefore increase dy-

namically over time as streams. A classification task can help automatically

classify a publication into several categories, such as database, data mining,

and computer vision.

• Complex Task Graph Classification. Real-life graph classification tasks

may have other complicated restrictions. Typical applications include:

1. Cost-sensitive Graph Classification. In this case, the misclassifica-

tion cost for different classes are inherently different. For instance, in

structure based medical diagnose [29, 131], chemical compounds active

against cancer are very rare and are expected to be carefully monitored

and identified. A false negative identification (that is, predicting an

active compound to be inactive) has a much more severe consequence

(that is, a higher cost) than a false positive identification (predicting

an inactive compound to be active). Therefore, a false negative and

a false positive are inherently different and a false negative prediction

4

may result in delay and wrong diagnosis, leading to severe complica-

tions (or extra costs) at a later stage.

2. Multi-task Graph Classification. In many cases, several relevant graph

learning tasks may co-exist and each has a rather limited number of

training graphs. An example is given as follows:

Chemical Compound Categorization is important in biomedical re-

search for testing whether a chemical compound is active to a specific

cancer, such as melanoma. For melanoma cancer, determining activi-

ties of a molecule is expensive as it requires time, effort, and expensive

resources [7] to conduct biological assay. In reality, some similar bioas-

say tasks 1, such as an anti-cancer test for prostate, may be available.

As the graph data for different types of cancer may share common

substructures, learning multiple related tasks together may potentially

help improve the generalization performance of each single task.

The complex task graph classification is important but as yet has not been

studied in literatures.

1.2 Research Problems

As each of the above tasks is essential in real-life applications, our research ex-

amines the unique challenge of each task carefully and exploits several research

problems accordingly.

1.2.1 Graph Stream Search

For graph stream search, we are given a streaming of graphs S, and a query graph

gq; the objective is to discover a set of subgraphs that are correlated to query

graph gq. The correlated graph query in a data stream setting is essentially

a challenge in the sense that: (1) the graph stream dynamically increases and

changes over time, and (2) the correlated graph search needs the results in a

timely fashion.

1https://pubchem.ncbi.nlm.nih.gov/

5

1. INTRODUCTION

1.2.2 Graph Stream Classification

Semi-supervised Graph Stream Classification: For graph stream classifi-

cation, we are given a collection of graph data with class labels; its objective is

to build a prediction model with maximum accuracy in classifying previously un-

seen graph streams. Due to the complexity of network structures, labeling graphs

usually requires experts to investigate the structures carefully. In order to reduce

the human resource of labeling graphs, a possible way is to combine both labeled

and unlabeled graphs to construct classifier models. How to use both labeled and

unlabeled graphs to perform graph classification in a streaming scenario is one of

the research problems in our research.

Imbalanced Graph Stream Classification: Meanwhile, in real-life applica-

tions, especially for the graph based domain, the class distribution of data is

inherent imbalanced. In the NCI chemical compound databases, there are only

about 5% percent of chemical compounds which are active to the cancer bioassay

test, whereas 95% of them are inactive to the cancer bioassay test. Classification

for imbalanced graph streams is another research problem in our research.

1.2.3 Complex Task Graph Classification

This thesis also considers the following complex task graph classification:

Cost-sensitive Learning for Large Scale Graphs: For graph classification,

all existing methods assume, explicitly or implicitly, that misclassifying a positive

graph incurs an equal amount of cost/risk to the misclassification of a negative

graph, i.e., all misclassifications have the same cost. The induced decision rules

are commonly referred to as being cost-insensitive. In real-life graph applications,

the equal-cost assumption is mostly invalid (or at least too strong).

Another challenge of existing graph classification algorithms is that they are

only designed for small size graph datasets and are inefficient to scale up to large

size graph datasets.

In summary, how to conduct cost-sensitive learning for large scale graphs is

an important research topic of this thesis.

Multi-task graph classification: Existing graph classification has been ad-

vanced to many complicated settings, such as multi-label [76] or multi-graph

6

learning [144], but all these methods are designed to handle single learning tasks.

In reality, several relevant graph learning tasks may co-exist and each has a rather

limited number of training graphs. How to jointly learn the multiple graph clas-

sification task is also investigated in our thesis.

1.3 Thesis Contributions

The thesis addresses a number of fundamental problems of complex graph stream

mining from three aspects, including graph stream search, graph stream classi-

fication, and complex task graph classification. The main contributions of this

study can be summarized in three parts, accordingly.

1.3.1 Graph Stream Search

Contribution:

• This thesis proposed to discover the correlated subgraph patterns from dy-

namic graph streams. The proposed algorithm, CGStream, is several times,

or even an order of magnitude, more efficient than an exhaustive search

method.

Outcome:

• The CGStream algorithm was published in CIKM-2012 [107]. We further

explored its variants, top-K based correlated subgraph search for graph

streams, and published a poster paper in CIKM-2012 [108] and ICPR-

2012 [110].

1.3.2 Graph Stream Classification

Contributions:

• We proposed to use both labeled and unlabeled graphs for effective subgraph

feature selection for graph stream classification.

• We proposed a novel graph stream classification algorithm for imbalanced

and noisy graph data.

7

1. INTRODUCTION

Outcome:

• Our semi-supervised feature exploration algorithms for graph stream clas-

sification was published in ICDE-2013 [101]. The techniques used in the

paper [101] have inspired a number of joint works on more complicated

graph classification settings, such as multi-graph classification [142, 143],

multi-graph-view classification [146], and multi-view multi-instance feature

selection [145].

• Our imbalanced graph classification algorithm was first published in IJCAI-

2013 [109], and then the streaming version algorithm was latter published

in TCYB-2015 [104].

1.3.3 Complex Task Graph Classification

Contributions:

• We proposed an effective algorithm for cost-sensitive learning for large scale

graphs.

• We proposed a jointly regularized subgraph feature exploitation method for

multi-task graph classifications.

Outcome:

• Our cost-sensitive learning algorithm for large scale graph data was pub-

lished in TKDE-2015 [102].

• Our multi-task graph classification learning algorithm is currently under

review by TKDE. The technique used for this part, has been successfully

applied to single task graph classification published in Pattern Recogni-

tion [103].

1.4 Thesis Overview

The thesis is structured into three parts; these are graph stream query, graph

stream classification, and complex task graph classification. Table 1.1 summarizes

8

the overall structure of our research with the mapping to the chapters of this

thesis. The detailed roadmap of the thesis is summarized as follows:

Table 1.1: Structure of the thesis with reference to the chapters.

Part Research Task Chapter Related Publication

— Literature Review & Preliminary Chapter 2, 3

Part I
Graph Stream

Search
Correlated Graph Search Chapter 4 [107]

Part II
Graph Stream
Classification

Semi-supervised
Graph Stream Classification

Chapter 5 [101]

Imbalanced & Noisy
Graph Stream Classification

Chapter 6 [104, 109]

Part III
Complex Graph
Classification

Cost-sensitive & Large Scale
Graph Classification

Chapter 7 [102]

Multi-task Graph Classification Chapter 8

—- Conclusions and Future Work Chapter 9

Chapter 2: Before formally studying solutions to address research problems,

we review all related works from different aspects, including graph query, graph

classification, imbalanced data classification, data stream and graph stream clas-

sification, cost-sensitive learning, and multi-task learning.

Chapter 3: This chapter provides preliminary and common definitions for the

proposed models. It also summarizes all the datasets used in the thesis.

Part I (Chapter 4): Part I presents our algorithm, CGStream, for continu-

ous correlated graph search over data streams. The algorithm returns a query

graph’s correlated graphs in a sliding window which covers a number of consecu-

tive batches of stream records.

Part II: Chapter 5 describes the proposed gLSU algorithm which uses both

labeled and unlabeled graphs for graph stream classification. The proposed algo-

9

1. INTRODUCTION

rithm selects a set of discriminative subgraphs with minimum redundancy to learn

a classifier from each streaming batch, and employs a dynamic instance weighting

mechanism to handle the concept drift in graph streams. Chapter 6 details our

algorithm for handling imbalanced and noisy graph streams. A boosting frame-

work on each graph batch is proposed for imbalanced graph data, followed by an

instance weighting scheme to capture the underlying concept drift over streams.

Part III: Chapter 7 depicts our CogBoost algorithm for handling cost-sensitive

graph classification with large scale graphs. The proposed algorithm implements

the Bayes optimal loss and scales to large scale graph data. Chapter 8 considers

how to jointly learn multiple graph classification task to improve the generaliza-

tion ability.

Note that Part III mainly focuses on complex task graph classification. How-

ever, these methods can be easily extended to streaming scenarios, following the

frameworks used in Part II for semi-supervised graph stream classification (Chap-

ter 5) or imbalanced graph stream classification (Chapter 6).

Chapter 9: We summarize the whole thesis and point out several future di-

rections of this study in Chapter 9.

1.5 Publications

Below is a list of the papers associated with my PhD research that have been

submitted, accepted, and published:

Journal Publications:

1. Shirui Pan, Jia Wu, Xingquan Zhu. CogBoost: A Fast Cost-sensitive

Graph Boosting Algorithm. IEEE Transactions on Knowledge and Data

Engineering (TKDE), Accepted, 2015. (Australia ERA Ranked A)

2. Shirui Pan, Jia Wu, Xingquan Zhu, and Chengqi Zhang. Graph Ensemble

Boosting for Imbalanced and Noisy Graph Stream Classification. IEEE

Transactions on Cybernetics (TCYB), vol 45, no 5, pp 940-954, 2015.

(Australia ERA Ranked A)

10

3. Shirui Pan, Jia Wu, Guodong Long, Xingquan Zhu, Chengqi Zhang. Find-

ing the Best Not the Most: Regularized Loss Minimization Subgraph Se-

lection for Graph Classification. Pattern Recognition (PR), vol 48, no 11,

pp 3783-3796, 2015. (Australia ERA Ranked A*)

4. Shirui Pan, Jia Wu, Xingquan Zhu, Chengqi Zhang, and Philip S. Yu.

Joint Structure Feature Exploration and Regularization for Multi-Task Graph

Classification. IEEE Transactions on Knowledge and Data Engineering

(TKDE). (Australia ERA Ranked A)

5. Shirui Pan, Jia Wu, Xingquan Zhu, and Chengqi Zhang. Boosting for

Graph Classification with Universum Graphs. Knowledge and Information

System (KAIS), under review. (Australia ERA Ranked B)

6. Jia Wu, Shirui Pan, Xingquan Zhu, Zhihua Cai. Boosting for Multi-Graph

Classification. IEEE Transactions on Cybernetics (TCYB), vol 45, no 3,

pp 430-443, 2015. (Australia ERA Ranked A).

Conference Publications:

7. Shirui Pan, Xingquan Zhu. Graph Classification with Imbalanced Class

Distributions and Noise. 23rd International Joint Conference on Artificial

Intelligence (IJCAI), 2013. (Australia ERA Ranked A)

8. Shirui Pan, Xingquan Zhu, Chengqi Zhang, and Philip S. Yu. Graph

Stream Classification using Labeled and Unlabeled Graphs. International

Conference on Data Engineering (ICDE), 2013. (Australia ERA Ranked

A)

9. Shirui Pan and Xingquan Zhu. CGStream: Continuous Correlated Graph

Query for Data Streams. 21st ACM International Conference on Informa-

tion and Knowledge Management (CIKM), 2012. (Australia ERA Ranked

A)

10. Shirui Pan and Xingquan Zhu. Continuous Top-k Query for Graph Streams.

21st ACM International Conference on Information and Knowledge Man-

agement (CIKM), 2012. (Australia ERA Ranked A)

11

1. INTRODUCTION

11. Shirui Pan and Xingquan Zhu. Top-k Correlated Subgraph Query for

Data Streams. 21st International Conference on Pattern Recognition (ICPR),

2012. (Australia ERA Ranked B)

12. Jia Wu, Zhibin Hong, Shirui Pan, Xingquan Zhu, Chengqi Zhang. Multi-

Graph-View Learning for Graph Classification. IEEE International Con-

ference on Data Mining (ICDM). 2014. (Australia ERA Ranked A)

13. Jia Wu, Zhibin Hong, Shirui Pan, Xingquan Zhu, Zhihua Cai, Peng Zhang,

Chengqi Zhang. Exploring Features for Complicated Objects: Cross-View

Feature Selection for Multi-Instance Learning. ACM International Confer-

ence on Information and Knowledge Management (CIKM). 2014. (Aus-

tralia ERA Ranked A)

14. Jia Wu, Zhibin Hong, Shirui Pan, Xingquan Zhu, Chengqi Zhang, and Zhi-

hua Cai. Multi-Graph Learning with Positive and Unlabeled Bags. SIAM

International Conference on Data Mining (SDM), 2014. (Australia ERA

Ranked A)

12

Chapter 2

Literature Review

This thesis studies several fundamental problems for complex graph stream min-

ing. As a result, this work is closely related to a variety of works from different

aspects: correlated graph search, graph classification, imbalanced data classifi-

cation, data stream and graph stream classification, cost-sensitive learning, and

multi-task learning. In this chapter, we review the related work accordingly.

2.1 Correlated Graph Search

Mining correlation has been widely studied in various domains in the literature.

For market-basket database, extensive studies have addressed the correlation be-

tween items [150, 165]. While these methods were proposed to identify correlation

defined by Pearson’s correlation coefficient, some other measures such as χ2 test

[18], h-confidence [149], and m-pattern measure [89] are also investigated in the

community.

In the context of static graph databases, there are several works related to

correlation mining. Given a query graph, CGSearch [71] mines the correlated

graphs whose correlation is above a given threshold, TopCor [74] discovers the

top-k correlated graphs with the highest correlation in a graph database. These

two works carry out the query based on a given query graph gq, whereas the work

in [73] does not require users to specify any query. In other words, it tries to find

out all correlated graph pairs in a database. In comparison, all existing works

13

2. LITERATURE REVIEW

in this category only limit their scopes to static databases, whereas our work is

designed for dynamic graph streams.

In data stream environments, recently there are some works on graph search

[138] and closed frequent subgraph mining [15]. But to the best of our knowledge,

no existing works/studies exist for correlated graph query for data streams.

2.2 Graph Classification

As graphs involve node-edge structures whereas most existing learning algorithms

use an instance-feature representation model, the major challenge of graph clas-

sification is to transfer graphs into proper format for learning methods to train

classification models. Existing methods for graph classification [24, 40, 65, 70,

75, 76, 117, 129, 152, 168] can be roughly categorized into two groups: similarity-

based methods and vector representation-based methods.

2.2.1 Similarity-based methods

These approaches aim to directly learn global similarities between graphs by using

graph kernels [12, 70, 98, 122] or graph embeddings [118]. Global similarities

are then fed to similarity-based classifiers, such as KNN or SVM, for learning.

One clear drawback of global similarity-based approaches is that the similarity is

calculated based on global graph structures, such as random walks or embedding

space. Therefore, it is not clear which substructures are more important for

classifying graphs between different classes.

2.2.2 Vector representation-based methods

Another branch of methods transfer graphs into vector representations in struc-

ture space or in Euclidean space. In structure space [62, 63], geometrical and

analytical concepts such as the angle between structures and the derivatives of

functions on structures can be obtained, so that the structural pattern recognition

problems can be formulated as optimization problems with certain cost functions.

In Euclidean space, the goal is to transfer graphs into vector representations in

Euclidean space so existing analytical techniques can be applied for data analysis.

14

Figure 2.1: Subgraph-based methods for graph classification from the feature selec-
tion perspective. TFM methods (A) sequentially perform frequent subgraph mining
1©, optimal feature selection 2©, and classifier learning process 3©. DFM methods (B)
integrate the feature selection 2© into the frequent subgraph mining 1© process. Em-
bedding methods (C) unifies all steps (1© 2© 3©) into a whole framework, and iterates
until convergence 4©.

Methods to transfer graphs into Euclidean space, as shown in Fig. 2.1, can be

grouped into three categories, including two-step filter methods (TFMs), direct

filter methods (DFMs), and embedded methods (Ems).

Two-step filter methods (TFM): TFMs are straightforward approaches for

graph classification which simply decompose frequent subgraph generation and

selection as two separated steps. An early work [70] has shown that learning an

SVM classifier based on the discovered frequent subgraphs can achieve reasonably

good accuracy for graph classification. On the other hand, research [117, 129]

also indicates that TFM methods may result in a bottleneck for the subsequent

feature selection module. Specifically, the number of frequent subgraphs will grow

exponentially if the minimum support threshold is low, which imposes a great

challenge for the subsequent feature selection task. This challenge has motivated

many direct filter methods (DFMs), which seek to integrate subgraph discovery

and feature selection into one step.

Direct filter methods (DFMs): For DFMs (a review on this category can

be found in [24]), a key issue is to define a proper measurement to assess the

15

2. LITERATURE REVIEW

utility of each subgraph. Yan et al [152] proposed a LEAP algorithm to ex-

ploit the correlation between structural similarity and significance similarity, so

that a branch-and-bound rule can be derived to prune out unpromising searching

space efficiently. Ranu and Singh [117] proposed a scalable GraphSig algorithm,

which is able to mine the significant subgraph with low frequencies. Thoma et

al. [129] propose a CORK algorithm to find subgraph features. Recently, re-

searchers have extended the DFM method to other graph applications, and have

proposed effective algorithms such as gSemi [75] for the semi-supervised setting,

gCGVFL [146] for multi-view learning, gHSIC [76] for multi-label classification,

and our recent multi-graph classification for classifying graph bags, each contain-

ing multiple graphs [142, 143].

Although filter methods for graph classification have been extensively studied,

they all suffer from two major disadvantages: (1) the feature selection is not

linked to the model learning process. As a result, the selected subgraph features

may not best fit the underlying learning algorithms; and (2) the optimal number

of subgraphs K for graph classification is difficult to decide and often varies

from dataset to dataset, and inappropriately specified K value often results in

significantly reduced classification accuracy. This is the common drawback for

filter-based methods [54].

Embedded Methods (Ems): Embedded approaches for graph classification

integrate the subgraph selection into the model training process. In this subcat-

egory, Saigo et al [120] proposed a gBoost algorithm which formulates the graph

classification as a linear program. The gBoost algorithm can be considered as a �1

regularized hinge loss classification for graph data. We propose a regularized loss

minimization driven (RLMD) subgraph selection algorithm for graph classifica-

tion [103], which is more general in the sense that it can adopt any differentiable

loss function and use more robust regularization to produce better performance.

Furthermore, because gBoost only considers applications with balanced class dis-

tributions or scenarios with equal misclassification cost/risk, we extend gBoost

to handle imbalanced graph data in [109], to imbalanced graph streams in [104],

and to cost-sensitive classification scenarios with large scale graph data in [102].

16

2.2.3 Graph-based Learning for a Single Network

It is worth noting that the graph classification considered in our thesis is different

from a number of graph-based learning studies for a single network. Recent years

have witnessed increasing research for graph-based learning in a single network.

Instead of considering samples as I.I.D observations, graph-based learning takes

the relationships/correlations between samples to ensure effective learning. For

example, graph-based approaches have been popularly used to propagate labels

in semi-supervised learning [27, 69, 90], where training samples are connected

through one or multiple graphs. A recent method [84] considers preserving global

and local structures inside the training data for feature selection. For large scale

networks, predicting linkage relationships between nodes (that is, link prediction)

can be used for friendship recommendation in social networks [82], or suggest-

ing potential interactions between proteins in bioinformatics research. A recent

work [100] proposed to use latent feature kernels to support link prediction on

sparse graphs. All the above methods consider a large scale network with thou-

sands (or millions) of integer-connected nodes in the network. In contrast, we

consider the small graph classification problem, in which each graph has a label

indicating the property of the graph, and the graph normally contains tens or sev-

eral hundreds of nodes. The purpose is to predict the label of the graph by using

node and structure information inside the graphs, for purposes such as chemi-

cal compound activity prediction [29] and gender classification using magnetic

resonance connectome (that is, brain-graph) [136].

2.3 Imbalanced Data Classification

Many methods exist for imbalanced data classification, including sampling [85],

ensembling [45, 80], and support vector machine adapting [6, 135]. Some re-

cent reviews and monographs on imbalanced data classification are also avail-

able [55, 56, 125]. For all these methods, their scope is limited to data in vector

format. When dealing with imbalanced graph data, a simple solution is to use

under-sampling to create a relatively balanced graph set, and then apply existing

graph classification methods [75, 117]. This solution has shown positive results

17

2. LITERATURE REVIEW

on general data [134], but in the graph domain, it will result in significant perfor-

mance deterioration, because it not only ignores the structure information in the

graph datasets, but is also subject to the risk of losing valuable information in

the sampled data and causes a large angle between the ideal and learned hyper-

plane for margin based algorithms (i.e., SVM) [6]. This problem will be further

aggravated with the presence of noise (i.e. mislabeled samples). Because noise

accounts for a small portion of the whole dataset, they are similar to instances in

the minority class. As a result, any solutions trying to emphasize samples in the

minority class to achieve performance gain may falsely emphasize on noise and

suffer severe performance loss instead.

In our thesis (Chapter 6), we will consider the unique challenges of graph

data, and propose a novel algorithm to handle imbalanced and noisy data.

2.4 Data Stream and Graph Stream Classifica-

tion

The task of data stream classification [4, 5, 33, 105, 106, 124, 139, 157, 158, 159,

166] is to build predictive models for data with dynamic changing volumes. One

important issue for stream classification is to handle concept drifting, and com-

mon approaches are to employ an ensemble model to accommodate changes over

stream [139, 166] or to actively detect changes [10] and retrain models accord-

ingly. Some recent works have considered both stream classification and data

imbalance [23, 31, 46, 140]. In [31], the authors proposed a Learn++ frame-

work with two variants, Learn++.CDS and Learn++.NIE, for imbalanced con-

cept drifting data streams. To handle data imbalance, Learn++.CDS employs

SMOTE [22] to synthetically generate minority class samples based on the vec-

tor data. Learn++.NIE, on the other hand, uses a weighted ensemble approach

to combat concept drifting in the stream. Intuitively, one can use Learn++ to

handle imbalanced graph streams by using a set of frequent subgraphs to transfer

graph stream into vector format and by applying Learn++.CDS to the vector

data, or integrating existing gBoost algorithm [120] as a base graph classifier

into Learn++.NIE. However, all these straightforward solutions may fail to iden-

18

tify discriminative features for imbalanced graphs, and eventually lead to inferior

accuracy.

Graph Stream Classification: Data stream classification has been recently

extended to structural graph data [2, 25, 52, 53, 81, 101]. In [2], the authors pro-

posed to hash graph edges into random numbers and used discriminative edges as

patterns for classification. In [81], Li et. al proposed a fast subtree kernel based

algorithm to enable graph stream classification. As graph stream is dynamically

evolving with different subtree patterns emerging in different chunks, some works

proposed to project subtree patterns of different chunks onto a set of common

low-dimensional feature spaces by using hashing algorithm [25, 52]. In our thesis,

we extend the graph stream classification in a semi-supervised setting (Chapter

5), with both labeled and unlabeled graphs being used to find discriminative sub-

graphs with minimum redundancy. We also considers both data imbalance and

noise, and presents a stream based algorithm for graph classification in Chapter

6. A recent work [53] proposed to classify nodes in a large streaming network,

which is essentially different from ours in that we aim to classify a collection of

small graphs.

2.5 Cost-sensitive Learning

Cost-sensitive learning has been extensively studied in the last decade. Ap-

proaches for cost-sensitive learning can be mainly distinguished into the following

four categories: (1) Sampling methods [156]; (2) Decision tree approaches [86,

160]; (3) Boosting algorithms [36, 87, 92]; and (4) SVM adaptation [91, 135].

Sampling approaches [156] aim to re-weight the training samples in proportion

to their cost values, which can be done by over-sampling, or cost-proportionate

rejection sampling. The main goal is to change the sample distributions so that

any classifier can be directly used to handle cost-sensitive problems. Decision

tree modelling approaches [86, 160] incorporate the costs during the tree con-

struction, so that misclassification cost at the leaves is minimized. Boosting

algorithms [36, 87, 92], such as AdaCost [36], use the misclassification costs to

update the training distributions on successive boosting rounds, which has been

proved to be effective in reducing the upper bound of cumulative misclassification

19

2. LITERATURE REVIEW

cost of the training set. SVM adaptation [91, 135] represents a set of approaches

based on SVM adaptation for cost-sensitive learning. They either shift the de-

cision boundaries by simply adjusting the threshold of standard SVMs [121] or

introduce different penalty factors C1 and C−1 for the positive and negative SVM

slack variables during training [135]. Recently a CS-SVM algorithm [91] is pro-

posed which utilizes an optimal hinge loss function. It is shown in [91] that

CS-SVM outperforms previous approaches [121, 135].

In summary, the scope of all existing cost-sensitive methods is limited to data

in vector format. In this thesis, the unique challenges of graph data are con-

sidered, and a novel algorithm for cost-sensitive graph classification is proposed

(Chapter 7).

2.6 Multi-task Learning

State-of-the-art algorithms on multi-task learning [8, 21, 35, 41, 57, 68, 95, 161,

162, 164] can be roughly divided into two categories: (1) multi-task feature learn-

ing, which explores common feature space shared by all tasks. The models, includ-

ing mixed �2,1 norm sparsity inducing methods [8, 83], composite regularized al-

gorithms [48, 64], and the most recent calibration based multi-task approach [49],

can be formulated as a regularized loss minimization problem aiming to explore

shared feature space among tasks for learning; and (2) task relationship learning,

which simultaneously exploits task relationships and parameters [161], such as

task clustering [61, 78, 163] or isolating [119], so that knowledge can be shared

by a group of tasks instead of all tasks.

Note that multi-task learning is closely related to transfer learning [39, 112],

but the difference is fundamental. Transfer learning aims to improve the learning

on a single target task by using data from other tasks as auxiliary information.

For multi-task learning, all tasks are equally important and should be learned

simultaneously.

20

2.7 Key techniques

In our thesis, we frequently use some techniques that are very useful for subgraph

mining and convex optimization, including gSpan algorithm, column generation

algorithm, and cutting plane algorithm.

2.7.1 gSpan Algorithm

Frequent subgraph mining is the key for many subgraph mining problem. In our

thesis, we develop effective algorithms for complex graph stream mining based

on a successful frequent subgraph mining algorithm gSpan [151].

Given a collection of graphs and a minimum support threshold, gSpan [151]

is able to find all of the subgraphs whose frequency is above the threshold. To

achieve this goal, gSpan builds a new lexicographic order among graphs, and

maps each graph to a DFS code as its canonical label. Based on this lexicographic

order, gSpan adopts the depth-first search strategy to mine frequent connected

subgraphs efficiently.

One issue for frequent subgraph mining problem is that there are exponential

subgraph patterns and many of them are duplicated. How to avoid enumerate

duplicated subgraphs is a key challenge for this problem. To cope with this

challenge, gSpan algorithm defines unique minimum DFS code for each subgraph

pattern. Two subgraph are isomorphism if and only if they have the same DFS

codes. By this way, gSpan can prune duplicated subgraph patterns effectively.

In this thesis, gSpan algorithm will be used in Chapter 4, 5,6, 7, and Chapter

8.

2.7.2 Column generation Algorithm

Column generation [97] is an efficient algorithm for solving larger linear programs.

The overarching idea is that many linear programs are too large to consider

all the variables explicitly. Since most of the variables will be non-basic and

assume a value of zero in the optimal solution, only a subset of variables need to

be considered in theory when solving the problem. Column generation leverages

this idea to generate only the variables which have the potential to improve the

21

2. LITERATURE REVIEW

objective function-that is, to find variables with negative reduced cost (assuming

without loss of generality that the problem is a minimization problem).

The problem being solved is split into two problems: the master problem and

the subproblem. The master problem is the original problem with only a subset of

variables being considered. The subproblem is a new problem created to identify

a new variable. The objective function of the subproblem is the reduced cost of

the new variable with respect to the current dual variables, and the constraints

require that the variable obey the naturally occurring constraints.

In this thesis, column generation will be used in Chapter 6 and Chapter 7.

2.7.3 Cutting Plane Algorithm

Cutting plane algorithms are also very popular for solving large scale machine

learning problem [66]. They are popularly used for non-differentiable convex min-

imization, where a convex objective function and its subgradient can be evaluated

efficiently but usual gradient methods for differentiable optimization can not be

used. This situation is most typical for the concave maximization of Lagrangian

dual functions. Another common situation is the application of the Dantzig-Wolfe

decomposition to a structured optimization problem in which formulations with

an exponential number of variables are obtained. Generating these variables on

demand by means of column generation is identical to performing a cutting plane

on the respective dual problem.

The cutting plane algorithm will be used in Chapter 7.

22

Chapter 3

Preliminary

We first give our common definitions and important notations used in the thesis.

Then we summarize the graph datasets we collected and used in our experiments.

3.1 Definitions

Definition 1. Connected Graph: A graph is denoted by G = (V, E, L,A),

where V = {v1, · · · , vnv} is the vertices set, E ⊆ V×V is the edge set, A is a set

of labels for vertices and edges, and L : V → A, E → A is a labeling function that

assigns labels to a node or an edge. A connected graph is a graph such that there

is a path between any pair of vertices.

In our thesis, we focus on connected graphs and assume that each graph G

has a class label y, y ∈ Y = {−1,+1}, which may indicate the overall property

of the graph, such as the active/negative response of a chemical compound [29]

or the categorization of a publication [101]. In the imbalanced classification and

cost-sensitive learning settings, yi = +1 denotes the minority (positive) class,

and yi = −1 is the majority class (negative). We only focus on binary-class

classification tasks (in Parts II and Part III of the thesis), but our methods can be

easily extended to multi-class tasks. When considering correlated subgraph search

(in Part I of this thesis), we might simply ignore the class labels of each graph,

23

3. PRELIMINARY

Figure 3.1: An example demonstrating subgraph representation for graphs: G1 and G2

are positive graphs (+), G3 and G4 are negative graphs (-). Each subgraph, g1, g2, or
g3, is marked with its frequency occurring in positive v.s. negative graphs.

as we focus on the substructure patterns from the graph database, regardless of

the class labels.

Definition 2. Subgraph: Given two graphs G = (V, E, L,A) and gk = (V′, E ′, L′,A′),

gk is a subgraph of G (i.e., gk ⊆ G) if there is an injective function f̂ : V′ → V,

such that ∀(a, b) ∈ E ′, we have (f̂(a), f̂(b)) ∈ E, L′(a) = L(f̂(a)), L′(b) =

L(f̂(b)), L′(a, b) = L(f̂(a), f̂(b)). If gk is a subgraph of G (gk ⊆ G), G is a

supergraph of gk (G ⊇ gk).

Definition 3. Subgraph Features: Let g = {g1, · · · , gm} denote a set of sub-

graph patterns discovered from a given graph set (In this thesis, subgraph patterns

and subgraph features are equivalent terms). For each graph Gi, we can use a

subgraph feature vector xi = [xg1
i , · · · , xgm

i] to represent Gi in the feature space,

where xgk
i = 1 iff gk is a subgraph of Gi (i.e. gk ⊆ Gi) and xgk

i = 0 otherwise.

In Fig. 3.1, three subgraph g1, g2, and g3 are used to represent graph G2 as

x2 = [1, 1, 0].

24

Definition 4. Graph Stream: A graph stream S = {· · · , Gi, Gi+1, Gi+2, · · · }
contains an increasing number of graphs flowing in a streaming fashion. To pro-

cess continuous stream data, we employ a “batch” concept which represents a

graph chunk Dt = {Gt
1, G

t
2 · · · , Gt

n} containing a number of graphs collected from

a consecutive stream region. For ease of representation, we may drop t from each

single graph Gt
i in graph chunk Dt when there is no ambiguity in the context.

Definition 5. Noisy Graph: Given a graph dataset T = {(G1, y1), · · · , (Gn, yn)},
a noisy graph (or noise) is a graph whose label is incorrectly labeled (i.e., a positive

graph is labeled as negative, or vice versa).

Definition 6. Pearson’s Correlation Coefficient: Given two graphs gi and

gj, their supports and joint support over a number of N graphs are denoted as

supp(gi), supp(gj), and supp(gi, gj), respectively. The Pearson’s Correlation Co-

efficient [59] between gi and gj, φ(gi, gj), is defined as follows [150]:

φ(gi, gj) =
supp(gi, gj)− supp(gi)supp(gj)√

supp(gi)(1− supp(gi))supp(gj)(1− supp(gj))
(3.1)

Subgraph-based Graph Classification: Given a set of labeled graphs T =

{(G1, y1), · · · , (Gn, yn)}, subgraph-based graph classification aims to select an

optimal set of discriminative subgraphs from T, and learn a classification model

from the selected subgraph features to predict previously unseen test graphs with

maximum accuracy.

Graph Stream Classification: Given a graph stream S = {D1, D2, · · · , Dt, · · · }
collected in a number of consecutive graph chunks, the aim of the graph stream

classification is to build a prediction model from the most recently observed k

chunks (Dt−k+1, · · · , Dt−1, Dt) to predict graphs in the next chunk Dt+1 with the

best performance. In our setting, the graph data in each chunk may consist of

a limited number of labeled graphs together with abundant unlabeled graphs, or

25

3. PRELIMINARY

are highly imbalanced in class distributions and have noisy class labels.

3.2 Notations

The important notations used in the thesis are summarized in table 3.1. Note

that in each chapter, we may also use some additional notations for each chapter.

3.3 Benchmark Graph Datasets

We have collected a set of graph datasets from various applications, including

chemical compound classification, scientific publication classification, and sen-

timent analysis. The benchmarks we used are summarized in table 3.2, where

column 2 details the tasks on which the graph collections are used in the thesis,

and columns 3-6 depict the ID, the number of positive and total number of graphs

in each dataset, and the dataset description in the collections.

NCI Anti-cancer activity prediction data. The NCI graph datasets are

commonly used as the benchmark for graph classification. Each NCI dataset

belongs to a bioassay task for anticancer activity prediction, where each chemical

compound is represented as a graph, with atoms representing nodes and bonds as

edges. A chemical compound is positive if it is active against the corresponding

cancer, or negative otherwise. Table 3.2 summarizes the NCI graph data we

download from PubChem 1. We have removed disconnected graphs and graphs

with unexpected atoms (some graphs have atoms represented as ‘*‘) in the original

graphs. Columns 4-5 show the number of positive and total number of graphs in

each dataset, respectively.

Full Dataset: The full datasets of NCI graphs are naturally imbalanced and

ideal benchmark for streaming classification or cost-sensitive graph classification.

More specifically, there are only about 5% of chemical compounds which are

active to the cancer bioassay test, whereas 95% of them are inactive to the cancer

1http://pubchem.ncbi.nlm.nih.gov

26

Table 3.1: Important notations used in the chapter

Symbols Definition

G,Gi A connected graph

g, gk A subgraph

S = {· · · , Gi, Gi+1, · · · } A graph stream

S = {D1, D2, · · · , Dt, · · · } Chunk representation of graph stream

Dt = {Gt
1, G

t
2 · · · , Gt

n} The t-th graph chunk, t can be dropped off

Dt = Dl
t

⋃
Du

t

A graph chunk with Dl
t and Du

t

denoting labeled and unlabeled graphs

φ(gi, gj) Pearson’s Correlation Coefficient

min sup Minimum support for frequent subgraph mining

g = {g1, · · · , gm} A set of selected subgraphs
for semi-supervised classification

T = {Gi, yi}i=1,··· ,n A set of training graphs

l+, l− Number of positive and negative graphs

xi Vector representation of graph Gi for classification

�(Gi; gk, πk)
or �gk(Gi; πk) or �gk(Gi)

A subgraph decision stump

F = {g1, · · · , gm} The full set of subgraphs

S Selected discriminative subgraphs

w = {wk}k=1,··· ,m Weight vectors for all subgraphs

f(Gi), f(xi) Classifier prediction on graph Gi

C1, C−1 Cost of positive and negative graphs, respectively

ξ = {ξi}i=1,··· ,l Vector, slack variables for objective functions

ξ Slack variable (scalar) for cutting plane algorithm

μ = {μi}i=1,··· ,l Weight vectors of training graphs

Tmax Maximum number of iterations

27

3. PRELIMINARY

Table 3.2: Description of Graph Datasets Used in the Thesis

Collections Tasks ID #Pos #Total Description

NCI

Stream/
Cost-sensitive

Graph
Classification

(Chapters 5, 6, 7)

1 1793 37349 Cell Lung
33 1467 37022 Melanoma
41 1350 25336 Prostate
47 1735 37298 Central Nerv Sys
81 2081 37549 Colon
83 1959 25550 Breast
109 1773 37518 Ovarian
123 2715 36903 Leukemia
145 1641 37043 Renal

NCI-
balanced

Multi-task
Graph

Classification
(Chapter 8)

1 1793 3586 Cell Lung
33 1467 2934 Melanoma
41 1350 2700 Prostate
47 1735 3470 Central Nerv Sys
81 2081 4162 Colon
83 1959 3918 Breast
109 1773 3546 Ovarian
123 2715 5430 Leukemia
145 1641 3282 Renal

DBLP
-balanced

Semi-supervised
Graph Stream
Classification
(Chapter 5)

DBLP 9530 19456
DBDM
v.s

CVPR

DBLP
-imbalanced

Imbalanced
Graph Stream
Classification
(Chapter 6)

DBLP 3954 24225
CV
v.s

DBDM & AIML

Twitter

Imbalanced
Graph Stream/
Cost-sensitive
Classification
(Chapters 6, 7)

Twitter 66458 140949
Sentiment
Analysis

PTC
Multi-task

Classification
(Chapter 8)

SubMR 32 87 Male Rat (MR)
SubFR 35 85 Female Rat (FR)
SubMM 29 85 Male Mouse (MM)
SubFM 35 88 Female Mouse (FM)

28

bioassay test. We have considered graph stream classification in [101] (detailed in

Chapter 5) and [104] (Chapter 6), and cost-sensitive graph classification in [102]

(Chapter 7)

Partial Dataset (NCI-balanced): We randomly select #Pos number of negative

graphs from each original graph set to create balanced graph datasets. Although

each of the 9 tasks focuses on the prediction of different types of cancers, all these

tasks are relevant in cancer prediction and some common discriminative substruc-

tures may exist for all types of cancers. This makes NCI an ideal benchmark for

multi-task graph classification, which will be detailed in Chapter 8.

DBLP Graph Stream. The DBLP data stream 1 consists of bibliography

data in computer science. Each record in DBLP is associated with a number of

attributes such as abstract, authors, year, venue, title, and reference ID [127].

We have built two graph data streams, DBLP-balanced and DBLP-imbalanced,

from a set of conferences. Detailed information is given as follows:

Table 3.3: DBLP-balanced used in this thesis

Categories Descriptions #Paper #Graphs

DBDM

SIGMOD,VLDB,ICDE, EDBT,PODS,

20601 9530DASFAA,SSDBM,CIKM,DEXA
KDD, ICDM, SDM, PKDD, PAKDD

CVPR
ICCV, CVPR, ECCV, ICPR, ICIP

18366 9926
ACM Multimedia, ICME

DBLP-balanced: We select a list of conferences (as shown in Table 3.3) and

use the papers published in these conferences (in chronological order) to form

a balanced graph stream. The classification task is to predict whether a paper

belongs to DBDM (database and data mining) or CVPR (computer vision and

pattern recognition) field, by using the references and the title of each paper.

Notice that DBDM and CVPR are overlapping in many aspects, such as machine

learning and visual information retrieval. The shifting of the research focus makes

DBLP stream an ideal test ground for concept drifting graph stream classifica-

tion. For example, there are an increasing number of papers to address social

1http://arnetminer.org/citation

29

3. PRELIMINARY

Table 3.4: DBLP-imbalanced graph stream used in experiments

Categories Descriptions #Paper #Graphs

DBDM

SIGMOD, VLDB, ICDE, EDBT, PODS,

18870 10089ICDT, DASFAA, SSDBM, CIKM
KDD, ICDM, SDM, PKDD, PAKDD

AIML
IJCAI, AAAI, NIPS, UAI,
COLT, ACL, KR, ECAI,
ICML, ECML, ACML, IJCNN

24090 10182

CV
CVPR, ICCV, ECCV,
ACCV, ACM Multimedia

7032 3954

network research problems for both DBDM and CVPR fields (i.e., community

discovery for DBDM and social tagging in CVPR), which naturally introduces

concept drifting in the stream. The DBLP-balanced graph stream is used for

semi-supervised graph stream classification in Chapter 5.

DBLP-imbalanced: We also build an imbalanced graph stream from DBLP

datasets. The conference list used for DBLP-imbalanced stream is given in Table

3.4). We form a minority class by using publications in computer vision (CV) as

positive class (+1), and use papers in both DBDM (database and data mining)

and AIML (artificial intelligence and machine learning) as negative class (-1).

The graph stream is inherently imbalanced, with about 16.3% positive graphs

over stream. The DBLP-imbalanced stream is used for imbalanced graph task

classification in Chapter 6.

In our thesis, each paper in DBLP is represented as a graph, where each node

denotes a Paper ID or a keyword and each edge denotes the citation relationship

between papers or keyword relations in the title. More specifically, we denote

that (1) each paper ID is a node; (2) if a paper P.A cites another paper P.B,

there is an edge between P.A and P.B; (3) each keyword in the title is also a

node; (4) each paper ID node is connected to the keyword nodes of the paper;

and (5) for each paper, its keyword nodes are fully connected with each other.

An example of DBLP graph data is shown in Fig. 1.3.

The original DBLP dataset contains a significant number of papers without

references. In our experiments, we remove those papers, and choose 1000 most

30

frequent words appearing in the title (after removing the stop words) as keywords

to construct graphs. The last column in Table 3.3 shows the number of graphs in

each category in our experiments. The DBLP dataset is used in [101] (detailed

in Chapter 5) and [104] (Chapter 6).

Stanford Twitter Graphs 1 are extracted from twitter sentiment classifica-

tion [47]. Because of the inherently short and sparse nature, twitter sentiment

analysis (i.e., predicting whether a tweet reflects a positive or a negative feeling)

is a difficult task. To build a graph dataset, we represent each tweet as a graph by

using tweet content, with nodes in each graph denoting the terms and/or smiley

symbols (e.g, :-D and :-P) and edges indicating the co-occurrence relationship

between two words or symbols in each tweet. To ensure the quality of the graph,

we only use tweets containing 20 or more words.

Twitter Stream: The twitter graphs are used for graph stream classification

in [104] (detailed in Chapter 6). Specifically, we use tweets from April 6 to June

16 to generate 140,949 graphs (in a chronological order). Because tweets in the

original dataset are not evenly collected over time, the number of graphs in a

fixed time period varies significantly (from 100 to 10,000 per day). To reduce

the difference of chunk size over stream, we divide graphs into chunks by using

a fixed time period, i.e., graphs are collected in 24 hours (one day) to form a

graph chunk from April 6 to May 27, and collected in 8 hours to form a chunk

from May 27 and latter on. To investigate algorithm performance in handling

concept drifts, we synthetically control the prior distribution of positive graphs

at several fixed time stamps. Specifically, 20% of positive graphs are randomly

selected on Monday and Tuesday over time before June 2. By doing so, we use

sudden changes of priori distributions to inject concept drifting on Monday.

Static Twitter Graph Classification: To study how our algorithms scale to

large scale graph datasets, we also aggregate all twitter graphs as one dataset

without considering their temporal order. This dataset is used in [102] (detailed

in Chapter 7).

Predictive Toxicology Challenge Dataset (PTC). The PTC challenge in-

1http://jmgomezhidalgo.blogspot.com.au/2013/01/a-list-of-datasets-for-opinion-
mining.html

31

3. PRELIMINARY

cludes a number of carcinogenicity tasks for toxicology prediction of chemical

compounds 1. The dataset we selected contains 417 compounds with four types

of test animals: MM (male mouse), FM (female mouse), MR (male rat), and FR

(female rat). Each compound with one is label selected from {CE, SE, P, E, EE,
IS, NE, N}, which stands for Clear Evidence of Carcinogenic Activity (CE), Some

Evidence of Carcinogenic Activity (SE), Positive (P), Equivocal (E), Equivocal

Evidence of Carcinogenic Activity (EE), Inadequate Study of Carcinogenic Ac-

tivity (IS), No Evidence of Carcinogenic Activity (NE), and Negative (N). Similar

to [77], we set {CE, SE, P} as positive labels, and {NE, N} as negative labels.

In order to formulate MTG dataset, we randomly split 417 compounds into 4

equal and disjointed subsets. For each subset, we only consider one type of car-

cinogenicity test as its learning task. The subset information is also listed in

Table 3.2. As a result the PTC collection is suitable for multi-task classification

(Chapter 8).

1http://www.predictive-toxicology.org/ptc/

32

Part I

Graph Stream Query

33

Graph Stream Search: Overview

Correlations mining has drawn increasing interest in past years due to its great

advantages in uncovering underlying dependencies between objects. For graph

data, the correlation between two graphs measures their occurrence distributions,

which is important for discovering the interesting patterns in the graph database.

However, existing correlation mining for graph data is only designed for static

graph databases. In reality, applications usually involve data which constantly

change or evolve over time, (i.e., data streams). How to discover the correlated

patterns (subgraphs) for the dynamic graph streams is important, yet has not

been explored in existing works.

In Part I (i.e., Chapter 4), we propose to query correlated graph in a data

stream scenario, where given a query graph q, an algorithm is required to retrieve

all the subgraphs whose Pearson’s correlation coefficients with q are no less than

a threshold θ over some graph data flowing in a stream fashion. Due to the

dynamic changing nature of the stream data and the inherent complexity of the

graph query process, treating graph streams as static datasets is computationally

infeasible or ineffective. We propose a novel algorithm, CGStream, to identify

correlated graphs from data stream, by using a sliding window which covers a

number of consecutive batches of stream data records. Our theme is to regard

stream query as the traversing along a data stream and there are some special

time points called outlooks over streams. For each outlook, we derive a frequency

lower bound to mine a set of frequent subgraph candidates, where the lower

bound guarantees that no pattern is missing from the current outlook to the next

outlook. On top of that, we derive an upper correlation bound and a heuristic rule

to prune the candidates, which helps reduce the computation cost at each outlook.

Experimental results demonstrate that the proposed algorithm is several times,

or even up to an order of magnitude, more efficient than the straightforward

algorithm. Meanwhile, our algorithm achieves good performance in terms of

query precision.

35

36

Chapter 4

Continuous Correlated Graph

Query for Data Streams

4.1 Introduction

Correlation mining has drawn extensive attention in the research community due

to its uniqueness and advantages in uncovering underlying dependencies between

objects. In recent years, there have been a considerable number of studies on

correlation mining in applications including market transaction databases [150,

165], quantitative databases [72], and time series data [96], and this topic has

been recently extended to graph databases, where data records or instances are

linked through relationships [71, 74].

In the context of graph data, the correlation between two graphs measures

their occurrence distributions. Given a graph database, correlated graph search

(CGS) [71] tries to discover a set of correlated graphs whose Pearson correlation

coefficients [59] with a query graph are above a given correlation threshold θ.

CGS is very useful for revealing interesting patterns in many graph repre-

sentation scenarios. For instance, a user’s browsing history in a web site can

be represented as graphs. Correlated graphs retrieved from the user transversal

graphs represent graphs with similar distributions and suggest a group of users

37

4. CONTINUOUS CORRELATED GRAPH QUERY FOR DATA
STREAMS

sharing common interests. Analyzing these correlated graphs helps web site own-

ers understand user behaviors so that they can improve the web site structures

and detect abnormal behaviors, which are very important in E-commerce [74].

Current CGS [71] is only performed in a static database. In practice, appli-

cations may involve data which constantly change or evolve over time (e.g., data

streams). For instance, in a communication network, the links between different

nodes are changing continuously, so the network topology (which can be regarded

as a graph) will dynamically change. In a chemical reaction process, the struc-

tures of chemical compounds also change from time to time, so the interactions

between compounds (which can be regarded as graphs) also change dynamically.

Noticing the importance of the pattern discovery from graph streams, there have

been several researches on continuously querying graphs in a data stream setting

[138], or mining frequent graphs in a data stream scenario [15]. However, to the

best of our knowledge, there is no existing research on correlated graph pattern

query in data streams.

In this chapter, we study correlated graph query for data streams, where the

main challenges are as follows

• Graph correlation query involves subgraph isomorphism testing which is

NP-complete. It is intractable to store and compute the frequency and

correlation for every subgraph over stream.

• The correlation between graphs is constantly changing over stream and

recomputing all the correlations at each single time point of data stream is

computationally expensive and time-consuming.

• The streaming scenario requires the algorithm to return answers in a timely

fashion.

Intuitively, a straightforward approach to solve our problem is exhaustive

search, which uses a sliding window to scan the stream and computes the corre-

lation by employing a static graph database based algorithm, such as CGSearch

[71] 1, to query the correlated graphs in each window. While this exhaustive ap-

proach can ensure the results being complete and correct, it is computationally

1The algorithm for CGS problem is named CGSearch in [71].

38

ineffective because the reoccurring query process in each window involves frequent

subgraph mining procedure and subgraph frequency counting procedure, both of

which are expensive operations, especially when the window size is considerable

large. An incremental method for stream-based correlated graph query is highly

demanded.

In this chapter, we propose a solution to incrementally retrieve correlated

graphs over stream. Our theme is to regard each query gq as an operator, which

constantly queries subgraph patterns correlated to itself while traversing along the

graph stream. To answer the query in an efficient way, we propose to maintain a

number of outlooks (O) over the data stream. For each query gq, each outlook (Oi)

carefully maintains a candidate list with two properties: (1) all subgraph patterns

correlated to the query gq, with respect to the current sliding window, are included

in this list; and (2) before reaching the next outlook (Oi+1), no subgraph pattern

correlated to the query gq is missing. Accordingly, the correlated graph query

can be achieved by querying the lists maintained at each outlook. Because the

mining procedure is only triggered at each outlook, we can significantly reduce

the computational cost by using effective methods to build and maintain the

candidate list.

The candidate list at each outlook is vitally important to determine the system

efficiency. If the list is infinitely long and includes all possible subgraphs, a query

will not miss any patterns but scanning such an infinite list will be inefficient.

Meanwhile, because each outlook requires a significant amount of computational

cost to build and maintain its candidate list, a query system is going to be very

inefficient if there are a large number of outlooks in the stream. To ensure the

system runtime performance, we need to maintain as few stream outlooks as

possible, yet the candidate list in each outlook should also be sufficient to ensure

the query quality. In the chapter, we derive a set of theoretical bounds to maintain

the length of the candidate list, and also propose some forecasting procedures to

minimize the number of outlooks through which we can accelerate the system

runtime performance.

The main contributions of this chapter can be summarized as follows:

• We propose a CGStream algorithm for correlated graph query for streams,

where the algorithm will return a query graph’s correlated graphs in a

39

4. CONTINUOUS CORRELATED GRAPH QUERY FOR DATA
STREAMS

sliding window which covers a number of consecutive batches of stream

records. To the best of our knowledge, this is the first endeavor to mine

threshold based correlated graphs in a data stream scenario.

• We derive a lower frequency bound to mine and maintain a candidate list

for each stream outlook (Oi). Our solution guarantees that any subgraph

patterns not included in the candidate list are not correlated to the query

gq before reaching the next outlook (Oi+1) (so we can safely reduce these

patterns from the list).

• We derive a loose upper correlation bound to prune the candidate list for

each outlook (Oi), and use a heuristic rule to speed up the mining process,

which helps reduce the computational cost.

• Experiments confirm that our algorithm is several times, or even an order

of magnitude, more efficient than an exhaustive search method.

The rest of this chapter is structured as follows: The preliminaries and for-

mulation of our research problem are given in Section 4.2. We derive a new

frequency(support) lower bound for candidate generation in Section 4.3. In Sec-

tion 4.4, we further derive a correlation upper bound and a heuristic rule for

candidate pruning. The algorithm is presented in Section 4.5, and experimental

results are presented in Section 4.6. We conclude the chapter in Section 4.7.

4.2 Preliminaries and Problem Definition

4.2.1 Preliminaries

Given a graph database T, the projected dataset with respect to a graph gi is

a subset of T which contains gi, denoted as Tgi =
⋃{G|gi ⊆ G,G ∈ T}, whose

frequency Ngi = |Tg| and support supp(gi) = |Tgi |/|T|, where | • | denotes the

cardinality of the set •.
For two graphs gi and gq in T, their joint frequencies are the number of graphs

in T which contains both graph gi and gq, denoted as Ngigq = |Tgq

⋂
Tgi |, and their

joint support is supp(gi, qq) = |Tgq

⋂
Tgi |/|T|.

40

Figure 4.1: A framework of sliding window based correlated graph query for data
streams. At time point t1, the sliding window (dashed red rectangle) covers batches
D1, D2, . . . , D10. A new batch D11 arrives at time point t2 (D11 becomes the most
recent batch), the sliding window updates to coverD2, D3, . . . , D11 (solid red rectangle).
Continuous correlated graph query intends to discover the correlated graphs in every
sliding window. Outlooks are specific time points where we build and update the
potential candidate list PG (such as Oi and Oi+1). At any other time points between
two outlooks (like time points t2 and t3), we only update the frequency of candidates
and output the correlated graphs, without carrying out any pattern mining process.

4.2.2 Problem definition

Given a query graph gq, a threshold θ, and a graph stream S, we emphasize on

discover correlated graphs whose correlations with gq are above θ from S. Because

S represents a dynamic changing graph stream, we assume that graph data arrives

batch by batch, and use a sliding window Dwin = {Dj−w+1, Dj−w+2, · · · , Dj} to

denote a consecutive region of the graph stream, where Dι, j − w + 1 ≤ ι ≤ j

represents a batch of graphs and Dj is the most recent batch. Then our problem

is to monitor and report the correlated graphs whose Pearson’s correlations [59]

with gq in a sliding window are greater than θ (in the most recent w batches). A

typical correlated graph query in a data stream with window size w=10 is shown

in Figure 4.1.

Pearson’s Correlation Coefficient (Definition 6): Given two graphs gi

and gq, their supports and joint support over a number of N graphs are denoted

as supp(gi), supp(gq), and supp(gi, gq), respectively. The Pearson’s Correlation

41

4. CONTINUOUS CORRELATED GRAPH QUERY FOR DATA
STREAMS

Coefficient [59] between gi and gq, φ(gi, gq), is defined as follows [150]:

φ(gi, gq) =
supp(gi, gq)− supp(gi)supp(gq)√

supp(gi)(1− supp(gi))supp(gq)(1− supp(gq))
(4.1)

When supp(gi) or supp(gq) is equal to 0 or 1, φ(gi, gq)) is defined to be 0.

The range of φ(gi, gq) falls into [0, 1], as we only consider the positive correlated

graphs in this thesis.

The Pearson’s correlation coefficient over a set containing a number of N

graphs can be rearranged into another form in terms of frequency [165]:

φ(gi, gq) =
NNgigq −NgiNgq√

Ngi(N −Ngi)Ngq(N −Ngq)
(4.2)

Ngi , Ngq , and Ngigq denote the number of graphs containing gi, gq, and gi and gq

for the N graphs, respectively.

4.2.3 Challenges and Solutions

A main challenge of correlated graph search (CGS) for data stream is that the

correlation is constantly changing over time and recomputing the correlation for

each candidate is time-consuming. This is because computing φ(gi, gq) involves

graph isomorphism testing when counting the frequency of gi (i.e. Ngi), which

is NP-Complete. In addition, because a graph consists of an exponential number

of subgraphs and each of which is a potential correlated graph candidate to the

query gq, the search space of CGS, for data stream, is extremely large.

In this chapter, we propose a CGStream algorithm to address the problem

and ensure that each correlated graph query can be answered in an efficient and

accurate way. Our solution is inspired by a checkpoint idea in [165], and our

theme is to create a number of outlooks (O) over stream. The framework of

CGStream is illustrated in Fig. 4.1.

In summary, an outlook (Oi) is a specific time point which can help to de-

rive some theoretical correlation bounds, so that a CGS algorithm only needs

42

to maintain a small set of potential candidates without referring to the original

graph stream data to answer the query. The rationale is as follows: given a

graph stream and a sliding window which covers a number of graphs, assume at

a outlook Oi the sliding window covers N graphs in the stream. Suppose that

ΔN new graphs (ΔN 	 N) will arrive at next outlook Oi+1, and ΔN graphs are

removed from the monitor window Dwin, we can build and maintain a candidate

list PG at time point Oi such that any patterns not belonging to the PG are not

going to satisfy the query before reaching time point Oi+1. As a result, only the

candidates remaining in the PG list are promising for future investigation. In this

case, the increment ΔN between two outlooks can be regarded as a computation

buffer (outlook buffer). For graph stream between two adjacent outlooks (e.g., t2

and t3 in Fig. 4.1), we just need to check the PG list to output the correlated

graphs with query graph gq, without reoccurring the query process in the whole

window of data.

While maintaining the PG list, two issues should be considered:

1. To achieve high retrieval recall, the PG list for each outlook should be

as complete as possible. In an ideal case, a PG list should include all

possible candidates, so the CGS search for data stream can precisely return

all graphs correlated to the query gq.

2. To meet the requirement of high speed of data stream, query to PG list

should be as efficient as possible. In an ideal case, a PG list should only

contain graph patterns correlated to the query gq, so the query can be

answered with minimum cost.

While the above two issues are contradictory to each other, we address each of

them by employing the stream outlooks as follows.

On the one hand, for each outlook (Oi), we derive a lower frequency bound

lower(Ngigq), and transfer the CGS problem to a frequent subgraph mining prob-

lem, which can be addressed by some existing graph mining algorithms such as

gSpan algorithm [153]. More specifically, instead of mining from the original win-

dow of graph data, we mine a set of correlated graph as potential graphs (PG)

from the projected database of a query graph gq. The PG list has taken the

increment (ΔN) between two adjacent outlooks (Oi and Oi+1) into consideration

43

4. CONTINUOUS CORRELATED GRAPH QUERY FOR DATA
STREAMS

and guarantees that all potential candidates are stored as long as the number

of increment graphs (between Oi and Oi+1) containing the query graph gq, i.e.

ΔNgq , is within a certain range α ≤ ΔNgq ≤ β. By doing so, we can ensure that

the PG list maintained at each outlook Oi is as complete as possible.

On the other hand, when the lower bound lower(Ngigq) is relatively small, the

size of the PG list may be too large, which will significantly slow down the query

process. In the chapter, we further derive an upper correlation bound to reduce

the size of the PG list. On top of that, some heuristic rules are also applied to

the candidate checking procedure to speed up the mining process. As a result,

we can guarantees the efficiency of our algorithm.

Our algorithm is based on the assumption that we can estimate the mean and

variance of Ngq in each batch from the data stream. Based on this assumption,

we can derive the frequency lower bound to generate the PG list (Sect. 4.3), and

derive the correlation upper bound to further reduce the PG list (Sect. 4.4).

4.3 Frequency lower bound for candidate gen-

eration

Motivated by the existing CGSearch algorithm [71], our CGStream algorithm

transfers the CGS for data stream problem to a frequent subgraph mining prob-

lem. In other words, instead of mining from the original window of graph data,

we mine a set of frequent graphs as potential graphs (PG) from the projected

database Tq of the query graph gq. As Tq is a much smaller subset of T, the

search space and time consumption can be greatly reduced. Accordingly, the

first technical challenge of our algorithm is:

How to derive a lower bound for frequent subgraph mining from Tq, so that

those frequent subgraphs from Tq are not only potential correlated graphs in the

current outlook (Oi in Fig. 4.1), but are also candidates before reaching the next

outlook (Oi+1 in Fig. 4.1)?

If we can derive such a lower bound, the re-computation process can be greatly

reduced. For instance, at time stamps t2 and t3 in Fig. 4.1, we only need to update

44

the frequency of the candidates and then output the results quickly without

querying from the entire sliding window.

4.3.1 Frequency lower bound

Lemma 1. Given a query graph gq, the maximum correlation of graph gi with gq

is achieved when supp(gi) = supp(gi, gq), or Ngi = Ngigq

φmax(g, q) =

√
(1− supp(gq))supp(gi, gq)

supp(gq)(1− supp(gi, gq))

=

√
(N −Ngq)Ngigq

Ngq(N −Ngigq)

(4.3)

Proof. From Eq. (4.1), we know that when we fix supp(gi, gq) and supp(gq),

φ(gi, gq) monotonically decreases with supp(gi). As supp(gi, gq) ≤ supp(gi) ≤ 1,

φ(gi, gq) will achieve its maximum value when supp(gi) = supp(gi, gq). Simi-

larly, we can prove that when Ngi = Ngigq , φ(gi, gq) achieves its maximum value

according to Eq. (4.2).

In Eq. (4.3), N is a constant, and Ngq can be easily computed after obtaining

the projected database Tq. Then for each subgraph gi, we need to count Ngigq to

check if it is a potential candidate (gi is a potential candidate if φmax(g, q) ≥ θ).

Here we derive a new lower bound of Ngigq , by using outlooks as a number of

stream processing nodes.

Suppose with the arriving of data stream, there are ΔN new graphs (outlook

buffer) flowing into the sliding window. Meanwhile, ΔN graphs will become

outdated and be removed from the sliding window (We consider the case when

the sliding window is full, so the total number of graphs in the sliding window

remain the same). Similarly, the number of Ngq will increase with ΔNgq , and

ΔNgq will be removed from the sliding window.

Let γ = ΔNgq = ΔNgq − ΔNgq be the number of increment of Ngq between

45

4. CONTINUOUS CORRELATED GRAPH QUERY FOR DATA
STREAMS

two outlooks. γ can be either ≥ 0 (if ΔNgq ≥ ΔNgq) or ≤ 0. Then Eq. (4.3) can

be rearranged as follows:

φ′max(g, q) =

√
(N −Ngq − γ)(Ngigq +ΔNgigq)

(Ngq + γ)(N −Ngigq −ΔNgigq)
(4.4)

We know that φ′max(g, q) monotonically increases with Ngigq + ΔNgigq according

to Eq. (4.4), and ΔNgigq ≤ |γ|, the maximum correlation will be

φ′max(g, q) =

⎧⎨⎩
√

(N−Ngq−γ)(Ngigq+γ)

(Ngq+γ)(N−Ngigq−γ)
: γ ≥ 0√

(N−Ngq−γ)Ngigq

(Ngq+γ)(N−Ngigq)
: γ ≤ 0

(4.5)

Because we can estimate the mean and variance of Ngq in each batch from the

data stream, γ can be estimated from the historical stream data. In Sec. 4.3.2, we

will propose techniques to estimate the range of γ with γ ∈ [α, β], α ≤ 0, β ≥ 0.

Assume that we need to find out the correlated graph with correlation above

θ (with γ increment of Ngq) within the outlook buffer, i.e., we have a requirement

φ′max(g, q) ≥ θ (4.6)

From Eq. (4.5) and Eq. (4.6), we know when γ ≤ 0, we have

√
(N −Ngq − γ)Ngigq

(Ngq + γ)(N −Ngigq)
≥ θ

Then we have minimum Ngigq for γ ≤ 0

Ngigq ≥
θ2(Ngq + γ)(N − γ)

θ2(Ngq + γ) + (N −Ngq − γ)
= f1(γ) (4.7)

46

Taking the partial derivative of γ, we have

f ′1(γ) =
θ2(N −Ngq)

(Ngq + γ)θ2 + (N −Ngq − γ)
− θ2(θ2 − 1)(Ngq + γ)(N − γ)

(N −Ngq − γ + (Ngq + γ)2)2

As γ ≤ Ngq ≤ N and θ ≤ 1, the first term of f ′1(γ) ≥ 0, and the second term ≤ 0.

As a result, f ′1(γ) ≥ 0. f1(γ) is a monotonic increasing function, so the minimum

of f1(γ) is f1(α) (α ≤ γ ≤ 0).

Similarly, we can compute the minimum Ngigq when γ ≥ 0

Ngigq ≥
θ2(Ngq + γ)(N − γ)− (N −Ngq − γ)γ

θ2(Ngq + γ) + (N −Ngq − γ)
= f2(γ) (4.8)

It can be proved that f2(γ) is a monotonic decreasing function with γ, 0 ≤ γ ≤ β,

so the minimum of f2(γ) is f2(β);

Theorem 1. Given N , Ngq , γ, α ≤ γ ≤ β, if a graph is a potential candidate

before reaching the next outlook, its minimum frequency in the projected database

Tq at current outlook is at least

lower(Ngigq) = min(f1(α), f2(β)) (4.9)

where f1(γ) and f2(γ) are defined in Eq. (4.7) and Eq.(4.8).

We can use lower(Ngigq) as a frequency bound to mine a set of frequent

subgraphs from the projected database, these frequent subgraphs are potential

candidates after taking next outlook into consideration. In other words, when ΔN

graphs (outlook buffer) flow into the sliding window, as long as the increment of

Ngq , say α ≤ γ ≤ β, all the true correlated graphs will be kept as candidates.

47

4. CONTINUOUS CORRELATED GRAPH QUERY FOR DATA
STREAMS

4.3.2 Estimation the increment of γ

From Eq. (4.9) it is clear that to get lower(Ngigq), we must know α and β, i.e.

the range of γ = ΔNgq ∈ [α, β]. In fact, because Ngq is always larger than 0, it

is easy to find that γ will fall into the range [−ΔNgq ,ΔN]. However, a loose and

large β (β = ΔN in this case) will result in a relatively small lower(Ngigq) value,

which in turn increases the system runtime for frequent subgraph mining. So a

tight range of γ (small α or β) is preferred. Because we can easily collect Ngq in

each batch over stream, we maintain a list of frequency record of Ngq , and use

Poisson distribution/Skellam distribution [123] to estimate the range of γ. Here

Poisson distribution is used, as it is best to express the probability of a given

number of events occurring in a fixed interval of time.

Assume that the frequency of occurrence for the query graph gq in a fixed

time period (in a batch) follows a Poisson distribution. The incoming graphs

containing gq follows ΔNgq = P (x = k;λ1) =
λk
1e
−λ1

k!
distribution, and the out-

dated graphs (which will be discarded as we only focus on the most w batches of

data) containing gq follows ΔNgq = P (x = k;λ2) =
λk
2e
−λ2

k!
distribution. Then the

difference between these two Poisson distribution follows a Skellam distribution

[123].

f(k;λ1, λ2) = e
−(λ1+λ2)(

λ1
λ2

)k/2I|k|(2
√
λ1+λ2) (4.10)

where Ik(z) is the modified Bessel function of the first kind [20].

In our setting, we set the average of Ngq in the most recent w/2 batches (half

size of the sliding window) as λ1, and the average of Ngq in the oldest w/2 batches

(half window) as λ2.

The Skellam distribution f(k;λ1, λ2) has mean μ = λ1 − λ2, variance σ2 =

λ1 + λ2. Then we set α = μ − 3
√
σ, and β = μ + 3

√
σ. As a result, it is

reasonable to set α and β in the range within the three-standard-deviation range

of the mean, as the probability that a point falls into this range is over 0.99 for

a Skellam distribution.

48

4.4 Correlation upper bound and Heuristic rules

for candidate pruning

After obtaining the estimated value of γ, we can mine the frequent subgraphs

from the projected data using lower(Ngigq) as a lower bound of threshold (Eq.

(4.9)), and then add these frequent graphs into the candidate set. In the incoming

batches before reaching next outlook, we can quickly output the correlated graphs

without involving the candidate building procedure from the scratch, which will

greatly reduce the system computation cost.

In reality, when lower(Ngigq) value is relatively small, it may end up with a

large candidate set, which requires a significant amount of time to query for each

candidate graph gi. In this subsection, we further reduce the candidate set by

deriving a new correlation bound. The idea is as follows: For any outlook Oi,

based on current statistics of Ngi , Ngq , Ngigq , we can compute and predict the up-

per bound correlation value between each graph gi and the query gq, φ
�
max(gi, gq),

with respect to the ΔN increment graphs. If φ�max(gi, gq) is lower than the given

correlation threshold, we can remove it safely.

Suppose when ΔN new graphs arrive, there are also ΔN graphs are removed.

The increments for Ngigq , Ngi , Ngq are ΔNgigq , ΔNgi , and ΔNgq = γ, respectively.

Let

τ = N(Ngigq +ΔNgigq)− (Ngi +ΔNgi)(Ngq + γ)

ω = (N −Ngq − γ)(Ngq + γ)

υ = (Ngi +ΔNgi)(N −Ngi −ΔNgi)

Then the new correlation at the next outlook (Oi+1) for graph gi is

φ�(g, q) =
τ√
υω

(4.11)

Here, we are trying to calculate the maximum value of φ�(g, q) for graph gi,

denoted by φ�max(g, q). If φ�max(g, q) < θ within the next outlook buffer, we can

49

4. CONTINUOUS CORRELATED GRAPH QUERY FOR DATA
STREAMS

safely prune gi.

φ�max(g, q) can be achieved by maximizing the numerator (τ) and minimizing

denominator (υ and ω) simultaneously.

4.4.1 Maximum Value of the Numerator

In order to maximize the numerator τ , let ΔNgigq = y, γ = y+ c1, ΔNgi = y+ c2,

then

τ = N(Ngigq + y)− (Ngq + y + c1)(Ngi + y + c2)

Similar to the estimation process for γ which concludes that α ≤ γ ≤ β, the

increment ΔNgi can be estimated in the same way as we estimate ΔNgq , which

results in ζgi ≤ ΔNgi ≤ ηgi . As a result, we have the following inequalities:

α ≤ y ≤ β; y +Ngigq ≥ 0;

α ≤ c1 ≤ β; y + c1 +Ngq ≥ 0;

ζgi ≤ c2 ≤ ηgi ; y + c2 +Ngi ≥ 0;

Lemma 2. For a stream outlook Oi, given N , Ngi, Ngigq , Ngq , and ΔN , α ≤
γ ≤ β, ζgi ≤ ΔNgi ≤ ηgi, the maximum possible value for τ , the numerator of the

φ�(g, q) at the next outlook Oi+1 is:

τ � =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
hτ (α) : t < 3α

hτ (ŷ) : 3α ≤ t ≤ 2β + α

hτ (β) : t > 2β + α

(4.12)

Here we have hτ (y) = N(Ngigq + y)− (Ngi + y+ ζgi)(Ngq + y+α), t = N −Ngi −
Ngq − ζgi, and ŷ = (N −Ngi −Ngq − ζgi − α)/2.

Proof. The maximum value of τ can be derived by taking first and second partial

50

derivatives. ∂τ
∂c1

= −(Ngi + y+ c2) ≤ 0. τ increases monotonically as c1 decreases.

So τ achieves maximum value in the minimum value of c1, i.e., c1 = α. Similarly,

∂τ
∂c2

= −(Ngq + y + c1) ≤ 0, so τ is maximized when c2 = ζgi ;

∂τ
∂y

= N − Ngi − Ngq − α − ζgi − 2y. And ∂2τ
∂y2

= −2 < 0. So τ has the

maximum value at ∂τ
∂y

= 0. The solution for this equation is ŷ = (N − Ngi −
Ngq − ζgi − α)/2. However, α ≤ y ≤ β, the above value can be reached only

if 3α ≤ N − Ngq − Ngi − ζgi ≤ 2β + α. If N − Ngq − Ngi − ζgi > 2β + α,

∂τ
∂y

= N−Ngi −Ngq −α−ζgi −2y > 2β+α−α−2y > 0. τ will achieve maximum

value at y = β; Similarly, if N −Ngq −Ngi − ζgi < 3α, ∂τ
∂y

< 2α − 2y < 0. τ will

reach maximum value at y = α. Now the Lemma 2 is proven.

4.4.2 Minimum Value of the Denominator

In this subsection, we derive the minimum value of the denominator
√
υω.

Lemma 3. Given N , Ngq , and ΔN , α ≤ γ ≤ β, the minimum possible value for

ω is:

ω� = min{hω(Ngq + α), hω(Ngq + β)} (4.13)

where hω(x) = x(N − x);

Proof. Since hω(x) is a quadratic function of x, it is concave and symmetric about

x = N/2. Its minimum value will be located at either Ngq + α or Ngq + β.

Lemma 4. Given N , Ngq , and ΔN , ζgi ≤ ΔNgi ≤ ηgi, the minimum possible

value for υ is:

υ� = min{hυ(Ngi + ζgi), hυ(Ngi + ηgi)} (4.14)

where hυ(x) = x(N − x);

51

4. CONTINUOUS CORRELATED GRAPH QUERY FOR DATA
STREAMS

Similar to Lemma 3, we can easily obtain Lemma 4.

4.4.3 Loose correlation upper bound

Theorem 2. For any candidate graph gi in the PG list of the current outlook Oi,

its correlation upper bound to the query graph gq before reaching the next outlook

Oi+1 is:

upper(φ�(gi, gq)) = φ�max(gi, gq) =
τ �√
ω�υ�

(4.15)

where τ � follows Lemma 2, ω� follows Lemma 3, and υ� follows Lemma 4.

Proof. φ�max(gi, gq) is achieved by maximizing the numerator (τ) and minimizing

denominator (υ and ω) simultaneously according to Eq. (4.11).

4.4.4 Heuristic Rule

To speed up the candidate pruning procedure, we derive a heuristic rule as follows.

Lemma 5. Let f �(a, b) = (θ
√
a(N − a)b(N − b)+ab)/N . Given current outlook

Oi, two graphs g1 and g2, g2 ⊆ g1, if Ng2q +β < f �(Ng1 + ζg1 , Ngq +α), Ngq +β ≤
N/2, and Ng1 + ζg1 ≤ N/2, the correlation between g2 and gq at the next outlook

Oi+1

φ�(g2, gq) < θ

Proof. Since g2 ⊆ g1, we have Ng1 < Ng2 , Ng1 +ΔNg1 < Ng2 +ΔNg2 . Taking the

partial derivative of f � with respect to a, we can easily know that, with a ≤ N/2,

f � monotonically increases with a. Similarly, with b ≤ N/2, f � monotonically

52

increases with b. So we have

Ng2gq + β < f �(Ng1 + ζg1 , Ngq + α) < f �(Ng2 +ΔNg2 , Ngq +ΔNgq)

Here, Ng2gq + β is the maximum possible value of Ng2gq at outlook Oi+1. Let

x′ = Ng2 +ΔNg2 , y
′ = Ngq +ΔNgq , z

′ = Ng2gq +ΔNg2gq ; Then

φ�(g2, gq) =
Nz′ − x′y′√

x′(N − x′)y′(N − y′)
(4.16)

As z′ ≤ Ng2q + β < f �(x′, y′), replacing z′ with f �(x′, y′) in the Eq. (4.16), we

have

φ�(g2, gq) <
θ
√
x′(N − x′)y′(N − y′) + x′y′ − x′y′√

x′(N − x′)y′(N − y′)

= θ

(4.17)

Note that if Ng2gq + β < f �(Ng1 + ζg1 , Ngq + α), so is Ng1gq . This is because

Ng1 < Ng2 , Ng1 +β < Ng2 +β. It means that φ�(g1, gq) < θ. Now we have proven

the lemma 5.

Applying the heuristic rule: The heuristic rule is integrated with the

candidate checking process. Specifically, if we find that a graph g1 is not a

potential candidate, we check all its subgraphs in the candidate set. For each

g2 ⊆ g1, if φ
�(g2, gq) < θ, we can prune it according to Lemma 5.

4.5 Algorithm

Algorithm 1 lists the detailed procedures of the proposed algorithm for correlated

graph query in data streams. Our algorithm handles the data stream in a batch

53

4. CONTINUOUS CORRELATED GRAPH QUERY FOR DATA
STREAMS

Algorithm 1 Correlated subgraph search for data stream

Require:
θ : query threshold value;
Dj : a new batch of graphs arriving at time point tj ;
PG: Potential correlated subgraphs of the current outlook;
w : number of batches in a sliding window;
ΔN : Number of graphs between two outlooks (ΔN = m× |Dj |,m < w);
Dwin =

⋃{Dj−ι|ι = 1, · · · , w}; //current sliding window;
tcp: The batch ID of the previous outlook;

Ensure:
Ag: Answer set of correlated subgraphs w.r.t. gq;

1: Ag = ∅;
2: while A new graph batch Dj arrives do
3: Dwin ← Dwin/Dj−w; Dwin ← Dwin

⋃
Dj ;

4: if tj is an outlook (i.e., j − tcp == m) then
5: PG ← Rebuild the candidate set by Algorithm 2;
6: tcp ← j;
7: else
8: T

j
q ← Projected database of the query graph gq w.r.t. the current batch Dj ;

9: for each gi ∈ PG do
10: Increasing the frequency of Ngigq from Dj

q , Ngi from current batch Dj ;
11: Decrease the frequency of Ngigq , Ngi in batch Dj−w;
12: for each gi ∈ PG do
13: if φ(gi, gq) ≥ θ then
14: Ag ← Ag

⋃
gi;

15: Output Ag when necessary;

54

Algorithm 2 Building the candidate list

Require:
θ : query threshold value;
w : number of batch in the sliding window;
Dwin =

⋃{Gj−ι|ι = 0, · · · , w − 1}; //current window
Ensure:

PG: The potential correlated subgraphs;
1: PG = ∅;
2: Estimate the statistics of γ, α ≤ γ ≤ β;
3: Tq ← The projected database of query graph gq w.r.t. to the current sliding

window Dwin;
4: Using gSpan algorithm [151] to mine the frequent subgraphs C from Tq with

the lower bound lower(Ngigq) determined by Theorem 1;
5: Sorting C in a descendant order according to their sizes of edges;
6: for each gi ∈ C do
7: Compute upper(φ�(gi, gq)) according to Theorem 2;
8: if upper(φ�(gi, gq)) ≥ θ then
9: PG ← PG

⋃
gi;

10: else
11: H ← ⋃{g′|g′ ⊆ gi, g

′ ∈ C, Ng′gq + β < f(Ngi + ζgi , Ngq + α), Ng + ηg <
N/2, Ngq + β < N/2};

12: C ← C−H;
13: return PG;

by batch manner. As soon as a new data batch Dj arrives at time point tj,

the sliding window will discard the most outdated data batch to ensure that the

window covers w data batches, including the newly coming data batch (step 3

in Algorithm 1). Then we check whether time point tj is an outlook O (step

4). If tj is an outlook, we call Algorithm 2 to rebuild the candidate list PG

(steps 5-6); otherwise, we update the frequency information of each candidate

gi (gi ∈ PG), from the outdated and newly arriving data batches (steps 8-11).

Next, if a candidate’s correlation is above θ, we add it into the answer set Ag

(step 12-14). Finally, we output the answer set Ag when there is a demand from

the user.

Our candidate building procedure for each outlook O is illustrated in Algo-

rithm 2. We use Poisson/Skellam Distribution to estimate γ, α ≤ γ ≤ β in the

next outlook (line 2 of Algorithm 2). Because graph isomorphism is NP-complete,

55

4. CONTINUOUS CORRELATED GRAPH QUERY FOR DATA
STREAMS

we reduce the number of graph isomorphism test by retrieving from the projected

database of query graph gq rather than using the original windows of graph. In

step 4, We mine a set of frequent subgraphs from Tq using a lower bound of thresh-

old lower(Ngigq), which is determined by Theorem 1. This threshold takes the

possible frequency increment quantity of Ngq into consideration and guarantees

that the graph is a possible graph with Ngq in the range of [Ngq −α,Ngq + β]. In

this way, all the potential candidates will be kept before reaching next outlook. In

steps (6-12), for each candidate graph, we compute its correlation upper bound.

If a graph gi’s upper correlation bound is greater than the given threshold θ, we

add gi into PG list, otherwise, we apply a heuristic rule to prune the candidates

and speed up the process.

4.6 Experimental Result

4.6.1 Experiment setup

In this section, we report our experimental results. The graph data stream is

collected from a real-world dataset of the NCI Open Database Compounds 1,

which contains compound structures of cancer and AIDS data. The original

dataset contains about 249,000 graphs. After preprocessing and removing some

disconnected graphs, we have a data stream with about 233,000 graphs.

We compare our algorithms with an exhaustive search method (denoted as

rCGSearch) in terms of system runtime2. When implementing rCGSearch,

i.e., whenever a new batch of graphs arrives, rCGSearch restarts to involve the

CGSearch algorithm [71] in the sliding window. rCGSearch is a precise method

in the sense that it can return all the true answers with zero false positives and

false negatives, but it is computationally expensive which makes it unsuitable for

stream based applications.

Precision and recall are widely used to measure the performance of an algo-

rithm [11]. Suppose the true answer set of correlated graphs is Tg, and the answer

1http://cactus.nci.nih.gov/ncidb2/download.html
2Note that the memory consumption of CGStream and rCGSearch are almost the same and

fixed, as they both store the window of graphs for query process.

56

set returned by our algorithm is Ag. The precision is defined as |Tg

⋂
Ag|/|Ag|,

and the recall is denoted as |Tg

⋂
Ag|/|Tg|.

Because we maintain a candidate set PG over stream and update the fre-

quency information of each candidate, the answer will be returned as long as it

is stored in PG. In other words, the genuine correlation values of the retrieved

graphs to the query graph gq are all above θ, which asserts that the recall of our

algorithm is 1.

To calculate the query precision values, we randomly select 30 graphs as the

query graphs. For each selected query graph, its support value in the whole

data stream is in range [0.02, 0.05]. During the query process, we sequentially

move the sliding window one batch at a time and evaluate the precision of the

correlated graphs in each sliding window over the whole stream. Suppose there

are ψ batches of graphs over data stream. The average precision on a data stream

for a query is computed as Precision = 1
ψ

∑ψ
ι=1 Pι, where Pι is the precision in

window Dwin =
⋃{Dι|n − w + 1 ≤ ι ≤ n} (the most recent w batches). We

calculate average runtime in a similar way. The results for 30 graphs in terms of

these measures are averaged again and reported as the final results.

We study the performance of our algorithm with various parameters. Unless

specify otherwise, we set the default values θ=0.7, w=20, m=10, and |Dj|=3000.

4.6.2 System runtime performance

Pruning Effectiveness of CGStream: In order to assess the effectiveness of

different parts of pruning techniques in our CGStream algorithm, we first remove

the heuristic rules, and then remove both heuristic rules and the upper correlation

bound to investigate the system runtime performance. Table 4.1 summarizes the

system runtime in each time point (including outlook points and non-outlook

points) and the accumulative runtime of the whole stream.

The results in Table. 4.1 show that the system runtime at the outlooks is sig-

nificantly larger than at the non-outlook points. This is because CGStream needs

to query from the whole window Dwin at outlooks while at non-outlook points

it only needs to check the PG list. Meanwhile, it can be seen that after we re-

move the heuristic rule, the runtime at the outlooks increases significantly, which

57

4. CONTINUOUS CORRELATED GRAPH QUERY FOR DATA
STREAMS

Table 4.1: Effectiveness of Pruning in CGStream with θ = 0.8 (seconds)[Acc. Time -
accumulative runtime]

Runtime Acc. Time

Outlook Non-Outlook
CGStream 107.0 4.9 476.2
No Rule 195.5 5.0 768.8

No Rule&UpBound 204.2 11.6 956.5

reflects the contributions of the simple heuristic rule for pruning. Furthermore,

if we remove both heuristic rule and upper correlation bound from CGStream

algorithm, it will not only increase the runtime at outlooks substantially, but

also increase the runtime at non-outlook points. Overall, the accumulative time

(column 4 in table 4.1) in the whole stream will increase if we remove either

heuristic rule or upper correlation bound.

The above results conclude that the upper correlation bound and heuristics

are essential for CGStream.

Algorithm performances with Different Query Thresholds: To study the

performance of our algorithm with respect to different query threshold (θ) values,

we vary the θ values and report the the system runtime at each time point (i.e.

each sliding window) and total system accumulative runtime in Fig. 4.2 and Fig.

4.3.

Fig. 4.2 shows that the proposed CGStream algorithm significantly outper-

forms the exhaustive algorithm in terms of system runtime. Take θ = 0.6 as an

example, it only takes about 15 seconds for CGStream to retrieve the answers at

most time stamps, whereas rCGSearch needs about 380-400 seconds. CGStream

is more than 20 times efficient than rCGSearch. Even at the outlooks, CGStream

needs less time (occasional a little more time) than rCGSearch to build the can-

didate list, this is because our loose correlation upper bound and heuristic rule

can reduce the number of candidates and speed up the computation process.

We also illustrate the accumulative runtime in each time point in Fig. 4.3.

It is clear that the accumulative runtime of rCGSearch increases dramatically as

streaming batch data continuously arrives. In contrast, CGStream’s accumulative

time climbs very slowly except for outlooks, where large jumps can be observed.

58

 0
 50

 100
 150
 200
 250
 300
 350
 400
 450
 500

 20 25 30 35 40 45 50 55 60 65 70 75

R
un

ni
ng

 T
im

e
(S

ec
on

ds
)

Batch ID

(A) θ=0.6

rCGSearch
CGStream

 0

 40

 80

 120

 160

 200

 240

 280

 20 25 30 35 40 45 50 55 60 65 70 75

R
un

ni
ng

 T
im

e
(S

ec
on

ds
)

Batch ID

(B) θ=0.7

rCGSearch
CGStream

 0
 20
 40
 60
 80

 100
 120
 140
 160
 180
 200

 20 25 30 35 40 45 50 55 60 65 70 75

R
un

ni
ng

 T
im

e
(S

ec
on

ds
)

Batch ID

(C) θ=0.8

rCGSearch
CGStream

Figure 4.2: System runtime consumption with respect to different θ values.

The results in Fig 4.2 and Fig. 4.3 show that when the threshold θ is relatively

small, both rCGSearch and CGStream need more time to retrieve the results in

each batch. This is because a smaller threshold θ results in more candidates

returned by the frequent subgraph mining step, which in turn calls for more time

to check and prune the candidate list.

Algorithm performances with different window size w Values: In Fig.

4.4 and Fig. 4.5, we also report algorithm performance with respect to different

sliding window sizes.

As expected, Fig. 4.4 shows that CGStream increases much more slowly than

rCGSearch in terms of system accumulative runtime when we vary w values. The

results are consistent with that we reported for θ previously. Meanwhile, when

we increase the window size, Fig. 4.5.(A) and Fig. 4.5.(B) show that CGStream

requires more time to build the candidate list at the outlooks, which results in

a larger jump in accumulative system runtime at the outlooks in Fig. 4.5.(C)

and Fig. 4.5.(D). This is because the algorithm needs to go through more graphs

59

4. CONTINUOUS CORRELATED GRAPH QUERY FOR DATA
STREAMS

 0

 3000

 6000

 9000

 12000

 15000

 18000

 21000

 24000

 20 25 30 35 40 45 50 55 60 65 70 75A
cc

um
ul

at
iv

e
R

un
ni

ng
 T

im
e

(S
ec

on
ds

)

Batch ID

(A) θ=0.6

rCGSearch
CGStream

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 20 25 30 35 40 45 50 55 60 65 70 75A
cc

um
ul

at
iv

e
R

un
ni

ng
 T

im
e

(S
ec

on
ds

)

Batch ID

(B) θ=0.7

rCGSearch
CGStream

 0

 2000

 4000

 6000

 8000

 10000

 20 25 30 35 40 45 50 55 60 65 70 75A
cc

um
ul

at
iv

e
R

un
ni

ng
 T

im
e

(S
ec

on
ds

)

Batch ID

(C) θ=0.8

rCGSearch
CGStream

Figure 4.3: System accumulative runtime consumption with respect to different θ val-
ues.

when we increase the window size. In real applications, the appropriate size of

window may depend on the domains of application and specific user settings.

Algorithm performances with Different Batch Sizes: Fig. 4.6 illustrates

the results when using different batch sizes (i.e. different |Dj| Values). The exper-
imental results, once again, demonstrate that CGStream can greatly reduce the

computation cost required by rCGSearch, because it avoids involving CGSearch

algorithm repeatedly when updating the sliding window.

Algorithm Performances w.r.t. Different Outlook Frequencies In Fig.

4.7 we also report the algorithm performance with respect to different m values,

i.e., how frequent we set a stream outlook and rebuild the candidate list (the

m value also determine the number of graphs ΔN between two outlooks). It

is obvious that the larger the m values, the less accumulative time is needed

by CGStream algorithm, because it involves less outlooks and less candidate

rebuilding procedures (which is the most time consuming process). However, as

60

 0
 500

 1000
 1500
 2000
 2500
 3000
 3500
 4000
 4500
 5000

 10 15 20 25 30 35 40 45 50 55 60 65 70 75A
cc

um
ul

at
iv

e
R

un
ni

ng
 T

im
e

(S
ec

on
ds

)

Batch ID

(A) ω=10

rCGSearch
CGStream

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 15 20 25 30 35 40 45 50 55 60 65 70 75A
cc

um
ul

at
iv

e
R

un
ni

ng
 T

im
e

(S
ec

on
ds

)

Batch ID

(B) ω=15

rCGSearch
CGStream

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 25 30 35 40 45 50 55 60 65 70 75A
cc

um
ul

at
iv

e
R

un
ni

ng
 T

im
e

(S
ec

on
ds

)

Batch ID

(C) ω=25

rCGSearch
CGStream

Figure 4.4: System accumulative runtime consumption with respect to different w
values.

 0
 40
 80

 120
 160
 200
 240
 280
 320
 360
 400

 10 15 20 25 30 35 40 45 50 55 60 65 70 75Ac
cu

m
ul

at
iv

e
R

un
ni

ng
 T

im
e

(S
ec

on
ds

)

Batch ID

(A) System running time on different ω

w=10
w=20

 0
 40
 80

 120
 160
 200
 240
 280
 320
 360
 400

 10 15 20 25 30 35 40 45 50 55 60 65 70 75Ac
cu

m
ul

at
iv

e
R

un
ni

ng
 T

im
e

(S
ec

on
ds

)

Batch ID

(B) System running time on different ω

w=15
w=25

 0

 500

 1000

 1500

 2000

 2500

 3000

 10 15 20 25 30 35 40 45 50 55 60 65 70 75Ac
cu

m
ul

at
iv

e
R

un
ni

ng
 T

im
e

(S
ec

on
ds

)

Batch ID

(C) System accumulative running time on different ω

w=10
w=20

 0

 500

 1000

 1500

 2000

 2500

 3000

 10 15 20 25 30 35 40 45 50 55 60 65 70 75Ac
cu

m
ul

at
iv

e
R

un
ni

ng
 T

im
e

(S
ec

on
ds

)

Batch ID

(D) System accumulative running time on different ω

w=15
w=25

Figure 4.5: Comparison on different w values. (A) and (B), system runtime in each
time point; (C) and (D), system accumulative runtime in each time point.

61

4. CONTINUOUS CORRELATED GRAPH QUERY FOR DATA
STREAMS

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 20 40 60 80 100 120 140 160 180 200A
cc

um
ul

at
iv

e
R

un
ni

ng
 T

im
e

(S
ec

on
ds

)

Batch ID

(A) |Dj|=1000

rCGSearch
CGStream

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 20 30 40 50 60 70 80 90 100 110A
cc

um
ul

at
iv

e
R

un
ni

ng
 T

im
e

(S
ec

on
ds

)

Batch ID

(B) |Dj|=2000

rCGSearch
CGStream

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 20 25 30 35 40 45 50 55A
cc

um
ul

at
iv

e
R

un
ni

ng
 T

im
e

(S
ec

on
ds

)

Batch ID

(D) |Dj|=4000

rCGSearch
CGStream

Figure 4.6: System accumulative runtime consumption with different |Dj | values.

 0
 30
 60
 90

 120
 150
 180
 210
 240
 270
 300

 20 30 40 50 60 70

R
un

ni
ng

 T
im

e
(S

ec
on

ds
)

Batch ID

(A) Running time with different m values

rCGSearch
m=3
m=5

m=10
m=15

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 20 30 40 50 60 70A
cc

um
ul

at
iv

e
R

un
ni

ng
 T

im
e

(S
ec

on
ds

)

Batch ID

Accumulative Running time with different m values

rCGSearch
m=3
m=5

m=10
m=15

Figure 4.7: Comparison on different m values. (A) system runtime, (B) system accu-
mulative runtime.

62

 0.99
 0.991
 0.992
 0.993
 0.994
 0.995
 0.996
 0.997
 0.998
 0.999

 1

0.9 0.8 0.7 0.6

P
re

ci
si

on

θ values

Precisions with different θ values

 0.986

 0.988

 0.99

 0.992

 0.994

 0.996

 0.998

 1

3 5 10 15

P
re

ci
si

on

m values

Precision with different m values

 0.98
 0.982
 0.984
 0.986
 0.988

 0.99
 0.992
 0.994
 0.996
 0.998

 1

10 15 20 25

P
re

ci
si

on

w values

Precisions with different w values

 0.984

 0.986

 0.988

 0.99

 0.992

 0.994

 0.996

 0.998

 1

1000 2000 3000 4000

P
re

ci
si

on

|Dj| values

Precisions with different |Dj| values

Figure 4.8: Query precisions with respect to different parameters settings.

we will see in latter section, the precision may decrease if we increase m values.

There is a tradeoff between time consumptions and precision.

4.6.3 Query Precision

In Fig. 4.8, we report the query performance of the CGStream algorithm with

respect to different parameters.

Fig. 4.8.(A) shows that the precision drops slightly when we decrease the θ

values. However, the precision is above 0.99 in our algorithm for all θ values,

which reflects the high accuracy of our algorithm.

In Fig. 4.8.(B), the results show that the increasing ofm values (outlook buffer

size) will decrease the query precision. As we have mentioned in Section 4.6.2,

increasing the m values reduces the number of outlooks in the stream. Because

outlooks consumes most of the system runtime, increasing m values reduces the

accumulative time taken by CGStream algorithm. On the other hand, with a

63

4. CONTINUOUS CORRELATED GRAPH QUERY FOR DATA
STREAMS

relatively large m value, the outlook buffer size will increase accordingly, which

will make the parameter estimations for α ≤ γ ≤ β to be less accurate. As

a result, it will decrease the algorithm’s query precision. The tradeoff between

the runtime consumption and precision may be determined depending on domain

applications and user requirements.

Fig. 4.8.(C) and Fig. 4.8.(D) show that the precision will change slightly

when we vary either window size w or batch size |Dj|. Nevertheless, the query

precision is always very close to 1, which indicates that our algorithm is highly

accurate in practice.

4.7 Conclusions

In this chapter, we investigated the problem of query correlated graphs from

data stream, by using a sliding window which covers a number of consecutive

batches of stream data records. We argued that, for data streams with dynamic

increasing volumes, simple exhaustive search for correlated graphs needs to re-

peatedly carry out the query process, which is computationally expensive. By

setting stream outlooks and considering the possible increment of query graph

within two adjacent outlooks, we derived a lower frequency bound to mine a set

of frequent subgraphs as candidates. An upper correlation bound and a heuristic

rule are also derived to prune the candidates in the process of candidate check-

ing. Experimental results demonstrate that our proposed algorithm CGStream

is several times more efficient than the exhaustive search method in terms of the

system runtime consumption, and achieve high performance in terms of query

precision.

64

Part II

Graph Stream Classification

65

Graph Stream Classification: Overview

Graph classification is becoming increasingly important and has attracts wide

interest in recent years. However, existing studies on graph classification mainly

focus on static graph dataset. In reality, graph data is becoming more and more

dynamic. Instead of being a static dataset, graph data is increasing and evolving

in a streaming fashion. For example, an online user’s browsing pattern, with

respect to all web pages, can be regarded as a graph. The browsing patterns of

all users will form a graph stream. Each scientific publication and its references

can be represented as a graph (see Fig. 1.3), so all scientific papers, collected in

chronological order, will form a graph stream with increasing volumes.

In stream scenarios, classifying graph data is a very challenging task. This

is because the decision concepts (decision boundaries) of the graph data may

gradually (or rapidly) change, that is, the concept is drifting in the stream. The

challenges will be further complicated when there are insufficient labeled graph

data or the underlying class distributions of the graph data are imbalanced and

noisy. In Part II, we will study the following problems:

• Graph Stream Classification using Labeled and Unlabeled Graphs:

Due to the complexity of network structures, labeling graphs usually re-

quires experts to investigate the structures carefully. To reduce the human

resource of labeling graphs, a possible way is to combine both labeled and

unlabeled graphs to construct classifier models. In Chapter 5, we will study

how to select discriminative subgraphs with minimum redundancy for semi-

supervised graph stream classification.

• Imbalanced and Noisy Graph Stream Classification: Meanwhile, in

real-life application, especially for graph based domains, the class distri-

butions of data are inherent imbalanced. In the NCI chemical compound

database, there are only about 5% percent of chemical compounds which

are active to the cancer bioassay test, whereas 95% of them are inactive to

the cancer bioassay test (see table 3.2). In Chapter 6, we will study how

to perform graph stream classification with imbalanced class distributions

and noise.

67

68

Chapter 5

Graph Stream Classification

using Labeled and Unlabeled

Graphs

5.1 Introduction

Graph classification is becoming increasingly important in recent years due to

rapid growth of complex data which exhibit structural and interdependent rela-

tionships.

Unlike conventional data, where each instance is represented in a feature-

value vector format, graphs exhibit node-edge structural relationships and have

no natural vector representation. As a result, a common practice is to select a

set of discriminative subgraph as features and transfer graphs into vectors [70] in

Euclidean space, so that traditional machine learning algorithms such as Support

Vector Machines (SVM) and Decision Tree can be applied.

When selecting subgraph features, common methods use an evaluation met-

rics, such as the frequency, to select a number of important subgraph features.

The graph data can then be represented by using the selected features in a vector

69

5. GRAPH STREAM CLASSIFICATION USING LABELED AND
UNLABELED GRAPHS

Figure 5.1: An example demonstrating subgraph correlations: G1 and G2 are positive
graphs (+), G3 and G4 are negative graphs (-). Each subgraph, g1, g2, or g3, is marked
with its frequency occurring in positive v.s. negative graphs.

space (depending on whether a graph contains specific features or not). While

a large number of subgraph feature selection methods exist, they consider sub-

graphs as independent observations without realizing that subgraph features are

normally generated from the same set of graphs. As a result, subgraph features

may share high correlations, which is one of the major factors attributed to the

performance loss of learning methods. As shown in Fig. 5.1, subgraphs g1 and g2

only appear in positive graphs, whereas g3 appears in both positive and negative

graphs. If evaluated separately, g1, g2 are more informative than g3. However, g1

and g2 are highly correlated and redundant. A good approach is to include either

g1 and g3, or g2 and g3 to form a two feature set for graph classification.

In stream scenario, subgraph feature selection can be even more complicated.

This is because the decision concepts (decision boundaries) of the graph data may

gradually (or rapidly) change, i.e. the concept drifting in the stream. In order

to rapidly capture the concept changes in the graph stream, the graph feature

selection module should take the dynamic graph stream as a whole to select

informative and less redundant features. Unfortunately, existing graph feature

selection methods all work on static graph set. No effective strategy exists to

select informative subgraph features from graph streams. While a trivial solution

is to partition graph stream into a number of stationary subsets (or chunks) and

70

carry out feature selection in each individual subset, such a simple solution does

not allow graph subsets to collaborate with each other to select highly effective

subgraph features for graph streams.

In summary, when selecting subgraph features from graph stream for classi-

fication, we should take the following three factors into consideration to ensure

that the whole framework is effective and efficient.

• Identifying informative subgraphs with minimum redundancy: Find-

ing a set of informative subgraph features with minimum redundancy can

ensure that the succeeding learning methods can achieve high accuracy for

graph stream classification.

• Capturing concept drifting in streams: Concept drifting represents

emerging changes in the streams. Our model must be able to capture such

changes and emphasize on the instances represented by drifting concepts.

• Combining labeled and unlabeled graphs: The continuous increasing

volumes of the graph stream makes the graph labels very difficult to obtain.

Our model should take advantage of the large quantify of unlabeled graphs

to boost graph stream classification.

Motivated by the above observations, we report in this chapter, gSLU, a graph

stream classification framework using both labeled and unlabeled graphs. Instead

of limiting subgraph features to labeled samples, gSLU combines both labeled and

unlabeled graphs to generate a rich set of subgraph features for assessment. To

identify informative subgraphs with minimum redundancy, we propose a sub-

graph assessment criterion to assess the informativeness of individual features

and the redundancy of the whole feature set at the same time. To capture in-

stances represented by emerging concept drifting in graph streams, we employ a

dynamic instance weighting mechanism, where graphs misclassified by the exist-

ing model receive a higher weight so the subgraph feature selection can emphasize

on difficult graphs to find effective features to represent them. Experiments on

real-world applications demonstrate that gSLU is effective for selecting informa-

tive and minimum-redundancy subgraph features to build accurate classifiers.

71

5. GRAPH STREAM CLASSIFICATION USING LABELED AND
UNLABELED GRAPHS

The proposed graph ensemble model is able to tackle concept drifting in graph

streams for classification.

The remainder of the chapter is structured as follows. The problem definition

and the overall framework is discussed in Section 5.2. Section 5.3 reports the

proposed subgraph feature assessment criterion. The gSLU framework is reported

in Section 5.4, followed by the experiments in Section 5.5. We conclude the

chapter in Section 5.6.

5.2 Problem Definition & Overall Framework

In this section, we first review some several important notations and discuss

overall framework for semi-supervised graph stream classification.

In our study, each graph Gi is associated with a class label yi ∈ Y. For binary

classification problem, we have yi ∈ Y = {−1,+1}. A graph Gi is either labeled

(denoted by Gl
i) or unlabeled (denoted by Gu

i). In this chapter, we also use Gl

and Gu to denote labeled and unlabeled graphs, respectively.

Graph Stream (Definition 4): A graph stream S = {· · · , Gi, Gi+1, Gi+2, · · · }
contains an increasing number of graphs in a streaming fashion. In this chapter,

we consider that a graph chunk Dt = Dl
t

⋃
Du

t contains a fixed number of graphs

collected from a consecutive stream region, where Dl
t and Du

t denote labeled and

unlabeled graphs, respectively.

By using the graph chunk notation, a graph stream S can be denoted as a

collection of chunks S = {D1, · · · , Dt}.
Pearson’s Correlation Coefficient (Definition 6): Given two subgraph

patterns gp and gq, and a graph set D, the Pearson’s Correlation Coefficient

between gp and gq over the graph set D can be defined as:

φ(gp, gq) =
NDND

gp,gq −ND
gpN

D
gq√

ND
gp(N

D −ND
gp)N

D
gq (N

D −ND
gq)

(5.1)

In Eq.(5.1), ND denotes the total number of graphs in graph set D. ND
gp , N

D
gq ,

and ND
gp,gq denote the number of graphs in D containing gp, gq, and gp and gq,

72

respectively.

Subgraphs with high Pearson’s correlation coefficient indicate that subgraphs

co-occur in the same graphs. So Pearson’s correlation provides a measure to

assess the redundancy of the subgraph features, regardless of the labels of the

underlying graph set.

Given a graph stream S = {D1, D2, · · · , Dt} with a number of consecutive

graph chunks, each chunk Dt = {G1, · · · , Gn} containing some labeled and unla-

beled graphs, the aim of the graph stream classification is to build a prediction

model from the most recently observed k chunks (Dt−k+1, · · · , Dt−1, Dt) to predict

graphs in the next chunk Dt+1 with the maximum accuracy.

5.2.1 Overall Framework

Figure 5.2: A framework for semi-supervised graph data stream classification. The
graph stream is divided into chunks. In each chunk Dt = Dl

t ∪ Du
t , the circles with

’+’ indicate positive graphs, and the circles with ’-’ are negative graphs. The size of a
circle represents its weight in the chunk. In our graph stream scenario, the weight of
a graph is dynamically tuned by an ensemble of classifiers built in previous chunks. In
the current chunk, by taking the weight of each graph into consideration, we select a set
of optimal informative features with minimum redundancy. An ensemble of classifier
is built from the most recent k chunks to predict graphs in the yet-to-come chunk.

In this chapter, we propose an ensemble framework, with a set of minimum-

redundancy subgraph features being extracted from each graph chunk to train

ensemble classifiers. Our framework, as shown in Fig. 5.2, contains three key

73

5. GRAPH STREAM CLASSIFICATION USING LABELED AND
UNLABELED GRAPHS

components: (1) partitioning graph stream into chunks, (2) selecting informative

and minimum-redundancy subgraph features from each chunk, and (3) forming an

ensemble model by combining classifiers trained from individual chunks. To put

all three components into a unified framework, we employ an instance weighting

mechanism to allow multiple graph chunks to work in a collaborative way to tackle

concept drifting in graph streams. As soon as a graph chunk Dt is collected, the

overall framework proceeds as follows:

• Instance Weighting: We use models trained from the past graph chunks

to carefully weight graphs in the most recent chunk Dt with misclassi-

fied graphs (i.e. samples representing concept drifting in stream) receiving

higher weight values.

• Subgraph Feature Selection: A set of informative subgraph features

with minimum-redundancy are selected to represent the weighted graphs in

the current chunk Dt.

• Updating Ensemble: By using selected features, a classifierHt, is trained

from chunk Dt and is included into the ensemble to predict graphs in a

future chunk Dt+1

In the following sections, we first propose our subgraph feature selection mod-

ule, and then discuss detailed procedures of gSLU in Section 5.4.

5.3 Minimum Redundancy Subgraph Feature Se-

lection

Given a chunk of graph data Dt, let F denote the complete set of subgraphs in

Dt, and g = {g1, · · · , gm} be a small set of subgraphs selected from F. Our sub-

graph feature selection aims to simultaneously achieve two goals: (1) maximize

the informativeness (discriminative power) of the selected feature set g for clas-

sification, and (2) minimize the redundancy between subgraph features in g. Let

I(g) be a function to measure the informativeness of g, and R(g) be a function to

74

assess the redundancy in g. The above objective can be formalized in Eq.(5.2),

where | · | represents the cardinality of a set, and m is the number of features to

selected from Dt.

g
 = argmax
g⊂F

(I(g)) (5.2)

s. t. (1) |g| ≤ m and

(2) R(g) ≤ R(g′), ∀g′ ⊂ F, |g′| == |g|, & g′ �= g

The objective function in Eq.(5.2) indicates that the optimal subgraph fea-

tures g
 should have (1) maximum discriminative power, i.e., max(I(g)), and (2)

minimum redundancy between subgraph features, i.e., min(R(g)).

Note that there are already also some feature selection studies [30, 113] that

consider maximizing the relevance and minimizing the redundancy of the fea-

ture set. However, these algorithms were not designed for graph classification.

In other words, they cannot integrate feature selection with the subgraph enu-

meration process. In contrast, our algorithm can effectively integrate subgraph

enumeration process with the feature selection module.

5.3.1 Informativeness of the Feature Set

To discover the set of informative features, we need to measure the informative-

ness of a feature set g, i.e., I(g). To calculate I(g), we impose constraints on

the labeled graphs in Dt. For two graphs Gi and Gj, if they have the same class

labels, there is a pairwise must-link constraint between Gi and Gj in a must-link

set M. If Gi and Gj have different class labels, there is a cannot-link constraint

between them in a cannot-link set C. Such an idea is previously employed in

constraint based clustering [137]. If we take labeled Dl
t and unlabeled Du

t graphs

in Dt into consideration, a good feature set should satisfy constraints as follows.

• Weighted Must Link: if there is a must link between Gi and Gj, their

subgraph feature vectors xi and xj should be similar to each other. In a

data stream scenario, each graph Gi is associated with a weight value wi.

For each graph pair, the higher the total weight of two graphs in the must

75

5. GRAPH STREAM CLASSIFICATION USING LABELED AND
UNLABELED GRAPHS

link set, the more impact the constraint will have for selecting features to

represent their resemblance.

• Weighted Cannot Link: if there is a cannot link between Gi and Gj, their

subgraph feature vectors xi and xj should be distinct from each other. The

higher the total weight of Gi and Gj, the more impact the constraint will

have for selecting features to represent the distinctness between the two

graphs.

• Weighted Separability: if two graphs Gi and Gj are unlabeled, their

subgraph feature vectors xi and xj should be different. It is similar to

PCA’s assumption, which aims to find the components with largest possible

variance.

By integrating instance weight, we can adjust the weight of the graphs to

emphasize on some important samples. As a result, our framework can effectively

capture the concept drifting underlying the graph stream. In this section, we

take instance weight as given values. In Section 5.4, we will provide solutions for

automatically calculating the instance weight.

Taking the above constraints into consideration, we derive a criterion for mea-

suring the informativeness as follows:

I(g) =
1

2A

∑
yiyj=−1

(xi − xj)
2(wi + wj)

− 1

2B

∑
yiyj=1

(xi − xj)
2(wi + wj)

+
1

2C

∑
Gi,Gj∈DU

t

(xi − xj)
2(wi + wj)

(5.3)

where wi and wj are the weights for Gi and Gj, respectively. A =
∑

yiyj=−1(wi +

wj), B =
∑

yiyj=1(wi + wj), and C =
∑

Gi,Gj∈DU
t
(wi + wj). A, B, and C assess

the total weights of constraints in the must-link, cannot-link, and unlabeled set.

Combining weighted must link, cannot link and separability can better capture

the underlying distribution of graph data.

76

Significance of Unlabeled Graphs: A key property of Eq. (5.3) is that it

considers both labeled and unlabeled graphs. The benefit of unlabeled graphs is

two-fold: (1) because incorporating unlabeled graphs significantly increases the

total number of graphs, it will alleviate the graph data sparsity issue and help

enrich the frequent subgraphs. As a result, the subgraph feature space becomes

more dense, through which a good set of subgraph features can be discovered;

(2)because we emphasize on features which can better separate unlabeled graphs,

we can collect a set of more informative subgraph features out of the frequent

features.

By integrating weight values in Eq.(5.3), we define a weighted similarity ma-

trix W = [Wij]
n×n as follows,

Wij =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
wi+wj

A
: yiyj = −1

−wi+wj

B
: yiyj = 1

wi+wj

C
: Gi, Gj ∈ DU

t

0 : otherwise

(5.4)

Accordingly, Eq. (5.3) can be rewritten as follows,

I(g) =
1

2

∑
yiyj

(−xj)
2Wij

= tr(X(Td −W)XT)

= tr(XLdX
T)

=
∑
gp∈g

fgpLdf
T
gp

(5.5)

In Eq.(5.5), tr denotes the trace of a matrix. X = [x1, x2, · · · , xn] is the

matrix consisting binary feature vectors represented Dt. Td is diagonal weighted

degree matrix of W , i.e., (Td)ii =
∑

j Wij. Ld = Td −W is known as a Laplacian

matrix. fgp is an indicator vector of subgraph gp with respect to all graphs Gi

in chunk Dt, i.e., fgp = [fG1
gp , fG2

gp , · · · , fGn
gp], where fGi

gp = 1 iff gp ⊆ Gi; otherwise

fGi
gp = 0.

77

5. GRAPH STREAM CLASSIFICATION USING LABELED AND
UNLABELED GRAPHS

Definition 7. gScore: Given a weighted matrix W as defined in Eq.(5.4) and

a graph chunk Dt, the informativeness score of a subgraph gp is

�(gp) = fgpLdf
T
gp (5.6)

where fgp is an indicator vector of gp in Dt, Td = diag(di) is a diagonal matrix

with di =
∑

j Wij, and Ld = Td −W is a Laplacian matrix.

In order to find the subgraph feature set g which maximizes the informa-

tiveness I(g) as defined in Eq. (5.5), we can calculate gScore values of all sub-

graphs in Fs and sort them, according to their gScore, in a descending order, i.e.,

�(g1) ≥ �(g2) · · · ≥ �(g|F|). By using the top-m features g = {g1, g2, · · · , gm}, we
can maximize I(g).

5.3.2 Informative Subgraph Feature Selection

To obtain frequent subgraph set Fs from Dt, various approaches [14, 58, 79, 151,

154] has been proposed for frequent subgraph mining. In our thesis, we employ a

Depth-First-Search (DFS) based algorithm gSpan [151] to enumerate subgraphs.

The key idea of gSpan is that each subgraph has a unique DFS Code, which is

defined by a lexicographic order of the discovery time during the search process.

Two subgraphs are isomorphism iff they have the same minimum DFS Code. By

employing a depth first search strategy on the DFS Code tree (where each node

is a subgraph), gSpan can effectively enumerate all frequent subgraphs efficiently.

Intuitively, to maximize I(g) for subgraph feature selection, a simple solution

is to use gSpan to discover frequent subgraph set Fs from each graph chunk

Dt, and constantly maintain the feature set g with the maximum gScore during

the frequent subgraph search process. In other words, assume the feature set g

already contains m subgraph features with gmin being the subgraph having the

minimum gScore in g. For each newly explored subgraph gp, if gp’s gScore is

larger than i(gmin), the algorithm will replace gmin with gp to ensure that I(g) is

maximized. The similar approach has, in fact, been employed in a previous work

[75].

78

Algorithm 3 Minimum Redundancy Subgraph Feature Selection

Require:
Dt: A graph data chunk;
min sup: The threshold of the frequent subgraph;
m: the number of features to be selected;

Ensure:
g = {g1, g2, · · · , gm}: A set of features;

1: g = ∅, τ = 0;
2: while Recursively visit the DFS Code Tree in gSpan do
3: gp ← current visited subgraph in DFS Code Tree;
4: if freq(gp) < min sup then
5: continue;
6: Compute the gScore �(gp) for subgraph gp;
7: if |g| < m or �(gp) > τ then
8: g ← g

⋃
gp;

9: if |g| > m then
10: gq ← Subgraph Redundancy check(g); //Algorithm 4
11: g ← g/gq;
12: τ = mingi∈g �(gi);
13: Depth-first search the subtree rooted from node gp;
14: return g;

Take Fig. 5.3 as an example, because g12 has the lowest gScore (the value

showing in the circle), it will be replaced by subgraphs with a higher gScore value

to maximize I(g) for feature selection. In fact, there are a number of highly

correlated subgraph features, such as g5, g6, g7 and g11, and a better approach is

to replace one of the highly correlated subgraph features to ensure high informa-

tiveness and low redundancy features to be included in g.

5.3.3 Minimum Redundancy Subgraph Feature Selection

In order to discover the most informative subgraph feature subset g with

minimum redundancy, as defined in Eq.(5.2), we take feature correlations into

consideration, and aim to minimize the correlation between features during the

subgraph feature exploration process. This objective is achieved through a two-

step optimization process as follows,

79

5. GRAPH STREAM CLASSIFICATION USING LABELED AND
UNLABELED GRAPHS

• Maximize I(g): Explore new informative subgraph gp whose gScore value

is greater than the minimum gScore of the current feature set g.

• Minimize R(g): If some highly correlated subgraphs exist, replace gp with

a subgraph having the highest redundancy; otherwise, replace gp with the

subgraph having the minimum gScore.

Algorithm 3 lists the proposed minimum redundancy subgraph feature selec-

tion method. The algorithm starts with an empty feature set g and the minimum

gScore τ = 0, and continuously enumerates subgraphs by recursively visiting the

DFS Code Tree in gSpan algorithm. If a subgraph gp is not a frequent subgraph,

both gp and its subtree will be pruned (line 4-5). Otherwise, we calculate gp’s

gScore value �(gp). If �(gp) is larger than τ or the feature set g has less than m

subgraphs (i.e. g is not full), we add gp to the feature set g (lines 7-8). Meanwhile,

if the size of g exceeds the predefined size m, we need to remove one feature gq

which is highly correlated to other features in g and has less discriminative power

(lines 9-11) (the detailed procedures to discover gq is discussed in Section 5.3.3.1

and Algorithm 4). After that, the algorithm continues the depth-first search by

following the children of gp (line 13), and continues until the frequent subgraph

mining process by gSpan is completed.

The above process not only maintains the set of subgraphs with high discrimi-

native power, but also minimizes the feature redundancy. As a result, more useful

subgraph features can be used to cover graphs for classification. In the example

showing in Fig. 5.3, instead of removing g12 which has the lowest gScore value,

our method will remove g6 to minimize the redundancy in the feature set g.

5.3.3.1 Subgraph Redundancy Check

When a new informative subgraph is added into feature set g = {g1, g2, · · · , gm},
we need to remove a subgraph gq from g if |g| > m. To minimize the redundancy,

the subgraph gq should satisfy the following two conditions: (1) high correlation:

gq should be highly correlated to other subgraphs, and (2) low informativeness:

gq should have low discriminative power for classification.

In order to discover a subgraph gq highly correlated to other graphs, we employ

80

Figure 5.3: An illustrated example for subgraph selection with minimum redundancy.
Given a subgraph set g = {g1, g2, · · · , gm}, each node represents a subgraph gi and its
gScore value �(gi), and each edge denotes the Pearson’s correlation coefficient between
two subgraphs. Edges with low value are omitted for clear presentation. Without
considering the correlation among features, one will delete the feature g12(blue color)
as it has the minimum gScore value �(g12). By considering feature correlations, feature
g6 (red color) will be deleted, because (1) g6 is located in a dense and highly correlated
group, and (2) g6 has the highest correlation with its neighbor g5 and its informativeness
value is smaller than g5.

the community detection principle in the social network analysis [99] to discover

groups (or communities) from the subgraph features in g = {g1, g2, · · · , gm}. Be-
cause each community represents a group of subgraphs sharing high correlations,

we can select gq from these communities to minimize the redundancy of the fea-

ture set. Accordingly, our strategy for redundant feature deletion follows two

steps:

a) Subgraph Community Discovery: Find dense and highly correlated

subgraph communities.

b) Redundant Subgraph Deletion: Locate the most correlated subgraph

pair < gi, gj > in the most dense community A, and remove the least

informative subgraph from the pair < gi, gj >.

81

5. GRAPH STREAM CLASSIFICATION USING LABELED AND
UNLABELED GRAPHS

Subgraph Community Discovery: To discover subgraph community from g,

we construct a correlation graph, with each node denoting a subgraph gi, and each

edge between gi and gj indicating their Pearson’s correlation φ(gi, gj) (defined in

Eq. (5.1)). A correlation graph example is shown in Fig. 5.3.

To form communities in the correlation graph, we further construct a knn

correlation graph matrix Q = [Qij]
m×m. More specifically, Qij = 1 iff subgraph

gj is among one of the knn-nearest-neighbors (knn largest correlated subgraphs)

of subgraph gi or gi is among one of the knn-nearest-neighbors of gj; otherwise

Qij = 0.

Definition 8. Clique and Maximum Clique. A graph (subgraph) G =

(V, E,L) is a clique if for ∀vi, vj ∈ V, < vi, vj >∈ E. A clique is a maximum

clique if it is not a subgraph of any other clique.

In the example showing in Fig. 5.3, group A denotes a maximum clique with

size 3 (i.e. a 3−clique).

Our community discovery algorithm is based on the maximum clique finding

in the correlation graph matrix. More specifically, we first discover the maximum

γ-cliques in the correlation graph (we use Bron-Kerbosch algorithm [19] in our

experiments), and then overlap these maximum cliques to form communities. For

instance, in Fig. 5.3, the community B is jointed by two 3-cliques g1 − g2 − g3

and g3 − g1 − g4. Using 3-cliques, we can find three communities in Fig. 5.3.

After discovering the subgraph communities, we need to select the most dense

and correlated community.

Definition 9. Community Redundancy: Given a community A = (VA, EA,LA),

where each vertices in VA is a graph feature, the Community redundancy (CR)

for A is defined as:

CR(A) =
1

|EA|
∑
Qij=1

φ(gi, gj) (5.7)

The community redundancy (CR) assesses the average correlations between

linked community members. The higher the CR value, the more redundancy

82

Algorithm 4 Subgraph Redundancy check(g)

Require:
g = {g1, g2, · · · , gm}: A set of subgraph features;
knn: Number of neighbors;
γ: The minimum clique size;

Ensure:
gq: A highly correlated and less informative feature in g;

1: G ← Construct a correlation graph with nodes as features (i.e., gi ∈ g), and
edges as Pearson’s correlation coefficients between nodes;

2: Q ← Construct an knn graph matrix;
3: Cliques ← find all maximum cliques from Q;
4: Com ← build communities by jointing Cliques with minimum size γ;
5: if Com �= ∅ then
6: Z = argmaxA∈Ccom CR(A);
7: < gi, gj >= argmax<gp,gq>∈Z φ(gp, gq);
8: gq = argmin(�(gi), �(gj));
9: else
10: gq = argmingx∈g �(gx);
11: return gq;

exists in the community. Given a feature set g = {g1, g2, · · · , gm}, its redundancy
(R(g)) is the maximum CR value among all communities Com discovered from g,

R(g) = max
A∈Com

CR(A) (5.8)

To minimize the redundancy of g as defined in Eq.(5.8), we need to delete the

subgraph feature with the largest correlation and small informativeness in the

most redundant community.

Redundant Subgraph Deletion: After locating the most redundant commu-

nity, the feature pair (gi and gj) with the highest correlation value is identified as

the most correlated feature pair in the the community. The redundant subgraph

feature is the one (gi or gj) which has a smaller gScore value. Then the least in-

formative redundant feature is removed from g. In example showing in Fig. 5.3,

community C is the most redundant community (with highest CR value). g5 and

g6 are the most correlated feature pair in community C. Because �(g6) < �(g5),

g6 is identified as the least informative redundant feature to be removed from g.

83

5. GRAPH STREAM CLASSIFICATION USING LABELED AND
UNLABELED GRAPHS

Algorithm 4 lists detailed procedures of Subgraph Redundancy Check() for

finding the most correlated and the least informative feature in a set of features

g = {g1, g2, · · · , gm}. It is worth noting that if the community discovery fails

to find any community from the feature graph Q (i.e. Com = ∅), it means that

subgraph features have low correlations with each other. The algorithm will

return the subgraph with the smallest gScore value as the least informative most

redundant subgraph feature (line 10).

5.4 gSLU Algorithm

In graph stream settings, graph data may constantly evolve (i.e., concept drift-

ing), which makes existing models incapable of classifying instances representing

emerging/changing concepts. Accordingly, we define disturbing graph samples by

using models trained from historical data as follows,

Definition 10. Disturbing Graph Samples: Given a classifier trained from

historical graph data, disturbing graph samples (or instances) are the ones which

are incorrectly classified by the given classifier.

Because disturbing graph samples are “difficult” instances and an existing

model is incapable of classifying them, they need to be emphasized during the

stream learning process. In our system, we use an instance based weighting

method to capture difficult graph samples, and combine the instance weight with

the feature selection module.

Instance Weighting: The idea of our weighting scheme is as follows: as soon as

a new graph chunkDt = Dl
t

⋃
Du

t is collected for processing, we use an ensemble of

classifiers E = {Ht−k,Ht−k+1, · · · ,Ht−1} which is trained from historical chunks

to predict labeled graphs in Dl
t. If a graph is miss-classified by E, we increase

the graph’s weight because it is a difficult sample, and if a graph is correctly

classified we decrease its weight. This weighting mechanism is also similar to the

Adaboost algorithm [42]. By doing so, we can integrate the instance weight to

the succeeding subgraph feature selection procedure, so gSLU can emphasize on

84

Algorithm 5 gSLU Algorithm

Require:
S = {D1, D2, · · · }: Graph Stream
k: The maximum capacity of the ensemble

1: Initialize E = ∅, t = 0;
2: while S! = ∅ do

// Training Phase:
3: Dt ← A new graph chunk;
4: Dt = Dl

t

⋃
Du

t ; S ← S/Dt; t = t+ 1;
5: if (t == 1) then
6: g ← minimum redundancy features in Dt; //Algorithm 3
7: Ht ← classifier built from Dt and g;
8: E ← E

⋃
Ht

9: else

10: ξ ←
∑

Gi∈Dl
t
(h(Gi|E)�=yi)

|Dl
t|

;

11: wi =

⎧⎨⎩ wi

√
1−ξ
ξ : h(Gi|E)! = yi, Gi ∈ Dl

t

wi

√
ξ

1−ξ : h(Gi|E) = yi, Gi ∈ Dl
t

;

12: wi =
wi∑

Gi∈Dl
t
⋃

Du
t
wi
;

13: g ← minimum redundancy features in Dt; //Algorithm 3
14: Ht ← classifier built from Dt and g;
15: E ← E

⋃
Ht

16: if |E| > k then
17: E ← E/Ht−k

// Testing Phase:
18: Dt+1 ← A new graph chunk;
19: h(Gi|E) = argmax

∑t
i=t−k−1 h(Gi|Hi)

85

5. GRAPH STREAM CLASSIFICATION USING LABELED AND
UNLABELED GRAPHS

difficult samples and select a set of informative features to represent disturbing

graph samples.

gSLU Algorithm: Algorithm 5 lists detailed procedures of the proposed gSLU

framework which combines instance weighting and minimum redundancy sub-

graph feature selection for graph stream classification.

The “while” loop in Algorithm 5 represents a stream processing cycle which

repeats as long as new graph data continuously arrive. Once a new chunk Dt

(including labeled Dl
t and unlabeled graphs Du

t) is collected, gSLU first checks

whether Dt is the first chunk (line 5). For the first chunk D1, gSLU simply

retrieve a set of features g from D1 by using Algorithm 3, and add the classifier

Ht built from g to initialize the ensemble E (lines 5-8).

For any succeeding chunks (except the first chunk) Dt, t = 2, 3, · · · , gSLU
uses the ensemble E to tune the weight of each graph in Dt by using ensemble

error rate ξ (line 10), where h(Gi|E) returns the class label of Gi predicted by

the ensemble E. If the ensemble E misclassifies a graph Gi ∈ Dl
t, gSLU increases

the weight of Gi by
√

1−ξ
ξ
, otherwise gSLU decreases the weight of Gi by

√
ξ

1−ξ
(line 11). On line 12, gSLU normalizes the weight values for all instances in

Dt, followed by line 13 which retrieves a set of minimum redundancy subgraph

features g from Dt. By using features in g, a classifier Ht is trained and is used

to update the ensemble E (lines 14-15). If the number of classifiers in E exceeds

the predefined size k, we discard the oldest classifier in E (line 17).

At the testing phase, gSLU uses the majority vote of all classifiers in E to

predict graphs in the new graph chunk Dt+1.

In our algorithm, we used Adaboosting-like algorithm [42] to update the graph

weights. As on each chunk, we do not perform subgraph selection iteratively like

Adaboost algorithm does, we do not have similar accuracy guarantee as Adaboost.

We use this scheme because it can help us to capture the “difficult” graph samples

that may be caused by concept drift.

86

5.5 Experiments

We report our experiments on real-world graph data, with emphasis on (1) effec-

tiveness of the proposed minimum redundancy subgraph feature selection module,

and (2) the efficiency and effectiveness of gSLU for graph stream classification.

5.5.1 Experimental Settings

Two graph streams, DBLP and NCI graph streams (please refer to table 3.2 and

Section 3.3 for more details), collected from real-world applications are used in

our experiments.

• DBLP Graph Stream: We used the DBLP-balanced graph stream in

tabel 3.2 for graph stream classification. It is worth noting that the DBLP

graph stream consists of two classes, i.e., DBDM (database and data min-

ing) or CVPR (computer vision and pattern recognition). As DBDM and

CVPR are overlapping in many aspects, such as machine learning and vi-

sual information retrieval. The shifting of the research focus makes DBLP

stream an ideal benchmark for concept drifting graph stream classification.

• NCI Graph Stream: For NCI graph streams, because the original NCI

datasets are highly imbalanced, with about 5% positive graphs, so we used

the NCI-balanced collection in table 3.2, which shares balanced class dis-

tributions of two classes, for graph stream classification. We concatenate

nine datasets into a stream with 33,028 graphs in total. In the NCI graph

stream, the bioassay task changes from time to time (from one dataset to

another), which simulates the concept drifting in the graph stream.

Baseline Methods To evaluate the effectiveness of our minimum redundancy

feature selection and instance weighting based graph stream classification frame-

work, we compare the proposed gSLU with both supervised and semi-supervised

feature selection methods (all of them are based on the same ensemble framework

as gSLU).

• Information gain based method (IG+Stream). In each chunk, we

first retrieve a set of frequent subgraph features from labeled graphs, and

87

5. GRAPH STREAM CLASSIFICATION USING LABELED AND
UNLABELED GRAPHS

rank the features according to their Information Gain (IG) [115] value. The

top-m subgraphs with the highest IG are used to build the classifier. This

framework only uses labeled graph in the stream and does not consider

feature redundancy at all.

• gSemi based method (gSemi+Stream). In each chunk, we employ

gSemi algorithm [75] to select a set of informative features to train a clas-

sifier. This framework combines labeled and unlabeled graphs to maximize

the total informativeness score for a set of features, without considering

feature redundancy.

For fair comparisons, all three algorithms (gSLU, IG+Stream, and gSemi+Stream)

use Nearest Neighbor (NN) classifier (trained from features extracted from each

chunk by using different methods) to form an ensemble and predict graphs in a

future chunk. We used the NN classifier because the NN classifier is the most

simple and based classifier for classification. Similar study [75] on feature selec-

tion is also based on the NN classifier. For IG+Stream and gSemi+Stream, there

is no instance weighting, and only gSLU updates the graph sample weight over

stream. The ensemble method is based on a majority voting approach.

Unless specified otherwise, the default parameter settings are as follows: En-

semble size k=15, chunk size |Dt| = 800, number of neighbors to build correlated

graphs knn=5, maximum cliques γ = 4 (for DBLP) and 6 (for NCI), minimum

support threshold min supp = 1% (for DBLP) and 30% (for NCI) of the chunk

size |Dt|.
All experiments are collected from a linux cluster computing node with an

Interl(R) Xeon(R) @3.33GHZ CPU and 3GB fixed memory size.

5.5.2 Experimental Results

In this section, we first compare the feature selection component of each algo-

rithm, without considering the ensemble framework and graph weighting. Then

we integrate ensemble into each algorithm to compare the overall performance of

different methods for graph stream classification.

88

 0.54

 0.55

 0.56

 0.57

 0.58

 0.59

 0.6

m=20 m=30 m=40

A
cc

ur
ac

y

(A) Accuracy on DBLP dataset V.s. m

gSLU gSemi IG

 0.52

 0.53

 0.54

 0.55

 0.56

 0.57

 0.58

m=20 m=30 m=40

A
cc

ur
ac

y

(B) Accuracy on NCI dataset V.s. m

gSLU gSemi IG

Figure 5.4: Comparison of the proposed minimum redundancy subgraph feature selec-
tion with other algorithms. For each graph stream and a chunk Dt, we build a classifier
Ht from chunk Dt, by using features selected from different methods, to predict graphs
in Dt+1. The results represent the average classification accuracy over all chunks in
the graph stream. (A) Results on DBLP stream, with chunk size |Dt| = 1000, labeled
graphs in each chunk |Dl

t|=30; (B) Results on NCI stream, with |Dt| = 800, |Dl
t|=30.

5.5.2.1 Minimum Redundancy Subgraph Feature Selection Results

To report our minimum redundancy subgraph feature selection results, for each

stream, we built a nearest neighbor (NN) classifier Ht from the current chunk

Dt, by using different feature selection methods, to predict graphs in the next

chunk Dt+1. There is no instance weighting and ensemble framework involved in

the experiment. Then we report the average classification accuracy of different

methods over the whole stream in Fig. 5.4.

The results in Fig. 5.4 demonstrate that our subgraph feature selection mod-

ule in gSLU outperforms its peers on both DBLP and NCI streams. Among all

three methods, IG only uses labeled graphs to generate feature candidates, and its

results are inferior to other methods which confirm that using unlabeled graphs

can tackle the data sparsity issues and help generate useful feature patterns for

graph classification. Meanwhile, although both gSLU and gSemi combine labeled

and unlabeled graphs for feature selection, our results show that combining each

feature’s informativeness score and the redundancy of the feature set, like gSLU

does, is superior to gSemi which only assesses each feature’s informativeness score

without considering their correlations.

In the following subsections, we report results that incorporate subgraph fea-

89

5. GRAPH STREAM CLASSIFICATION USING LABELED AND
UNLABELED GRAPHS

ture selection, graph weighting, and ensemble for graph stream classification.

5.5.2.2 Graph Streams Classification Accuracies

Results on different sizes of labeled graphs |Dl
t|: In Figs. 5.5 and 5.6, we

vary the number of labeled graphs in each graph chunk, and report the results

on DBLP and NCI streams.

 0.4

 0.45

 0.5

 0.55

 0.6

 0.65

 0.7

 0.75

 0.8

 0 2 4 6 8 10 12 14 16 18 20 22 24

A
cc

ur
ac

y

Batch ID

(A) DBLP |Dt
l|=20

gSLU
gSemi+Stream

IG+Stream
 0.4

 0.45

 0.5

 0.55

 0.6

 0.65

 0.7

 0.75

 0.8

 0 2 4 6 8 10 12 14 16 18 20 22 24

A
cc

ur
ac

y

Batch ID

(B) DBLP |Dt
l|=30

Concept Drift
gSLU

gSemi+Stream
IG+Stream

 0.4

 0.45

 0.5

 0.55

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0 2 4 6 8 10 12 14 16 18 20 22 24

A
cc

ur
ac

y

Batch ID

(C) DBLP |Dt
l|=70

Concept Drift gSLU
gSemi+Stream

IG+Stream

Figure 5.5: Accuracy w.r.t. different sizes of labeled graphs on DBLP stream with each
chunk containing 800 graphs, and the number of features in each chunk is 20. The
number of labeled graphs in each chunk: (A) 20; (B) 30; (C) 70.

The results in Figs. 5.5 and 5.6 show that gSLU consistently outperforms

IG+stream and gSemi+Stream across the whole stream. Without utilizing un-

labeled data, IG+Stream’s performance is significantly worse than gSLU and

gSemi+Stream, especially in Fig. 5.5.(C). This is because that labeled graphs

in each chunk are very limited. By using rich unlabeled graphs, it is possible to

discover a set of dense and informative subgraph patterns that better differenti-

ate labeled graphs. Meanwhile, gSLU outperforms gSemi+Stream in data stream

90

 0.44

 0.48

 0.52

 0.56

 0.6

 0.64

 0.68

 0.72

 0 5 10 15 20 25 30 35 40

A
cc

ur
ac

y

Batch ID

(A) NCI |Dt
l|=30

gSLU
gSemi+Stream

IG+Stream
 0.44

 0.48

 0.52

 0.56

 0.6

 0.64

 0.68

 0.72

 0 5 10 15 20 25 30 35 40

A
cc

ur
ac

y

Batch ID

(B) NCI |Dt
l|=50

gSLU
gSemi+Stream

IG+Stream

 0.44

 0.48

 0.52

 0.56

 0.6

 0.64

 0.68

 0.72

 0 5 10 15 20 25 30 35 40

A
cc

ur
ac

y

Batch ID

(C) NCI |Dt
l|=70

gSLU
gSemi+Stream

IG+Stream

Figure 5.6: Accuracy w.r.t. different seizes of labeled graphs on NCI stream with each
chunk containing 800 graphs, and the number of features in each chunk is 20. The
number of labeled graphs in each chunk: (A) 30; (B) 50; (C) 70.

classification. This is mainly attributed to gSLU’s two key components, includ-

ing minimum redundancy subgraph feature selection and instance weighting. The

former selects a set of highly informative and low redundancy features to build

classifiers, and the latter allows multiple chunks (classifiers) to work in a collabo-

rative way to form an accurate ensemble model. As a result, gSLU achieves good

performance in classifying graph streams with dynamic changes. For example, in

Fig. 5.5.(B), there are noticeable concept drifting from chunks 10-12 and from

18-20 (marked by the rectangle boxes). As a result, all three methods experience

performance loss. By employing instance weighting to tackle the concept drifting,

gSLU receives much less loss than gSemi+Stream and IG+Stream.

The average accuracies over the whole graph stream, as shown in Fig. 5.7,

demonstrate that increasing the number of labeled graphs in each chunk can

benefit all three methods. This result indicates that a large number of labeled

graphs in each chunk can enhance the feature selection in a semi-supervised graph

91

5. GRAPH STREAM CLASSIFICATION USING LABELED AND
UNLABELED GRAPHS

 0.48

 0.52

 0.56

 0.6

 0.64

 0.68

 0.72

 0.76

 0.8

|Dt
l|=20 |Dt

l|=30 |Dt
l|=70

A
cc

ur
ac

y

(A) Averaged accuracy on DBLP stream V.s. |Dt
l|

gSLU gSemi+Stream IG+Stream

 0.52

 0.54

 0.56

 0.58

 0.6

 0.62

 0.64

 0.66

 0.68

 0.7

|Dt
l|=30 |Dt

l|=50 |Dt
l|=70

A
cc

ur
ac

y

(B) Averaged accuracy on NCI stream V.s. |Dt
l|

gSLU gSemi+Stream IG+Stream

Figure 5.7: Average accuracy (and standard deviation) v.s. labeled graph sizes |Dl
t|

with chunk size |Dt|=800, feature size m = 20.

stream setting. Overall, gSLU is the best among the three methods.

In Table 5.1, we report the pairwise t-test (with confident level α = 0.05) to

validate the statistical significance between three methods. Each entry (value)

denotes the p-value for a t-test between two algorithms, and a p-value less than

α = 0.05 indicating that the difference is statistically significant. From Table

5.1, gSLU statistically outperforms IG+Stream in all cases, and is superior to

gSemi+Stream for eight out of nine trials.

Table 5.1: Pairwise t-test results with labeled graph sizes |Dl
t|. A, B, and C denote

gSLU, gSemi+Stream, and IG+Stream, respectively.

DBLP NCI

Dl
t A-B A-C B-C Dl

t A-B A-C B-C
20 1.7E-03 3.0E-07 9.0E-04 30 3.1E-09 1.4E-11 1.3E-02
30 2.4E-02 7.0E-06 3.7E-09 50 5.7E-07 4.2E-11 1.2E-06
70 8.6E-02 1.7E-12 3.2E-10 70 4.2E-09 5.3E-19 1.1E-10

Results on different number of features m: In Figs. 5.8 and 5.9, we report

the algorithm performance with respect to different number of subgraph features

in each chunk. The average results over the whole stream are also reported in

Fig. 5.10. As expected, gSLU has the best performance among the three algo-

rithms for both DBLP (Fig. 5.8) and NCI (Fig. 5.9) streams. In Fig. 5.8.(A),

there is a significant concept drifting from chunks 2-3, where gSemi+Stream and

IG+Stream both experience sharp accuracy drop. In contrast, gSLU’s perfor-

92

 0.4

 0.45

 0.5

 0.55

 0.6

 0.65

 0.7

 0.75

 0.8

 0 2 4 6 8 10 12 14 16 18 20 22 24

A
cc

ur
ac

y

Batch ID

(A) DBLP |m|=30

gSLU
gSemi+Stream

IG+Stream
 0.4

 0.45

 0.5

 0.55

 0.6

 0.65

 0.7

 0.75

 0 2 4 6 8 10 12 14 16 18 20 22 24

A
cc

ur
ac

y

Batch ID

(B) DBLP |m|=40

gSLU
gSemi+Stream

IG+Stream

 0.4

 0.45

 0.5

 0.55

 0.6

 0.65

 0.7

 0.75

 0 2 4 6 8 10 12 14 16 18 20 22 24

A
cc

ur
ac

y

Batch ID

(C) DBLP |m|=50

gSLU
gSemi+Stream

IG+Stream

Figure 5.8: Accuracy w.r.t. different number of features on DBLP stream with each
chunk containing 800 graphs, and the size of labeled data in each chunk is 30. The
number of feature selected in each chunk: (A) 30; (B) 40; (C) 50.

mance loss is much smaller than other two methods. This also demonstrates the

effectiveness of the instance weighting scheme for capturing emerging disturbing

graph samples. By adjusting graph weight values, gSLU can immediately select

subgraph features to represent emerging samples and force the whole classification

framework to adapt to the changing concepts in the graph stream.

Interestingly, results in Fig. 5.10 show that increasing the number of features

in DBLP stream actually reduces the accuracy of all three algorithms. This may

suggest that for DBLP classification task, a small number of features (such as

keywords or simple citation relationships) may have enough discriminate power

for classification. Increasing subgraph features may introduce redundant features

into the learning process, which deteriorates the accuracy of the classifier. This

is, however, not the case for NCI stream where increasing the number of features

consistently help improve the classifier.

93

5. GRAPH STREAM CLASSIFICATION USING LABELED AND
UNLABELED GRAPHS

 0.44

 0.48

 0.52

 0.56

 0.6

 0.64

 0.68

 0.72

 0 5 10 15 20 25 30 35 40

A
cc

ur
ac

y

Batch ID

(A) NCI |m|=10

gSLU
gSemi+Stream

IG+Stream
 0.44

 0.48

 0.52

 0.56

 0.6

 0.64

 0.68

 0.72

 0 5 10 15 20 25 30 35 40

A
cc

ur
ac

y

Batch ID

(B) NCI |m|=20

gSLU
gSemi+Stream

IG+Stream

 0.44

 0.48

 0.52

 0.56

 0.6

 0.64

 0.68

 0.72

 0 5 10 15 20 25 30 35 40

A
cc

ur
ac

y

Batch ID

(C) NCI |m|=30

gSLU
gSemi+Stream

IG+Stream

Figure 5.9: Accuracy w.r.t. different number of features on NCI stream with each
chunk containing 800 graphs, and the size of labeled data in each chunk is 30. The
number of features selected in each chunk: (A) 10; (B) 20; (C) 30.

 0.48

 0.52

 0.56

 0.6

 0.64

 0.68

 0.72

m=30 m=40 m=50

A
cc

ur
ac

y

(B) Accuracy on DBLP stream V.s. m

gSLU gSemi+Stream IG+Stream

 0.5

 0.52

 0.54

 0.56

 0.58

 0.6

 0.62

 0.64

 0.66

 0.68

m=10 m=20 m=30

A
cc

ur
ac

y

(B) Averaged accuracy on NCI stream V.s. m

gSLU gSemi+Stream IG+Stream

Figure 5.10: Averaged accuracy (and standard deviation) v.s. number of features m,
with chunk size |Dt|=800, feature size m = 20.

94

Table 5.2: Pairwise t-test results with various feature size m. A, B, and C denote
gSLU, gSemi+Stream, and IG+Stream, respectively.

DBLP NCI

m A-B A-C B-C m A-B A-C B-C
30 5.4E-07 6.1E-08 2.1E-02 10 7.4E-06 1.7E-13 1.7E-08
40 1.9E-06 1.2E-11 1.1E-06 20 3.1E-09 1.4E-11 1.3E-02
50 5.3E-05 6.9E-06 9.7E-03 30 4.9E-09 5.2E-08 2.7E-01

 0.4

 0.45

 0.5

 0.55

 0.6

 0.65

 0.7

 0.75

 0 2 4 6 8 10 12 14 16 18

A
cc

ur
ac

y

Batch ID

(A) DBLP |Dt|=1000

Concept Drift

Concept Drift gSLU
gSemi+Stream

IG+Stream
 0.4

 0.45

 0.5

 0.55

 0.6

 0.65

 0.7

 0.75

 0 2 4 6 8 10 12 14 16 18 20 22 24

A
cc

ur
ac

y

Batch ID

(B) DBLP |Dt|=800

gSLU
gSemi+Stream

IG+Stream

 0.4

 0.45

 0.5

 0.55

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0 4 8 12 16 20 24 28 32

A
cc

ur
ac

y

Batch ID

(C) DBLP |Dt|=600

gSLU
gSemi+Stream

IG+Stream

Figure 5.11: Accuracy w.r.t. different chunk sizes on DBLP stream with each chunk
containing 30 labeled graphs, and the number of features in each chunk is 50. The
batch sizes vary as: (A) 1000; (B) 800; (C) 600.

95

5. GRAPH STREAM CLASSIFICATION USING LABELED AND
UNLABELED GRAPHS

 0

 10000

 20000

 30000

 40000

 50000

 0 2 4 6 8 10 12 14 16 18 20

A
cc

um
ul

at
ed

 T
im

e
(m

s)

No. of Graphs (x103)

(A) Accumulated time on DBLP stream

gSLU
gSemi+Stream

IG+Stream

 0

 30000

 60000

 90000

 120000

 150000

 180000

 210000

 0 5 10 15 20 25 30 35

A
cc

um
ul

at
ed

 T
im

e
(m

s)

No. of Graphs (x103)

(B) Accumulated time on NCI stream

gSLU
gSemi+Stream

IG+Stream

Figure 5.12: System accumulated runtime v.s. number of graphs processed over stream.
(|Dt| = 800, |Dl

t| = 10%|Dt|, and m=20).

 0

 10000

 20000

 30000

 40000

 50000

|Gt|=400 |Gt|=600 |Gt|=800 |Gt|=1000

A
cc

um
ul

at
ed

 T
im

e
(m

s)

(A) System accumulated time on DBLP stream

gSLU gSemi+Stream IG+Stream

 0

 40000

 80000

 120000

 160000

 200000

 240000

|Dt|=400 |Dt|=600 |Dt|=800 |Dt|=1000

A
cc

um
ul

at
ed

 T
im

e
(m

s)
(B) System accumulated time on NCI stream

gSLU gSemi+Stream IG+Stream

Figure 5.13: System accumulated runtime v.s. different chunk sizes |Dt|, |Dl
t| =

10%|Dt|. m=20; (A) Results on DBLP stream; (B) Results on NCI stream.

In Table 5.2, we report the pairwise t-test with confident level α = 0.05. The

p-values (less than 0.05) in each entry assert that gSLU statistically significantly

outperforms gSemi+Stream and IG+Stream.

Results on different chunk sizes |Dt|: In Fig. 5.11, we report the algorithm

performance by using different number of graphs in each chunk |Dt| (varying from
1000, 800, to 600).

Overall, the results in Fig. 5.11 show that the accuracies of all methods

fluctuate to a large extent across the whole stream. Because we fixed the number

of labeled graphs in each chunk to 30, the overall trend shows that a smaller

chunk size may slightly outperform the settings with a larger chunk size.

96

5.5.2.3 Graph Streams Classification Efficiency

In Figs. 5.12 and 5.13, we report the system runtime performance (efficiency) for

graph stream processing. The results show that IG+Stream algorithm takes much

less time than semi-supervised algorithms (gSLU and gSemi+Stream). This is

mainly because IG+Stream carries out frequent subgraph mining on a small set of

labeled graphs whereas both gSLU and gSemi+Stream need to handle labeled and

unlabeled data. In our experimental settings, the labeled graphs is less than 10%

of the unlabeled graphs, so IG+Stream shows much better runtime performance.

When comparing gSLU and gSemi+Stream, gSLU requires slightly more time

than gSemi+Stream because of the minimum-redundance checking during the

feature selection process. Meanwhile, the accumulated system runtime w.r.t.

different chunk sizes, as shown in Fig. 5.13, also indicate that system runtime

remains relatively stable for various chunk sizes. Overall, the results show that

gSLU linearly scales to the number of graphs and chunks, which means that gSLU

is capable of handling real-world high speed graph streams.

In the experiments, we also tried to collect system runtime by treating each

stream as one single chunk. Unfortunately, both streams ended up with insuf-

ficient memory for processing (using a 3GB Memory cluster computing node).

This also asserts that a stream based processing framework is potentially useful

for handling large scale graph datasets.

5.6 Conclusion

In this chapter, we investigated graph stream classification using limited labeled

graphs and abundant of unlabeled graphs. We argued that existing methods

for subgraph feature selection fail to consider redundancy between selected sub-

graphs, and dynamic graph streams require solutions to capture emerging con-

cept drifting examples so the overall framework can adapt to the changes in the

streams. In the chapter, we proposed unique measures to discover informative

subgraph features with minimum redundancy, through which we can build classi-

fiers from graph streams. To capture emerging difficult graphs in the stream, we

proposed an instance weighting mechanism to force the subgraph feature selec-

97

5. GRAPH STREAM CLASSIFICATION USING LABELED AND
UNLABELED GRAPHS

tion module to emphasize on emerging concept drifting graphs, so our model can

quickly adapt to the changes in the stream. Experiments validated the proposed

design for effective graph stream classification.

98

Chapter 6

Imbalanced and Noisy Graph

Stream Classification

Although graph classification has been advanced greatly in recent years, no stud-

ies have paid attention to imbalanced graph classification in streaming scenarios.

In this chapter, we will investigate the problem of graph stream classification

with imbalanced class distributions and noise.

6.1 Introduction

6.1.1 Imbalanced Graph Classification

Existing graph classification algorithms [29, 40, 70, 75, 120, 144, 168] mainly fo-

cus on graph applications with balanced class distributions (i.e. the percentages

of samples in different classes are close to each other). In reality, balanced class

distribution is rarely the case and for many applications interesting samples only

form a small percentage of the whole population. For instance, in NCI chemical

compound graph datasets, only about 5% percent of molecules are active to the

anti-cancer bioassay test, and the remaining 95% are inactive to the test (see

Table 3.2). Learning from datasets with imbalanced class distributions has been

99

6. IMBALANCED AND NOISY GRAPH STREAM
CLASSIFICATION

widely studied in past years. Popular techniques include sampling [85], ensem-

ble learning [45, 80], and SVM adapting [6, 135], and a recent monograph has

discussed many methods for imbalanced data classification [56]. Unfortunately,

these learning methods for imbalanced data are designed and evaluated only for

data with vector representations, without considering complex structure informa-

tion of graphs. As a result they may have sub-optimal performance when applied

to graph data.

When dealing with imbalanced graph data, a simple solution is to apply ex-

isting methods for imbalanced data [85] to under-sample graphs in the majority

class to obtain a relatively balanced graph dataset, and then apply graph classifi-

cation methods [75, 117]. Such a trivial treatment not only ignores the structure

information in the graph datasets, but may be also subject to the risk of losing

valuable information in the sampled data, and results in poor algorithm perfor-

mance. This problem will be further aggravated with the presence of noise (i.e.

mislabelled samples). For graph applications, it is an inherent complex process

to examine and label structured data, which may result in mislabelled samples

(or noise). Because noise accounts for a small portion of the whole dataset, they

are similar to instances in the minority class. As a result, solutions which try to

emphasize on minority class samples to improve the performance gain may falsely

emphasize on noise and incur significant performance loss instead.

6.1.2 Graph Stream Classification

The second challenge arisen in real-life applications is the dynamic increase and

change of structural information over time, i.e., graph streams [2, 101, 107, 108,

110]. For example, an online user’s browsing pattern, with respect to all web

pages, can be regarded as a graph. The browsing patterns of all users will form a

graph stream. Each scientific publication and its references can be represented as

a graph [101], so all scientific papers, collected in chronological order, will form

a graph stream with increasing volumes.

In stream scenarios, classifying noisy and imbalanced graphs is a very chal-

lenging task. This is because the decision concepts (decision boundaries) of the

graph data may gradually (or rapidly) change, i.e. the concept drifting in the

100

stream. In order to tackle the concept drifting, the subgraph feature selection

and classification modules should take the dynamic graph stream as a whole to

achieve maximum benefits. Unfortunately, existing graph classification methods

all work on static datasets with balanced class distributions. No effective strategy

exists to support classification for imbalanced graph streams. Intuitively, a triv-

ial solution is to partition graph stream into a number of stationary subsets (or

chunks) and carry out classifier learning in each individual subset. This simple

solution, however, does not allow graph subsets to collaborate with each other

to train robust models. More effective solution to capture dynamic changes in

graph stream is highly desired.

In summary, when classifying noisy and imbalanced graph streams, major

challenges exist for subgraph feature selection, noise handling, and concept drift

modeling. More specifically,

• Bias of learning models: Low presence of minority (positive) graphs will

make learning models biased to the majority class and result in inferior

performance on the minority class. In extreme cases (e.g., the minority

samples are extremely rare), the classifier may ignore minority samples and

classify all graphs as negative.

• Impact of noise: Most learning algorithms (such as boosting) are sensitive

to noise, because in their designs if an instance’s predicted label is different

from its original label, the instance will receive a larger weight and plays

a more important role in the learning process. As a result, the decision

boundaries of the classifiers may be misled by noise and eventually result

in deteriorated accuracy.

• Concept drifting:. In graph streams, the data volumes and the decision

boundaries of the graph data are constantly changing, which impose diffi-

culty for finding effective subgraph features to capture the concept drifting

and train classifiers with high accuracy.

To solve the above challenges, we propose, in this chapter, an ensemble boost-

ing algorithm, gEboost, for imbalanced graph stream classification. Our theme is

to employ a divide-and-conquer approach to partition graph stream into chunks.

101

6. IMBALANCED AND NOISY GRAPH STREAM
CLASSIFICATION

In each chunk, we formulate the learning task as a margin maximizing problem,

and employ a linear programming boosting algorithm to integrate subgraph fea-

ture selection and classifier learning process as a unified framework. To capture

graphs represented by drifting concepts in graph streams, we employ a dynamic

weighting mechanism, where graphs misclassified by the existing model will re-

ceive a higher weight so the boosting procedure (including subgraph feature se-

lection and model learning) can emphasize on difficult graphs for learning. In

summary, the key contributions of the chapter is threefold:

1. To the best of our knowledge, gEboost is the first algorithm with capability

to handle graph streams with both imbalanced class distribution and noise.

2. While existing graph classification methods consider subgraph feature selec-

tion and model learning as two separated procedures, we provide an effective

design to integrate subgraph mining (feature selection) and model learning

(margin maximization) into a unified framework, so two procedures can

mutually benefit each other to achieve a maximization goal.

3. We propose an effective weighting strategy to model dynamic changes of

concept drifting graph stream. Our approach, which tunes the weights of

misclassified graphs to support graph stream classification, can be easily

generalized to stream data with rich structure information.

The remainder of the chapter is structured as follows. Our overall framework

are discussed in Section 6.2. Section 6.3 reports the proposed algorithm for learn-

ing from noisy and imbalanced graph data. Our gEBoost algorithm is detailed in

Section 6.4. Experimental results are presented in Section 6.5, and we conclude

the chapter in Section 6.6.

6.2 Overall Framework

In this chapter, we propose an ensemble classification framework, with a linear

boosting procedure in each chunk to select discriminative subgraph features and

train ensemble based classifiers. The framework, as shown in Fig. 6.1, contains

102

Figure 6.1: A framework for imbalanced noisy graph stream classification. The graph
stream is divided into chunks. In each chunk Dt, circles with ’+’ represent positive
graphs, and circles with ’-’ are negative graphs. The size of a circle represents sample
weight in each chunk. The weight of a positive graph is initialized as β times larger than
negatives, and it will be fine tuned by the concept drifting weights. In each chunk, we
combine the discriminative subgraph feature selection and classifier learning (margin
maximization) into a unified framework. This process will return an optimal classifier
from each chunk after the linear boosting algorithm is converged (Detailed in Fig. (6.2)
and Section 6.3). A classifier ensemble E is built from the most recent k chunks to
predict graphs in a yet-to-come chunk Dt+1.

three key components: (1) partitioning graph stream into chunks; (2) selecting

discriminative subgraph features iteratively and learning a classification model in

each chunk; and (3) forming an ensemble model by combining classifiers trained

from individual chunks. As soon as a graph chunk Dt is collected, the overall

framework proceeds as follows:

• Instance Weighting for Data Imbalance and Concept Drifting: To

address data imbalance and concept changes in the graph stream, we pro-

pose to adjust weight values of graphs in each chunk and use models trained

from the graph chunks to pinpoint “difficult” samples in stream. To tackle

data imbalance, the initial weight value of each positive graph in the most

recent chunk Dt is much larger than negative graphs. Meanwhile, to handle

concept drifting, each graph Gi’s weight is adaptively updated to accom-

modate changes in the stream.

103

6. IMBALANCED AND NOISY GRAPH STREAM
CLASSIFICATION

Figure 6.2: The proposed boosting framework for learning from noisy and imbalanced
graphs in each chunk. The initial weight of each positive graph in Dt is β times larger
than a negative graph (the circle size corresponds to graph weight), and the weight
will be further adjusted to capture “difficult” samples (detailed in Section 6.4). In each
chunk, our algorithm iteratively selects optimal subgraph features P from Dt, and adds
P into a global set S. Afterwards, the algorithm solves a linear programming problem
to get two sets of weights: (1) weights for training graphs Dt, and (2) weights for weak
classifiers (subgraph decision stumps). The loop between feature selection and margin
maximization continues until boosting converges.

• Subgraph Feature Selection and Classifier Learning: For graph clas-

sification, the weighted graphs in each chunk Dt will help iteratively extract

a set of discriminative subgraph features to learn a boosting classifier Ht.

The iterative subgraph feature selection and model learning process can

mutually benefit each other to achieve maximum performance gain.

• Updating Ensemble: The newly learned classifier Ht from chunk Dt is

included into the ensemble to predict graphs in a future chunk Dt+1.

In the following sections, we first propose our boosting algorithm for imbal-

anced and noisy graph classification in a local chunk, and then propose solutions

to handle graph stream in Section 6.4.

104

6.3 Learning from a Local Chunk with Noisy

and Imbalanced Graphs

Given a graph chunk Dt = {(G1, y1), · · · , (Gn, yn)}, which contains a number of

graphs, let F = {g1, · · · , gm} denote the full set of subgraphs in Dt. We can use F

as features to represent each graph Gi into a vector space as xi = {xg1
i , · · · , xgm

i },
where xgi

i = 1 if gi ∈ Gi, and otherwise 0. An example is shown in Fig. 3.1, where

we can use three subgraph g1, g2, and g3 to represent graph G2 as x2 = [1, 1, 0].

To build weak classifiers for boosting, we can use each subgraph gj as a decision

stump classifier (gj, πj), as follows:

�(Gi; gj, πj) =

{
πj : gj ∈ Gi

−πj : gj /∈ Gi

(6.1)

where πj ∈ Y = {−1,+1} is a parameter controlling the label of the classifier.

We use decision stumps because they are commonly used in boosting classification

of graph data [120]. In addition, (1) it is easy to cast the stumps into a linear

program framework, and (2) it can help facilitate the derivation of pruning bounds

for subgraph enumeration.

The prediction rule in a local chunk Dt for a graph Gi is a linear combination

of all weak classifiers:

Ht(Gi) =
∑

(gj ,πj)∈F×Y
wj�(Gi; gj, πj) (6.2)

where wj is the weight of weak classifier �(Gi; gj, πj). If Ht(Gi) ≥ 0, it is a

positive graph (+1), or negative (-1) otherwise.

6.3.1 Framework of Linear Boosting Algorithm

Our linear boosting algorithm for noisy and imbalanced graphs is shown in Fig.

6.2. The framework combines subgraph feature selection and graph classification

105

6. IMBALANCED AND NOISY GRAPH STREAM
CLASSIFICATION

into a boosting process as follows:

• Subgraph Feature Selection: Given a chunk Dt, with each graph in

the chunk being carefully weighted, we need to select a set of subgraph

features P to help learn the graph classification models. It will be detailed

in Algorithm 7.

• Margin Maximization: Based on selected subgraph patterns S = S
⋃

P ,

we learn a classifier by maximizing margins between positive and negative

examples. The margin maximization can be formulated as a mathematical

problem.

• Weight Updating for Weak Classifiers and Training Graphs: By

solving margin maximization problem, we can obtain two set of weights: (1)

weights for weak classifiers w = {w1, · · · , w|S|}, and (2) weights for training

graphs μ = {μ1, · · · , μn}.

The above boosting process will continue until the algorithm converges. In

the following subsections, we first show how to formulate boosting learning as a

mathematical maximization problem, and then combine subgraph selection and

model learning (margin maximization) into one framework.

6.3.2 gBoost Algorithm for Balanced graph classification

Our algorithm is extended from the classic gBoost algorithm [120], which is de-

signed for graph classification with balanced graph classification. For gBoost, its

learning objective function is

max
ρ,w,ξ

ρ− 1
vn

∑n
i=1 ξi

s.t. yi
∑m

k=1 �gk(Gi)wk + ξi ≥ ρ;∑m
k=1 wk = 1;

wk ≥ 0, ξi ≥ 0;

(6.3)

To handle imbalanced and noisy data, we assigned different weights for dif-

ferent classes, as discussed in next subsection.

106

6.3.3 Objective Function for Imbalanced and Noisy Data

Our boosting algorithm, which considers noisy and imbalanced graph stream, is

formulated as the following linear programming optimization problem:

max
w,ρ,ξ∈�N

+

ρ− C(β
∑n+

{i|yi=+1} δiϕiξi +
∑n−
{i|yi=−1} δiϕiξi)

s. t. yi
∑m

j=1 wj · �(Gi; gj, πj) + ξi ≥ ρ, i = 1, 2 · · ·n∑m
j=1 wj = 1, wj ≥ 0 j = 1, 2 · · ·m

(6.4)

The above objective function aims to maximize the margin ρ between positive

and negative graphs. The first set of constraints enforce that both positive and

negative graphs are beyond the margin. A misclassified graph Gi (i.e., inside

the margin) will be penalized by ξi. Here, n+ and n− denote the number of

graphs in positive and negative classes (n = n+ + n−) in chunk Dt. C = 1
vn

is

a parameter controlling the magnitude of misclassification in the algorithm. The

idea of margin maximization is similar to gBoost [120] and SVM formulation. To

handle graph streams with imbalanced distributions and noise, we incorporate

three key components: δi, β, and ϕi in the objective function. δi indicates the

weight factor for handling disturbing graph samples (Definition 10) in a data

stream setting (In this section, δi is set as a fixed value, and Section V will

show that δi can be dynamically adjusted in graph stream). The other two key

components in our objective function include:

• Weight values of graphs in different classes: In each imbalanced graph

chunk, positive graphs are much fewer than negative graphs. So positive

graphs should carry larger misclassification penalties to prevent them from

being overlooked for learning. Inspired by imbalanced SVM formulation

[9, 135] for vector data, in our formulation, the weights of positive graphs are

β times higher than the weights of negative graphs. The weight adjustment,

with respect to the class distributions, can help alleviate the class imbalance

and prevent learning models from being biased towards the majority class

(which dominates the graph chunk).

• Weight values for graphs within the same class: To handle noise, we

introduce a membership value ϕi, for each graph Gi, to indicate how likely

107

6. IMBALANCED AND NOISY GRAPH STREAM
CLASSIFICATION

Gi is a noisy graph. By using ϕi to adjust the weight of each graph, we can

reduce the impact of noisy graphs on the learning process.

To calculate ϕi in Eq.(6.4), we use the density of each graph Gi to determine

its likelihood score of being an noisy graph. Intuitively, if Gi is located far away

from its class center, it is more likely being mislabeled (so ϕi will have a smaller

value). Therefore, our approach to calculate ϕi is given as follows:

ϕi =
2

1 + eτd(Gi)
; (6.5)

In Eq.(6.5), d(Gi) denotes the distance of graph Gi to its class center in the vector

space, and τ ∈ [0, 1] is a decay factor controlling the magnitude of the change of

the distance.

6.3.4 Linear Boosting with Graph Data

The objective function in Eq.(6.4) requires a feature set F = {g1, · · · , gm} being

used to represent graph data for learning and classification. In reality, this feature

set is unavailable unless all possible structures of graphs in Dt are enumerated.

Enumeration of subgraph patterns is NP-complete. Therefore, Eq.(6.4) cannot

be solved directly. Column generation (CG) [97], a classic optimization tech-

nique, provides an alternative solution to solve this problem. Instead of directly

solving the primal problem in Eq.(6.4), CG works on the dual problem by start-

ing from an empty set of constraints, and iteratively selects the most violated

constraints until no more violated constraint exists. The final optimal solution,

under the iteratively selected constraints, is equal to the optimal solution under

all constraints.

108

We can write the dual problem of Eq.(6.4) as follows 1:

min
μ,γ

γ

s. t.
∑n

i=1 yiμi · �(Gi; gj, πj) ≤ γ, j = 1, 2 · · ·m
0 ≤ μi ≤ βδiϕiC if yi = +1

0 ≤ μi ≤ δiϕiC if yi = −1∑n
i=1 μi = 1.

(6.6)

According to the duality theory [13], Eq.(6.4) and Eq.(6.6) have the same solu-

tion (objective values) though they have different predicted variables (w, ρ, ξ in

Eq.(6.4) and μ, γ in Eq.(6.6)).

For the dual problem, each constraint
∑n

i=1 yiμi · �(Gi; gj, πj) ≤ γ in Eq.(6.6)

enforces restriction on a subgraph pattern (gj, πj) over all graphs in Dt. In other

words, the m constraints are equivalent to the total subgraphs in Dt, which is

practically very large or even infinite. In the primal problem defined in Eq.(6.4),

there are only n constraints (which are equal to the number of training graphs

in Dt). As a result, we have m >> n. To solve the problem (Eq.6.6) in an

effective way, we can combine subgraph mining and CG techniques as follows:

(1) first discover the top-l subgraph pattern that violates the constraints most

in each iteration; and (2) solve the sub-problem based on the selected top-l con-

straints. After solving Eq.(6.6) based on selected constraints, we can obtain

μ = {μ1, · · · , μn}, which can be regarded as the new weights for training graphs,

so that we can iteratively perform subgraph feature selection in the next round

(See Fig.6.2). Such a top-l constraint technique is known as Multiple Prices [88]

in column generation.

To apply multiple prices, we first define the discriminative score for each

subgraph based on the constraints in Eq.(6.6).

Definition 11. Discriminative Score: for a subgraph decision stump (gj, πj),

1The derivation from Eq.(6.4) to Eq.(6.6) is illustrated in Appendix A.1.

109

6. IMBALANCED AND NOISY GRAPH STREAM
CLASSIFICATION

its discriminative score is defined as:

�(gj, πj) =
n∑

i=1

yiμi · �(Gi; gj, πj) (6.7)

We can sort subgraph patterns according to their discriminative scores in

a descending order, and select the top-l subgraphs to form the most violated

constraints.

Suppose S(s) is the set of decision stumps (subgraphs) discovered by column

generation so far at sth iteration. Let γ(s) and μ(s) = {μ(s)
1 , · · · , μ(s)

n } be the

optimal solution for the sth iteration, our algorithm will try to solve linear problem

in sth iteration as follows:

min
γ(s),μ(s)

γ(s)

s. t.
∑n

i=1 yiμ
(t)
i �(Gi; gj, πj) ≤ γ(t), ∀(gj, πj) ∈ S(s)

0 ≤ μ
(s)
i ≤ βδiϕiC if yi = +1

0 ≤ μ
(s)
i ≤ δiϕiC if yi = −1∑n

i=1 μ
(s)
i = 1.

(6.8)

The solutions to Eq.(6.8) and its Lagrange multipliers will result in μ(s) and w(s)

which correspond to (1) new weights for graphs (μ(s)), and (2) new weights for

decision stump classifiers (w(s)). By using updated weight values, the algorithm

will continue and proceed to the s+ 1th iteration.

Note that in Eq.(6.8), ϕi changes in each iteration, because the class centers for

positive and negative graphs are calculated by using current selected subgraphs

S(s) (transfer each graph as a vector based on S(s)). The changing subgraph

features will result in updated class centers, and result in new ϕi value according

to Eq.(6.5).

Our graph boosting framework is illustrated in Algorithm 6. To handle class

imbalance, the weight of each positive graph μi is set to be β times larger than

the weights of negative graphs (step 1). The weight value is further updated

by δi (step 2), which takes the concept drifting in streams into consideration

(detailed in Section 6.4). After that, the boosting algorithm iteratively selects

110

Algorithm 6 Boosting for Noisy and Imbalanced Graph Classification in a Local
Chunk

Require:
Dt = {(G1, y1), · · · , (Gn, yn)} : Graph Datasets

Ensure:
Ht(Gi) =

∑
(gj ,πj)∈S(s−1) w

(s−1)
j �(Gi; gj, πj): Classifier;

δi, i = 1, · · · , n: Concept drifting weights;

1: μi =

{
ς+ : yi = +1
ς− : yi = −1

, where ς+

ς− = β,
∑n

i=1 μi = 1;

2: μi ← μiδi, where
∑n

i=1 μi = 1;
3: S(0) ← ∅; γ(0) ← 0;
4: s ← 0;
5: while true do
6: Obtain top-l subgraph decision stumps P = {(gi, πi)}i=1,··· ,l; //Algorithm

7;
7: �(g
, π
) = max(gj ,πj)∈P �(gj, πj)

8: if �(g
, π
) ≤ γ(s−1) + ε then
9: break;
10: S(s) ← S(s−1) ⋃P ;
11: Obtain the membership value ϕi for each graph example Gi based on S(s)

and Eq. (6.5);
12: Solve Eq. (6.8) to get γ(s), μ(s), and Lagrange multipliers w(s);
13: s ← s+ 1;
14: return Ht(Gi) =

∑
(gj ,πj)∈S(s−1) w

(s−1)
j �(Gi; gj, πj);

111

6. IMBALANCED AND NOISY GRAPH STREAM
CLASSIFICATION

top-l subgraphs P = {(gi, πi)}i=1,··· ,l in each round (step 6). At step 7, we obtain

the most optimal score �(g
, φ
). If the best pattern in the current round no

longer violates the constraint, the iteration process stops (steps 8-9). To speed

up the boosting process, we relax the stopping condition and terminate the loop

as soon as the change of the optimal value becomes subtle (ε). On steps 10-12, the

linear programming problem in Eq.(6.8) is solved based on the selected subgraphs

using the open source software CVX, a package for specifying and solving convex

programs [50, 51]. After Eq.(6.8) is solved, we obtain two sets of weights: (1)

μ(s) = {μ(s)
1 , · · · , μ(s)

n }, the weights of training graph for optimal subgraph mining

in the next round; and (2) w(s) = {w(s)
1 , · · · , w(s)

|S(s)|}, the weights for subgraph

decision stumps in S(s), which can be obtained from the Lagrange multipliers of

dual problem in Eq.(6.8). Once the algorithm converges, the final classification

model H(Gi) is returned on step 14.

Subgraph mining: In order to mine the top-l subgraphs (step 6 of Algorithm 6),

we need to enumerate the entire set of subgraph patterns, with respect to a given

threshold, from the training graphs Dt. In our boosting algorithm, we employ a

Depth-First-Search (DFS) based algorithm gSpan [151] to enumerate subgraphs.

The key idea of gSpan is that each subgraph has a unique DFS Code, which is

defined by the lexicographic order of the time the subgraph is discovered during

the search process. By employing a depth first search strategy on the DFS Code

tree (where each node is a subgraph), gSpan can enumerate all frequent subgraphs

efficiently. To speed up the enumeration, we utilize a branch-and-bound pruning

rule [120] to prune the search space.

Theorem 3. Given a subgraph feature gj, let

�
(gj)
+ = 2

∑
{i|yi=+1,gj∈Gi} μ

(t)
i −∑n

i=1 yiμi

�
(gj)
− = 2

∑
{i|yi=−1,gj∈Gi} μ

(t)
i +

∑n
i=1 yiμi

�(gj) = max (�
(gj)
+ , �

(gj)
−)

(6.9)

If gj ⊆ g′, the discriminative score �(g′, π′) ≤ �(gj).

Because a subgraph decision stump may have a positive or a negative label

112

Algorithm 7 Imbalanced Subgraphs Mining

Require:
Dt = {(G1, y1), · · · , (Gn, yn)} : Graph Datasets;
μ = {μ1, · · · , μn} : Weights for graph example;
l: Number of optimal subgraph patterns;
min sup: The minimum support for optimal subgraphs;

Ensure:
P = {(gi, πi)}i=1,··· ,l: The top-l subgraphs;

1: η = 0, P ← ∅;
2: while Recursively visit the DFS Code Tree in gSpan do
3: gp ← current visited subgraph in DFS Code Tree;
4: if gp has been examined then
5: continue;
6: Compute score �(gp, πp) for subgraph gp according Eq.(6.7);
7: if |P | < l or �(gp, πp) > η then
8: P ← P

⋃
(gp, πp);

9: if |P | > l then
10: (gq, πq) ← argmin(gx,πx)∈P �(gx, πx);
11: P ← P/(gq, πq);
12: η ← min(gx,πx)∈P �(gx, πx)
13: if sup(gp) > min sup & �(gp) > η then
14: Depth-first search the subtree rooted from node gp;
15: return P = {(gi, πi)}i=1,··· ,l;

Y = {+1,−1}, we calculate its maximum score based on each possible value, and

select the maximum one as the upperbound.

According to Theorem 3, once a subgraph gj is generated, all its super-graphs

are upperbounded by �(gj). Therefore, this theorem can help reduce the search

space.

Our branch-and-bound subgraph mining algorithm is listed in Algorithm 7.

The minimum value η and subgraph set P are initialized on step 1. We prune

the duplicated subgraph features on steps 4-5, and compute the discriminative

score �(gp, πp) for gp on step 6. If �(gp, πp) is larger than η or the current set P

has less than l subgraph patterns, we add (gp, πp) to the feature set P (steps 7-8).

If the size of P exceeds the predefined size l, the subgraph with the minimum

discriminative score is removed (steps 9-11). We use two metrics, the minimum

support for subgraph gp and a branch-and-bound pruning rule, similar to the

113

6. IMBALANCED AND NOISY GRAPH STREAM
CLASSIFICATION

rule in [120], to prune search space on steps 13-14. The optimal set P is returned

on step 15. It is worth noting that our algorithm is efficient in the sense that

even if there is no minimum support threshold min sup for subgraph mining, the

algorithm can still function properly by only relying on the pruning rule.

6.4 gEBoost algorithm

In this section, we discuss the proposed ensemble framework, which combines

classifiers trained from local chunks (as described in Section 6.3) to handle graph

stream with dynamic changing volumes and concepts, i.e. concept drifting.

In graph stream settings, the correct classification of graphs with imbalanced

class distributions are challenged by several key factors. First, noise presenting

in the stream will deteriorate existing learned model and reduce the classifica-

tion accuracy. Second, graph data may constantly evolve (i.e., concept drifting)

which will introduce misclassifications because the existing models do not have

the knowledge of the emerging new concepts. Third, even within the observed

concepts, there are always some “difficult” samples which cannot be correctly

classified by current models. Accordingly, we used disturbing graph samples to

capture the “difficult” samples, as defined in Definition 10.

The disturbing graph samples may be introduced by noise, concept drifting,

or genuinely difficult samples on which existing imperfect model fail to handle.

Because the existing model is incapable of classifying them, they need to be

emphasized during the stream learning process. In our system, we use an instance

based weighting method to capture disturbing graph samples, and further include

the instance weight into the local classifier learning process (the objective function

Eq.(6.4) and step 2 of Algorithm 6).

Instance Weighting: The idea of our weighting scheme is as follows: as soon

as a new graph chunk Dt is collected for processing, we use an ensemble of clas-

sifiers E = {Ht−k,Ht−k+1, · · · ,Ht−1} trained from historical chunks to predict

labeled graphs in Dt. If a graph is misclassified by E, we increase the graph’s

weight because it is a difficult sample for the current model E. If a graph is

correctly classified by E, we decrease its weight because model E already has

114

Figure 6.3: A conceptual view of graph weighting scheme for imbalanced graph stream
classification. Given a new chunk of graphs with positive and negative graphs (circle
sizes indicate the weights), the current classifier may make incorrect prediction on three
kinds of disturbing graph samples: (1) For a noisy graph Gi (green circles), its weight
will be first increased inversely proportional to the accuracy of the current ensemble
classifier (measured by δi), and be further decreased according to Gi’s distance to the
class centres (correspond to ϕi). (2) For emerging new concept graphs (purple circles),
if the current ensemble makes an incorrect prediction, their weights will be increased by
δi because current model needs to emphasis on these samples with new concepts. (3)
For graphs sharing the same concepts as previous chunk (black circles), their weights
will also increase (by δi) because they are difficult instances and the current classifier
can not correctly classify them. The weight updating scheme will help differentiate
different types of disturbing graphs for training effective graph stream classifier.

sufficient knowledge to correctly classify this graph. This weighting mechanism

is similar to Adaboost [42] and our semi-supervised graph stream classification

method [101]. By doing so, we can tune instance weights to capture disturbing

samples (including concept drifting under neath the stream), so gEBoost can

emphasize on difficult samples and select a set of informative features to build

better models. Our weighting scheme is illustrated in Fig. 6.3.

gEBoost Algorithm: Algorithm 8 lists detailed procedures of gEBoost frame-

work which combines instance weighting and graph boosting for graph stream

classification.

The “while” loop in Algorithm 8 represents a stream processing cycle which

repeats as graph data continuously arrive. For the first graph chunk D1, gEBoost

115

6. IMBALANCED AND NOISY GRAPH STREAM
CLASSIFICATION

Algorithm 8 gEBoost

Require:
S = {D1, D2, · · · }: A Graph Stream
k: The maximum capacity of the ensemble

1: Initialize E = ∅, t = 0;
2: while S! = ∅ do

// Training Phase:
3: Dt ← A new graph chunk;
4: S ← S/Dt; t = t+ 1;
5: if (t == 1) then
6: δi = 1, i = 1, · · · , n;
7: Ht ← classifier built from Dt and {δi}i=1,··· ,n; //Algorithm 6;
8: E ← E

⋃
Ht

9: else

10: err ←
∑

Gi∈Dl
t
(E(Gi)�=yi)

|Dl
t|

;

11: δi =

{
δi
√
(1− err)/err : E(Gi)! = yi, Gi ∈ Dt

δi
√
err/(1− err) : E(Gi) = yi, Gi ∈ Dt

;

12: δi =
δi∑

Gi∈Dt
δi
;

13: Ht ← classifier built from Dt and {δi}i=1,··· ,n; //Algorithm 6;
14: E ← E

⋃
Ht

15: if |E| > k then
16: E ← E/Ht−k

// Testing Phase:
17: Dt+1 ← A new graph chunk;
18: αi ← μpI(Hi(Gp) == yp), Gp ∈ Dt;
19: H(Gp|E) = argmax

∑t
i=t−k−1 αiHi(Gp)

simply builds a linear boosting classifier using Algorithm 6 without considering

concept drifting (δi = 1), and adds classifier Ht to initialize the ensemble E (lines

5-8).

For each of the succeeding chunks Dt, t = 2, 3, · · · , gEBoost uses ensemble E

and its error rate err to tune the weight of each graph in Dt (line 10), where

E(Gi) returns the class label of Gi predicted by E. If a graph Gi’s label is

different from the one predicted by the ensemble classifier E, gEBoost increases

the weight of Gi by
√
(1− err)/err, otherwise gEBoost decreases the weight of

Gi by
√
err/(1− err) (line 11). On lines 12-14, gEBoost normalizes the weight

116

values for all graphs in Dt, and builds a boosting classifier from Dt and {δi}1,··· ,n
to update the ensemble E.

During the classification phase (lines 17-19), gEBoost first calculates the

weighted accuracy αi on the most recent chunk Dt (I(x) returns 1 if x is true,

otherwise 0), and then uses weighted voting to assemble all classifiers in E to

predict graphs in a new graph chunk Dt+1. Note that μp (line 18) is determined

in Algorithm 6, representing the weight for graph Gp.

6.5 Experiments

We report our experiments on real-world graph streams to validate (1) the ef-

fectiveness of the proposed algorithm for handling noisy and imbalanced graphs;

and (2) the efficiency and effectiveness of gEBoost for graph stream classification.

The source code, benchmark data, and detailed results can be downloaded from

our online report [111].

6.5.1 Experimental Settings

Three graph streams, DBLP, NCI, and Twitter graph streams (please refer to

table 3.2 and Section 3.3 for more details), collected from real-world applications

are used in our experiments.

• DBLP Graph Stream: The imbalanced version of DBLP graph stream,

DBLP-imbalanced (detailed in table 3.2), is used here for studying the

effectiveness of our algorithm.

• NCI Graph Stream: The NCI collection (shown in table 3.2), is naturally

imbalanced in its class distributions, with less than 5% graphs in the positive

class. In our experiments, we concatenate two datasets (detailed in table

6.1), NCI-1 and NCI-33, as one stream with 74,371 graphs in total (4.38%

samples belonging to positive class). In this case, the bioassay task changes

from NCI-1 to NCI-33, which simulates the concept drifting in the stream

117

6. IMBALANCED AND NOISY GRAPH STREAM
CLASSIFICATION

Table 6.1: NCI cancer screen datasets used in the experiments

Bioassay-ID
Original Compounds New Compounds |Pos|%
#Pos #Total #Pos #Total

NCI1 2295 42324 1793 37349 4.80
NCI33 1857 41971 1467 37022 4.00

(i.e. sudden drift). We sequentially construct graph chunks such that each

chunk consists of 4.38% positive graphs and others are negative.

• Twitter Stream We also use the twitter graph stream (shown in table

3.2) in our experiments. Note that to investigate algorithm performance in

handling concept drifts, we synthetically control the prior distribution of

positive graphs at several fixed time stamps. Specifically, 20% of positive

graphs are randomly selected on Monday and Tuesday over time before

June 2. By doing so, we use sudden changes of priori distributions to inject

concept drifting on Monday.

Noise and class imbalance in graph chunk: In our experiments, each chunk

Dt in graph streams has a small number of positive graphsDp
t , and a large number

of negative graphs Dn
t , where |Dp

t | = |Dt| ∗ |Pos|%, and |Dn
t | = |Dt| − |Dp

t |.
For instance, for the NCI graph stream (with |Pos|% = 4.38%), if the chunk

size |Dt| = 1500, then there are 1500 * 4.38%=66 positive and 1434 negative

graphs, respectively. For Twitter graph stream, the graph chunks on Monday

and Tuesday are imbalanced (with 20% of positive graphs), whilst graphs on

other days are relatively balanced.

To systematically study the algorithm performance in noisy data environ-

ments, we introduce noise to each stream as follows. Given a graph chunk Dt

with |Dp
t | positive graphs, we randomly select |Dp

t | ∗ Z% positive graphs and

|Dp
t | ∗Z% negative graphs, and flip their class labels (i.e change a positive graph

as negative, and vice versa). Because majority graphs are negative, this random

approach will have a severer impact on positive class than negative class.

Baselines: There are few existing methods for graph stream classification [2][25],

but they are incremental learning approaches, whereas our method, gEBoost,

is an ensemble framework. Because they are two types of methods, it is very

118

difficult to make direct comparisons with these methods. More specifically, the

algorithms in [2][25] employ hashing for classification. Whenever a graph arrives,

the hashed values of graph edges are used to build a classifier. For new graphs

in the stream, they continuously use the hashed values of the graph to update

their classifier. In their experiments, the validation of the stream classification

models was done by evaluating the accuracy of the model on a separated test set.

In the proposed gEBoost method, we use a divide-and-conquer based ensemble

framework, which partitions stream into small chunks, and uses classifiers trained

from graph chunks to form an ensemble for prediction. The validation was done

by evaluating the accuracy of the model on the next available future graph chunk.

Another clear advantage of our method is that we extract sub-graph features to

represent graphs in a vector format, so any learning algorithm can be used for

graph stream classification. Whereas [2][25] are limited to their own learning

algorithms (e.g., [2] can only use k-NN classifier).

For gBoost [120], we implement two variants of gBoost to handle class imbal-

ance. Because gBoost is designed for static datasets, we incorporate gBoost into

our ensemble framework (like gEBoost does, i.e., setting δi = 1) for graph stream

classification. The detailed baselines are as follows:

• gBoost-b+Stream first under-samples graphs in the majority (negative/inactive)

class in each chunk to create a balanced graph set to train a gBoost classi-

fier [120]. The most recent k chunks form an ensemble to predict graphs

in a future chunk.

• gBoost+Stream applies the gBoost algorithm [120] in each graph chunk

directly. An ensemble of gBoost classifiers (like gEBoost) is used to classify

graphs in a future chunk.

• Learn++.CDS-DT first mines a set of frequent subgraphs as features,

and then transfer graphs into vector format. The Learn++.CDS [31] is

performed on the transferred vector data with Decision Tree (DT) as a

based classifier on each chunk.

• Learn++.NIE-gBoost learns gBoost classifiers in each chunk with a Bag-

ging strategy to combat data imbalance, and then we apply Learn++.NIE

119

6. IMBALANCED AND NOISY GRAPH STREAM
CLASSIFICATION

[31] algorithm to k consecutive chunks to form an ensemble classification

for graph stream classification.

Note that Learn++.CDS cannot combines with gBoost algorithm, because it

needs to generate synthetic positive samples based on the vector data to handle

data imbalance. By contrast, Learn++.NIE employs a bagging strategy to com-

bat data imbalance, so we integrate gBoost with Learn++.NIE as a baseline. It

is worth noting that Learn++.NIE-gBoost works on graphs directly (as gEBoost

does). However its subgraph feature exploration process (gBoost) does not take

class imbalance and noise into consideration.

Measurement and Parameter Setting For imbalanced data, accuracy is no

longer an effective metrics to assess the algorithm performance, so we use AUC

(Area Under the ROC Curve) as the performance measurement in our experi-

ments.

Unless specified otherwise, we use following default parameter settings in the

experiments: Ensemble size k=10, chunk size |Dt| = 800 (for DBLP) and 1500

for (NCI). For gEBoost, we set β =
|Dn

t |
|Dp

t | as the imbalance ratio, and the decay

factor τ = 0.1, the relax factor ε = 0.01 for DBLP and Twitter, and 0.05 for NCI

streams, respectively. The number of top-l subgraphs selected in each round is 25.

For parameter v (C = 1
vn
), we set different values for different algorithms. Specif-

ically, v is set to 0.2 for DBLP graph streams for all boosting algorithms. For

NCI and Twitter graph streams, we set v=0.05 for gBoost+Stream and gBoost-

b+Stream, and v = 0.5 for gEBoost. For NCI data stream, we setmin sup = 15%

and 0 for DBLP and Twitter graph stream, which means no support threshold is

provided in these two streams for subgraph mining. We use parameters suggested

in [31] for both Learn++.CDS-DT and Learn++.NIE-gBoost algorithms.

6.5.2 Experimental Results

6.5.2.1 Performance on Noisy and Imbalanced Graph Chunks

To report our boosting modules for noisy and imbalanced graph data, we built a

classifier Ht from the current chunk Dt (as discussed in Section 6.3) to predict

graphs in the next chunk Dt+1. In this experiment, no instance weighting and

120

ensemble framework are involved, because we want to know whether gEBoost’s

objective function in Eq.(6.4) can indeed handle data imbalance and noise in the

graph chunks. We report the average classification accuracy of different methods

w.r.t. different levels of noise over the whole stream in Fig. 6.4.

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

0 5 10 15

A
U

C

Noise Degrees (%)

(A) AUC on NCI data

gEBoost
gBoost

gBoost-b
DT

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

0 5 10 15

A
U

C

Noise Degrees (%)

(B) AUC on DBLP data

gEBoost
gBoost

gBoost-b
DT

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

0 5 10 15

A
U

C

Noise Degrees (%)

(C) AUC on Twitter data

gEBoost
gBoost

gBoost-b
DT

Figure 6.4: Comparison of different algorithms for imbalanced graph stream classifica-
tion. For each chunk Dt, we build a classifier Ht from chunk Dt to predict graphs in
Dt+1. The results represent the average AUC values and standard deviation over all
chunks in each graph stream. (A) NCI stream; (B) DBLP stream; (C) Twitter stream.

The results in Fig. 6.4 demonstrate that gEBoost outperforms its peers on

all graph streams. Among all boosting methods, gBoost-b under-samples graphs

from the majority (negative) class to create a balanced graph chunk before apply-

ing gBoost, and its results are inferior to gBoost and gEBoost. This confirms the

hypothesis of information loss during the under-sampling process, which results

in low quality discriminative subgraph features for classification. Meanwhile,

although both gBoost and gEBoost directly work on imbalanced graph data, gE-

121

6. IMBALANCED AND NOISY GRAPH STREAM
CLASSIFICATION

Boost considers weights for samples in different classes. The results show that

gEBoost is superior to gBoost, which ignores the class imbalance and noise issues,

and treats all samples equally. Note that in our experiment, both gBoost+Stream

and Learn++.NSE-gBoost algorithms use gBoost as base classifiers. The DT base

classifier, which is built on the vector data and employed in Learn++.CDS-DT

algorithm, is worse than any other boosting algorithm.

The results in Fig. 6.4 also validate the effectiveness of our algorithm in

handling noise. It is clear that noise deteriorates AUC values of all algorithms.

This is because noise (i.e incorrectly labeled graphs) does not comply with the

distributions of majority samples in the same class, and makes a learning algo-

rithm difficult to separate positive and negative classes. The results show that

our algorithm has much less performance loss when a higher degree of noise is

imposed. This is mainly attributed to the distance penalties in the objective

functions (ϕi for graph Gi of Eq. (6.4)) in gEBoost. More specifically, a negative

graph, say Gi, is close to negative class center in the feature space. So even if

Gi is incorrectly labeled as positive (i.e. a noise), it still has a large distance to

the positive class center (because Gi is close and similar to negative graphs in

the feature space). By using Gi’s distance to the class center to adjust its role

in the objective function, Fig. 6.4 confirms that combining class distributions

and distance penalties of individual graph indeed help gEBoost effectively handle

graph data with severely imbalanced class distributions and noise.

6.5.2.2 Performance on Graph Streams

In this subsection, we report the performance of the proposed ensemble framework

for graph stream classification.

Results with Noise Degrees Z. In Figs. 6.5, 6.6, and 6.7, we vary the noise

levels in each graph chunk, and report the results on NCI, DBLP, and Twitter

streams.

The results in Figs. 6.5, 6.6, and 6.7 show that gEBoost consistently outper-

forms all other algorithms across the whole stream for all noise levels. In our

experiments, Learn++.CDS-DT has the worst performance because: (1) it uses

a set of frequent subgraph as features, which may fail to obtain genuine discrimi-

122

 0.4
 0.45

 0.5
 0.55

 0.6
 0.65

 0.7
 0.75

 0.8
 0.85

 0.9
 0.95

 0 5 10 15 20 25 30 35 40 45 50

A
U

C

Chunk ID

(A) AUC Results on NCI with Z=5

gBoost-b+Stream
gBoost+Stream

gEBoost

Learn++.CDS-DT
Learn++.NIE-gBoost

 0.4

 0.45

 0.5

 0.55

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0 5 10 15 20 25 30 35 40 45 50

A
U

C

Chunk ID

(B) AUC Results on NCI with Z=15

gBoost-b+Stream
gBoost+Stream

gEBoost

Learn++.CDS-DT
Learn++.NIE-gBoost

Figure 6.5: AUC w.r.t. different noise levels on NCI stream with ensemble size k=10
and chunk size Dt= 1500. (A)Z = 5; (B) Z = 15.

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0 5 10 15 20 25 30

A
U

C

Chunk ID

(A) AUC Results on DBLP with Z=5

gBoost-b+Stream
gBoost+Stream

gEBoost

Learn++.CDS-DT
Learn++.NIE-gBoost

 0.55

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0 5 10 15 20 25 30

A
U

C

Chunk ID

(B) AUC Results on DBLP with Z=15

gBoost-b+Stream
gBoost+Stream

gEBoost

Learn++.CDS-DT
Learn++.NIE-gBoost

Figure 6.6: AUC w.r.t. different noise levels on DBLP stream with ensemble size k=10
and chunk size Dt= 800. (A)Z = 5; (B) Z = 15.

native subgraphs to build classification models; (2) it over-samples minority class

samples to handle class imbalance, which may introduce ambiguousness to the

sampled data; and (3) Learn++.CDS in each chunk use a single weak classifier

(DT) while other algorithms assemble a set of decision stumps for graph clas-

sification. It is generally believed that an ensemble often outperforms a single

classifier.

The results also show that gBoost-b+Stream, which under-samples graphs in

each chunk to alleviate the data imbalance, is significantly inferior to gBoost+Stream,

Learn++.NIE-gBoost, and gEBoost, especially in Fig. 6.6 (B). This is because

each graph chunk is extremely imbalanced (e.g., only 66 positive graphs out of

123

6. IMBALANCED AND NOISY GRAPH STREAM
CLASSIFICATION

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

Tue 07/04

M
on 20/04

M
on 04/05

M
on 11/05

M
on 18/05

Tue 26/05

M
on 01/06

M
on 07/06

M
on 15/06

Tue 16/06

 0

 1

 2

 3

 4

 5

A
U

C

In
ve

rs
e

of
 Im

ba
la

nc
e

R
at

io
 (P

os
/N

eg
)

(A) AUC Results on TWITTER with Z=5

gBoost-b+Stream
gBoost+Stream

gEBoost

Learn++.CDS-DT
Learn++.NIE-gBoost

Inverse of Ratio

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

Tue 07/04

M
on 13/04

M
on 20/04

M
on 27/04

M
on 04/05

M
on 11/05

M
on 18/05

M
on 25/05

M
on 01/06

M
on 08/06

M
on 15/06

 0

 1

 2

 3

 4

 5

A
U

C

In
ve

rs
e

of
 Im

ba
la

nc
e

R
at

io
 (P

os
/N

eg
)

(A) AUC Results on TWITTER with Z=5

gBoost-b+Stream
gBoost+Stream

gEBoost

Learn++.CDS-DT
Learn++.NIE-gBoost

Inverse of Ratio

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

Tue 07/04

M
on 20/04

M
on 04/05

M
on 11/05

M
on 18/05

Tue 26/05

M
on 01/06

M
on 07/06

M
on 15/06

Tue 16/06

 0

 1

 2

 3

 4

 5

A
U

C

In
ve

rs
e

of
 Im

ba
la

nc
e

R
at

io
 (P

os
/N

eg
)

(B) AUC Results on TWITTER with Z=10

gBoost-b+Stream
gBoost+Stream

gEBoost

Learn++.CDS-DT
Learn++.NIE-gBoost

Inverse of Ratio

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

Tue 07/04

M
on 13/04

M
on 20/04

M
on 27/04

M
on 04/05

M
on 11/05

M
on 18/05

M
on 25/05

M
on 01/06

M
on 08/06

M
on 15/06

 0

 1

 2

 3

 4

 5

A
U

C

In
ve

rs
e

of
 Im

ba
la

nc
e

R
at

io
 (P

os
/N

eg
)

(B) AUC Results on TWITTER with Z=10

gBoost-b+Stream
gBoost+Stream

gEBoost

Learn++.CDS-DT
Learn++.NIE-gBoost

Inverse of Ratio

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

Tue 07/04

M
on 20/04

M
on 04/05

M
on 11/05

M
on 18/05

Tue 26/05

M
on 01/06

M
on 07/06

M
on 15/06

Tue 16/06

 0

 1

 2

 3

 4

 5

A
U

C

In
ve

rs
e

of
 Im

ba
la

nc
e

R
at

io
 (P

os
/N

eg
)

(C) AUC Results on TWITTER with Z=15

gBoost-b+Stream
gBoost+Stream

gEBoost

Learn++.CDS-DT
Learn++.NIE-gBoost

Inverse of Ratio

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

Tue 07/04

M
on 13/04

M
on 20/04

M
on 27/04

M
on 04/05

M
on 11/05

M
on 18/05

M
on 25/05

M
on 01/06

M
on 08/06

M
on 15/06

 0

 1

 2

 3

 4

 5

A
U

C

In
ve

rs
e

of
 Im

ba
la

nc
e

R
at

io
 (P

os
/N

eg
)

(C) AUC Results on TWITTER with Z=15

gBoost-b+Stream
gBoost+Stream

gEBoost

Learn++.CDS-DT
Learn++.NIE-gBoost

Inverse of Ratio

Figure 6.7: AUC w.r.t. different noise levels on Twitter stream. Figures on the left
panel are plotted with respect to uniform intervals of chunks in the x-axis, and figures
on the right panel are plotted with respect to uniform intervals of weeks in the x-axis.

124

1500 graphs for NCI stream), under-sampling will result in balanced graph chunks

with significantly smaller sizes, which makes subgraph feature selection and mar-

gin learning process very ineffective. gEBoost demonstrates a better performance

than gBoost+Stream and Learn++.NIE-gBoost in all streams. This is mainly

attributed to gEBoost’s two key components, including (1) boosting framework

for feature selection and margin maximization, and (2) weighting to tackle con-

cept drifting. The former iteratively selects a set of discriminative features and

maximizes the margin sequentially, and the latter allows multiple chunks (classi-

fiers) to work in a collaborative way to form an accurate ensemble model. As a

result, gEBoost achieves good performance in classifying graph streams with dy-

namic changes. For example, in Fig. 6.5, there are sudden concept drifting from

chunks 25-30, where the bioassay task changes from NCI-1 to NCI-33, and all

three methods experience performance loss. By employing instance weighting to

tackle the concept drifting, gEBoost incurs much less loss than gBoost+Stream

and Learn++.NIE-gBoost.

It is worth noting that Learn++.NIE-gBoost is a specially designed algorithm

for imbalanced data streams. In our experiments, the results in Figs. 6.5, 6.6,

and 6.7 show that Learn++.NIE-gBoost is only comparable to gBoost+Stream,

yet significantly worse than gEBoost algorithm. Indeed, for noisy and imbalanced

graph streams, finding most effective subgraph features plays an essential role.

This is a major challenge for graph streams, whereas Learn++.NIE-gBoost may

fail to explore high quality subgraphs under imbalanced and noisy scenarios for

graph stream classification.

Twitter Stream: We investigate the algorithm performance in handling con-

cept drifting in Twitter stream in Fig. 6.7. The inverse of imbalance ratio (|Pos|
|Neg|)

provides an indicator of the change of prior class distributions (y-axis on right

side) over time (x-axis). Specifically, there are significant concept drifts on Mon-

day and Tuesday before June 2, whilst class distribution (concept drift) remains

relatively stable from June 2 and afterwards. The results show that for some

concept drifting points, there are indeed noticeable performance drops for most

algorithms. For instance, in Fig. 6.7 (A), the AUC values slightly decrease on

May 11 and 18, and have a significant drop on June 1. The proposed gEBoost

outperforms all other algorithms in handling sudden concept drifting. Another

125

6. IMBALANCED AND NOISY GRAPH STREAM
CLASSIFICATION

interesting observation is that not all concept drift points will result in drop of

AUC for gEBoost. For instance, on May 4 of Fig. 6.7 (A), while Learn++.CDS-

DT witnesses a performance loss, gEBoost has an increase of AUC index, which

shows gEBoost’s good ability in handling concept drifts.

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

5 10 15

A
U

C

Noise Degrees (%)

(A) Averaged AUC on NCI Stream v.s. Z

gEBoost
gBoost-b+stream

gBoost+Stream

Learn++.NIE-gBoost
Learn++.CDS-DT

 0.5

 0.6

 0.7

 0.8

 0.9

5 10 15
A

U
C

Noise Degrees (%)

(B) Averaged AUC on DBLP Stream v.s. Z

gEBoost
gBoost-b+Stream

gBoost+Stream

Learn++.NIE-gBoost
Learn++.CDS-DT

 0.3

 0.4

 0.5

 0.6

 0.7

5 10 15

A
U

C

Noise Degrees (%)

(C) Averaged AUC on Twitter Stream v.s. Z

gEBoost
gBoost-b+stream

gBoost+Stream

Learn++.NIE-gBoost
Learn++.CDS-DT

Figure 6.8: Averaged AUC values (and standard deviation) v.s. different noise degrees
Z, with ensemble size k=10.

The average accuracies over the whole graph stream, in Fig. 6.8, show that

increasing the noise degree in each chunk deteriorates the performance of all

algorithms (which is consistent with our previous discussions). We also conducted

pairwise t-test to validate the statistical significance of comparisons. The results

show that gEBoost outperforms others significantly.

Results on Ensemble Size k. In Figs. 6.9 and 6.10, we report the algorithm

performance by using different ensemble size k (varying from 5, 10, to 15) for

DBLP and Twitter streams. Similar result for NCI Streams is obtained for NCI

streams.

126

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 0 5 10 15 20 25 30

A
U

C

Chunk ID

(A) AUC Results on DBLP with k=5

gBoost-b+Stream
gBoost+Stream

gEBoost

Learn++.CDS-DT
Learn++.NIE-gBoost

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 0 5 10 15 20 25 30

A
U

C

Chunk ID

(B) AUC Results on DBLP with k=15

gBoost-b+Stream
gBoost+Stream

gEBoost

Learn++.CDS-DT
Learn++.NIE-gBoost

Figure 6.9: AUC w.r.t. different ensemble sizes on DBLP stream with chunk size
|Dt|=800.

The results show that increasing ensemble size results in improved algorithm

performance. For instance, when k=5 (in Fig. 6.9 (A)), all algorithms have low

AUC values in DBLP graph stream. When increasing ensemble size from 5 to 15,

each algorithm experiences steady improvement across the whole DBLP stream.

This is mainly because a larger ensemble involves more classifier models and more

knowledge for prediction. However, for large ensemble size, it will also increase

computational complexity to predict graphs. In the remaining experiments, we

set k=10.

Results on chunk size Dt: In Figs. 6.11 and 6.12, we report the algorithm

performance with respect to different numbers of graphs in each chunk |Dt|.
As expected, gEBoost has the best performance among three algorithms for

NCI (Fig. 6.11) and DBLP (Fig. 6.12) streams. When varying the chunk sizes,

the concept drifting may occur at different locations for NCI streams. Neverthe-

less, our results show that gEBoost can adapt to the concept drift very quickly in

most cases (Figs. 6.11 (A) and (B)), which validates the effectiveness of gEBoost

in handling concept drift. In practice, the chunk size should be a moderate value.

For small chunk sizes, the models trained from each chunk will be inaccurate, be-

cause no sufficient information is available for extracting discriminative subgraph

features to train classifiers. For large chunk sizes, a graph chunk may include

several changing concepts, which will deteriorate the learner performance.

Results on Imbalanced Degree |Pos|%. To study the algorithm performance

127

6. IMBALANCED AND NOISY GRAPH STREAM
CLASSIFICATION

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

Tue 07/04

M
on 20/04

M
on 04/05

M
on 11/05

M
on 18/05

Tue 26/05

M
on 01/06

M
on 07/06

M
on 15/06

Tue 16/06

 0

 1

 2

 3

 4

 5

A
U

C

In
ve

rs
e

of
 Im

ba
la

nc
e

R
at

io
 (P

os
/N

eg
)

(A) AUC Results on TWITTER with k=5

gBoost-b+Stream
gBoost+Stream

gEBoost

Learn++.CDS-DT
Learn++.NIE-gBoost

Inverse of Ratio

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8
Tue 07/04

M
on 13/04

M
on 20/04

M
on 27/04

M
on 04/05

M
on 11/05

M
on 18/05

M
on 25/05

M
on 01/06

M
on 08/06

M
on 15/06

 0

 1

 2

 3

 4

 5

A
U

C

In
ve

rs
e

of
 Im

ba
la

nc
e

R
at

io
 (P

os
/N

eg
)

(A) AUC Results on TWITTER with k=5

gBoost-b+Stream
gBoost+Stream

gEBoost

Learn++.CDS-DT
Learn++.NIE-gBoost

Inverse of Ratio

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

Tue 07/04

M
on 20/04

M
on 04/05

M
on 11/05

M
on 18/05

Tue 26/05

M
on 01/06

M
on 07/06

M
on 15/06

Tue 16/06

 0

 1

 2

 3

 4

 5

A
U

C

In
ve

rs
e

of
 Im

ba
la

nc
e

R
at

io
 (P

os
/N

eg
)

(B) AUC Results on TWITTER with k=10

gBoost-b+Stream
gBoost+Stream

gEBoost

Learn++.CDS-DT
Learn++.NIE-gBoost

Inverse of Ratio

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

Tue 07/04

M
on 13/04

M
on 20/04

M
on 27/04

M
on 04/05

M
on 11/05

M
on 18/05

M
on 25/05

M
on 01/06

M
on 08/06

M
on 15/06

 0

 1

 2

 3

 4

 5

A
U

C

In
ve

rs
e

of
 Im

ba
la

nc
e

R
at

io
 (P

os
/N

eg
)

(B) AUC Results on TWITTER with k=10

gBoost-b+Stream
gBoost+Stream

gEBoost

Learn++.CDS-DT
Learn++.NIE-gBoost

Inverse of Ratio

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

Tue 07/04

M
on 20/04

M
on 04/05

M
on 11/05

M
on 18/05

Tue 26/05

M
on 01/06

M
on 07/06

M
on 15/06

Tue 16/06

 0

 1

 2

 3

 4

 5

A
U

C

In
ve

rs
e

of
 Im

ba
la

nc
e

R
at

io
 (P

os
/N

eg
)

(C) AUC Results on TWITTER with k=15

gBoost-b+Stream
gBoost+Stream

gEBoost

Learn++.CDS-DT
Learn++.NIE-gBoost

Inverse of Ratio

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

Tue 07/04

M
on 13/04

M
on 20/04

M
on 27/04

M
on 04/05

M
on 11/05

M
on 18/05

M
on 25/05

M
on 01/06

M
on 08/06

M
on 15/06

 0

 1

 2

 3

 4

 5

A
U

C

In
ve

rs
e

of
 Im

ba
la

nc
e

R
at

io
 (P

os
/N

eg
)

(C) AUC Results on TWITTER with k=15

gBoost-b+Stream
gBoost+Stream

gEBoost

Learn++.CDS-DT
Learn++.NIE-gBoost

Inverse of Ratio

Figure 6.10: AUC w.r.t. different ensemble sizes on Twitter stream. Figures on the left
panel are plotted with respect to uniform intervals of chunks in the x-axis, and figures
on the right panel are plotted with respect to uniform intervals of weeks in the x-axis.

128

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75

A
U

C

Chunk ID

(A) AUC Results on NCI with |Dt|=1000

gBoost-b+Stream
gBoost+Stream

gEBoost

Learn++.CDS-DT
Learn++.NIE-gBoost

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 0 5 10 15 20 25 30 35 40

A
U

C

Chunk ID

(B) AUC Results on NCI with |Dt|=2000

gBoost-b+Stream
gBoost+Stream

gEBoost

Learn++.CDS-DT
Learn++.NIE-gBoost

Figure 6.11: AUC w.r.t. different chunk size on NCI stream with ensemble size k=10.
(A) |Dt| = 1000; (B) |Dt| = 2000.

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 0 5 10 15 20 25 30 35 40

A
U

C

Chunk ID

(A) AUC Results on DBLP with |Dt|=600

gBoost-b+Stream
gBoost+Stream

gEBoost

Learn++.CDS-DT
Learn++.NIE-gBoost

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 0 5 10 15 20 25

A
U

C

Chunk ID

(B) AUC Results on DBLP with |Dt|=1000

gBoost-b+Stream
gBoost+Stream

gEBoost

Learn++.CDS-DT
Learn++.NIE-gBoost

Figure 6.12: AUC w.r.t. different chunk size on DBLP stream with ensemble size k=10.
(A) |Dt| = 600; (B) |Dt| = 1000.

w.r.t. different data imbalance degrees, we change the percentage of positive

graphs (|Pos|%) on DBLP streams. In previous experiments, |Pos|% in each

chunk is 16.3. So we under-sample positive graphs in each chunk to create streams

with different imbalance levels. The averaged experimental results over streams

are reported in table 6.2.

Table 6.2 shows that with the increase of data imbalance degrees (changing

|Pos|% from 16.3 to 5), the performance of all algorithms deteriorate in terms

of averaged AUC values. This is because reducing the number of positive graphs

increases the difficulty to learn good classification models in each chunk. Never-

theless, the proposed gEBoost outperforms all other algorithms under all levels

129

6. IMBALANCED AND NOISY GRAPH STREAM
CLASSIFICATION

of degrees, which demonstrates the robustness of our algorithm.

Table 6.2: Average AUC values and standard deviations on DBLP Streams w.r.t Dif-
ferent Imbalance Degrees

gBoost-b gBoost Learn++ Learn++
|Pos|% +Stream +Stream gEBoost .CDS-DT .NIE-gBoost

16.3 0.830±0.032 0.823±0.030 0.867±0.028 0.736±0.028 0.819±0.039

10 0.798±0.031 0.819±0.032 0.836±0.028 0.723±0.029 0.812±0.037

5 0.775±0.035 0.798±0.030 0.818±0.031 0.710±0.031 0.801±0.039

6.5.2.3 Time and Memory Comparisons

Time Efficiency. The runtime efficiency in Figs. 6.13 and 6.14 shows that

Learn++.CDS-DT consumes least time among these algorithms. This is because

Learn++.CDS-DT builds a simple decision tree in each chunk whereas other

methods involve a boosting process. Meanwhile, gBoost-b+Stream requires much

less runtime than other boosting algorithms. This is mainly because gBoost-b

carries out boosting procedure on a small subset of under-sampled graphs whereas

gEBoost, gBoost+Stream, and Learn++.NIE-gBoost directly work on all graphs

in each chunk. In our experiments, the down-sampled (and balanced) graphs

for gBoost-b is less than 10% of each chunk, so gBoost-b+Stream has much

better runtime performance. When comparing gEBoost, gBoost+Stream, and

Learn++.NIE-gBoost, an interesting finding is that gEBoost requires much less

runtime than gBoost+Stream and Learn++.NIE-gBoost on NCI and Twitter

stream, but consumes more runtime than other two approaches on DBLP streams.

This observation may be caused by different properties of different graph datasets.

Meanwhile, the accumulated system runtime w.r.t. different chunk sizes, as shown

in Fig. 6.14, also indicate that system runtime remains relatively stable for

different chunk sizes. Overall, gEBoost linearly scales to the number of graphs

and chunks, which makes it capable of handling real-world high speed graph

streams.

Memory Consumption: The main memory consumption of gEBoost is spent

on the subgraph enumeration procedure. As each chunk is a relative small graph

130

set, only a small amount of memory is required for our subgraph mining compo-

nent. Meanwhile, because our algorithm utilizes an ensemble based framework,

all graphs flows in a “one-pass” fashion, i.e. historical graphs are discarded after

being processed, only a set of discriminative features (decision stumps) and a

gEBoost classifier are kept in the memory. The obsolete classifiers are removed

whenever the ensemble size is full. As a result, the memory consumption for

stream classification is relatively constant for our algorithm. We never experi-

enced any out of memory errors on a computer with 8GB memory.

 0

 5000

 10000

 15000

 20000

 25000

 30000

 0 10 20 30 40 50

A
cc

um
ul

at
ed

 T
im

e
(s

)

No. of Graphs (x 103)

(A) Accumulated Time on NCI Graph Streams

gBoost-b+Stream
gBoost+Stream

Learn++.CDS-DT
Learn++.NIE-gBoost

gEBoost

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 0 3 6 9 12 15 18 21 24

A
cc

um
ul

at
ed

 T
im

e
(s

)

No. of Graphs (x 103)

(B) Accumulated Time on DBLP Graph Streams

gBoost-b+Stream
gBoost+Stream

Learn++.CDS-DT
Learn++.NIE-gBoost

gEBoost

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 0 20 40 60 80 100 120 140

A
cc

um
ul

at
ed

 T
im

e
(s

)

No. of Graphs (x 103)

(C) Accumulated Time on Twitter Graph Streams

gBoost-b+Stream
gBoost+Stream

Learn++.CDS-DT
Learn++.NIE-gBoost

gEBoost

Figure 6.13: System accumulated runtime v.s. number of graphs processed over stream.
(A) NCI stream; (B) DBLP stream; (C) Twitter stream.

131

6. IMBALANCED AND NOISY GRAPH STREAM
CLASSIFICATION

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

|Dt|=1000 |Dt|=1500 |Dt|=2000

A
cc

um
ul

at
ed

 T
im

e
(s

)
(A) System Accumulated Time on NCI Graph Streams

gEBoost
gBoost+Stream

Learn++.NSE-gBoost

gBoost-b+Stream
Learn++.CDS-DT

 0

 1500

 3000

 4500

 6000

 7500

|Dt|=600 |Dt|=800 |Dt|=1000

A
cc

um
ul

at
ed

 T
im

e
(s

)

(B) System Accumulated Time on DBLP Graph Streams

gEBoost
gBoost+Stream

Learn++.NIE-gBoost

gBoost-b+Stream
Learn++.CDS-DT

Figure 6.14: System accumulated runtime v.s. different chunk sizes |Dt|.

6.6 Conclusion

In this chapter, we investigated graph stream classification with imbalanced class

distributions. We argued that existing work inherently overlooked the class dis-

tributions in the graph data, so the selected subgraph features are biased to the

majority class, which makes algorithms vulnerable to imbalanced class distribu-

tions and noise. The concept drifting over stream further complicates the learn-

ing task for graph classification. In the chapter, we proposed an ensemble based

framework to partition graph stream into chunks, with a boosting classifier be-

ing learnt from each chunk. The boosting procedure considers class distributions

to weight individual graphs, so the selected subgraph can help find optimized

margins, which further help explore new subgraph features. To handle concept

drifting in the stream, each graph is carefully weighed by using classifiers learnt

from previous stream. We believe our graph stream model is more useful com-

paring to non-stream technique, this is because the runtime for finding subgraph

features from the whole graph set can be very expensive. Unless we use a very

large support value, it will be very time consuming to find frequent subgraphs

from a large graph set. Moreover for a graph stream, like Twitter stream, the

concepts may gradually change, so the stream classification model is able to adapt

to such changes for accurate prediction. Our experimental results validate the

effectiveness of our algorithm.

132

Part III

Complex Task Graph

Classification

133

Complex Task Classification: Overview

Apart from insufficiently labeled data or imbalanced class distributions of the

graph objects, real-life applications of graph classification usually have various

complex constraints. For instance, the misclassification cost for different graph

samples may be different, the data size may be particularly large, and there may

be several similar graph classification tasks co-existing while each has only a

limited number of labeled graphs. In Part III, we will study the following two

complex task graph classification problems:

Cost-sensitive Learning for Large Scale Graph Classification: All

existing graph classification algorithms assume, explicitly or implicitly, that mis-

classifying instances in different classes incurs an equal amount of cost/risk, which

is often not the case in real-life applications. For instance, misclassifying a cer-

tain class of samples, such as diseased patients, is subject to more expensive costs

than others.

Another challenge of existing graph classification algorithms is that they are

only designed for small size graph datasets and are very inefficient to scale up

to large scale graph datasets. As big data applications [148] are becoming in-

creasingly popular for different domains and result in graph datasets with large

volumes, finding effective algorithms for large scale graph classification is highly

desired.

Consider cost-sensitive learning and large scale graph classification as a whole;

in the thesis, we will study cost-sensitive learning for large scale graph classifica-

tion (Chapter 7).

Multi-task Graph Classification: Although existing methods have ad-

vanced the graph classification from different perspectives, they typically share

similar disadvantages in their designs: (1) in order to explore graph structures

for training good classification models, they require a large number of training

graphs; and (2) they can only work on one single learning task. In reality, due to

the inherent complexity of the graph data and the costs involved in the labeling

process, collecting a large number of labeled graphs for a specific task is difficult.

However, it is quite common that multiple similar graph classification tasks, each

135

with a limited number of training samples, may co-exist and need to be handled.

In this thesis, we will explore how to learn from multiple graph classification

tasks to improve the generalization ability of classifier models (Chapter 8).

Complex Task Graph Stream Classification: It is worth noting that in Chap-

ter 7 and Chapter 8 we mainly focus on how to perform graph classification with

complex tasks on static datasets. However, these methods can be easily extended

to streaming scenarios. Specifically, we can easily modify the framework used

for semi-supervised graph stream classification (Section 5.2 and Fig 5.2) or for

imbalanced graph stream classification (Section 6.2 and Fig 6.1), so as to enable

cost-sensitive or multi-task graph stream classification, with the methods pro-

posed in Chapter 7 and Chapter 8 being as plug-ins (components) for local graph

chunks.

136

Chapter 7

Cost-sensitive Learning for Large

Scale Graph Classification

7.1 Introduction

When considering complex task senarios, existing graph classification methods

[40, 75, 101, 120, 126, 144, 168] may suffer two fundamental issues, i.e., ineffective

for cost-sensitive classification and inefficient for large graphs.

7.1.1 Cost-Sensitive Graph Classification

For graph classification, all existing methods assume, explicitly or implicitly, that

misclassifying a positive graph incurs an equal amount of cost/risk to the mis-

classification of a negative graph, i.e., all misclassifications have the same cost (In

this chapter, positive class and minority class are equivalent, and they both de-

note the class with the highest misclassification cost). The induced decision rules

are commonly referred to as cost-insensitive. In real-life graph applications, the

equal-cost assumption is mostly invalid (or at least too strong). Some examples

are given as follows.

Biological Domains: In structure based medical diagnose [29, 131], chemical

137

7. COST-SENSITIVE LEARNING FOR LARGE SCALE GRAPH
CLASSIFICATION

compounds active against cancer are very rare and are expected to be carefully

monitored and identified. A false negative identification (i.e. predicting an active

compound to be inactive) has a much more severe consequence (i.e. a higher cost)

than a false positive identification (predicting an inactive compound to be active).

Therefore, a false negative and a false positive are inherently different and a false

negative prediction may result in the delay and wrong diagnose, leading to severe

complications (or extra costs) at a later stage.

Cyber Security Domains: In intrusion detection systems, each traffic flow can

be represented as a graph by presenting traffic destinations (such as IP addresses

and ports) as nodes. Malicious traffics may impose threat or damage to computer

servers, leading to severe security issues in our social life, such as private infor-

mation leak or internet breakdown. Therefore, misclassification of a malicious

traffic (graph) would have a much higher economic and social costs in terms of

its potential impacts.

Motivated by its significance in practice, cost-sensitive learning has established

itself as an active topic in data mining and machine learning areas [1, 9, 32,

34, 87, 91, 92, 135, 156, 160, 167] in the last decade. Common solutions to

cost-sensitive problem includes sampling [156], decision tree modelling [86, 160],

boosting [87, 92], and SVM adaptations [91, 121, 135]. However, all these methods

are only dedicated to generic datasets with feature-vector representation, whereas

graphs do not have features immediately available and only contain nodes and

their dependency structure information. Simply enumerating subgraph structures

as features is clearly a suboptimal solution for cost-sensitive learning, mainly

because substructure space is potentially infinite and we need a good strategy to

find high quality features to help avoid misclassifications on positive classes.

Recently, an igBoost [109] algorithm has been proposed to handle imbalanced

graph datasets. The igBoost approach, extended from a standard cost-insensitive

graph classification algorithm gBoost [120], assigns proper weight values to dif-

ferent classes by taking data imbalance into consideration, so the algorithm is po-

tentially useful to tackle the cost-sensitive learning problem for graphs. However,

the loss function defined in igBoost is not cost-sensitive but only aims to minimize

the misclassification errors. As a result, if the training data are separable [91],

the algorithm will have limited power to enforce the cost-sensitivity learning be-

138

 1

 10

 100

 1000

 10000

 100000

100 500 1000 10000 20000 25000

T
im

e
(S

ec
on

ds
)

No. of Training Graphs

Time Complexity with Different No. of Training Graphs

igBoost gBoost

Figure 7.1: Training time w.r.t. different number of graphs on NCI-1 dataset for
gBoost [120] and igBoost algorithm [109]. Runtime of existing graph classification
algorithms exponentially grows w.r.t. the increase of the training set size.

cause it only tries to separate training samples without using costs associated

to different classes to tune the decisions for minimum costs. From a statistical

point of view, the minimum risk could be achieved by following Bayes decision

rules to predict graph samples. The objective function in [109] is non-optimal

because it simply employs some heuristic schemes, rather than implements the

Bayes decision rules to minimize the conditional risk for cost-sensitive setting. In

other words, the current boosting style algorithms are not targeting cost-sensitive

learning problems for graph data.

7.1.2 Fast Training for Large Scale Graphs

Another challenge of existing graph classification algorithms is that they are only

designed for small size graph datasets and are very inefficient to scale up to

large size graph datasets. Taking existing boosting-based graph classification

algorithms [120] as examples, a boosting algorithm iteratively selects the most

discriminative subgraphs from the graph dataset and then solves a linear pro-

gramming problem for graph classification. In practice, although one may use an

139

7. COST-SENSITIVE LEARNING FOR LARGE SCALE GRAPH
CLASSIFICATION

appropriate support value in the first step to find subgraphs, by using subgraph

mining based algorithm such as gSpan [151], the linear programming solving in

each iteration in the second step is a very time-consuming process, which prevents

the algorithms from scaling up to large scale graph datasets.

In Fig. 7.1, we report the runtime of boosting-based graph classification

algorithms with respect to different numbers of training graphs. For a small

number of graphs, e.g. 100 to 1000, both gBoost [120] and igBoost [109] are

relatively efficient (requiring 5 to 300 seconds for training). However, when the

number of training graphs is considerably large (25,000 graphs or more), the

training time for both gBoost and igBoost increase dramatically (about 50,000

seconds), and requires over 13 hours to complete the training task. As big data

applications [148] are becoming increasingly popular for different domains and

result in graph datasets with large volumes, finding effective boosting algorithms

for large scale graph datasets is highly desired.

If we consider both cost-sensitive learning and large scale graph classification

as a whole, the following issues should be taken into consideration to ensure the

efficiency and the effectiveness of the algorithm:

1. Cost-Sensitive Subgraph Selection: In a cost-sensitive setting, we are given

a cost matrix representing misclassification costs. To ensure minimum costs

for graph classification, we should take cost of individual samples into

consideration to cost-sensitively select discriminative subgraphs. A cost-

sensitive subgraph exploration process is, therefore, essential, but has not

been addressed by existing research.

2. Model Learning for Cost-Sensitivity: For existing boosting-based graph

classification algorithms, they all have non-optimal loss function, and there-

fore have limited capability to handle cost-sensitive problems. Alternatively,

we should employ a proper loss function, which not only implements the

cost-sensitive Bayes decision rule, but also approximates the Bayes risk. By

doing this, the induced model will have maximum power for cost-sensitive

graph classification.

3. Fast Training on Large-scale Graphs: All boosting algorithms are difficult

to scale to large graphs because the optimization procedures involved in

140

each iteration needs to resolve a large scale linear programming problem,

which is typically time-consuming. We need new optimization techniques

to enable fast training on large scale graph datasets.

Motivated by the above observations, we report in this chapter, CogBoost, a

fast cost-sensitive learning algorithm for graph classification. Instead of simply

assigning weights to different classes, we derive a loss function which implements

the Bayes decision rule and guarantees minimum risk for prediction. To iden-

tify discriminative subgraphs for cost-sensitive graph classification, we consider

individual cost of each graph sample, which is completely model driven, i.e.,

we progressively select the most informative subgraphs based on current learned

model, and the newly selected subgraph is added to current feature set to refine

the classifier model. These two steps are mutually beneficial to each other. To

enable fast training on large graph datasets, an advanced optimization technique,

cutting plane algorithm, is derived to solving linear program efficiently. Experi-

ments on real-word large graph datasets demonstrate CogBoost’s perofrmance.

The remainder of the chapter is structured as follow. The problem defini-

tion and overall framework are discussed in Section 7.2. Section 7.3 reports our

CogBoost algorithm for cost-sensitive graph classification. The cutting plane

algorithm for fast training is reported in Section 7.4, followed by the time com-

plexity analysis in Section 7.5. The experiments are reported in Section 7.6, and

we conclude the chapter in Section 7.7.

7.2 Problem Definition and Overall Framework

Classifier Model for Graphs: A classifier model f(·), which is learned from

a set of training graphs T = {(G1, y1), · · · , (Gl, yl)}, is a function to map a

connected graph Gi from graph space G (Gi ∈ G) to the label space Y = {+1,−1}.
For cost-sensitive learning, the classifier f(·) is required to minimize the expected

misclassification cost/risk R = EGi,yi [L(f(Gi), yi)], where L(f(Gi), yi) is a non-

negative loss function with respect to the misclassification cost. A typical loss

141

7. COST-SENSITIVE LEARNING FOR LARGE SCALE GRAPH
CLASSIFICATION

Figure 7.2: The proposed fast cost-sensitive boosting for graph classification frame-
work. In each iteration, CogBoost selects an optimal subgraph featin this chapterure
(g
, π
) based on current learned model and weights of training graphs. Then (g
, π
) is
added to the current selected set S. Afterwards, CogBoost solves a linear programming
problem to achieve cost/risk minimization. To enable fast training on large scale graph
datasets, a cutting plane solver is used in this step to improve the algorithm efficiency.
After solving the linear program, two sets of weights (green arrows) are updated: (1)
weights for training graphs, and (2) weights for weak learners (subgraphs). The fea-
ture selection and risk minimization procedures continue until CogBoost converges or
reaches the predefined number of iterations.

function is as follows:

L(f(Gi), yi) =

⎧⎪⎨⎪⎩
0 : f(Gi) = yi

C1 : f(Gi) = −1, yi = 1

C−1 : f(Gi) = 1, yi = −1

(7.1)

The loss function in Eq. (7.1) is extended from the standard 0-1 loss function,

i.e., L(f(·), y) = I(f(·) �= y), where I(·) is an indicator function, I(a) = 1 if a

holds, or I(a) = 0 otherwise. In Eq. (7.1), when C1 = C−1 = 1, the function

L(f(Gi), yi)) is cost-insensitive and degenerates to the standard 0-1 loss. For

cost-sensitive learning, a false negative (f(Gi) = −1, yi = 1) prediction usually

incurs a larger cost than a false positive (f(Gi) = 1, yi = −1) prediction, i.e.,

C1 > C−1.

Given a set of training graphs T = {(G1, y1), · · · , (Gl, yl)}, and C1 and C−1
for the cost of misclassification, cost-sensitive graph classification aims to build

an optimal classification model f(·) from T to minimize the expected misclassi-

142

fication loss (also known as risk) R = EGi,yi [L(f(Gi), yi)].

7.2.1 Overall Framework

In this chapter, we propose a boosting framework for cost-sensitive graph classi-

fication. Our framework (Fig. 7.2) mainly consists of three steps.

1. Optimal Subgraph Exploration: One optimal subgraph is selected each step,

and the cost-sensitive discriminative subgraph exploration is guided by the

model learnt from the previous step. The newly extracted subgraph is

added to the most discriminative set S to enhance the learning in the next

step.

2. Risk Minimization and Fast Training: A linear program is solved to achieve

minimum risk based on current selected subgraphs. To enable fast training

on large scale graphs, a novel cutting plane algorithm is employed.

3. Updating Graph Weights for New Iteration: After the linear program is

solved, the weight values for training graphs are updated and the algorithm

continues in a new iteration until the whole algorithm converges.

Next we will present our Cogboost algorithm for cost-sensitive graph classi-

fication and then propose a cutting plane algorithm to handle large scale graph

datasets.

7.3 Cost-Sensitive Learning for Graph Data

For graph classification, boosting [120] has been previously used to identify sub-

graphs from the training graphs as features. After that, each subgraph is regarded

as a decision stump (weak classifier) to build a boosting process:

�gk(Gi; πk) = πk(2I(gk ⊆ Gi)− 1); (7.2)

where πk ∈ Y = {−1,+1} is a parameter controlling the label of the classifier. In

this chapter, the weak classifier is written as �gk(Gi) for short.

143

7. COST-SENSITIVE LEARNING FOR LARGE SCALE GRAPH
CLASSIFICATION

Let F = {g1, · · · , gm} be the full set of subgraphs in T . We can use F as fea-

tures to represent each graphGi into a vector space as xi = {�g1(Gi), · · · , �gm(Gi)},
with xk

i = �gk(Gi). In the following subsection, we use Gi and xi interchangeably

as they both refer to the same graph.

The prediction rule for a graph Gi is a linear combination of the weak classi-

fiers:

f(xi) = wTxi =
∑

(gk,πk)∈F×Y
wk�gk(Gi) (7.3)

wherew = {wk}k=1,··· ,m is the weight vector for all weak classifiers. The predicted

class label of xi is +1 (positive) if f(xi) > 0 or -1 otherwise.

Similar to SVM, gBoost [120] aims to achieve minimum loss w.r.t. a standard

hinge loss function L(f, y) = �1 − yf�+, where �x�+ = max(x, 0). igBoost [109]

extends gBoost by assigning larger weight values to graphs in different classes.

Both gBoost and igBoost are not optimal when dealing with cost-sensitive cases,

because their loss functions do not follow the Bayes decision rules to minimize

the expected risk/loss. In this section, we will first present an optimal hinge loss

function, and then formalize our algorithm into a boosting paradigm.

7.3.1 Optimal Cost-sensitive Loss Function

A graph classifier f(·) maps a graph Gi to a class label yi ∈ {−1, 1}. Assume

graphs and class labels are drawn from probability distribution PG(Gi) and PY(yi),

respectively. Given a non-negative loss function L(f(Gi), yi), the classifier f(Gi)

is optimal if it minimizes the loss/risk R = EGi,yi [L(f(Gi), yi)]. Let η = PY|G(1|Gi)

be the probability for Gi being 1, from a Bayes decision rule point of view, this

is equivalent to minimize the conditional risk.

EY|G(L(f(Gi), yi)|G = Gi) = ηL(f(Gi), 1) + (1− η)L(f(Gi),−1) (7.4)

The loss function in Eq. (7.1) is a Bayes consistent loss function [93], i.e., it im-

plements the Bayes decision rule to achieve minimum conditional risk (Eq. (7.4)).

This suggests that ideally Eq. (7.1) can be used to design some cost-sensitive al-

144

gorithms for minimizing conditional risk. However, Eq. (7.1) is extended by a

0-1 loss function. Minimizing the 0-1 loss is computationally expensive because

it is not convex. State of the art algorithms usually use surrogate loss functions

to approximate the 0-1 loss (e.g., SVM and gBoost [120] employ hinge loss).

The hinge loss induced SVM algorithms enforce maximum margins between the

support vectors and the hyper-planes, which can achieve good classification per-

formance.

A recent work on SVM [91] theoretically suggests that the standard hinge loss

can be extended to be cost-sensitive, by setting the loss function L(f(Gi), yi) as:

L(f(Gi), yi) =

{
�C1 − C1 · f(Gi)�+ : yi = 1

�1 + (2C−1 − 1) · f(Gi)�+ : yi = −1
(7.5)

-1

 0

 1

 2

 3

 4

-3 -2 -1 0 1 2 3

(A) Standard Hinge Loss Function

Pos
Neg

-1

 0

 1

 2

 3

 4

-3 -2 -1 0 1 2 3

(B) Cost-sensitive Hinge Loss with C1=4, C-1=2

Pos
Neg

−4 −2 0 2 4
−4

−2

0

2

4

(C) Cost−sensitive SVM and Standard SVM in a Linearly Separable Case

Negative Class
Positive Class
SVM
Cost SVM
Non Max Margin Classifier

Figure 7.3: Different loss functions and formulations with respect to support vector
machines (SVMs): (A) Standard Hinge Loss, (B) Cost-sensitive Hinge Loss with C1 = 4
and C−1 = 2, and (C) Different SVM formulations with Standard Hinge Loss and Cost-
sensitive Hinge Loss (cf.[91]).

145

7. COST-SENSITIVE LEARNING FOR LARGE SCALE GRAPH
CLASSIFICATION

It is proved in [91] that the new hinge loss function Eq. (7.5) also implements

the Bayes decision rule. Additionally, employing Eq. (7.5) also enjoys the merit

of maximum margin principle for classification. The standard hinge loss and its

cost-sensitive hinge loss is illustrated in Fig. 7.3. They have different explanations

with respect to the loss and the margins (distance to the hyperplane from support

vectors). Specifically, for standard hinge loss (Fig. 7.3. (A)), the positive and

negative class both have equal margins (unit margins); and for cost-sensitive

hinge loss (Fig. 7.3. (B)), the negative class has a much smaller margin when

the positive class still have a unit margin. As shown in Fig. 7.3. (C), the margins

for positive and negative classes are uneven when cost-sensitive hinge loss function

Eq. (7.5) is utilized in a SVM formulation.

Note that the loss function employed in igBoost [109] is heuristically adapted

from standard hinge loss, which does not necessarily follow the Bayes decision

rule. In other words, it is a sub-optimal loss function for cost-sensitive learning.

In the following subsection, we will use the cost-sensitive hinge loss function in

Eq. (7.5), and re-formulate it into a linear program boosting framework.

7.3.2 Cost-Sensitive Formulation for Graphs

Motivated by the optimal loss function in Eq. (7.5), we formalize our learning

task as the following regularized risk minimization problem:

min
w

‖w‖+ C
l
{ ∑
{i|yi=1}

L(f(xi), 1) +
∑

{j|yj=−1}
L(f(xj),−1)

s.t. w � 0
(7.6)

In Eq.(7.6), we enforce the weight for each subgraph to be positive, i.e.,w � 0.

We also impose 1-norm regularization on w (i.e., ‖w‖), which will favor sparse

solutions with many variables being exactly 0. This strategy is similar to the

problem of LASSO for variable shrinking [130]. And we use i and j to index the

positive and negative training graphs, respectively. C is a parameter to trade-off

the regularization term and loss term. The objective function in Eq.(7.6) can be

146

reformulated as follows:

min
w,ξ

‖w‖+ C
l
{C1

∑
{i|yi=1}

ξi + γ
∑

{j|yj=−1}
ξj}

s. t. f(xi) ≥ 1− ξi, yi = 1

f(xj) ≤ − 1
γ
+ ξj, yj = −1

f(xi) =
m∑
k=1

wk · �gk(Gi),w � 0, ξ � 0, γ = 2C−1 − 1

(7.7)

In Eq.(7.7), ξi and ξj are slack variables concerning the loss of misclassifying

a positive and a negative graph, respectively. In this case, cost-sensitivity is

controlled by C1 and γ, which impose a smaller margin on negative examples

than positive examples (In Fig. 7.3. (B) and (C), for an example with C1 = 4,

and γ = 2C−1 − 1 = 3, the margin for negative example is 1
γ
= 1

3
). As suggested

in [93], we can set γ as a parameter subject to 1 ≤ γ ≤ C1 instead of a fixed

value (2C−1 − 1) to achieve better classification.

Solving objective function in Eq. (7.7) requires a complete set of subgraph

features (i.e., represent Gi as xi = {�g1(Gi), · · · , �gm(Gi)}), which are unavailable

unless we enumerate the whole subgraph space in advance. In practice, this is

likely impossible because the whole subgraph set is very large and possibly infinite.

In the following subsection, we will transform this formulation to its Lagrange

dual problem and use a boosting algorithm to solve it in an iterative way.

7.3.3 Boosting for Cost-sensitive Learning on Graphs

The Lagrange dual of a problem usually provides additional insights to the orig-

inal (primal) problem. The dual problem of Eq.(7.7) is 1

max
μ

∑l+
i=1 μi +

1
γ

∑l−
j=1 μj

s.t.
l+∑
i=1

μi�gk(Gi)−
l−∑
j=1

μj�gk(Gj) ≤ 1, ∀gk ∈ F

0 ≤ μi ≤ CC−1

l
, i = 1, · · · , l+

0 ≤ μj ≤ γC
l
, j = 1, · · · , l−

(7.8)

1The derivation from the primal problem Eq.(7.7) to dual problem Eq.(7.8) is shown in
Appendix A.2.

147

7. COST-SENSITIVE LEARNING FOR LARGE SCALE GRAPH
CLASSIFICATION

where l+ and l− indicate the number of graphs in positive and negative sets

(l = l+ + l−), respectively. While solving the primal problem in Eq.(7.7) returns

a vector w indicating the weights of each subgraph, the dual problem in Eq. (7.8)

will produce a vector μ = {μi}i=1,··· ,l. Nevertheless, Eq.(7.7) and Eq.(7.8) will

generate the same objective values.

Insights of Dual Problem (1) The solution {μi}i=1,··· ,l can be interpreted as

the weight values of graphs in order to achieve minimum loss. (2) Each constraint∑l+
i=1 μihgk(Gi) −

∑l−
j=1 μjhgk(Gj) ≤ 1 in Eq. (7.8) indicates a subgraph pattern

gk over the whole training graphs. It provides a natural metric to assess the

cost-sensitive discriminative power of a subgraph.

Definition 12. Cost-sensitive Discriminative Score: For a subgraph deci-

sion stump �gk(Gi), its cost-sensitive discriminative score over the whole training

graphs is:

Θ(gk, πk) =

l+∑
i=1

μi�gk(Gi)−
l−∑
j=1

μj�gk(Gj) (7.9)

Eq.(7.8) requires discriminative scores for all subgraphs ≤ 1, which latter will

serve as an termination condition of our iterative algorithm.

Linear Program Boosting Framework Because we do not have a predefined

feature set F in advance, we cannot solve Eq.(7.7) or Eq.(7.8). Therefore, we

propose to use column generation (CG) techniques [97] to solve the objective

function (Eq. (7.7)). The idea of CG is to begin with an empty feature set

S, and iteratively select and add one feature/column to S which violates the

constraint in the dual problem (Eq. (7.8)) mostly. After S is updated, CG

re-solve the primal problem Eq.(7.7). This procedure continues until no more

subgraph violating the constraint in (Eq.(7.8)).

Our cost-sensitive graph boosting framework is illustrated in Algorithm 9.

CogBoost iteratively selects the most discriminative subgraph (g
, π
) at each

round (step 4). If the current optimal pattern no longer violates the constraint or

it has reached the maximum number of iterations Tmax, the iteration process stops

(steps 5-6). Because in the last few iterations, the optimal value only changes

subtlety, we add a small value Δ to relax the stopping condition (typically, we use

148

Algorithm 9 CogBoost Algorithm for Graph Classification

Require:
Tl = {(G1, y1), · · · , (Gl, yl)} : Training Graphs;
Tmax: Maximum number of iteration;

Ensure:
f(xi) =

∑
(gk,πk)∈S w

(t−1)
k �gk(Gi): Classifier;

1: S ← ∅;
2: t ← 0;
3: while true do
4: Obtain the most discriminative decision stump (g
, π
); //Algorithm 10;

5: if Θ(g
, π
) ≤ 1 + Δ or t = Tmax then
6: break;
7: S ← S

⋃
(g
, π
);

8: Solve Eq. (7.7) based on S to get w(t), and Lagrange multipliers of Eq.
(7.8) μ(t);

9: t ← t+ 1;
10: return f(xi) =

∑
(gk,πk)∈S w

(t−1)
k �gk(Gi);

Δ = 0.01 in our experiments). In step 8, we solve the linear programming problem

based on the selected subgraphs to recalculate two set of weights: (1) w(t), the

weights for subgraph decision stumps in S; and (2) μ(t), the weights of training

graph for optimal subgraph mining in the next round, which can be obtained from

the Lagrange multipliers of the primal problem. Once the algorithm converges or

the number of maximum iteration is reached, CogBoost returns the final classifier

model f(xi) in step 10.

7.3.4 Cost-sensitive Subgraph Exploration

To learn the classification model, we need to find the most discriminative sub-

graph which considers each training graph’s weight in each step (step 4 in Algo-

rithm 9). The subgraph exploration is completely model driven, i.e., we select a

subgraph which violates the constraint in Eq.(7.8) mostly. Based on the defini-

tion of discriminative score in Eq.(7.9), we need to perform a weighted subgraph

mining over training graphs.

In CogBoost, we employ a Depth-First-Search (DFS) based algorithm gSpan

149

7. COST-SENSITIVE LEARNING FOR LARGE SCALE GRAPH
CLASSIFICATION

Algorithm 10 Cost-sensitive Subgraph Exploration

Require:
Tl = {(G1, y1), · · · , (Gl, yl)} : Labeled Graphs;
μ = {μ1, · · · , μl} : Weights for labeled graph examples;
min sup: mininum support for subgraph mining;

Ensure:
(g
, π
): The most discriminative subgraph;

1: τ = 0, (g
, π
) ← ∅;
2: while Recursively visit the DFS Code Tree in gSpan do
3: gp ← current visited subgraph in DFS Code Tree;
4: if gp has been examined or sup(gp) < min sup then
5: continue;
6: Compute score Θ(gp, πp) for subgraph gp according Eq.(7.9);
7: if Θ(gp, πp) > τ then
8: (g
, π
) ← (gp, πp); τ ← Θ(gp, πp);

9: if The upperbound of score Θ̂(gp) > τ then
10: Depth-first search the subtree rooted from node gp;
11: return (g
, π
);

[151] to enumerate subgraphs. The key idea of gSpan is that each subgraph has

a unique DFS Code, which is defined by its lexicographic order of the discovery

time during the search process. Two subgraphs are isomorphism iff they have

the same minimum DFS Code. By employing a depth first search strategy on

the DFS Code tree (where each node is a subgraph), gSpan can enumerate all

frequent subgraphs efficiently. To speed up the enumeration, we further employ a

branch-and-bound scheme to prune the search space of DFS Code tree by utilizing

an upper bound of discriminative score [120] for each subgraph pattern. Similar

upper bound is also used in previous Algorithm 7, and has been described in

Theorem 3.

Our subgraph mining algorithm is listed in Algorithm 10. The minimum value

τ and optimal subgraph (g
, π
) are initialized in step 1. We prune out duplicated

subgraph features or subgraph with low support (sup(·) returns the support of a
subgraph) in step 4-5, and compute the discriminative score Θ(gp, πp) for gp in

step 6. If Θ(gp, πp) is larger than τ , we update the optimal subgraph in step 8.

We use an branch-and-bound pruning rule in [120] to prune the search space in

steps 9-10. Finally, the optimal subgraph pattern (g
, π
) is returned in step 11.

150

7.4 Fast Training for Large Scale Graphs

For CogBoost algorithm, it needs to iteratively mine an optimal subgraph (step

4 of Algorithm 9) and solve a linear problem (step 8 of Algorithm 9). To enable

fast training for large scale graph datasets, for step 4 we can set a proper support

and use some heuristic techniques, such as reusing the search space during the

enumeration of subgraphs rather than re-mining subgraph from scratch, just as

[120] does. For step 8, in this section, we derive a cutting plane algorithm to

speed up the training process.

7.4.1 From l-Slacks to 1-Slack Formulation

Eq.(7.7) in step 8 of Algorithm 9 has l = l+ + l− slack variables ξi and ξj,

inspired by the techniques used in the SVM formulation [66], we propose to solve

it efficiently by reducing the number of slack variables as follows,

min
w,ξ

‖w‖+ Cξ

s. t. ∀c ∈ {0, 1}l, 1
l
wT{C1

∑
yi=1

cixi − γ
∑

yj=−1
cjxj}

≥ 1
l
{C1

∑
yi=1

ci +
∑
yj=1

cj} − ξ,

w � 0, ξ ≥ 0.

(7.10)

The above formulation can be proved to be equal to Eq.(7.7) 1, with ξ =

{C1

∑
{i|yi=1}

ξi + γ
∑

{j|yj=−1}
ξj}/l. Note that although Eq.(7.10) has 2l constraints

in total, such a formulation can be solved by cutting plane algorithm in linear

time by iteratively selecting a small number of most violated constraints (Cutting

Planes). This leads to an efficient solution to the optimization, so our algorithm

can effectively scale to large datasets.

The dual of l-slack formulation in Eq.(7.8) provides solution μ which can

interpret the graph weights for subgraph mining in the next iteration. To establish

the same relationship between the new objective function Eq.(7.10) and the graph

1 Appendix A.3 proves the equality of Eq.(7.7) and Eq.(7.10).

151

7. COST-SENSITIVE LEARNING FOR LARGE SCALE GRAPH
CLASSIFICATION

weights μ, we also refer to its dual problem, which is given as follows1:

max
λc

c1
l

∑
c

λc

∑
i

ci +
1
l

∑
c

λc

∑
i

cj

s.t. C1

l

∑
c

λc

∑
i

cix
k
i − γ

l

∑
c

λc

∑
j

cjx
k
j ≤ 1, ∀k

0 ≤ ∑
c

λc ≤ C.

(7.11)

Comparing the the dual problems of Eq.(7.8) and Eq.(7.11), they are identical if:

μi|yi=1 =
C1

l

∑
c

λcci; μj|yj=−1 =
γ

l

∑
c

λccj; (7.12)

7.4.2 Cutting-plane Algorithm for Fast Training

The basic idea of cutting-plane algorithm is similar to the column generation

algorithm, or it can be regarded as a row generation algorithm (each constrain in

Eq.(7.11) is a row). Instead of considering all constraints (rows) as a whole, our

cutting-plane algorithm considers only the most violated constraint (row) each

time. The selected violated constraints form a working set W. It utilizes an

iterative procedure to solve the problem. By doing this, the linear program can

be solved efficiently.

Our detailed cutting plane algorithm is shown in Algorithm 11. Initially,

the working set W is an empty set in step 1. In each iteration, we solve the

optimization problem based on current working set W in step 3 (w=0 and ξ =

0 for the first iteration). Steps 4-6 find the most violated constraint, which

is determined by the cost-sensitive loss function in Eq.(7.5). Step 9 adds the

most constraint to the working set. The iteration continues until it reaches the

convergence (steps 7-8). Also, we add a small constant ε (In our experiments, we

set ε = 0.01 as default value) to enable early termination of iterations.

Our cutting plane algorithm can always return an ε-tolerance accurate solution

(approximate the solution of Eq. (7.7) very well). It is efficient because each time

we solve a linear program in a small working set, the cutting plan algorithm is

independent of the sample size. This essentially ensures that our solutions can

1The derivation from Eq.(7.10) to Eq.(7.11) is given in Appendix A.4.

152

Algorithm 11 Cutting plane algorithm for linear problem Eq.(7.7)

Require:
{x1, · · · ,xl}: Training graphs with subgraph representation.
C,C1, C−1: Parameters for classifier learning.
ε: Cutting-plane termination threshold.

Ensure:
w: Classifier weights; μ: Graph weights;

1: Initialize W ← ∅;
2: while true do
3: Obtain primal and dual solutions w, ξ,λ by solving

min
w,ξ

‖w‖+ Cξ

s. t. ∀c ∈ W, wT 1
l
{C1

∑
yi=+1

cixi − γ
∑

yj=−1
cjxi} ≥

1
l
(C1

∑
yj=1

ci +
∑

yi=−1
cj) + ξ, w � 0, ξ > 0.

4: for i = 1 · · · l do
5: applying the following rule the find the most constraint variables on

positive graphs (yi = 1)

ci =

{
1 : yi · f(xi) < 1
0 : else

6: applying the following rule to negative graphs(yj = −1)

cj =

{
1 : γ · yi · f(xi) < 1
0 : else

7: if 1
l
(C1

∑
yi=1

ci +
∑

yj=−1
cj)−wT 1

l
(C1

∑
yi=+1

cixi − γ
∑

yj=−1
cjxi) ≤ ξ + ε then

8: break;
9: W ← W

⋃
c;

10: update μi and μj according to Eq. (7.12);
11: return w and μ;

153

7. COST-SENSITIVE LEARNING FOR LARGE SCALE GRAPH
CLASSIFICATION

scale to very large scale graph datasets.

7.5 Time Complexity Analysis: Theoretical As-

pect and Practice

The time complexity of CogBoost includes two major components: (1) mining

a cost-sensitive discriminative subgraphs O(P (l)) (step 4 of Algorithm 9), and

(2) solving a linear program problem O(Q(l)) (step 8 of Algorithm 9), where P

and Q are functions for mining subgraph and solving LP problem of size l. For

subgraph mining, CogBoost employs a gSpan based algorithm (Algorithm 10)

for subgraph enumeration in the first iteration (O(P (l))), and re-uses the search

space [120] of the first iteration (O(P (l))). Because re-using search space can

significantly reduce the mining time, we have O(P (l)) 	 O(P (l)). Suppose the

number of iterations of CogBoost (Algorithm 9) is Tmax, the total time complexity

of CogBoost is:

O = O(P (l)) + (Tmax − 1)O(P (l)) + TmaxO(Q(l)) (7.13)

7.5.1 Time complexity of Subgraph Mining

Theoretical Aspect: Intuitively, because the subgraph space is infinitely large,

the time complexity for subgraph mining is NP-hard, and O(P (l)) for subgraph

mining is inevitable for graph classification. Thus all existing subgraph feature

selection algorithms for graph classification [75, 120, 129] derive some upper-

bounds to prune the search space. In CogBoost, we incorporate the upper-bound

in [120] and the support threshold min sup to reduce the subgraph space. It is

worth noting that CogBoost can still function properly even though users do not

specify the min sup value for subgraph mining. If min sup were not specified,

CogBoost can only rely on the upper-bound in [120] to prune the search space.

Practice: In practice, we observe that when the data set is considerable large

(e.g., 40,000 chemical compounds or more), setting a support thresholdmin sup =

154

5% can significantly speed up the mining progress. However, setting a thresh-

old may incur missing of discriminative subgraphs because some infrequent sub-

graphs are not checked. Accordingly, we suggest removing the min sup threshold

for small graph dataset while setting a proper support for large datasets. The

proper support value depends on the domains of applications. For instance, when

the average number of nodes and edges of the graph dataset are large, a larger

support (5-10%) is preferred. On the other hand, if the average number of nodes

and edges are small, a small support (about 1%-3%) is a good choice. For real-

world applications, it is useful to first check the statistics of the graph samples

before carrying out the graph classification tasks.

7.5.2 Time complexity of LP Solving

Theoretical Aspect: For LP problem, Eq. (7.7) is solvable in polynomial

time O(Q(l)) = O(lk) with some constant k [94]. In other words, gBoost [120]

and igBoost [109] needs polynomial time for this step. By using cutting plane

algorithm, the time complexity would be O(Q(l)) = O(sl), where s is the number

of non-zero features in the original problem (please refer to [66] for detailed

analysis). Therefore, CogBoost can significantly reduce the runtime when the

graph sample size l is large. In Section 7.6, our experiments will demonstrate that

the improvement of LP problem solving without using cutting plan algorithm is

marginal.

Practice: The cutting plane algorithm uses a working set W (in Algorithm

11), W overlaps significantly during two consecutive iterations of Algorithm 9.

Therefore, in our implementations, we re-use top 200 most violated constraints

in W in the previous iteration, which can significantly improve the algorithm

efficiency. In practice, the classifier weights w in two consecutive iterations may

be very close to each other, one can also use the warm-start technique (using w

in previous iteration as initial value for linear problem solving) to speed up the

learning process.

155

7. COST-SENSITIVE LEARNING FOR LARGE SCALE GRAPH
CLASSIFICATION

7.6 Experiments

In this section, we evaluate CogBoost in terms of its average misclassification

cost (or average cost) and runtime performance. The average cost is calculated

by using the total misclassification costs divided by the number of test instances.

The lower the average costs, the better the algorithm performance is. The runtime

performance is evaluated based on the actual runtime of the algorithm.

7.6.1 Experimental Settings

Two types of real-life datasets, NCI chemical compounds and Twitter graphs, are

used in our experiments. Table 3.2 summaries the statistics of the two benchmark

datasets.

• NCI Graph Datasets: In our experiment, we used the original NCI

datasets, which are naturally imbalanced and are ideal benchmarks for test-

ing imbalanced or cost-sensitive classification tasks.

• Twitter Graphs: This dataset has been used for simulated graph stream

classification in Chapter 6. In this chapter, we aggregate all graphs as one

dataset without considering their temporal order.

Baselines We compare our proposed CogBoost algorithm with the following

baseline algorithms.

• gBoost [120] is a state-of-the-art boosting method, which has demonstrated

good performance for graph classification.

• igBoost [109] extends gBoost to handle imbalanced graph datasets. The

weight of a minority (positive) graph is assigned with a β times higher

weight value than a majority (negative) graph.

• Fre+CSVM first mines a set of frequent subgraphs (with minimum sup-

port 3%) from the entire graph dataset, and selects the top-K most fre-

quent subgraphs as features. Afterwards, each graph dataset is transferred

into vector format by checking the existence of selected subgraphs in the

156

original graph datasets. Finally, the cost-sensitive support vector machine

algorithm [9, 135] is applied to the transferred vectors.

• gSemi+CSVM1 employs a gSemi [75] algorithm to mine top-K discrimi-

native subgraphs from the entire graph dataset, and then transfers the orig-

inal graph database into vectors. Similar to Fre+CSVM, the cost-sensitive

SVM algorithm [9] is used to learn a model from the transferred vectors.

To validate the effectiveness of the cutting plane solver in our CogBoost al-

gorithm for large scale graphs, we implement two variants of CogBoost,

• CogBoost-a: This variant discards the cutting plane module and solves

the linear program of Eq.(7.7) directly. In other words, it uses all l slack

variables in total.

• CogBoost-1: The CogBoost-1 utilizes the cutting plane module to solve

the linear program (Eq.(7.10)) for large scale graphs, i.e., it has only one

(i.e. 1) slack variable each time.

For each graph dataset, we randomly split it into two subsets. The training

set consists of 70% of the graph dataset, and the rest is used as the test set. The

results reported in the chapter are based on the average number of repetitions.

Note that for gBoost [120] and igBoost [109], the previous studies only validate

their performance using a rather small number of graphs (from several hundreds

to several thousands graphs), whereas in our experiments, our training data is

much larger.

Parameter Settings For fair comparisons, the default misclassification cost for

positive graphs is set as C1 = 20 for NCI graphs, which is actually the approx-

imated imbalanced ratio (|Neg|
|Pos|) of these graph datasets. For Twitter graphs, a

large C1 will result in that all graphs are classified in one class for all algorithm.

To avoid this case, we set the default value C1 = 3. For all experiments, the cost

for negative graphs is always set as C−1 = 1 for all datasets. As suggested in [93],

1We encounter an out-of-memory error for gSemi+CSVM algorithm on Twitter graph
dataset, because gSemi algorithm [75] needs to do matrix calculation to select subgraphs. Java
fails to create such a large “double” matrix (about 100,000*100,000).

157

7. COST-SENSITIVE LEARNING FOR LARGE SCALE GRAPH
CLASSIFICATION

we selected the best parameter γ instead of fixing it to 2C−1−1 for CogBoost algo-

rithm. For igBoost, we set β = C1, so positive class graphs have a weight value β

times higher than negative graphs. The regularization parameter in our algorithm

is C, and D = 1/v for gBoost and igBoost. To make them comparable, we vary C

from {0.1, 1, 10, 100, 1000, 10000}, and v from {0.01, 0.2, 0.4, 0.6, 0.8, 1.0}. These

candidate values are set according to the property of each algorithm. min sup is

set to 5% for NCI graphs and 0.5% for Twitter graphs.

Because both igBoost and gBoost require over 10 hours to complete a clas-

sification task, it is impractical to select the best parameters for each algorithm

on the whole training graphs on each dataset. Therefore, we select the param-

eters for each algorithm which achieves the minimum misclassification cost over

a sample of 5000 training graphs on each dataset. Then we train the classifiers

with these selected parameters on the whole training graphs. For Fre+CSVM and

gSemi+CSVM, the number of most informative subgrahps K is always equal to

Tmax employed into another boosting algorithm, i.e., we ensure that all algorithms

use the same number of features for graph classification.

Unless specified otherwise, other parameters for our algorithm are set as fol-

lows: Tmax = 50 and ε = 0.01.

All our algorithms are implemented using a Java package MoSS [16, 17] and

Matlab toolbox CVX [50, 51]. MoSS 1 provides a framework for frequent subgraph

mining, and CVX 2 serves as a module for solving linear programs. JavaBuilder

provided by Matlab bridges MoSS and CVX into a united framework. All our

experiments are conducted on a cluster node of Red Hat OS with 12 processors

(X5690 @3.47GHz) and 48GB memory.

7.6.2 Experimental Results

In this subsection, we evaluate the effectiveness of CogBoost for cost-sensitive

learning and fast cutting-plane training in terms of average cost and runtime

performance. The experimental results for NCI and Twitter graphs under default

parameter settings are illustrated in Fig. 7.4.

1http://www.borgelt.net/moss.html
2http://cvxr.com/cvx/

158

 0.2

 0.4

 0.6

 0.8

 1

 1.2

1 33 41 47 81 83 109 123 145 Twitter

C
os

t

Dataset IDs

(A) Experimental Cost on NCI and Twitter Datasets

CogBoost-1
CogBoost-a

igBoost
gBoost

Fre+CSVM
gSemi+CSVM

 0

 10000

 20000

 30000

 40000

 50000

1 33 41 47 81 83 109 123 145 Twitter

T
im

e
(S

ec
on

ds
)

Dataset IDs

(B) Time Complexity on NCI and Twitter Datasets

CogBoost-1
CogBoost-a

igBoost
gBoost

Fre+CSVM
gSemi+CSVM

Figure 7.4: Experimental Results. (A) Average cost, (B) Time Complexity.

.

159

7. COST-SENSITIVE LEARNING FOR LARGE SCALE GRAPH
CLASSIFICATION

Average Cost For average cost, Fig. 7.4. (A) demonstrates that gBoost has

the worst performance on 5 out of 10 datasets (i.e. the largest average cost).

This is mainly because gBoost is a cost-insensitive algorithm, which considers

that all training graphs are equally important in terms of their costs. As a result,

gBoost fails to leverage the costs of graph samples to discover subgraph features

mostly discriminative for differentiating graphs in the positive class, leading to

deteriorated classification performance.

For igBoost, Fre+CSVM, and gSemi+CSVM, all of them have a mechanism

to assign weight values to different classes. Fig. 7.4. (A) shows that igBoost

outperforms Fre+CSVM and gSemi+CSVM, which is mainly attributed to ig-

Boost’s integration of discriminative subgraph selection and classifier learning

for graph classification. For Fre+CSVM and gSemi+CSVM, they decompose

subgraph selection and classifier learning into two separated steps, without inte-

grating them to gain mutual benefits, i.e., the subgraphs selected by frequency

and gSemi score [75] may not be a good feature set for SVM learning. As a result,

Fre+CSVM and gSemi+CSVM are inferior to igBoost. This is, in fact, consistent

with previous studies [120], which confirmed that gBoost outperforms a frequent

subgraph based algorithm (mine frequent subgraphs as features and then apply

SVMs).

The experimental results in Fig. 7.4 (A) show that CogBoost outperforms

igBoost. This is because the loss function in igBoost is not a cost-sensitive loss

function, but heuristically adapted from the hinge loss function (i.e., simply as-

signing different weights to different classes). Therefore, it does not necessarily

implement the Bayes decision rule and cannot guarantee minimum conditional

risk.

In contrast, CogBoost-1 and CogBoost-a adopt an optimal cost-sensitive loss

function which implements the Bayes decision rule to achieve minimum cost.

Evidently, both CogBoost-1 and CogBoost-a outperform gBoost over all graph

datasets with significant performance gain, and outperforms igBoost for most

graph datasets.

Runtime Performance The algorithm runtime in Fig. 7.4 (B) shows that

gBoost, igBoost, and CogBoost-a all require an order of magnitude more time

over CogBoost-1, Fre+CSVM, and gSemi+CSVM. For instance, CogBoost-1 only

160

needs about 1,846 seconds on NCI-1 dataset whereas all other boosting algorithms

take about over 50,000 seconds to complete the task. Overall, CogBoost-1 is

25 times faster than all other boosting algorithms. This result validates that

reformulating our problem from Eq.(7.7) to a new problem (Eq. (7.10)) and

using cutting plane algorithm to solve it can efficiently speed up the problem

solving.

Note that Fre+CSVM and gSemi+CSVM have a little less runtime than

CogBoost-1, this is because they only solve the SVM formulation (quadratic

program) once, while our algorithm iteratively solves a linear program in each

iterations.

Comparing the runtime of NCI and Twitter datasets, we found that although

twitter dataset is significant larger than NCI, the time consumption for NCI and

Twitter does not differ much. This is because the average number of nodes and

edges for twitter dataset is much smaller than NCI, making it much efficient for

subgraph mining for all algorithms.

Runtime Consumption Details for Boosting algorithms To better un-

derstand why CogBoost is more efficient than its peers, we investigate detailed

runtime consumption in each step for boosting algorithms. These boosting meth-

ods all consist of two key steps in each iteration: i.e., optimal subgraph mining

and linear problem solving. Accordingly, we report the algorithm runtime in each

iteration in Fig. 7.5, and report average time consumption in Table 7.1.

Table 7.1 and Fig. 7.5 show that, on average, subgraph mining can be done

in less than 20 seconds for all algorithms. At the first iteration, the subgraph

mining step requires a significant amount of runtime. This is because gSpan needs

to generate the search tree until the pruning condition is satisfied. Creating a

new node is time consuming, because the list of embeddings is updated, and the

minimality of the DFS code has to be checked (See [120] for more details). In the

latter iterations, the time consumption for this process can be reduced greatly

because the searching space can be reused. The node creation is necessary only

if it were not created in previous iterations. As a result, we can observe that the

algorithm is more efficient in the latter iterations.

As for the LP optimization steps, gBoost, igBoost, and CogBoost-a all con-

sume much more time than CogBoost-1. This is because they all need to solve a

161

7. COST-SENSITIVE LEARNING FOR LARGE SCALE GRAPH
CLASSIFICATION

 0

 200

 400

 600

 800

 1000

 1200

 1400

 5 10 15 20 25 30 35 40 45 50

T
im

e
(s

ec
on

ds
)

No. of Iterations

(A) Time consumption in each iteration for gBoost

Subgraph Mining Step
LP Optimazation Step

 0

 200

 400

 600

 800

 1000

 1200

 1400

 5 10 15 20 25 30 35 40 45 50

T
im

e
(s

ec
on

ds
)

No. of Iterations

(B) Time consumption in each iteration for igBoost

Subgraph Mining Step
LP Optimazation Step

 0

 200

 400

 600

 800

 1000

 1200

 1400

 5 10 15 20 25 30 35 40 45 50

T
im

e
(s

ec
on

ds
)

No. of Iterations

(C) Time consumption in each iteration for CogBoost-a

Subgraph Mining Step
LP Optimazation Step

 0

 50

 100

 150

 200

 250

 5 10 15 20 25 30 35 40 45 50

T
im

e
(s

ec
on

ds
)

No. of Iterations

(D) Time consumption in each iteration for CogBoost-1

Subgraph Mining Step
LP Optimazation Step

Figure 7.5: Runtime performance in each iterations. Runtime consumption for (A)
gBoost, (B) igBoost, (C) CogBoost-a, and (D) CogBoost-1.

linear problem (similar to Eq. (7.7) for gBoost and igBoost) with l slack variables

ξi|i=1,··· ,l in each iteration (l is the total number of graph examples). When l is

large, it will require a very large amount of time to solve the linear problem. In

contrast, CogBoost-1 solves the linear problem (Eq. (7.10)) with only one sin-

gle slack variable ξ by using cutting plane algorithms (Algorithm 11). This new

formulation can greatly reduce the time required for linear problem solving.

The results in Table 7.1 and Fig. 7.5 show that CogBoost-1 only needs about

21.58 seconds for one iteration while all other algorithms require about 1,000

seconds to complete this step. Because LP optimization step is the most compu-

tationally intensive step for boosting algorithms, CogBoost-1 is much faster than

all existing boosting algorithms for graph classification.

162

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 5 10 15 20 25

A
ve

ra
ge

 C
os

t

Value of C1

(A) Average Cost for NCI-1

gBoost
igBoost

CogBoost

Fre+CSVM
gSemi+CSVM

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 5 10 15 20 25

A
ve

ra
ge

 C
os

t

Value of C1

(B) Average Cost for NCI-33

gBoost
igBoost

CogBoost

Fre+CSVM
gSemi+CSVM

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 5 10 15 20 25

A
ve

ra
ge

 C
os

t

Value of C1

(C) Average Cost for NCI-41

gBoost
igBoost

CogBoost

Fre+CSVM
gSemi+CSVM

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 5 10 15 20 25

A
ve

ra
ge

 C
os

t

Value of C1

(D) Average Cost for NCI-47

gBoost
igBoost

CogBoost

Fre+CSVM
gSemi+CSVM

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 5 10 15 20 25

A
ve

ra
ge

 C
os

t

Value of C1

(E) Average Cost for NCI-81

gBoost
igBoost

CogBoost

Fre+CSVM
gSemi+CSVM

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 5 10 15 20 25

A
ve

ra
ge

 C
os

t

Value of C1

(F) Average Cost for NCI-83

gBoost
igBoost

CogBoost

Fre+CSVM
gSemi+CSVM

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 5 10 15 20 25

A
ve

ra
ge

 C
os

t

Value of C1

(G) Average Cost for NCI-109

gBoost
igBoost

CogBoost

Fre+CSVM
gSemi+CSVM

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 5 10 15 20 25

A
ve

ra
ge

 C
os

t

Value of C1

(H) Average Cost for NCI-123

gBoost
igBoost

CogBoost

Fre+CSVM
gSemi+CSVM

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 5 10 15 20 25

A
ve

ra
ge

 C
os

t

Value of C1

(I) Average Cost for NCI-145

gBoost
igBoost

CogBoost

Fre+CSVM
gSemi+CSVM

 0.3

 0.6

 0.9

 1.2

 1.5

 1.8

 1 2 3 4 5

A
ve

ra
ge

 C
os

t

Value of C1

Average Cost for Twitter

gBoost
igBoost

CogBoost
Fre+CSVM

Figure 7.6: Average Cost with respect to different C1 value

163

7. COST-SENSITIVE LEARNING FOR LARGE SCALE GRAPH
CLASSIFICATION

Table 7.1: Average Time Consumption in Each Iteration (Seconds)

gBoost igBoost CogBoost-a CogBoost-l

Subgraph Mining 8.24 18.24 19.39 16.33
LP Optimazation 993.42 954.66 1046.12 21.58

 0.3

 0.4

 0.5

 0.6

 0.7

0.1 0.01 0.001 0.0001 0.00001
 500

 1000

 1500

 2000

 2500

Av
er

ag
e

Co
st

Ti
m

e
(s

ec
on

ds
)

Value of ε

(A) Time and Average Cost with Different ε on NCI-1

Time Cost

 0.3

 0.4

 0.5

 0.6

 0.7

0.1 0.01 0.001 0.0001 0.00001
 500

 1000

 1500

 2000

 2500

Av
er

ag
e

Co
st

Ti
m

e
(s

ec
on

ds
)

Value of ε

(B) Time and Average Cost with Different ε on NCI-33

Time Cost

Figure 7.7: Average cost (left y-axis) and algorithm runtime (right y-axis) with respect
to different ε values (x−axis). (A) NCI-1, and (B) NCI-33

7.6.2.1 Performance w.r.t. different ε values

Comparison of CogBoost-1 and CogBoost-a The experiment results in Fig.

7.4 show that CogBoost-1 can always achieve similar (or very close) classification

performance as CogBoost-a. This is because CogBoost-1 can always return an

ε-tolerance solution to CogBoost-a in each iteration. This, in fact, empirically

proves the correctness of our CogBoost-1 formulation. Because CogBoost-1 can

achieve accurate solutions to CogBoost-a but with much less runtime consump-

tion than CogBoost-a, in the following experiments, we will report CogBoost-1

(termed as CogBoost) for comparison with other algorithms.

Meanwhile, we will mainly focus on the classification performance for cost-

sensitive learning because the time complexity is relatively stable for each graph

dataset with the same number of training graphs.

7.6.2.2 Performance w.r.t. different cost values

In order to study the algorithm performance w.r.t. different cost values, we vary

the C1 values from 5 to 25 for NCI graphs and 1 to 5 for Twitter graphs and

report the algorithm performance in Fig. 7.6 where the x-axis in each subfigure

164

shows the C1 values and the y-axis show the average costs of different methods.

Fig. 7.6 shows that with the increasing of C1 value, the average costs of all

all algorithms will increase. This is because the increasing of C1 value results in

a higher misclassification cost of positive graphs. Comparing to gBoost, igBoost

achieves less average cost on most graph datasets. This is mainly attributed to

the uneven weight assignment scheme for different classes adopted in igBoost,

which allows igBoost to deal with the cost-sensitive problem to some extend.

For all datasets, CogBoost achieves minimum average cost with respect to dif-

ferent C1 values. This is attributed to the optimal hinge loss function employed

in CogBoost, which implements the Bayes decision rules and forces CogBoost to

favor high cost samples in order to minimize the misclassification costs. This re-

sult is actually consistent with results from a previous study [91], which addresses

cost-sensitive support vector machine algorithm for vector data, while CogBoost

is a boosting algorithm for graph classification.

In CogBoost, the parameter ε controls CogBoost’s solutions in solving the

cutting plane algorithm (Algorithm 11). In order to validate ε’s impact on the

algorithm performance, we vary ε values and report CogBoost’s performance in

Fig. 7.7.

Fig. 7.7 shows that for large ε values (e.g. ε = 0.1 on NCI-1 dataset), the

corresponding average cost is also large. This is because a large ε value returns a

solution far away from the optimal solution and results in poor performance for

CogBoost. As ε continuously decreases (from 0.1 to 0.00001), the average cost on

both NCI-1 and NCI-33 datasets decrease. This is because with a small ε value,

CogBoost can return accurate solution for classification. However, the runtime

consumption for smaller ε values will also increase because more iterations are

required in the cutting algorithm. Our empirical results suggest that a moderate

value (such as ε=0.01) has a good tradeoff between time complexity and average

cost. So we set ε=0.01 as a default value in our experiments.

In summary, our experiments suggest that cost-sensitive graph classification is

a much more complicated problem than traditional cost-sensitive learning, mainly

because graph classification heavily relies on subgraph feature exploration. Sim-

ply converting a graph dataset into a vector representation, by using frequent sub-

graph features, and then applying cost-sensitive learning (like Fre+CSVM does)

165

7. COST-SENSITIVE LEARNING FOR LARGE SCALE GRAPH
CLASSIFICATION

is far from optimal. Indeed, subgraph features play vital role for graph classifica-

tion. By using a cost-sensitive subgraph exploration process and a cost-sensitive

loss function, CogBoost demonstrates its superb performance for cost-sensitive

graph classification.

7.7 Conclusion

In this chapter, we formulated a cost-sensitive graph classification problem for

large scale graph datasets. We argued that many real-world applications involve

data with dependency structures and the cost of misclassifying samples in differ-

ent classes is inherently different. This problem motivates us to consider effective

graph classification algorithms with cost-sensitive capability and being suitable

for large scale graph datasets. To solve the problem, we proposed a fast boosting

algorithm, CogBoost, which embeds the costs into the subgraph exploration and

the learning process. The boosting procedure utilizes an optimal loss function to

minimize the misclassification costs by implementing the Bayes decision rule. To

enable fast training on large scale graphs, a cutting plane formulation is derived so

that the linear problem can be solved efficiently in each iteration. Experimental

results on large real-life graph datasets validate our designs.

166

Chapter 8

Joint Structure Feature

Exploration and Regularization

for Multi-Task Graph

Classification

8.1 Introduction

For complex task graph classification, there is usually the case that each graph

classification task only has a limited number of labeled data, yet multiple similar

graph classification tasks co-exist.

In practice, if the sets of tasks are collected from similar or very close domains,

then multi-task learning can be an effective scheme to improve the classification

performance.

Two motivated multi-task graph classification examples are given as follows:

Functional Brain Analysis aims to map human brain as a network (or a graph)

to model relationships between diseases and functions of brain regions [26]. In

167

8. JOINT STRUCTURE FEATURE EXPLORATION AND
REGULARIZATION FOR MULTI-TASK GRAPH
CLASSIFICATION

order to carry out a specific learning task, such as diagnosing Attention Deficit

Hyperactivity Disorder (ADHD) [128], each object has to go through functional

magnetic resonance imaging (fMRI) and intensive data preprocessing to collect

training data. This severely limits each task to maximum of only a couple of

hundred objects. On the other hand, institutions may have data collected for

different but relevant learning tasks, such as Gender [136] or Alzheimer’s disease

study. The limited samples for each individual task and the commonality be-

tween tasks raise an interesting question as to whether multiple brain function

classification tasks can be combined to learn a multi-task model for maximum

performance gain.

Chemical Compound Categorization is important in biomedical research

for testing whether a chemical compound is active to a specific cancer, such as

melanoma. For melanoma cancer, determining activities of a molecule is expen-

sive as it requires time, efforts, and expensive resources [7] to conduct biological

assay. In reality, some similar bioassay tasks 1, such as an anti-cancer test for

prostate, may be available. As the graph data for different types of cancer may

share common substructures, learning multiple related tasks together may poten-

tially help improve the generalization performance of each single task.

Instead of treating each task as a single-task graph classification (STG) prob-

lem, we formulate a multi-task graph classification (MTG) problem which intends

to simultaneously handle multiple relevant graph classification tasks.

When solving MTG problems, one simple approach is to treat each task in-

dependently and train an STG algorithm (e.g., gBoost [120]) for each task. The

result from this approach is, however, far from optimal. This is because (1)

the insufficient number of labeled graphs for each task makes learning algorithm

difficult to comprehend graph structures for finding effective subgraphs to train

classification models. From a machine learning perspective, the limited labeled

graphs are biased samples obtained from a sampling process of a large collection

of graph examples. A subgraph feature discovered from these graph samples may

be also biased, and has limited capability to differentiate test graphs; and (2) a

learning model trained from a small number of labeled graphs tends to overfit

1https://pubchem.ncbi.nlm.nih.gov/

168

the training samples and results in poor performance on test data.

Figure 8.1: The comparisons of the Top 5 most discriminative subgraphs for each graph
classification task, mined by (A) gBoost [120], or by (B) multi-task learning (using 50
training graphs for each task). The numeric value next to each subgraph indicates the
classification accuracy on test graphs using this single subgraph as a feature (i.e., an
indicator of the classification quality of this subgraph). Multi-task learning in (B) favors
subgraphs which also have high discriminative powers across all tasks. For instance,
the circled g1 is ranked at the second place for NCI-1 on the training data because
it also has a high score on NCI-33. g1’s score 0.582 in NCI-1 outperforms 4 out of
top 5 features selected by gBoost, but it was not discovered by gBoost as the Top
5 discriminative subgraphs (so its importance is under-evaluated when learning from
NCI-1 task alone).

A second approach to solve MTG problems is to first mine frequent sub-

graphs [151] as features to transfer graphs into vector format, and then employ

state-of-the-art multi-task learning (MTL) algorithms [8, 35] to the vectors. This

method is still suboptimal, mainly because subgraph feature exploration process

is not tied to the learning tasks (because there are multiple learning tasks). With

suboptimal features, it can hardly achieve good classification performance.

Instead of treating MTG as multiple independent learning tasks, we advocate

a multi-task driven subgraph (MTDS) mining to explore low dimensional discrim-

inative subgraph features for training all classification models simultaneously. By

integrating MTDS based feature selection into our multi-task graph classification

objective function, we are expected to allow knowledge to be shared across all

tasks for better subgraph validation and model regularization. The niche of our

multi-task subgraph feature exploration and multi-task graph classification stems

from the following key observations:

169

8. JOINT STRUCTURE FEATURE EXPLORATION AND
REGULARIZATION FOR MULTI-TASK GRAPH
CLASSIFICATION

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

1 33 41 47 81

A
cc

ur
ac

y

Graph Dataset IDs

Accuracy on NCI Graph Datasets

gBoost-Train MTG-Train gBoost-Test MTG-Test

Figure 8.2: Accuracy comparisons on training and test graphs with 50 training graphs
for each task. STG algorithms (i.e., gBoost) can easily fit the training graphs perfectly
(with 100% accuracy) but its performance on test graphs is much worse (about 0.6 or
less). MTG algorithms can avoid overfitting because graphs from relevant tasks are
used for regularization.

Multi-Task Shared Subgraphs: Because multiple graph classification tasks

are relevant to each other, some common discriminative subgraph features may

exist across different tasks. A significant subgraph on one task may also have

a high discriminative score on the other task. For instance, in Fig. 8.1, g1 is

a common subgraph of tasks NCI-1 and NCI-33. However, when performing

subgraph selection on NCI-1 task only, g1 will be missed by a STG algorithm

(e.g., gBoost [120]). In this context, combining NCI-1 and NCI-33 as a multi-

task problem clearly helps NCI-1 task find a better discriminative subgraph for

classification.

Implicit Evaluation Set and Better Regularization: To avoid overfitting

incurred by insufficient training samples, machine learning algorithms usually

validate their models on some evaluation sets before testing or incorporating reg-

ularization terms for model learning. With a limited number of training graphs,

a good subgraph explored from a single task has a very high risk of overfitting the

training data (as shown in Fig. 8.2). By unifying multiple tasks as one objective

function, one can use other tasks as implicit evaluation sets for each task. So an

MTG objective function can help prune subgraph features which are only good in

biased training data of an individual task but are not promising for other tasks.

This is, in fact, particularly useful for graph classification mainly because relevant

graph samples from other tasks can be considered as implicit evaluation set which

170

can help validate the sub-graph mining process to achieve a better regularization

(detailed in Fig. 8.2).

Motivated by the above observations, we propose a multi-task graph classifi-

cation algorithm, which iteratively selects the most discriminative subgraphs to

achieve minimum regularized loss for all tasks. The multi-task graph classification

is achieved by combining subgraph selection and model learning into an iterative

process, which mutually benefits subgraph exploration and multi-task learning:

for subgraph selection, we can select some low dimensional subgraphs shared

among all tasks by employing the MTDS selection scheme; and for multi-task

learning, all tasks are jointly regularized to achieve better classification perfor-

mance.

It is worth noting that our approach is not a simple extension of existing

multi-task learning algorithms [8, 35] to the graph classification domain. This is

mainly because subgraph feature exploration is the inherent challenge for graph

classification, whereas existing multi-task learning methods fall short in exploring

structure features across multiple tasks for learning. Secondly, our method closes

the loop from multi-task driven subgraph (MTDS) mining to joint regularization

across multiple graph classification tasks, which has not been addressed by either

graph classification or multi-task learning communities. Last, but not the least,

our research proposes effective pruning strategy to reduce the search space for

graph feature exploration, and our solution is evaluated by using different loss

functions and regularization norms. So our design can serve as a reference for

future research in the area.

The main contributions of this chapter can be summarized as follows:

• To the best of our knowledge, this is the first work to handle multi-task

learning for graph data. We propose an algorithm with theoretically proved

convergence to jointly regularize multiple tasks to exploit discriminative

subgraphs for multi-task graph classification.

• We generalize the column generation technique [120] to multi-task graph

classification setting. Any differentiable loss function such as least squares,

exponential, and logistic loss functions can be used in our algorithm.

• We propose to integrate two sparsity-inducing regularization norms, �1-

171

8. JOINT STRUCTURE FEATURE EXPLORATION AND
REGULARIZATION FOR MULTI-TASK GRAPH
CLASSIFICATION

norm and �2,1-norm, for multi-task learning for graph data.

• We derive two branch-and-bound rules to prune search space for multi-task

driven subgraph mining.

The remainder of the chapter is structured as follows. Problem definitions

and preliminary for graph classification are described in Section 8.2. Section 8.3

reports the proposed algorithm for multi-task graph classification. Experimen-

tal results are presented in Section 8.4, and the relation to other algorithm is

discussed in Section 8.5. We conclude the chapter in Section 8.6.

8.2 Problem Definition & Preliminaries

Multi-task Graph Classification: Given a set of graph classification tasks,

where each task t ∈ {1, 2, · · · , T} has a set of labeled graphs {(Gt,1, yt,1), · · · ,
(Gt,nt , yt,nt)}, we use Gt,i ∈ G (G is the graph space) to denote the ith graph in

task t, and Gt,i’s class label is yt,i ∈ Y = {+1,−1}. Multi-task graph classification

aims to learn T functions (classification models) ft : G → Y, t ∈ [1, T], which

have best classification performance on the unseen graphs over all tasks.

8.2.1 Preliminaries

Single Task Graph Classification. To support graph classification, state-of-

the-art algorithms [40, 120] use a set of subgraphs from the training graphs as

features. After that, each subgraph gk can map a given graph Gt,i into the class

label space Y = {+1,−1}:

�gk(Gt,i) = 2I(gk ⊆ Gt,i)− 1; (8.1)

Here I(a) = 1 if a holds, and 0 otherwise.

Let F = {g1, · · · , gm} be the full set of subgraphs in G. We can use F as

features to represent each graph Gt,i into a vector space as xt,i = {�g1(Gt,i), · · · ,
�gm(Gt,i)}, with xk

t,i = �gk(Gt,i). In the following subsection, Gt,i and xt,i are

172

used interchangeably as they both refer to the same graph (i.e., the i-th graph

in task t). Given the full subgraphs F, the prediction function for the task t is a

linear classifier:

ft(xt,i) = xt,i ·wt + bt =
∑
gk∈F

wt,k�gk(Gt,i) + bt (8.2)

where wt = [wt,1, · · · ,wt,m]
′ is the weight vector for all features for the task t,

and bt is the bias of the model. The predicted class of xt,i is +1 if ft(xt,i) > 0 or

-1 otherwise.

For single task graph classification, state-of-the-art algorithm gBoost [120]

formulate its objective function as a linear programming problem, then integrates

the discriminative subgraph mining into the model learning process via column

generation techniques.

8.3 Multi-task Graph Classification

In this section, we describe our proposed algorithm for multi-task graph classifi-

cation.

8.3.1 Regularized Multi-task Graph Classification Formu-

lation

To achieve multi-task graph classification, our theme is to use multi-task to guide

an iterative subgraph exploration process which leads to the lowest regularized

empirical risks (for all tasks). This can be formulated as the following objective

function:

J = min
W,b

T∑
t=1

1

nt

nt∑
i=1

L(yt,i, ft(xt,i))︸ ︷︷ ︸
C

+γR(W) (8.3)

173

8. JOINT STRUCTURE FEATURE EXPLORATION AND
REGULARIZATION FOR MULTI-TASK GRAPH
CLASSIFICATION

Here W = [w1, · · ·,wT] is a weight matrix indicating the weights of each sub-

graph on different tasks, b = [b1, · · · , bT] are the bias parameters for each function

ft. The first term C measures the loss on the training graphs for all tasks, where

L(yt,i, f(xt,i)) is a loss function measuring the misclassification penalty of a graph

Gt,i. The second part is a regularization term to enforce sparse solutions, and

a parameter γ is used to control the magnitude of the regularization part. We

mainly consider the logistic loss function

L(yt,i, ft(xt,i)) = log(1 + exp{−yt,ift(xt,i)}) (8.4)

Note that any other differentiable loss function, such as least square loss L(y, ft) =
1
2
(y−ft)

2 or exponential loss L(y, ft) = exp{−yft}, can be used in our algorithm.

As for the second term R(W), our main objective is to obtain a sparse solution

on W , i.e., a finite set of subgraph features shared by all tasks. We consider the

following regularizers:

• �1-norm Lasso Regularization

R(W) =
∑
k,t

|Wk,t|

.

The rational is that �1-norm regularizer can produce solutions with many

coefficients being 0, which is known as Lasso [130] and has been widely

applied for variable selections. A simplification of Lasso in MTG is to

use a parameter γ to control the regularization of all tasks, assuming that

different tasks share the same sparsity parameter.

• �2,1-norm Regularization. Because the total subgraph space is infinitely

large, and we want to select only a few subgraphs among all possible ones,

we propose to use a mixed-norm regularizers �2,1 norm

‖W ‖2,1 =
∑m

k=1

√∑T
t=1 |Wk,t|2 =

∑m
k=1 ‖Wk,·‖2

174

where Wk,· is the k-th row of W . The �2,1 regularizer first computes the �2-

norm (across the tasks) of each row in W and then calculates the �1-norm

of the vector d(W) = (‖W1,·‖2, · · · , ‖Wm,·‖2). This is a special case of

group Lasso [155] for group variable selection and was previously applied in

[8] for multi-task learning on vector data. This norm ensures that common

features will be selected across all tasks. Using this regularizer can produce

some rows of W be 0. If a row Wk,· = 0 1, the subgraph (feature) gk will

not be used in any tasks.

8.3.2 Multi-task Graph Classification: Challenges and So-

lution Sketch

Challenges: When the whole feature set F = {g1, · · · , gm} is small and available

for learning, the objective function in Eq. (8.3) can be effectively solved by using

some existing toolbox [164] for either �1 or �2,1 norm regularization. For graph

data, however, the challenges are twofold: (1) the whole feature set F is implicit

and unavailable, until we fully enumerate all subgraphs for all training graphs,

which is NP-complete. (2) the number of subgraphs is huge and possibly infinite

(m → +∞).

Solution Sketch: To solve the aforementioned challenges, we propose to iter-

atively include features/subgraphs into our objective function. In other words,

the multi-task subgraph selection and model learning are integrated into one

objective function for mutual benefits. More specifically, we perform subgraph

selection based on subgradient of the objective function J, so the empirical loss

can always be reduced when selecting and adding the most discriminative sub-

graph to the existing subgraph feature set. After a new subgraph is incorporated,

we re-solve the new restricted master problem2 of Eq. (8.3), which is defined as

10 or 1 indicates T dimensional vectors with all 0 or 1 values.
2A reduced problem based on the selected features only.

175

8. JOINT STRUCTURE FEATURE EXPLORATION AND
REGULARIZATION FOR MULTI-TASK GRAPH
CLASSIFICATION

follows:

J1 = min
W (s),b(s)

T∑
t=1

1

nt

nt∑
i=1

L(yt,i, ft(x
(s)
t,i))︸ ︷︷ ︸

C

+γR(W (s)) (8.5)

where W (s) and b(s) are the solutions based on the selected features in the s-th

iteration, and x
(s)
t,i is feature representation of xt,i w.r.t the selected features.

The aforementioned feature selection and model learning procedure continue

until the algorithm converges. To handle the huge subgraph space, we derive

two branch-and-bound pruning rules to reduce the searching space. The above

algorithm design enjoys two unique advantages: (1) The discriminative subgraph

selection is driven by the well defined multi-task learning objective function for

model learning, and (2) the model learning will be further enhanced by the in-

cluding new selected discriminative subgraph features.

Our method is based on the gradient/subgradient on the functional space of

the objective function Eq. (8.3). Let us define the gradient of the loss term C in

Eq. (8.3) on the subgraph feature gk with respect to the t-th task as ∇Ck,wt .

∇Ck,wt = ∂C
∂wk,t

= 1
nt

nt∑
i=1

∂L(yt,i,ft(xt,i))

∂ft(xt,i)

∂ft(xt,i)

∂wk,t

= − 1
nt

nt∑
i=1

yt,ix
k
t,i

1+eyt,ift(xt,i)
=

nt∑
i=1

yt,iαt,ix
k
t,i

(8.6)

Here, αt,i = − 1

nt(1+eyt,ift(xt,i))
is the gradient for the graph sample xt,i, in the

latter, we can regard it as a weight associated to graph Gt,i for subgraph mining

process.

Then the gradient vector on feature gk over all T tasks is defined as:

∇Ck,· = [∇Ck,w1 , · · · ,∇Ck,wT
] (8.7)

176

8.3.3 Optimal Subgraph Candidate Exploration

Because we assume that some subgraph/features gk will not be used for learning

the classification models, i.e., Wk,· = 0, it makes sense to partition the whole

subgraph features F into two disjoint subsets F1 and F2. F1 stores active features

which are used to learn classification model and this set is frequently updated as

desired, and F2 includes unselected graphs with 0 weights (i.e., for gk ∈ F2,Wk,· =

0). Then we can iteratively select the best features from F2 to F1.

Stopping Conditions and Conditional Score. According to the optimal

conditions, when reaching the optimum, the first derivative of Eq. (8.3) should

be 0:

∇Ck,wt + γok,t = 0; (8.8)

Where ok,t is the subgradient of the �1 or �2,1 norm ofWk,t. Let ok = [ok,1, · · · ,ok,T]

be the subgradient vector over all tasks. For the �1-norm of Wk,· (i.e., |Wk,·|),
each dimension of ok is as follows:

ok,t ∈
{

[−1, 1] : Wk,t = 0

sign(Wk,t) : Wk,t �= 0
(8.9)

Now we can state the optimal condition for �1 norm regularization. According

to Eq. (8.8) and Eq. (8.9), a vector Ŵ = [ŵ1, · · · , ŵt] is the optimal solution of

our objective function Eq. (8.3) if and only if:

‖∇Ck,·‖∞ ≤ γ if Ŵk,· = 0 (8.10)

∇Ck,· + γsign(Ŵk,·) = 0 if Ŵk,· �= 0 (8.11)

where ‖∇Ck,·‖∞ = maxTt=1 |∇Ck,wt |. Eq. (8.10) ensures that ∀t, |∇Ck,wt | ≤ γ.

Here we have the “if and only if” condition because our objective function Eq.

(8.3) is convex, so any local optimum is a global optimum. As a result, Eq. (8.8)

is a necessary and sufficient condition of reaching the optimum.

177

8. JOINT STRUCTURE FEATURE EXPLORATION AND
REGULARIZATION FOR MULTI-TASK GRAPH
CLASSIFICATION

Similarly, for the �2,1-norm, ok for ‖Wk,·‖2 are:

ok ∈
{

z ∈ RT , ‖z‖2 ≤ 1 : Wk,· = 0
Wk,·
‖Wk,·‖2 : Wk,· �= 0

(8.12)

Therefore, according to Eq. (8.8) and Eq. (8.12), a vector Ŵ = [ŵ1, · · · , ŵt]

is the optimal solution to our objective function Eq. (8.3) if and only if:

‖∇Ck,·‖2 ≤ γ if Ŵk,· = 0 (8.13)

∇Ck,· + γ‖Ŵk,·‖−12 Ŵk,· = 0 if Ŵk,· �= 0 (8.14)

In order to reduce the objective value of J in Eq. (8.3), we propose to select

subgraphs in F2 whose weight violates Eq. (8.10) for �1-norm regularizer or Eq.

(8.13) for �2,1-norm regularizer, and update the selected active set F1 with the

newly selected features and re-optimize the Eq. (8.3) with current features. This

process will repeat until no candidate violates either Eq. (8.10) or Eq. (8.13). In

other words, these two equations can naturally induce the stopping criterion for

our process. Let us define the conditional score of a subgraph as follows:

Definition 13. Conditional Score: For a subgraph pattern gk, its conditional

score over all T tasks is defined as:

Υ(gk) = ‖∇Ck,·‖q, q ∈ {∞, 2} (8.15)

where q = ∞ for �1 regularization and q = 2 for �2,1 regularization; ∇Ck,· is

defined in Eq. (8.7).

As a result, all candidate subgraphs which violate Eq. (8.10) or Eq. (8.13)

can be defined as

F3 = {gk|gk ∈ F2,Υ(gk) > γ} (8.16)

F3 defines all candidate subgraphs which can be selected and added to F1.

178

Optimal Multi-task Subgraph Selection: Intuitively, any subgraph in F3

can be selected and added to F1 in each iteration. To ensure quick convergence,

we will select the one with the most effect in reducing the function value of J in

Eq. (8.3). From Eq. (8.3) and (8.8), the gradients for subgraph gk over T tasks

are defined as:

Γ =
T∑
t=1

∇Ck,wt + γ
T∑
t=1

ok,t = ∇Ck,· · 1+ γok · 1 (8.17)

From Eq. (8.9) and (8.12), we know that 0 is a feasible subgradient for both �1 and

�2,1 norm regularizers. Therefore, we can set ok = 0, in such case, Γ = ∇Ck,· · 1.
Then we can compute the absolute value |∇Ck,· · 1|, and choose the largest one

each time (because it will possibly have the most impact in reducing J in Eq.

(8.3)).

8.3.4 Multi-task Graph Classification Algorithm

Before we proceed to explain our multi-task graph classification algorithm using

the gradients/subgradients for subgraph mining, we formally define the multi-task

score for a subgraph to quantify its utility value for MTG as follows:

Definition 14. MTG Discriminative Score: For a subgraph pattern gk, its

discriminative score over all T tasks is defined as follows:

Θ(gk) = |∇Ck,· · 1| = |
T∑
t=1

∇Ck,wt | (8.18)

where ∇Ck,· and ∇Ck,wt are defined in Eq. (8.7) and Eq. (8.6), respectively.

Algorithm 12 illustrates the detailed steps of our iterative subgraph feature

learning for multi-task graph classification. Initially, the weights for all training

graphs in each task are equally set as 1/nt (nt is the number of labeled subgraph

in task t), and the active set F1 is initialized to be empty.

179

8. JOINT STRUCTURE FEATURE EXPLORATION AND
REGULARIZATION FOR MULTI-TASK GRAPH
CLASSIFICATION

In the next step, the algorithm mines a set of subgraphs P from F3 which

have the highest MTG discriminative scores defined by Eq. (8.18). This step

involves a multi-task driven subgraph mining procedure, which will be addressed

in the next subsection. In order to reduce the number of iterations for subgraph

mining, we mine top K subgraphs in each iteration (instead of the best one).

On steps 4-5, if the current graph set P is empty, it means that there is no

more subgraph violating the optimal condition of Eq. (8.10) or Eq. (8.13), so the

algorithm will stop. On step 6, we add the newly selected subgraphs P to existing

subgraph set F1, and re-solve the restricted objective function Eq. (8.5) on step

7. To solve the restricted objective function, we use the MALSAR toolbox 1 in

our experiments.

In the last step, the algorithm updates the weight αt,i for each graph Gt,i. This

will help compute the gradient vector of∇Ck,· (for the purpose of computing MTG

discriminative score of each subgraph) for subgraph mining in next round.

Theoretical Study: A nice property of our algorithm is that its theoretical

convergence is assured as shown in Theorem 4.

Theorem 4. (Convergence Properties:) Algorithm 12 guarantees that the

restricted objective function Eq. (8.5) will monotonically decrease.

Proof. Without loss of generality, we assume in each iteration, a subgraph is

selected and added to F1, i.e., we set K = 1 in Algorithm 12. Let the optimal

objective value based on current s features (i.e., |F1| = s) with respect to Eq.

(8.5) is obtained at (Ŵ (s), b̂(s)), i.e.,

J1(Ŵ
(s), b̂(s)) =

T∑
t=1

1

nt

nt∑
i=1

L(yt,i, ft(x
(s)
t,i))︸ ︷︷ ︸

C

+γR(Ŵ (s))

1http://www.MALSAR.org

180

Then in the t+ 1-th iteration, the optimal objective value of Eq. (8.5) is:

min J1(W
(s+1), b(s+1)) = min(C+ γR)|∀(W (s+1), b(s+1))

≤ (C+ γR)|([Ŵ (s);0], b̂(s))

Thus the objective value of the restricted problem Eq.(8.5) based on the cur-

rently selected features F1 will always monotonously decrease in two successive

iterations. Because the objective function value is non-negative (bounded), we

can ensure that it will finally converge as iteration continues.

Algorithm 12 Multi-task Graph Classification Algorithm

Require:
{(Gt,1, yt,1), · · · , (Gt,n, yt,n)}, t ∈ {1, 2, · · · , T} : Graph Datasets from T
tasks;
Smax: Maximum number of iterations;
K: Number of optimal subgraph used in each iteration;

Ensure:
W (s), b(s): Parameters for multi-task models

1: αti = 1/nt; F1 ← ∅; s ← 1;
2: while s ≤ Smax do
3: Mine top-K subgraph features P = {gi}i=1,··· ,k from F3 with maximum

discriminative score defined by Eq. 8.18 ; //Algorithm 13;
4: if P = ∅ then
5: break;
6: F1 ← F1

⋃
P;

7: Solve Eq. (8.5) based on F1 to get new weights matrix W (s), b(s);
8: Update the graph weights on each training graph

αt,i = − 1

nt(1+eyt,ift(xt,i))

9: s ← s+ 1;
10: return W (s), b(s);

According to optimal conditions (Eq. (8.10) or Eq. (8.13)), if the algorithm

has reached the optimal solution, ∀gk, gk /∈ F1, we will have Wk,· = 0, thus

its conditional score Υ(gk) = ‖∇Ck,·‖q < γ, q ∈ {∞, 2}. In such case, no more

181

8. JOINT STRUCTURE FEATURE EXPLORATION AND
REGULARIZATION FOR MULTI-TASK GRAPH
CLASSIFICATION

subgraphs will be obtained in P from F3, i.e., P = ∅. Thus our stopping condition
(steps 4-6) guarantees the optimal solution of our algorithm.

8.3.5 Multi-Task Driven Subgraph Mining

To obtain a set of discriminative features P in F3 from the T tasks of training

graphs, we need to perform the subgraph enumeration procedure. In order to

mine the top-K subgraphs on step 3 of Algorithm 12, we need to enumerate the

entire set of subgraph patterns from the training graphs of all tasks. In our MTG

algorithm, we employ a frequent subgraph mining based algorithm gSpan [151].

By employing a depth first search strategy on the DFS Code tree (where each

node is a subgraph), gSpan can enumerate all frequent subgraphs efficiently.

During the subgraph mining process, because the search space is exponentially

large/infinite, an effective pruning scheme is essential. In this subsection, we will

first derive the upper-bound of MTG discriminative score, and then provide a

conditional score upper-bound. Both of them will help prune the searching space

and speedup the subgraph mining.

Theorem 5. (MTG Discriminative Score Upper-bound:) Let g and g′

are two subgraph patterns, and g ⊆ g′, for the subgraph g, we define

A1(g) = 2
∑T

t=1

∑
{i|yt,i=+1,g∈Gt,i} αt,i

A2(g) = 2
∑T

t=1

∑
{i|yt,i=−1,g∈Gt,i} αt,i

A3 =
∑T

t=1

∑nt

i=1 αt,iyt,i

Θ̂(g) =

⎧⎪⎨⎪⎩ max{|A1(g)− A3|, |A2(g)|} : A3 ≥ 0

max{|A2(g) + A3|, |A1(g)|} : A3 < 0

then Θ(g′) ≤ Θ̂(g), where Θ(g′) is defined in Eq. (8.18).

182

Proof. We start with the definition of Θ(g′) in Eq. (8.18):

Θ(g′) = |∑T
t=1

nt∑
i=1

yt,iαt,ift(xt,i)|

= |∑T
t=1

nt∑
i=1

yt,iαt,i · [2I(g′ ⊆ Gt,i)− 1]|

= |2∑T
t=1

∑
g′⊆Gt

yt,iαt,i −
∑T

t=1

∑nt

i=1 αt,iyt,i|

= |A1(g
′)− A2(g

′)− A3|

≤

⎧⎪⎨⎪⎩ max{|A1(g
′)− A3|, |A2(g

′)|} : A3 ≥ 0

max{|A2(g
′) + A3|, |A1(g

′)|} : A3 < 0

≤

⎧⎪⎨⎪⎩ max{|A1(g)− A3|, |A2(g)|} : A3 ≥ 0

max{|A2(g) + A3|, |A1(g)|} : A3 < 0

= Θ̂(g)

The first inequality holds because for αt,i < 0, A1(g
′) ≤ 0 and A2(g

′) ≤ 0, so the

upper-bound depends on A3. If A3 ≥ 0, A1(g
′) and A3 will have different signs,

then the upper-bound is the maximum one of {|A1(g
′)−A3|, |A2(g

′)|}. The case

is similar for A3 < 0. The second inequality holds because |A1(g
′)| ≤ |A1(g)| and

|A2(g
′)| ≤ |A2(g)| for g ⊆ g′.

Theorem 5 states that for any super graph of a subgraph g, its MTG discrim-

inative score, over T tasks, is upper-bounded by Θ̂(g).

Single Discriminativeness Bound: The above discriminative score upper-

bound can also be applied to each single task separately. If only the task t is

considered, the single discrimativeness upper-bound is defined as Θ̂(g, t), which

requires that A1(g), A2(g) and A3 in Theorem 5 are computed over the task t

only.

Theorem 6. (Conditional Score Upper-bound:) Given two subgraph fea-

tures g and gk (g ⊆ gk), and a set of upper-bounds of single discriminativeness

183

8. JOINT STRUCTURE FEATURE EXPLORATION AND
REGULARIZATION FOR MULTI-TASK GRAPH
CLASSIFICATION

bound:

Υ̂(g,·) = [Θ̂(g, 1), · · · , Θ̂(g, T)]

let

Υ̂(g) = ‖Υ̂(g,·)‖q, q ∈ {∞, 2}

then Υ(gk) ≤ Υ̂(g), where Υ(gk) is defined in Eq. (8.15).

Proof. The conditional score for gk on the task t is |∇Ck,wt |, which is upper-

bounded by Θ̂(g, t), i.e., Θ̂(g, t) ≥ |∇Ck,wt |. Because every entry in Υ(gk) is

smaller than that in Υ̂(g,·), the �∞ or �2 norm on the vector also holds, i.e.,

Υ̂(g) ≥ Υ(gk).

According to Theorem 6, once a subgraph g is generated, the conditional

scores for all its super-graphs are upper-bounded by Υ̂(g). Therefore, we use this

rule to prune unpromising candidates effectively.

Multi-task Driven Subgraph Mining Algorithm: Our multi-task driven

subgraph mining algorithm is listed in Algorithm 13. The minimum value η in

optimal set P are initialized on step 1. Duplicated subgraph features are pruned

on steps 4-5, and the discriminative score Θ(gp) and conditional score Υ(gp)

for gp are calculated on step 6. If gp is included in the current candidate set

F′3 = {gk|gk ∈ F2,Υ(gk) > γ + ε} and Θ(gp) is larger than η, we add gp to

the feature set P (steps 7-8). Here, we have relaxed F3 from Eq. (8.16) to a ε-

tolerance set, i.e., F′3, because Υ(gk) only changes subtly in the last few iterations

(ε=0.005 in our experiments).

When the size of P exceeds the predefined size K, the subgraph with the

minimum discriminative score is removed (steps 9-11). After that, the algorithm

updates the minimum optimal value η on step 12, and uses two branch-and-bound

pruning rules, Theorems 5 and 6, to prune the search space on steps 13. These

two rules will reduce unpromising candidates by using discriminative scores and

conditional scores perspectives, respectively. Finally, the optimal set P is returned

on step 15.

184

Algorithm 13 Multi-Task Driven Subgraph Mining

Require:
{(Gt,1, yt,1), · · · , (Gt,n, yt,n)}, t ∈ {1, 2, · · · , T} : Graph Datasets from T
tasks;
γ : Predefined regularization parameter;
αti : Weight for each graph example;
K: Number of optimal subgraph patterns;
F1: Already selected subgraph set;

Ensure:
P = {gk}k=1,··· ,K : The top-K subgraphs;

1: η = 0, P ← ∅;
2: while Recursively visit the DFS Code Tree in gSpan do
3: gp ← current visited subgraph in DFS Code Tree;
4: if gp has been examined then
5: continue;
6: Compute scores Θ(gp) and Υ(gk) for subgraph gp according Eq. (8.18) and

Eq. (8.15);
7: if gp ∈ F′3 & Θ(gp) > η then
8: P ← P

⋃
gp;

9: if |P| > K then
10: g
 ← argmingk∈PΘ(gk);
11: P ← P/{g
};
12: η ← mingk∈PΘ(gk);

13: if Θ̂(gp) > η & Υ̂(gp) > γ then
14: Depth-first search the subtree rooted from node gp;
15: return P = {gk}k=1,··· ,K ;

The above pruning process is a key feature of our algorithm, because we do not

require any support threshold for subgraph mining (whereas all other subgraph

mining methods will require users to predefine a threshold value).

8.4 Experiment

8.4.1 Experimental Settings

Benchmark Data: We validate the performance of the proposed algorithm on

two multi-task graph classification datasets, i.e., NCI and PTC collections, as

185

8. JOINT STRUCTURE FEATURE EXPLORATION AND
REGULARIZATION FOR MULTI-TASK GRAPH
CLASSIFICATION

shown in table 3.2.

• Anti-cancer activity prediction (NCI): We select the NCI-balanced

dataset, i.e., the collection with balanced class distribution on each task.

• Predictive Toxicology Challenge Dataset (PTC): The PTC datasets

are divided into four subsets. For each subset, we only consider one type of

carcinogenicity test as its learning task.

Comparing Methods: In our experiments, we consider two baseline methods,

from graph classification and multi-task learning perspectives, as follows:

• gBoost simply applies gBoost algorithm [120] to each graph classification

task separately, without considering graph samples from other tasks.

• MTL-�1 and MTL-�21 firstly mine a set of frequent subgraphs from the

whole training graphs (we set minimum support as 0.1, which results in

over 2500 subgraph features on NCI datasets), and then use those features

to transfer each graph dataset into vector format, and then apply tradi-

tional Multi-task Learning algorithms to the transferred vector datasets.

For MTL-�1, it uses �1 regularization. And for MTL-�21, it employs �2,1

regularization, as [8] does. Both methods are implemented with logistic loss

function and available in MALSAR toolbox [164].

• MTG-�1 and MTG-�21 are our proposed methods, with MTG-�1 regu-

larized by �1 norm, and MTG-�21 regularized by �2,1 norm.

Unless otherwise specified, the parameters for MTG are set as follows: K=15,

and Smax = 15. γ = 0.01 is set for both MTL-�1 and MTG-�1, γ = 0.02 is set

for both MTL-�21 and MTG-�21. Detailed studies of parameters K and γ are

reported in Section 5.2.3. For gBoost algorithm, the parameter v is set to 0.2, as

it usually achieves good results on both NCI and PTC datasets.

186

8.4.2 Experimental Results

8.4.2.1 Results on NCI Tasks

For NCI multi-task collection, we randomly label a small set of graphs as training

graphs for each task, the rest are used for test. The number of training graphs in

each task is vary from 50 to 400. We conduct each group of experiment 10 times

and report the average accuracies and AUC values for each single task under 10

trials of experiment in Fig. 8.3 and Fig. 8.4, respectively.

The results in Figs. 8.3 and 8.4 show that with the increase of training data

for each task, all algorithms obtain continuous improvement gains for both ac-

curacy and AUC values. Over all graph classification tasks, MTG algorithms,

including MTG-�1 and MTG-�21, outperform both gBoost (STG algorithm) and

MTL algorithms for vector data significantly. Meanwhile, gBoost algorithm and

MTL algorithms are comparable to each other. This is mainly because gBoost

and MTL each has its own strength and weakness in handling multi-task graph

classification problems. More specifically, gBoost is designed for graph classifica-

tion, so it can select the most discriminative subgraphs for each single task. The

previous study has shown that gBoost outperforms traditional frequent subgraph

based algorithm for STG problems [120]. However, the key weakness of gBoost

for MTG is that it ignores relevant graphs from similar tasks. When the number

of labeled graphs in each task is very limited, the selected subgraphs may overfit

the training graphs, leading to deteriorated classification results. For MTL algo-

rithms, regardless of using �1 or �2,1 regularization, they will first mine a set of

frequent subgraph as features and then employ multi-task learning techniques for

classification. Although these methods can enjoy some benefits of MTL by jointly

optimizing related learning tasks, their subgraph mining process is not driven by

the multi-task learning objective, and will therefore miss some genuine discrimi-

native subgraphs at the first step. As a result, the classification performance of

MTL methods is no better than gBoost.

In contrast, the proposed MTG-�1 and MTG-�21 not only take the advantages

of using graph samples from multiple relevant tasks, but also unify both multi-

task subgraph feature selection and model learning into one objective function.

This design helps both methods outperform gBoost and MTL algorithms with

187

8. JOINT STRUCTURE FEATURE EXPLORATION AND
REGULARIZATION FOR MULTI-TASK GRAPH
CLASSIFICATION

Table 8.1: Accuracies on 9 NCI graph classification tasks w.r.t different numbers of
training graphs in each task

#Train gBoost MTL-�1 MTL-�21 MTG-�1 MTG-�21

50 0.590 0.600 0.605 0.609 0.622
100 0.617 0.632 0.636 0.656 0.673
150 0.638 0.653 0.653 0.684 0.697
200 0.658 0.661 0.669 0.701 0.719
250 0.665 0.666 0.676 0.709 0.727
300 0.674 0.671 0.690 0.715 0.735
350 0.675 0.675 0.693 0.715 0.738
400 0.676 0.680 0.701 0.727 0.750

Table 8.2: AUC values on 9 NCI graph classification tasks w.r.t different numbers of
training graphs in each task

#Train gBoost MTL-�1 MTL-�21 MTG-�1 MTG-�21

50 0.619 0.630 0.645 0.651 0.667
100 0.656 0.679 0.683 0.713 0.731
150 0.682 0.707 0.711 0.745 0.761
200 0.713 0.719 0.730 0.763 0.785
250 0.716 0.727 0.738 0.773 0.792
300 0.727 0.734 0.752 0.781 0.804
350 0.730 0.737 0.758 0.784 0.812
400 0.727 0.743 0.770 0.795 0.820

significant performance gains.

Another interested fact reflected by Fig. 8.3 and Fig. 8.4 is that MTG-�21

outperforms MTG-�1 on most tasks. This is because �2,1 regularization considers

group effect, which is a special group lasso [155] and usually has better perfor-

mance for group variable selection.

The average results, in terms of accuracy and AUC values, with respect to

various training graphs over all task are described in Table 8.1 and Table 8.2.

The results demonstrated that MTG-�2,1 can achieve significant improvements

over gBoost and MTL methods. For instance, it outperforms gBoost and MTL-

�1 at 9.3% and 7.7% in term of AUC value(400 samples each task), respectively.

188

 0.55

 0.6

 0.65

 0.7

 0.75

 0.8

 50 100 150 200 250 300 350 400

A
cc

ur
ac

y

No. of Training Graphs Per Task

(A) NCI 1

gBoost
MTL-l1

MTL-l21
MTG-l1

MTG-l21
 0.55

 0.6

 0.65

 0.7

 0.75

 0.8

 50 100 150 200 250 300 350 400

A
cc

ur
ac

y

No. of Training Graphs Per Task

(B) NCI 33

gBoost
MTL-l1

MTL-l21
MTG-l1

MTG-l21

 0.52

 0.56

 0.6

 0.64

 0.68

 0.72

 0.76

 50 100 150 200 250 300 350 400

A
cc

ur
ac

y

No. of Training Graphs Per Task

(C) NCI 41

gBoost
MTL-l1

MTL-l21
MTG-l1

MTG-l21
 0.55

 0.6

 0.65

 0.7

 0.75

 0.8

 50 100 150 200 250 300 350 400

A
cc

ur
ac

y

No. of Training Graphs Per Task

(D) NCI 47

gBoost
MTL-l1

MTL-l21
MTG-l1

MTG-l21

 0.52

 0.56

 0.6

 0.64

 0.68

 0.72

 0.76

 50 100 150 200 250 300 350 400

A
cc

ur
ac

y

No. of Training Graphs Per Task

(E) NCI 81

gBoost
MTL-l1

MTL-l21
MTG-l1

MTG-l21
 0.52

 0.56

 0.6

 0.64

 0.68

 0.72

 0.76

 50 100 150 200 250 300 350 400

A
cc

ur
ac

y

No. of Training Graphs Per Task

(F) NCI 83

gBoost
MTL-l1

MTL-l21
MTG-l1

MTG-l21

 0.55

 0.6

 0.65

 0.7

 0.75

 0.8

 50 100 150 200 250 300 350 400

A
cc

ur
ac

y

No. of Training Graphs Per Task

(G) NCI 109

gBoost
MTL-l1

MTL-l21
MTG-l1

MTG-l21
 0.52

 0.56

 0.6

 0.64

 0.68

 50 100 150 200 250 300 350 400

A
cc

ur
ac

y

No. of Training Graphs Per Task

(H) NCI 123

gBoost
MTL-l1

MTL-l21
MTG-l1

MTG-l21

 0.56

 0.6

 0.64

 0.68

 0.72

 0.76

 0.8

 50 100 150 200 250 300 350 400

A
cc

ur
ac

y

No. of Training Graphs Per Task

(I) NCI 145

gBoost
MTL-l1

MTL-l21
MTG-l1

MTG-l21

Figure 8.3: The classification accuracy of each single task w.r.t. the number of training
graphs in each task.

189

8. JOINT STRUCTURE FEATURE EXPLORATION AND
REGULARIZATION FOR MULTI-TASK GRAPH
CLASSIFICATION

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 50 100 150 200 250 300 350 400

A
U

C

No. of Training Graphs Per Task

(A) NCI 1

gBoost
MTL-l1

MTL-l21
MTG-l1

MTG-l21
 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 50 100 150 200 250 300 350 400

A
U

C

No. of Training Graphs Per Task

(B) NCI 33

gBoost
MTL-l1

MTL-l21
MTG-l1

MTG-l21

 0.6

 0.64

 0.68

 0.72

 0.76

 0.8

 0.84

 50 100 150 200 250 300 350 400

A
U

C

No. of Training Graphs Per Task

(C) NCI 41

gBoost
MTL-l1

MTL-l21
MTG-l1

MTG-l21
 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 50 100 150 200 250 300 350 400

A
U

C

No. of Training Graphs Per Task

(D) NCI 47

gBoost
MTL-l1

MTL-l21
MTG-l1

MTG-l21

 0.6

 0.64

 0.68

 0.72

 0.76

 0.8

 0.84

 50 100 150 200 250 300 350 400

A
U

C

No. of Training Graphs Per Task

(E) NCI 81

gBoost
MTL-l1

MTL-l21
MTG-l1

MTG-l21
 0.6

 0.64

 0.68

 0.72

 0.76

 0.8

 0.84

 50 100 150 200 250 300 350 400

A
U

C

No. of Training Graphs Per Task

(F) NCI 83

gBoost
MTL-l1

MTL-l21
MTG-l1

MTG-l21

 0.55

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 50 100 150 200 250 300 350 400

A
U

C

No. of Training Graphs Per Task

(G) NCI 109

gBoost
MTL-l1

MTL-l21
MTG-l1

MTG-l21
 0.52

 0.56

 0.6

 0.64

 0.68

 0.72

 0.76

 0.8

 50 100 150 200 250 300 350 400

A
U

C

No. of Training Graphs Per Task

(H) NCI 123

gBoost
MTL-l1

MTL-l21
MTG-l1

MTG-l21

 0.6

 0.64

 0.68

 0.72

 0.76

 0.8

 0.84

 50 100 150 200 250 300 350 400

A
U

C

No. of Training Graphs Per Task

(I) NCI 145

gBoost
MTL-l1

MTL-l21
MTG-l1

MTG-l21

Figure 8.4: The AUC values of each single task w.r.t. the number of training graphs
in each task.

190

Table 8.3: Accuracies on PTC tasks

Tasks gBoost MTL-�1 MTL-�21 MTG-�1 MTG-�21

MR 0.573 0.664 0.643 0.594 0.655
FR 0.561 0.522 0.547 0.541 0.607
MM 0.640 0.648 0.623 0.658 0.677
FM 0.680 0.602 0.626 0.671 0.682

Avg. 0.613 0.609 0.610 0.616 0.655

Table 8.4: AUC values on PTC tasks

Tasks gBoost MTL-�1 MTL-�21 MTG-�1 MTG-�21

MR 0.574 0.574 0.586 0.631 0.656
FR 0.522 0.516 0.517 0.505 0.591
MM 0.600 0.563 0.597 0.624 0.671
FM 0.686 0.601 0.623 0.696 0.702

Avg. 0.596 0.563 0.581 0.614 0.655

8.4.2.2 Results on PTC Tasks

For PTC graph classification tasks, the number of training graphs for each task

is very limited. So instead of varying the training samples for each task (such as

for NCI tasks), we conduct 10-fold cross-validation on PTC tasks. In this way,

we can reduce the bias of each method caused by limited training samples. The

accuracies and AUC values are reported in Tables 8.3 and 8.4.

The results in Tables 8.3 and 8.4 show that MTG methods achieve consid-

erable performance gains over gBoost and MTL methods for almost all task.

MTG-�21 outperforms others methods on 3 out of 4 tasks in terms of accuracy,

and beats all its peers over all tasks in terms of AUC. Note that for PTC tasks,

AUC values are more important because they are all imbalanced tasks.

8.4.2.3 Convergence Study and Parameter Analysis

In this subsection, we study the impact of parameters K and γ on the algorithm

performance.

191

8. JOINT STRUCTURE FEATURE EXPLORATION AND
REGULARIZATION FOR MULTI-TASK GRAPH
CLASSIFICATION

Table 8.5: Running statistics w.r.t different K values for MTG-�21 (50 training graphs
for each task, Smax = 150)

K Obj(J1) #Iter |F1| Accuracy AUC Time(s)

1 2.0754 122 122 0.621 0.670 1032
5 2.0814 29 138 0.620 0.667 283
10 2.0861 18 164 0.620 0.669 203
15 2.0779 15 172 0.622 0.667 186
20 2.0771 14 209 0.622 0.669 181

Impact of K values: In order to study the role of the K value, which denotes

the number of subgraph selected in each iteration, on the algorithm performance,

we inspect the convergence and runtime performance of our algorithm with dif-

ferent K values. The results in Table 8.5 shows that small K values (e.g. K=1)

requires a large number of iterations and more system runtime. When K values

continuously increase, the number of iterations and runtime will drop dramati-

cally because more subgraphs are discovered and included in the feature set each

time. For large K values, there is not much difference in terms of algorithm

runtime.

Interestingly, Table 8.5 shows that although different K values will result in

different number of subgraphs to be finally selected in F1, the algorithm will

always converge to a ε-tolerance optimal solution (ε is used in Algorithm 13) via

solving objective function Eq. (8.5), as shown in column 2 of Table 8.5. As a

result, their accuracy and AUC values are very close to each other, regardless of

different K values selected in the experiments. This result actually demonstrates

the convergence of our algorithms, and assures that K will mainly impact on the

algorithm runtime performance.

The number of iterations in Eq. (8.3) show that our algorithm has fast con-

vergence speed. When K = 15, it will take 15 iterations for algorithms to reach

convergence. In practice, we found that there is no need to wait until the algo-

rithm reach convergence for optimal results, so we set the maximum number of

iteration Smax=15 in our experiments.

Impact of γ values: We vary the regularization parameter γ from 0.005 to 0.5,

and report the results in Table 8.6, where the sparsity denotes the percentages of

192

Table 8.6: Results w.r.t. different γ values for MTG-�1 (50 training graphs for each
task, Smax = 15)

γ |F1| Sparsity Accuracy AUC

0.005 178 0.720 0.613 0.654
0.01 225 0.785 0.609 0.651
0.05 219 0.905 0.606 0.641
0.1 115 0.922 0.588 0.619
0.5 8 1 0.5 0

zero elements in the final weight matrix W . The results show that increasing γ

values will result in increased sparsity, because �1 norm regularizes more elements

to be 0. For small γ values (from 0.005 to 0.05), the accuracy and AUC values

have minor differences. But for very large γ values (γ = 0.5), the regularization

term dominates the objective function Eq. (8.3), with no subgraph being used for

classification, which results in poor AUC values. Similar results are also observed

for MTG-�21 algorithm.

8.4.2.4 Runtime Efficiency Study

In this subsection, we investigate the pruning efficiency of MTG in reducing the

search space [Theorem 5 and 6] for subgraph feature exploration. Because the

search space is infinitely large, it is challenging to assess the pruning effectiveness

of MTG. Accordingly, we introduce a threshold value min sup, which denotes

the minimum frequency of each qualified subgraph feature in the training graph

datasets, to bound the number of subgraphs in the search space. By doing so, we

know the total number of subgraph candidates, and then can assess the pruning

efficiency by checking the percentage of candidates pruned by the pruning process.

In our experiments, the min sup threshold value, together with Theorems 5

and 6, are used for pruning the search space in step 13 of Algorithm 13. Then

our MTG is compared with the following baselines:

• Fre-MTG: this method only uses the support threshold min sup to prune

the search space [on step 13 of Algorithm 13], with Theorems 5 and 6 being

discarded. In other words, the multi-task driven subgraph mining procedure

193

8. JOINT STRUCTURE FEATURE EXPLORATION AND
REGULARIZATION FOR MULTI-TASK GRAPH
CLASSIFICATION

 0
 50000

 100000
 150000
 200000
 250000
 300000
 350000

 0.2 0.4 0.6 0.8 1 1.2

R
un

ni
ng

 T
im

e
(m

s)

Support Threshold Value (%)

(A) Running time

Fre-MTG
Dis-MTG

Con-MTG
MTG-l1

 0

 50000

 100000

 150000

 200000

 250000

 0.2 0.4 0.6 0.8 1 1.2N
o.

 o
f Q

ua
lif

ie
d

S
ub

gr
ap

hs

Support Threshold Value (%)

(B) No. of qualified subgraphs

Fre-MTG
Dis-MTG

Con-MTG
MTG-l1

Figure 8.5: Pruning effectiveness with different pruning modules on NCI tasks for
subgraph mining. A) Running time; B) Number of enumerated subgraphs.

is reduced to a classical frequent subgraph mining problem.

• Dis-MTG: this method uses the support thresholdmin sup and the bound

of discriminative score (Theorem 5) to prune the search space.

• Con-MTG: this method uses support threshold min sup and the bound

of conditional score (Theorem 6) to prune the search space.

The experimental results in Fig. 8.5.(A) show that with the increase of sup-

port threshold valuemin sup, all methods experience reduced running time. This

is because that a large support value will result in a small number of subgraph fea-

tures (Fig. 8.5.(B)). Among the comparing methods, Fre-MTG consumes much

more time than others because there is no pruning process to help reduce the

search space.

By sequentially including the upper-bounds of discriminative score (Dis-MTG)

and conditional score (Con-MTG) into the pruning process, the running time of

the algorithm is reduced significantly. For instance, when using a small thresh-

old 0.2 for NCI tasks, our MTG algorithm only takes about 28,000 ms to mine

the optimal subgraphs whereas Fre-MTG requires about 330,000 ms. MTG al-

gorithm is an order of magnitude faster than Fre-MTG, which demonstrates the

significant pruning efficiency of our MTG algorithm.

It is worth noting that using a support threshold value min sup in the sub-

graph pattern mining process may result in missing of discriminative subgraph

194

features, because some subgraph features may be very informative for classifica-

tion but are not frequent to meet the support threshold value. However, discard-

ing the support threshold value (i.e., min sup = 0) will make most algorithms

unable to find subgraph patterns. For example, in our experiments, we have tried

to further reduce the support threshold min sup for Fre-MTG, but it caused an

out-of-memory error on a 16 GB memory machine for NCI tasks. In comparison,

our MTG algorithm is able to mine discriminative subgraphs very quickly (in less

than 40 seconds for NCI tasks), even if the support threshold is removed (i.e.,

min sup = 0).

Our runtime efficiency study suggests that MTG is not only efficient in pruning

the subgraph feature space to find high quality subgraph features, it can also

carry out subgraph feature exploration without requiring the minimum support

threshold value min sup. As a result, it will result in a better opportunity and

better efficiency to find discriminative subgraph features for multi-task graph

classification.

8.5 Discussion

Relations to gBoost Algorithm. Our incremental subgraph selection algo-

rithm advances the existing column generation style techniques [120] for graph

classification. For gBoost, its learning objective function is

max
ρ,w,ξ

ρ− 1
vn

∑n
i=1 ξi

s.t. yi
∑m

k=1 �gk(Gi)wk + ξi ≥ ρ;∑m
k=1 wk = 1;

wk ≥ 0, ξi ≥ 0;

(8.19)

From [28], we know that this formula is equivalent to the following linear pro-

gramming:

min
w,ξ

∑m
k=1 wk + C

∑n
i=1 ξi

s.t. yi
∑m

k=1 �gk(Gi)wk + ξi ≥ 1;

wk ≥ 0, ξi ≥ 0;

(8.20)

195

8. JOINT STRUCTURE FEATURE EXPLORATION AND
REGULARIZATION FOR MULTI-TASK GRAPH
CLASSIFICATION

Eq. (8.20) is actually a �1 svm formulation, and can be also formulated as regu-

larized loss minimization formulation:

min ‖w‖1 + C

n∑
i=1

Lh(yi, f(xi)) (8.21)

Here Lh(yi, f(xi)) = max(1−yif(xi), 0), which is known as hinge loss in machine

learning.

Compared to our objective function in Eq. (8.3), we find that gBoost (Eq.

8.21) is a special case of Eq. (8.3), with only one single task and �1-norm reg-

ularization being used and w ≥ 0. Although the hinge loss function is non-

differentiable, our subgradient method still applies, as long as ∇Ck,wt in Eq.

(8.6) is defined properly. This observation shows the following advantages of our

algorithm: (1) the gBoost algorithm is only designed for STG problem, whereas

our algorithm can jointly learn multiple tasks simultaneously and can achieve

better classification results; (2) gBoost employs a hinge loss function which is

similar to SVM and requires the problem to be formulated as a linear program-

ming. Our algorithm has removed the linear programming constraint and can

employ any differentiable loss function, in addition to the logistic loss function

considered in our paper. This generalization has great attractiveness in many ap-

plications, especially when the probability estimation for classification is required

(the logistic function can provide some probabilistic information compared to the

hinge loss function); (3) while gBoost employs �1 norm regularization to obtain

sparse solution, our algorithm considers an additional mixed norm �2,1 and pro-

vides a solution to incrementally select discriminative subgraphs for regularized

loss minimization problems; (4) although this chapter mainly focuses on classifi-

cation problems, our algorithm can be easily generalized to multi-task regression

scenarios if a proper loss function, such as a least square loss function, is used.

196

8.6 Conclusion

In this chapter, we formulated a unique multi-task graph (MTG) classification

problem. Our goal is to combine multiple graph classification tasks into one

learning objective for all tasks to achieve optimal classification accuracies. We

argued that due to the inherent complexity of the graph data and the costs in-

volved in the labeling process, many graph classification tasks have very limited

number of training samples. By unifying multiple tasks to guide the subgraph

feature exploration and the succeeding learning process, multi-task graph clas-

sification has clear advantages of finding better subgraph features and avoiding

overfitting, compared to models learned from each single task. In the chapter, an

MTG algorithm is proposed to combine all tasks as a jointly regularized function,

which ensures that the inclusion of subgraph features can only result in minimized

regularization loss, which in turn leads to optimal learning models. Two Branch-

and-bound pruning rules are also proposed to prune the search space effectively.

Experiments and comparisons on real-world data confirmed the superb perfor-

mance of our algorithms.

197

8. JOINT STRUCTURE FEATURE EXPLORATION AND
REGULARIZATION FOR MULTI-TASK GRAPH
CLASSIFICATION

198

Chapter 9

Conclusions and Future Work

This chapter summarize the whole thesis and provides some further research

directions.

9.1 Summary of This Thesis

Due to the constant development of modern technologies in electronic devices,

data collecting, and social networks, recent years has witnessed rapid increasing

of big data. The “3V” properties of big data (volume, velocity, and variety)

make the traditional data mining tasks unprecedentedly challenging. From the

volume and velocity perspectives, data is increasing dramatically and rapidly,

and a learning system should return the results in a timely fashion. To handle

this problem, we develop streaming models for effective and efficient data mining

in the thesis. From the view of variety, data is more and more interconnected

and exhibits structural information (i.e, graphs). Considering volume, velocity,

and variety as a whole, in the thesis, we studied complex graph stream mining,

and proposed effective and efficient learning algorithms for three sub-tasks: (1)

correlated graph stream search, (2) graph stream classification, and (3) complex

task graph classification.

Specifically, in Part I, we proposed a CGStream algorithm for searching cor-

related subgraph patterns from10namic graph streams. The proposed method is

an order of magnitude faster than the straightforward approach.

In Part II, we studied graph stream classification using labeled and unla-

199

9. CONCLUSIONS AND FUTURE WORK

beled graphs and proposed a novel algorithm to select discriminative subgraph

features with minimum redundancy for graph stream classification. We also inves-

tigated imbalanced and noisy graph stream classification and proposed gEBoost

algorithm to handle the imbalance, noise, and concept drift of dynamic graph

streams.

Finally, we looked into complex task graph classification in Part III. We pro-

posed an effective boosting algorithm, CogBoost, for cost-sensitive learning of

large scale graphs. We also proposed to jointly learn multiple graph classification

task for better performance gain and generalization ability for graph classification.

Although we have focused on algorithms of complex task graph classification in

Part III, these models can be easily extended to graph stream scenarios, by using

the frameworks of graph stream classification in Part II.

9.2 Future Work

All the proposed algorithms in this thesis are based on the frequent subgraph

mining framework gSpan [151]. As a result, the proposed algorithms inherit

some disadvantages from gSpan. Specifically, gSpan algorithm is not scalable

to millions or billions of graph samples. One possible solution is to replace the

gSpan module with a distributed subgraph mining algorithm. We will consider

using distributed subgraph mining algorithm for effective graph classification.

Other problems that remain unexplored in the research community, from the

perspective of graph classification, include:

• Graph classification with structured prediction. Structured predic-

tion [67, 132], where the output is complex in that the output might be a

string, a tree, a graph, multiple labels, multiple classes, is a well established

research direction in the machine learning community in the past decade.

However, for graph data, structured prediction has not been studied yet

though it is widely seen in real-life applications.

• Multi-task graph classification from multiple sources. The proposed

multi-task graph classification can be considered as learning from a single

200

source (view). For graph data, there are usually multiple views/sources

available for describing the same objects [146, 147]. How to perform multi-

task multi-view graph classification remains unknown.

• Instance-based graph stream classification. Our framework for graph

stream classification employs a chunk/batch-based strategy for handling

concept drifts of graph streams. How to perform graph stream classification

in a instance-based manner is a challenge in this field.

• Active learning from graph streams. Labeling graph objects is ex-

pensive, especially in the streaming scenarios with increasing data. One

direction might be employing active learning techniques [37, 38, 43, 44] to

handling graph streams in the future.

201

9. CONCLUSIONS AND FUTURE WORK

202

Appendix A

A.1 Duality of Eq.(6.4)

The Lagrangian function of Eq.(6.4) can be written as:

L (ξ,w, ρ) = ρ− C(β
∑n+

{i|yi=+1} δiϕiξi +
∑n−
{i|yi=−1} δiϕiξi)

+
n∑

i=1
μi{yi

∑m
j=1wj · �(Gi; gj , πj) + ξi − ρ}

−γ(
∑m

j=1wj − 1) +
m∑
j=1

qj · wj +
n∑

i=1
pi · ξi

(A.1)

Where, we have μi ≥ 0, pi ≥ 0, qi ≥ 0, and γ can be either positive (> 0) or

negative (< 0).

At optimum, the first derivative of the Lagrangian w.r.t. the primal variables

(ξ,w,and ρ) must vanish,

∂L
∂ξi|yi=1

= −Cβδiϕi + μi + pi = 0 ⇒ 0 ≤ μi ≤ Cβδiϕi

∂L
∂ξi|yi=−1

= −Cδiϕi + μi + pi = 0 ⇒ 0 ≤ μi ≤ Cδiϕi

∂L
∂ρ

= 1−∑n
i=1 μi = 0 ⇒ ∑n

i=1 μi = 1
∂L
∂wj

⇒ ∑n
i=1 yiμi · �(Gi; gj, πj)− γ + qj = 0

⇒ ∑n
i=1 yiμi · �(Gi; gj, πj) ≤ γ

Substituting these variables in Eq. (A.1), we obtain the its dual problem as Eq.

(6.6).

203

A.

A.2 Duality of Eq. (7.7)

The Lagrangian function of Eq.(7.7) can be written as:

L (ξ,w)

= ‖w‖+ C
l {C1

∑
{i|yi=1}

ξi + γ
∑

{j|yj=−1}
ξj}

+
∑

i|yi=1

μi{1− ξi −
m∑
k=1

wk · �gk(Gi)}

+
∑

j|yj=−1
μj{

m∑
k=1

wk · �gk(Gj) +
1
γ − ξj}

−
m∑
i=1

qk · wk −
l−∑
i=1

pi · ξi −
l+∑
j=1

pj · ξj

(A.2)

Where, we have μi ≥ 0, μj ≥ 0, pi ≥ 0, qk ≥ 0.

At optimum, the first derivative of the Lagrangian w.r.t. the primal variables

(ξ,w) must vanish,

∂L
∂ξi|yi=1

= CC1
l − μi − pi = 0 ⇒ 0 ≤ μi ≤ CC1

l

∂L
∂ξj|yj=−1

= Cγ
l − μj − pj = 0 ⇒ 0 ≤ μj ≤ Cγ

l

∂L
∂wk

⇒ 1−∑
i μi�gk(Gi) +

∑
j μj�gk(Gj)− qk = 0

⇒ ∑
i μi�gk(Gi)−

∑
j μj�gk(Gj) < 1

Note that ∂L
∂wk

with respect to wk equals to 1 because wk ≥ 0. Substituting these

variables in Eq. (A.2), we obtain its dual problem as Eq. (7.8).

A.3 Equality of Eq. (7.7) and Eq. (7.10)

Here we will prove that given any solution w of Eq. (7.10), it will be also the

solution of Eq. (7.7).

Given a w, the ξi and ξj in Eq. (7.7) can be optimized independently, i.e.,

ξi = max(0, 1−wTxi) and ξj = max(0, 1/γ+wTxj). For Eq. (7.10), the optimal

204

ξ for a given w is:

max
c∈{0,1}l

1
l {C1

∑
yi=1

ci +
∑
yj=1

cj}

−1
lw

T {C1
∑
yi=1

cixi − γ
∑

yj=−1
cjxj}

= 1/l
∑
yi=1

max
c∈{0,1}l

(C1ci − C1ciw
Txi)

+1/l
∑
yj=1

max
c∈{0,1}l

(cj + cjγw
Txj)

= C1/l
∑
yi=1

max (0, 1−wTxi)

+γ/l
∑
yj=1

max(0, 1/γ +wTxj)

= {C1
∑

{i|yi=1}
ξi + γ

∑
{j|yj=−1}

ξj}/l = ξ

Therefore, the objective functions of Eq. (7.7) and Eq. (7.10) are equal for any

w given the optimal ξ and ξ, i.e., they are equivalent.

A.4 Duality of Eq.(7.10)

Here we derive the duality of Eq.(7.10). The Lagrangian function of Eq.(7.10)

can be written as:

L(ξ,w) = ‖w‖+ Cξ

−∑
c
λc{1

lw
T (C1

∑
yi=1

cixi − γ
∑

yj=−1
cjxj)

−1
l (C1

∑
yi=1

ci +
∑
yj=1

cj) + ξ} −
m∑
i=1

qk · wk − pξ

(A.3)

Where, we have λc ≥ 0, p ≥ 0, qk ≥ 0.

Similarly, we take the first derivative of the Lagrangian w.r.t. the primal

variables (ξ,w),

∂L
∂ξ

= C +
∑
c

λc − p = 0 ⇒ 0 ≤ ∑
c

λc ≤ C

∂L
∂wk

⇒ 1− C1

l

∑
c

λc

∑
i

cix
k
i +

γ
l

∑
c

λc

∑
j

cjx
k
j − qk = 0

⇒ C1

l

∑
c

λc

∑
i

cix
k
i − γ

l

∑
c

λc

∑
i

cjx
k
j < 1

205

A.

Substituting these variables in Eq. (A.3), we obtain the its dual problem as Eq.

(7.11).

206

References

[1] Naoki Abe, Bianca Zadrozny, and John Langford. An iterative

method for multi-class cost-sensitive learning. In Proc. ACM KDD, pages

3–11, 2004. (Cited on page 138.)

[2] C Aggarwal. On Classification of Graph Streams. In Proc. of SDM,

Arizona, USA, 2011. (Cited on pages 1, 19, 100, 118, and 119.)

[3] Charu C Aggarwal. Data streams: models and algorithms, 31. Springer

Science & Business Media, 2007. (Cited on page 1.)

[4] Charu C Aggarwal. The setwise stream classification problem. In Pro-

ceedings of the 20th ACM SIGKDD international conference on Knowledge

discovery and data mining, pages 432–441. ACM, 2014. (Cited on page 18.)

[5] Charu C Aggarwal. A survey of stream classification algorithms. Data

Classification: Algorithms and Applications, page 245, 2014. (Cited on

pages 1 and 18.)

[6] R Akbani, S Kwek, and N Japkowicz. Applying support vector ma-

chines to imbalanced datasets. Machine Learning: ECML 2004, pages 39–

50, 2004. (Cited on pages 17, 18, and 100.)

[7] P Anchuri, M Zaki, O Barkol, S Golan, and M Shamy. Approx-

imate graph mining with label costs. In ACM SIGKDD, pages 518–526,

2013. (Cited on pages 2, 5, and 168.)

207

REFERENCES

[8] Andreas Argyriou, Theodoros Evgeniou, and Massimo Pon-

til. Convex Multi-Task Feature Learning. SSRN Electronic Journal, 2007.

(Cited on pages 20, 169, 171, 175, and 186.)

[9] Francis R Bach, David Heckerman, and Eric Horvitz. Consider-

ing cost asymmetry in learning classifiers. The Journal of Machine Learning

Research, 7:1713–1741, 2006. (Cited on pages 107, 138, and 157.)

[10] Manuel Baena-Garćıa, José del Campo-Ávila, Raúl Fidalgo,

Albert Bifet, Ricard Gavaldà, and Rafael Morales-Bueno.

Early drift detection method. In Proc. of ECML/PKDD, 2006. (Cited

on page 18.)

[11] Ricardo A. Baeza-Yates and Berthier Ribeiro-Neto. Modern

Information Retrieval. Addison-Wesley Longman Publishing Co., Inc.,

Boston, MA, USA, 1999. (Cited on page 56.)

[12] Lu Bai, Luca Rossi, Andrea Torsello, and Edwin R Hancock.

A quantum Jensen-Shannon graph kernel for unattributed graphs. Pattern

Recognition, 48[2]:344–355, 2015. (Cited on page 14.)

[13] Dimitris Bertsimas and John N Tsitsiklis. Introduction to linear op-

timization, chapter 4. Athena Scientific Belmont, 1973. (Cited on page 109.)

[14] M.A. Bhuiyan and M. Al Hasan. An iterative mapreduce based fre-

quent subgraph mining algorithm. Knowledge and Data Engineering, IEEE

Transactions on, 27[3]:608–620, March 2015. (Cited on page 78.)

[15] Albert Bifet, Geoff Holmes, Bernhard Pfahringer, and Ri-

card Gavaldà. Mining frequent closed graphs on evolving data streams.

In KDD, pages 591–599, 2011. (Cited on pages 14 and 38.)

[16] Christian Borgelt and Michael R Berthold. Mining molecular

fragments: Finding relevant substructures of molecules. In Data Mining,

2002. ICDM 2003. Proceedings. 2002 IEEE International Conference on,

pages 51–58. IEEE, 2002. (Cited on page 158.)

208

REFERENCES

[17] Christian Borgelt, Thorsten Meinl, and Michael Berthold.

Moss: a program for molecular substructure mining. In Proceedings of the

1st international workshop on open source data mining: frequent pattern

mining implementations, pages 6–15. ACM, 2005. (Cited on page 158.)

[18] Sergey Brin, Rajeev Motwani, and Craig D. Silverstein. Beyond

Market Baskets: Generalizing Association Rules to Correlations. In ACM

SIGMOD Record, pages 265–276, 1997. (Cited on page 13.)

[19] C. Bron and J. Kerbosch. Algorithm 457: finding all cliques of an

undirected graph. C. of the ACM, 16[9]:575–577, 1973. (Cited on page 82.)

[20] Florian Cajori. A history of mathematical notation, 1-2. New York:

Dover, 1993. (Cited on page 48.)

[21] Rich Caruana. Multitask learning. Mach. Learn., 28[1]:41–75, July 1997.

(Cited on page 20.)

[22] Nitesh V Chawla, Kevin W Bowyer, Lawrence O Hall, and

W Philip Kegelmeyer. SMOTE: synthetic minority over-sampling tech-

nique. Journal of Artificial Intelligence Research, 16[1]:321–357, 2002.

(Cited on page 18.)

[23] Sheng Chen and Haibo He. Towards incremental learning of nonsta-

tionary imbalanced data stream: a multiple selectively recursive approach.

Evolving Systems, 2[1]:35–50, 2011. (Cited on page 18.)

[24] H Cheng, X Yan, and J Han. Discriminative Frequent Pattern-Based

Graph Classification. Link Mining: Models, Algorithms, and Applications,

pages 237–262, 2010. (Cited on pages 14 and 15.)

[25] Lianhua Chi, Bin Li, and and Xingquan Zhu. Fast Graph Stream

Classification Using Discriminative Clique Hashing. In Proc of the 17th

Pacific-Asia Conf on Knowledge Discovery and Data Mining (PAKDD),

2013. (Cited on pages 19, 118, and 119.)

209

REFERENCES

[26] R Craddock, C James, P Holtzheimer, X Hu, and H Mayberg.

A whole brain fMRI atlas generated via spatially constrained spectral clus-

tering. Human Brain Mapping, 33, 2012. (Cited on page 167.)

[27] M Culp and G Michailidis. Graph-Based semisupervised learn-

ing. IEEE Transactions on Pattern Analysis and Machine Intelligence,

30[1]:174–179, 2008. (Cited on page 17.)

[28] A Demiriz, K P Bennett, and J Shawe-Taylor. Linear programming

boosting via column generation. Machine Learning, pages 225–254, 2002.

(Cited on page 195.)

[29] M Deshpande, M Kuramochi, N Wale, and G Karypis. Fre-

quent Substructure-based Approaches for Classifying Chemical Com-

pounds. IEEE Trans. on Knowl. and Data Eng., 17:1036–1050, 2005.

(Cited on pages 1, 4, 17, 23, 99, and 137.)

[30] Chris Ding and Hanchuan Peng. Minimum redundancy feature selec-

tion from microarray gene expression data. Journal of bioinformatics and

computational biology, 3[02]:185–205, 2005. (Cited on page 75.)

[31] Gregory Ditzler and Robi Polikar. Incremental Learning of Con-

cept Drift from Streaming Imbalanced Data. IEEE Transactions on Knowl-

edge and Data Engineering, 2013. (Cited on pages 18, 119, and 120.)

[32] Pedro Domingos. MetaCost: a general method for making classifiers

cost-sensitive. In Proc. of ACM KDD, pages 155–164, 1999. (Cited on

page 138.)

[33] Pedro Domingos and Geoff Hulten. Mining high-speed data streams.

In Proc. of the 6th ACM KDD, pages 71–80. ACM, 2000. (Cited on page 18.)

[34] Charles Elkan. The foundations of cost-sensitive learning. In Inter-

national joint conference on artificial intelligence, pages 973–978. Citeseer,

2001. (Cited on page 138.)

210

REFERENCES

[35] Theodoros Evgeniou and Massimiliano Pontil. Regularized multi–

task learning. In ACM SIGKDD Conference on Knowledge Discovery and

Data Mining (KDD), pages 109–117. ACM, 2004. (Cited on pages 20, 169,

and 171.)

[36] Wei Fan, Salvatore J Stolfo, Junxin Zhang, and Philip K Chan.

AdaCost: misclassification cost-sensitive boosting. In ICML, pages 97–105,

1999. (Cited on page 19.)

[37] Meng Fang, Jie Yin, and Dacheng Tao. Active learning for crowd-

sourcing using knowledge transfer. In Twenty-Eighth AAAI Conference on

Artificial Intelligence, 2014. (Cited on page 201.)

[38] Meng Fang, Jie Yin, Chengqi Zhang, and Xingquan Zhu. Active

class discovery and learning for networked data. In Proceedings of the 13th

SIAM International Conference on Data Mining, May 2-4, 2013. Austin,

Texas, USA., pages 315–323, 2013. (Cited on page 201.)

[39] Meng Fang, Jie Yin, and Xingquan Zhu. Transfer learning across

networks for collective classification. In Data Mining (ICDM), 2013 IEEE

13th International Conference on, pages 161–170. IEEE, 2013. (Cited on

page 20.)

[40] H Fei and J Huan. Boosting with Structure Information in the Functional

Space: an Application to Graph Classification. In Proc. of ACM SIGKDD,

Washington DC, USA, 2010. (Cited on pages 1, 14, 99, 137, and 172.)

[41] Hongliang Fei and Jun Huan. Structured feature selection and task

relationship inference for multi-task learning. Knowledge and information

systems, 35[2]:345–364, 2013. (Cited on page 20.)

[42] Y Freund and R Schapire. A desicion-theoretic generalization of on-

line learning and an application to boosting. In Computational Learning

Theory, pages 23–37. Springer, 1995. (Cited on pages 84, 86, and 115.)

[43] Yifan Fu, Bin Li, Xingquan Zhu, and Chengqi Zhang. Active learn-

ing without knowing individual instance labels: A pairwise label homogene-

211

REFERENCES

ity query approach. Knowledge and Data Engineering, IEEE Transactions

on, 26[4]:808–822, 2014. (Cited on page 201.)

[44] Yifan Fu, Xingquan Zhu, and Ahmed K. Elmagarmid. Active learn-

ing with optimal instance subset selection. IEEE T. Cybernetics, 43[2]:464–

475, 2013. (Cited on page 201.)

[45] Mikel Galar, Alberto Fernández, Edurne Barrenechea, Hum-

berto Bustince, and Francisco Herrera. A review on ensembles

for the class imbalance problem: bagging-, boosting-, and hybrid-based

approaches. IEEE Trans. SMC-Part C, 42[4]:463–484, 2012. (Cited on

pages 17 and 100.)

[46] Jing Gao, Wei Fan, Jiawei Han, and S Yu Philip. A General Frame-

work for Mining Concept-Drifting Data Streams with Skewed Distributions.

In Proc. SIAM Int’l Conf. Data Mining, 2007. (Cited on page 18.)

[47] Alec Go, Richa Bhayani, and Lei Huang. Twitter sentiment classi-

fication using distant supervision. CS224N Project Report, Stanford, pages

1–12, 2009. (Cited on page 31.)

[48] Pinghua Gong, Jieping Ye, and Changshui Zhang. Robust multi-

task feature learning. In ACM SIGKDD, pages 895–903. ACM, 2012. (Cited

on page 20.)

[49] Pinghua Gong, Jiayu Zhou, Wei Fan, and Jieping Ye. Efficient

multi-task feature learning with calibration. In ACM SIGKDD, pages 761–

770. ACM, 2014. (Cited on page 20.)

[50] Michael Grant and Stephen Boyd. Graph implementations for non-

smooth convex programs. In V. Blondel, S. Boyd, and H. Kimura,

editors, Recent Advances in Learning and Control, Lecture Notes in Con-

trol and Information Sciences, pages 95–110. Springer-Verlag Limited,

2008. http://stanford.edu/~boyd/graph_dcp.html. (Cited on pages 112

and 158.)

212

REFERENCES

[51] Michael Grant and Stephen Boyd. CVX: Matlab software for dis-

ciplined convex programming, version 2.1. http://cvxr.com/cvx, March

2014. (Cited on pages 112 and 158.)

[52] Ting Guo, Lianhua Chi, and Xingquan Zhu. Graph hashing and

factorization for fast graph stream classification. In Proceedings of the 22nd

ACM international conference on Conference on information & knowledge

management, pages 1607–1612. ACM, 2013. (Cited on page 19.)

[53] Ting Guo, Xingquan Zhu, Jian Pei, and Chengqi Zhang. Snoc:

Streaming network node classification. In Data Mining (ICDM), 2014

IEEE International Conference on, pages 150–159. IEEE, 2014. (Cited

on page 19.)

[54] Isabelle Guyon and André Elisseeff. An introduction to variable

and feature selection. Journal of Machine Learning Research, 3:1157–1182,

2003. (Cited on page 16.)

[55] H He and E A Garcia. Learning from imbalanced data. IEEE TKDE,

21[9]:1263–1284, 2009. (Cited on page 17.)

[56] Haibo He and Yunqian Ma. Imbalanced Learning: Foundations, Al-

gorithms, and Applications. Wiley-IEEE Press, 2013. (Cited on pages 17

and 100.)

[57] Zhibin Hong, Xue Mei, Danil Prokhorov, and Dacheng Tao.

Tracking via Robust Multi-task Multi-view Joint Sparse Representation.

In Proc. of ICCV, pages 649–656. IEEE, 2013. (Cited on page 20.)

[58] Jun Huan, Wei Wang, and Jan Prins. Efficient mining of frequent

subgraphs in the presence of isomorphism. In Data Mining, 2003. ICDM

2003. Third IEEE International Conference on, pages 549–552. IEEE, 2003.

(Cited on page 78.)

[59] Lawrence J. Hubert. Matching models in the analysis of cross-

classifications. Psychometrika, 44:21–41, 1979. (Cited on pages 25, 37,

41, and 42.)

213

REFERENCES

[60] Geoff Hulten, Laurie Spencer, and Pedro Domingos. Mining

time-changing data streams. In Proceedings of the seventh ACM SIGKDD

international conference on Knowledge discovery and data mining, pages

97–106. ACM, 2001. (Cited on page 1.)

[61] Laurent Jacob, Jean-philippe Vert, and Francis R Bach. Clus-

tered multi-task learning: A convex formulation. In Advances in neural

information processing systems, pages 745–752, 2009. (Cited on page 20.)

[62] Brijnesh J Jain and Klaus Obermayer. Structure spaces. Journal of

Machine Learning Research, 10:2667–2714, 2009. (Cited on page 14.)

[63] Brijnesh J Jain and Klaus Obermayer. Learning in Riemannian

Orbifolds. arXiv preprint arXiv:1204.4294 (2012), 2012. (Cited on page 14.)

[64] Ali Jalali, Sujay Sanghavi, Chao Ruan, and Pradeep K Raviku-

mar. A dirty model for multi-task learning. In NIPS, 2010. (Cited on

page 20.)

[65] N Jin, C Young, and W Wang. In Proc. of, Hong Kong, China. (Cited

on page 14.)

[66] Thorsten Joachims. Training linear SVMs in linear time. In ACM

SIGKDD Conference on Knowledge Discovery and Data Mining (KDD),

pages 217–226, 2006. (Cited on pages 22, 151, and 155.)

[67] Thorsten Joachims, Thomas Finley, and Chun-Nam John Yu.

Cutting-plane training of structural svms. Machine Learning, 77[1]:27–59,

2009. (Cited on page 200.)

[68] Zhuoliang Kang, Kristen Grauman, and Fei Sha. Learning with

whom to share in multi-task feature learning. In Proceedings of the 28th

International Conference on Machine Learning (ICML-11), pages 521–528,

2011. (Cited on page 20.)

[69] M Karasuyama and H Mamitsuka. Multiple graph label propagation

by sparse integration. IEEE Transactions on Neural Networks and Learning

Systems, 24[12]:1999–2012, 2013. (Cited on page 17.)

214

REFERENCES

[70] H Kashima, K Tsuda, and A Inokuchi. Kernels for Graphs, chapter

In: Schölk, pages 155–170. MIT Press, Cambridge (Massachusetts), 2004.

(Cited on pages 14, 15, 69, and 99.)

[71] Yiping Ke, James Cheng, and Ng Wilfred. Correlation search in

graph databases. In KDD, pages 390–399, 2007. (Cited on pages 13, 37,

38, 44, and 56.)

[72] Yiping Ke, James Cheng, and Ng Wilfred. Correlated pattern min-

ing in quantitative databases. ACM Trans. on Database Systems, 33:1–45,

2008. (Cited on page 37.)

[73] Yiping Ke, James Cheng, and Jeffrey Xu Yu. Efficient Discovery

of Frequent Correlated Subgraph Pairs. In ICDM, pages 239–248, 2009.

(Cited on page 13.)

[74] Yiping Ke, James Cheng, and Jeffrey Xu Yu. Top-k Correlative

Graph Mining. In SIAM International Conf. on Data Mining, pages 1038–

1049, 2009. (Cited on pages 3, 13, 37, and 38.)

[75] X Kong and P Yu. Semi-Supervised Feature Selection for Graph Classi-

fication. In Proc. of ACM SIGKDD, Washington, DC, USA, 2010. (Cited

on pages 14, 16, 17, 78, 88, 99, 100, 137, 154, 157, and 160.)

[76] Xiangnan Kong and Philip S Yu. Multi-label feature selection for

graph classification. In IEEE International Conference on Data Mining,

pages 274–283. IEEE, 2010. (Cited on pages 6, 14, and 16.)

[77] Taku Kudo, Eisaku Maeda, and Yuji Matsumoto. An Applica-

tion of Boosting to Graph Classification. In Neural Information Processing

Systems (NIPS), pages 729–736, 2004. (Cited on page 32.)

[78] Abhishek Kumar and Hal Daume. Learning Task Grouping and Over-

lap in Multi-task Learning. In Proc. of ICML, pages 1383–1390, 2012.

(Cited on page 20.)

215

REFERENCES

[79] Michihiro Kuramochi and George Karypis. Frequent subgraph dis-

covery. In Data Mining, 2001. ICDM 2001, Proceedings IEEE International

Conference on, pages 313–320. IEEE, 2001. (Cited on page 78.)

[80] J Leskovec and J Shawe-Taylor. Linear programming boosting for

uneven datasets. In Proc. of ICML, page 456, 2003. (Cited on pages 17

and 100.)

[81] B Li, X Zhu, L Chi, and C Zhang. Nested Subtree Hash Kernels for

Large-Scale Graph Classification over Streams. Data Mining (ICDM), 2012

IEEE . . . , 2012. (Cited on page 19.)

[82] David Liben-Nowell and Jon Kleinberg. The link-prediction prob-

lem for social networks. Journal of the American Society for Information

Science and Technology, 58[7]:1019–1031, 2007. (Cited on page 17.)

[83] Jun Liu, Shuiwang Ji, and Jieping Ye. Multi-task feature learning via

efficient l 2, 1-norm minimization. In Proc. of UAI, pages 339–348. AUAI

Press, 2009. (Cited on page 20.)

[84] X Liu, L Wang, J Zhang, J Yin, and H Liu. Global and local structure

preservation for feature selection. IEEE Transactions on Neural Networks

and Learning Systems, 25[6]:1083–1095, 2014. (Cited on page 17.)

[85] X Y Liu, J Wu, and Z H Zhou. Exploratory undersampling for class-

imbalance learning. Systems, Man, and Cybernetics, Part B: Cybernetics,

IEEE Transactions on, 39[2]:539–550, 2009. (Cited on pages 17 and 100.)

[86] Susan Lomax and Sunil Vadera. A survey of cost-sensitive decision

tree induction algorithms. ACM Computing Surveys, 45[2], 2013. (Cited

on pages 19 and 138.)

[87] Aurélie C Lozano and Naoki Abe. Multi-class cost-sensitive boosting

with p-norm loss functions. In Proc. of ACM KDD, pages 506–514, 2008.

(Cited on pages 19 and 138.)

[88] D G Luenberger. Optimization by vector space methods. Wiley-

Interscience, 1997. (Cited on page 109.)

216

REFERENCES

[89] Sheng Ma and Joseph L. Hellerstein. Mining Mutually Dependent

Patterns. In ICDM, pages 409–416, 2001. (Cited on page 13.)

[90] Amin Mantrach, Nicolas van Zeebroeck, Pascal Francq,

Masashi Shimbo, Hugues Bersini, and Marco Saerens. Semi-

supervised classification and betweenness computation on large, sparse,

directed graphs. Pattern Recognition, 44[6]:1212–1224, 2011. (Cited on

page 17.)

[91] H Masnadi-Shirazi and N Vasconcelos. Risk minimization, proba-

bility elicitation, and cost-sensitive SVMs. ICML, 2010. (Cited on pages x,

19, 20, 138, 145, 146, and 165.)

[92] Hamed Masnadi-Shirazi and Nuno Vasconcelos. Cost-sensitive

boosting. IEEE PAMI, 33[2]:294–309, 2011. (Cited on pages 19 and 138.)

[93] Hamed Masnadi-Shirazi, Nuno Vasconcelos, and Arya Iran-

mehr. Cost-Sensitive Support Vector Machines. arXiv:1212.0975, 2012.

(Cited on pages 144, 147, and 157.)

[94] Nimrod Megiddo. On the complexity of linear programming. Advances

in economic theory, pages 225–268, 1987. (Cited on page 155.)

[95] X. Mei, Z. Hong, D. Prokhorov, and D. Tao. Robust multitask

multiview tracking in videos. Neural Networks and Learning Systems, IEEE

Transactions on, PP[99]:1–1, 2015. (Cited on page 20.)

[96] Abdullah Mueen, Suman Nath, and Jie Liu. Fast approximate cor-

relation for massive time-series data. In SIGMOD, pages 171–182, 2010.

(Cited on page 37.)

[97] S G Nash and A Sofer. Linear and Nonlinear Programming. Newyark

McGraw-Hill, 1996. (Cited on pages 21, 108, and 148.)

[98] Marion Neumann, Novi Patricia, Roman Garnett, and Kristian

Kersting. Efficient graph kernels by randomization. In Machine Learn-

ing and Knowledge Discovery in Databases, pages 378–393. Springer, 2012.

(Cited on page 14.)

217

REFERENCES

[99] M.E.J. Newman and M. Girvan. Finding and evaluating community

structure in networks. Physical review E, 69[2]:026113, 2004. (Cited on

page 81.)

[100] C H Nguyen and H Mamitsuka. Latent feature kernels for link predic-

tion on sparse graphs. IEEE Transactions on Neural Networks and Learning

Systems, 23[11]:1793–1804, 2012. (Cited on page 17.)

[101] S Pan, X Zhu, C Zhang, and P S Yu. Graph Stream Classification us-

ing Labeled and Unlabeled Graphs. In 2013 IEEE 29th International Con-

ference on Data Engineering (ICDE), pages 398–409. IEEE, 2013. (Cited

on pages 8, 9, 19, 23, 29, 31, 100, 115, and 137.)

[102] Shirui Pan, Jia Wu, and Xingquan Zhu. CogBoost: Boosting for Fast

Cost-sensitive Graph Classification. IEEE TKDE, 2015. (Cited on pages 8,

9, 16, 29, and 31.)

[103] Shirui Pan, Jia Wu, Xingquan Zhu, Guodong Long, and Chengqi

Zhang. Finding the best not the most: Regularized loss minimization sub-

graph selection for graph classification. Pattern Recognition, 48[11]:3783–

3796, 2015. (Cited on pages 8 and 16.)

[104] Shirui Pan, Jia Wu, Xingquan Zhu, and Chengqi Zhang. Graph

Ensemble Boosting for Imbalanced Noisy Graph Stream Classification.

IEEE Transactions on Cybernetics, 45[5]:940–954, 2015. (Cited on pages 8,

9, 16, 29, and 31.)

[105] Shirui Pan, Kuan Wu, Yang Zhang, and Xue Li. Classifier ensemble

for uncertain data stream classification. In Advances in knowledge discovery

and data mining, pages 488–495. Springer, 2010. (Cited on page 18.)

[106] Shirui Pan, Yang Zhang, and Xue Li. Dynamic classifier ensemble for

positive unlabeled text stream classification. Knowledge and information

systems, 33[2]:267–287, 2012. (Cited on page 18.)

[107] Shirui Pan and Xingquan Zhu. CGStream: continuous correlated

graph query for data streams. In Proceedings of the 21st ACM international

218

REFERENCES

conference on Information and knowledge management, pages 1183–1192.

ACM, 2012. (Cited on pages 7, 9, and 100.)

[108] Shirui Pan and Xingquan Zhu. Continuous top-k query for graph

streams. In Proceedings of the 21st ACM international conference on Infor-

mation and knowledge management, pages 2659–2662. ACM, 2012. (Cited

on pages 7 and 100.)

[109] Shirui Pan and Xingquan Zhu. Graph Classification with Imbalanced

Class Distributions and Noise. In International Joint Conferences on Arti-

ficial Intelligence, pages 1586–1592, 2013. (Cited on pages ix, 8, 9, 16, 138,

139, 140, 144, 146, 155, 156, and 157.)

[110] Shirui Pan, Xingquan Zhu, and Meng Fang. Top-k correlated sub-

graph query for data streams. In Pattern Recognition (ICPR), 2012 21st In-

ternational Conference on, pages 2906–2909. IEEE, 2012. (Cited on pages 7

and 100.)

[111] Shirui Pan, Xingquan Zhu, and Chengqi Zhang. Imblanced noisy

graph stream classification: Results and source code. Technical report,

University of Technology Sydney, 2014. (Cited on page 117.)

[112] Sinno Jialin Pan and Qiang Yang. A Survey on Transfer Learning.

IEEE Trans. Knowl. Data Eng., pages 1345–1359, 2010. (Cited on page 20.)

[113] Hanchuan Peng, Fuhui Long, and Chris Ding. Feature selection

based on mutual information criteria of max-dependency, max-relevance,

and min-redundancy. Pattern Analysis and Machine Intelligence, IEEE

Transactions on, 27[8]:1226–1238, 2005. (Cited on page 75.)

[114] S. Petrovic, M. Osborne, and V. Lavrenko. Streaming first story

detection with application to twitter. In Proc. of Human Language Tech-

nologies, Stroudsburg, USA, 2010. (Cited on page 1.)

[115] J Ross Quinlan. C4. 5: Programs for machine learning. 1993. (Cited on

page 88.)

219

REFERENCES

[116] S. Raghavan and H. Garcia-Molina. Representing web graphs. In

Proc. of ICDE, Atlanta, USA, 2003. (Cited on page 1.)

[117] Sayan Ranu and Ambuj K Singh. Graphsig: A scalable approach to

mining significant subgraphs in large graph databases. In Proc. of ICDE,

pages 844–855. IEEE, 2009. (Cited on pages 14, 15, 16, 17, and 100.)

[118] K Riesen and H Bunke. Graph Classification by Means of Lipschitz

Embedding. IEEE Transactions on SMC, Part B: Cybernetics, 39:1472–

1483, 2009. (Cited on page 14.)

[119] Bernardino Romera-Paredes, Andreas Argyriou, Nadia

Berthouze, and Massimiliano Pontil. Exploiting unrelated tasks

in multi-task learning. In AI Statistics, pages 951–959, 2012. (Cited on

page 20.)

[120] H Saigo, S Nowozin, T Kadowaki, T Kudo, and K Tsuda. gBoost:

a Mathematical Programming Approach to Graph Classification and Re-

gression. Machine Learning, 75:69–89, 2009. (Cited on pages ix, 16, 18,

99, 105, 106, 107, 112, 114, 119, 137, 138, 139, 140, 143, 144, 145, 150,

151, 154, 155, 156, 157, 160, 161, 168, 169, 170, 171, 172, 173, 186, 187,

and 195.)

[121] Grigoris Karakoulas John Shawe-Taylor. Optimizing classifiers

for imbalanced training sets. In NIPS, 11, page 253. MIT Press, 1999.

(Cited on pages 20 and 138.)

[122] Nino Shervashidze, Pascal Schweitzer, Erik Jan Van Leeuwen,

Kurt Mehlhorn, and Karsten M Borgwardt. Weisfeiler-Lehman

graph kernels. Journal of Machine Learning Research, 12:2539–2561, 2011.

(Cited on page 14.)

[123] JG Skellam. The frequency distribution of the difference between two

poisson variates belonging to different populations. Journal of the Royal

Statistical Society. Series A (General), 109[Pt 3]:296, 1946. (Cited on

page 48.)

220

REFERENCES

[124] W Nick Street and YongSeog Kim. A streaming ensemble algorithm

(SEA) for large-scale classification. In Proc. of 7th KDD, pages 377–382,

2001. (Cited on page 18.)

[125] Y Sun, A K C Wong, and S K MOHAMED. Classification of imbal-

anced data: A review. International Journal of Pattern Recognition and

Artificial Intelligence, 23[04]:687–719, 2009. (Cited on page 17.)

[126] J Tang and H Liu. An Unsupervised Feature Selection Framework for So-

cial Media Data. IEEE Transactions on Knowledge and Data Engineering,

26[12]:2914–2927, 2014. (Cited on page 137.)

[127] J Tang, J Zhang, L Yao, J Li, L Zhang, and Z Su. Arnetminer:

Extraction and mining of academic social networks. In Proceeding of ACM

SIGKDD, pages 990–998, 2008. (Cited on page 29.)

[128] A Teneva, S Markovska-Simoskab, L Kocarevb, J Pop-

Jordanovb, A Mullerc, and G Candrianc. Machine learning ap-

proach for classification of ADHD adults. International Journal of Psy-

chophysiology, 93, 2014. (Cited on page 168.)

[129] M Thoma, H Cheng, A Gretton, J Han, H Kriegel, A Smola,

L Song, P Yu, X Yan, and K Borgwardt. Near-Optimal Supervised

Feature Selection among Frequent Subgraphs. In Proc. of SDM, USA, 2009.

(Cited on pages 14, 15, 16, and 154.)

[130] Robert Tibshirani. Regression shrinkage and selection via the lasso.

Journal of the Royal Statistical Society. Series B (Methodological), pages

267–288, 1996. (Cited on pages 146 and 174.)

[131] P Tiwari, J Kurhanewicz, and A Madabhushi. Multi-kernel graph

embedding for detection, Gleason grading of prostate cancer via MRI/MRS.

Medical Image Analysis, 17[2]:219–235, 2013. (Cited on pages 4 and 137.)

[132] Ioannis Tsochantaridis, Thorsten Joachims, Thomas Hofmann,

and Yasemin Altun. Large margin methods for structured and interde-

221

REFERENCES

pendent output variables. In Journal of Machine Learning Research, pages

1453–1484, 2005. (Cited on page 200.)

[133] Alexey Tsymbal. The problem of concept drift: definitions and related

work. Computer Science Department, Trinity College Dublin, 106, 2004.

(Cited on page 2.)

[134] Jason Van Hulse and Taghi Khoshgoftaar. Knowledge discov-

ery from imbalanced and noisy data. Data & Knowledge Engineering,

68[12]:1513–1542, 2009. (Cited on page 18.)

[135] K Veropoulos, C Campbell, N Cristianini, and Others. Con-

trolling the sensitivity of support vector machines. In Proc. of the IJCAI,

1999, pages 55–60. Citeseer, 1999. (Cited on pages 17, 19, 20, 100, 107,

138, and 157.)

[136] J Vogelstein, W Roncal, R Vogelstein, and C Priebe. Graph

classification using signal-subgraphs: Applications in statistical connec-

tomics. IEEE Transactions on Pattern Analysis and Machine Intelligence,

35[7]:1539–1551, 2013. (Cited on pages 17 and 168.)

[137] K. Wagstaff, C. Cardie, S. Rogers, and S. Schroedl. Constrained

k-means clustering with background knowledge. In Proc. of ICML, pages

577–584, 2001. (Cited on page 75.)

[138] Changliang Wang and Lei Chen. Continuous Subgraph Pattern

Search over Graph Streams. In ICDE, pages 393–404, 2009. (Cited on

pages 14 and 38.)

[139] Haixun Wang, Wei Fan, Philip S Yu, and Jiawei Han. Mining

concept-drifting data streams using ensemble classifiers. In Proc. of the 9th

ACM KDD, pages 226–235. ACM, 2003. (Cited on page 18.)

[140] Shuo Wang, Leandro L Minku, and Xin Yao. A learning frame-

work for online class imbalance learning. In IEEE Symposium Series on

Computational Intelligence, 2013. (Cited on page 18.)

222

REFERENCES

[141] Gerhard Widmer and Miroslav Kubat. Learning in the presence of

concept drift and hidden contexts. Machine learning, 23[1]:69–101, 1996.

(Cited on page 2.)

[142] J Wu, Zhibin Hong, Shirui Pan, Xingquan Zhu, Chengqi Zhang,

and Zhihua Cai. Multi-Graph Learning with Positive and Unlabeled

Bags. Proc of SDM, pages 217–225, 2014. (Cited on pages 8 and 16.)

[143] J Wu, S Pan, X Zhu, and Z Cai. Boosting for Multi-Graph Classifi-

cation. IEEE Transactions on Cybernetics, 45[3]:430–443, 2015. (Cited on

pages 8 and 16.)

[144] J Wu, X Zhu, C Zhang, and P Yu. Bag Constrained Structure Pattern

Mining for Multi-Graph Classification. IEEE Transactions on Knowledge

and Data Engineering, 26[10]:2382–2396, 2014. (Cited on pages 7, 99,

and 137.)

[145] Jia Wu, Zhibin Hong, Shirui Pan, Xingquan Zhu, Zhihua Cai,

and Chengqi Zhang. Exploring features for complicated objects: Cross-

view feature selection for multi-instance learning. In Proceedings of the

23rd ACM International Conference on Conference on Information and

Knowledge Management, pages 1699–1708. ACM, 2014. (Cited on page 8.)

[146] Jia Wu, Zhibin Hong, Shirui Pan, Xingquan Zhu, and Chengqi

Zhang. Multi-Graph-View Learning for Graph Classification. In Interna-

tional Conference on Data Mining, pages 590–599, 2014. (Cited on pages 8,

16, and 201.)

[147] Jia Wu, Shirui Pan, Xingquan Zhu, and Chengqi Zhang. Multi-

Graph-View Learning for Complicated Object Classification. In Inter-

national Joint Conferences on Artificial Intelligence, 2015. (Cited on

page 201.)

[148] X Wu, X Zhu, G Wu, and W Ding. Data Mining with Big Data. IEEE

TKDE, 26[1]:97–107, 2014. (Cited on pages 2, 135, and 140.)

223

REFERENCES

[149] Hui Xiong, Pang ning Tan, and Vipin Kumar. Hyperclique pattern

discovery. Data Mining and Knowledge Discovery, 13:219–242, 2006. (Cited

on page 13.)

[150] Hui Xiong, Shashi Shekhar, Pang-Ning Tan, and Vipin Kumar.

Exploiting a support-based upper bound of Pearson’s correlation coefficient

for efficiently identifying strongly correlated pairs. In KDD, pages 334–343,

2004. (Cited on pages 13, 25, 37, and 42.)

[151] X F Yan and J W Han. gSpan: Graph-Based Substructure Pattern

Mining. In V Kumar, S Tsumoto, N Zhong, P S Yu, and X D Wu,

editors, Proc. of ICDM, pages 721–724, Maebashi City, Japan, 2002. UIUC.

(Cited on pages 21, 55, 78, 112, 140, 150, 169, 182, and 200.)

[152] Xifeng Yan, Hong Cheng, Jiawei Han, and Philip S Yu. Mining

significant graph patterns by leap search. In ACM SIGMOD Conference,

pages 433–444. ACM, 2008. (Cited on pages 14 and 16.)

[153] Xifeng Yan and Jiawei Han. gSpan: Graph-Based Substructure Pat-

tern Mining. In ICDM, pages 721–724, 2002. (Cited on page 43.)

[154] Xifeng Yan and Jiawei Han. Closegraph: mining closed frequent graph

patterns. In Proceedings of the ninth ACM SIGKDD international confer-

ence on Knowledge discovery and data mining, pages 286–295. ACM, 2003.

(Cited on page 78.)

[155] Ming Yuan and Yi Lin. Model selection and estimation in regression

with grouped variables. J. of the Royal Statistical Society: Series B, pages

49–67, 2006. (Cited on pages 175 and 188.)

[156] Bianca Zadrozny, John Langford, and Naoki Abe. Cost-sensitive

learning by cost-proportionate example weighting. In Proc. of IEEE ICDM,

2003. (Cited on pages 19 and 138.)

[157] Peng Zhang, Jun Li, Peng Wang, Byron J Gao, Xingquan Zhu,

and Li Guo. Enabling fast prediction for ensemble models on data

224

REFERENCES

streams. In Proceedings of the 17th ACM SIGKDD international confer-

ence on Knowledge discovery and data mining, pages 177–185. ACM, 2011.

(Cited on page 18.)

[158] Peng Zhang, Chuan Zhou, Peng Wang, Byron J Gao, Xingquan

Zhu, and Li Guo. E-tree: An efficient indexing structure for ensemble

models on data streams. Knowledge and Data Engineering, IEEE Trans-

actions on, 27[2]:461–474, 2015. (Cited on page 18.)

[159] Peng Zhang, Xingquan Zhu, Yong Shi, Li Guo, and Xindong

Wu. Robust ensemble learning for mining noisy data streams. Decision

Support Systems, 50[2]:469–479, 2011. (Cited on page 18.)

[160] Shichao Zhang, Zhenxing Qin, Charles X Ling, and Shengli

Sheng. Missing is useful”: missing values in cost-sensitive decision trees.

IEEE TKDE, 17[12]:1689–1693, 2005. (Cited on pages 19 and 138.)

[161] Yu Zhang and Dit-Yan Yeung. A Convex Formulation for Learning

Task Relationships in Multi-Task Learning. In UAI’10, pages 442–733,

2010. (Cited on page 20.)

[162] Yu Zhang and Dit-Yan Yeung. Multi-Task boosting by exploiting

task relationships. In ECML/PKDD, pages 697–710. Springer-Verlag, 2012.

(Cited on page 20.)

[163] Wenliang Zhong and James T Kwok. Convex Multitask Learning

with Flexible Task Clusters. In Proc. of ICML, pages 49–56, 2012. (Cited

on page 20.)

[164] Jiayu Zhou, Jianhui Chen, and Jieping Ye. MALSAR: Multi-tAsk

Learning via StructurAl Regularization. Arizona State Univ, 2012. (Cited

on pages 20, 175, and 186.)

[165] Wenjun Zhou and Hui Xiong. Volatile correlation computation: a

checkpoint view. In KDD, pages 848–856, 2008. (Cited on pages 13, 37,

and 42.)

225

REFERENCES

[166] X Zhu, P Zhang, X Lin, and Y Shi. Active Learning From Stream

Data Using Optimal Weight Classifier Ensemble. IEEE Trans. on SMC -

B, 40:1607–1621, 2010. (Cited on page 18.)

[167] Xingquan Zhu and Xindong Wu. Class noise handling for effective

cost-sensitive learning by cost-guided iterative classification filtering. IEEE

TKDE, 18[10]:1435–1440, 2006. (Cited on page 138.)

[168] Y Zhu, J X Yu, H Cheng, and L Qin. Graph classification: A di-

versified discriminative feature selection approach. In Conference on Infor-

mation and Knowledge Management (CIKM), pages 205–214. ACM, 2012.

(Cited on pages 14, 99, and 137.)

226

	Title Page
	Certificate of Authorship/Originality
	Acknowledgements
	Abstract
	Contents
	List of Figures
	List of Tables
	Nomenclature
	1 Introduction
	1.1 Motivations and Significances
	1.2 Research Problems
	1.2.1 Graph Stream Search
	1.2.2 Graph Stream Classification
	1.2.3 Complex Task Graph Classification

	1.3 Thesis Contributions
	1.3.1 Graph Stream Search
	1.3.2 Graph Stream Classification
	1.3.3 Complex Task Graph Classification

	1.4 Thesis Overview
	1.5 Publications

	2 Literature Review
	2.1 Correlated Graph Search
	2.2 Graph Classification
	2.2.1 Similarity-based methods
	2.2.2 Vector representation-based methods
	2.2.3 Graph-based Learning for a Single Network

	2.3 Imbalanced Data Classification
	2.4 Data Stream and Graph Stream Classification
	2.5 Cost-sensitive Learning
	2.6 Multi-task Learning
	2.7 Key techniques
	2.7.1 gSpan Algorithm
	2.7.2 Column generation Algorithm
	2.7.3 Cutting Plane Algorithm

	3 Preliminary
	3.1 Definitions
	3.2 Notations
	3.3 Benchmark Graph Datasets

	I Graph Stream Query
	Graph Stream Search: Overview
	4 Continuous Correlated Graph Query for Data Streams
	4.1 Introduction
	4.2 Preliminaries and Problem Definition
	4.2.1 Preliminaries
	4.2.2 Problem definition
	4.2.3 Challenges and Solutions

	4.3 Frequency lower bound for candidate generation
	4.3.1 Frequency lower bound
	4.3.2 Estimation the increment of γ

	4.4 Correlation upper bound and Heuristic rules for candidate pruning
	4.4.1 Maximum Value of the Numerator
	4.4.2 Minimum Value of the Denominator
	4.4.3 Loose correlation upper bound
	4.4.4 Heuristic Rule

	4.5 Algorithm
	4.6 Experimental Result
	4.6.1 Experiment setup
	4.6.2 System runtime performance
	4.6.3 Query Precision

	4.7 Conclusions

	II Graph Stream Classification
	Graph Stream Classification: Overview
	5 Graph Stream Classification using Labeled and Unlabeled Graphs
	5.1 Introduction
	5.2 Problem Definition & Overall Framework
	5.2.1 Overall Framework

	5.3 Minimum Redundancy Subgraph Feature Selection
	5.3.1 Informativeness of the Feature Set
	5.3.2 Informative Subgraph Feature Selection
	5.3.3 Minimum Redundancy Subgraph Feature Selection

	5.4 gSLU Algorithm
	5.5 Experiments
	5.5.1 Experimental Settings
	5.5.2 Experimental Results

	5.6 Conclusion

	6 Imbalanced and Noisy Graph Stream Classification
	6.1 Introduction
	6.1.1 Imbalanced Graph Classification
	6.1.2 Graph Stream Classification

	6.2 Overall Framework
	6.3 Learning from a Local Chunk with Noisy and Imbalanced Graphs
	6.3.1 Framework of Linear Boosting Algorithm
	6.3.2 gBoost Algorithm for Balanced graph classification
	6.3.3 Objective Function for Imbalanced and Noisy Data
	6.3.4 Linear Boosting with Graph Data

	6.4 gEBoost algorithm
	6.5 Experiments
	6.5.1 Experimental Settings
	6.5.2 Experimental Results

	6.6 Conclusion

	III Complex Task Graph Classification
	Complex Task Classification: Overview
	7 Cost-sensitive Learning for Large Scale Graph Classification
	7.1 Introduction
	7.1.1 Cost-Sensitive Graph Classification
	7.1.2 Fast Training for Large Scale Graphs

	7.2 Problem Definition and Overall Framework
	7.2.1 Overall Framework

	7.3 Cost-Sensitive Learning for Graph Data
	7.3.1 Optimal Cost-sensitive Loss Function
	7.3.2 Cost-Sensitive Formulation for Graphs
	7.3.3 Boosting for Cost-sensitive Learning on Graphs
	7.3.4 Cost-sensitive Subgraph Exploration

	7.4 Fast Training for Large Scale Graphs
	7.4.1 From l-Slacks to 1-Slack Formulation
	7.4.2 Cutting-plane Algorithm for Fast Training

	7.5 Time Complexity Analysis: Theoretical Aspect and Practice
	7.5.1 Time complexity of Subgraph Mining
	7.5.2 Time complexity of LP Solving

	7.6 Experiments
	7.6.1 Experimental Settings
	7.6.2 Experimental Results

	7.7 Conclusion

	8 Joint Structure Feature Exploration and Regularization for Multi-Task Graph Classification
	8.1 Introduction
	8.2 Problem Definition & Preliminaries
	8.2.1 Preliminaries

	8.3 Multi-task Graph Classification
	8.3.1 Regularized Multi-task Graph Classification Formulation
	8.3.2 Multi-task Graph Classification: Challenges and Solution Sketch
	8.3.3 Optimal Subgraph Candidate Exploration
	8.3.4 Multi-task Graph Classification Algorithm
	8.3.5 Multi-Task Driven Subgraph Mining

	8.4 Experiment
	8.4.1 Experimental Settings
	8.4.2 Experimental Results

	8.5 Discussion
	8.6 Conclusion

	9 Conclusions and Future Work
	9.1 Summary of This Thesis
	9.2 Future Work

	Appendix A
	A.1 Duality of Eq.(6.4)
	A.2 Duality of Eq. (7.7)
	A.3 Equality of Eq. (7.7) and Eq. (7.10)
	A.4 Duality of Eq.(7.10)

	References

