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Dear Prof Clary

Please find attached our manuscript for submission to Chemical Physics Letters entitled
“Prediction of Increased Tunneling Current by Bond Length Stretch in Molecular Break
Junctions”.

The goal of this work was to test computationally the effect of different interface
geometries on the molecular conductance of a simple electrode-molecule-electrode
system. This is an area of active research due to the importance of understanding the
effect of geometry variation in molecular break junction experiments that attempt to
probe the conductance of individual molecules.

We reached the very surprising result that stretching and indeed breaking the gold-sulfur
bond responsible for anchoring the molecule to the electrodes can significantly increase
the conductance of the system. This counterintuitive result is supported by previous
work; here we definitively show that it is a solid prediction which is not isolated to a
particular system and not an artifact based on inherent difficulties of DFT to describe
bond dissociation correctly. It is thus an important theoretical prediction in the area of
molecular electronics where understanding of interface effects is critical to possible
future device fabrication.

We believe this work is suitable for publication in Chemical Physics Letters and thank
you for your consideration.

Yours sincerely,
Rainer Hoft
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Figure 2
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Figure 3
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* Graphical Abstract (synopsis)

Synopsis

Density functional theory electronic structure and transport calculations reveal the
surprising prediction that the tunneling current though a simple electrode-molecule-
electrode system can increase substantially when the sulphur gold bond anchoring the
molecule to one electrode is stretched and even broken.
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Response to reviewer #1 comments.

We thank the reviewer for their critical reading of our manuscript and constructive
comments. We have considered the comments very carefully and revised our manuscript
accordingly. Each of the reviewers comments are addressed in the following, together
with a description of the revisions made.

1. My main concern is that the result of this paper is rather thin. There have already
been similar calculations in the literature on bond length effect to conductance. It has
been well known that equilibrium bond length may or may not give the highest
conductance. For tunneling through a molecule bridge, it is more important whether a
resonance is set up or not. Changing bond length of the contact may help that effect.
Therefore, as a reader 1'd like to see more results on the contact details such as various
surfaces, any correlation with work function of metal, more contact groups etc. S-Au has
been studied extensively already. Also, it would improve the paper if information is
provided as why the thiol-Au bond behaves different.

Yes, comments have been made in the literature before regarding change in conductance
due to bond length change. However, the work we report is the first systematic study of
this phenomenon. Guo et al (2005) point out that the current could go up or down upon
moving away from the equilibrium bond length. Xue and Ratner (2005), and Ke et al
(2005) calculate an increase in conductance with increasing molecule-electrode distance,
however the calculations in both these cases are significantly less complete. Most
importantly we have explicity taken into account the electron spin using a spin
unrestricted calculation, and addressed directly the problem of bond dissociation. In our
calculations we have determined over which bond-length regions the single-configuration
calculation gives a reliable result. Previous calculations have not addressed this problem.

We have added comments in the introduction to highlight the originality of our work.

S on Au(111) has been chosen as a model system because the calculations can, in
principle, be tested experimentally. Calculations of other surfaces or contact groups are
less relevant therefore.

The following has been added to the conclusion to explain why the thiol-Au bond
behaves differently: “The difference in behaviour for the thiol-Au and thiolate-Au bonds
can be attributed to the strong chemisorption nature of the latter where electrons are
shared between the S and surface Au atoms. It is the fate of the shared electron as the
bond is broken that gives rise to the anomalous increase in conductance. The decrease in



molecule-electrode coupling is, in this case, more than offset by the localization of the
molecular orbitals close to the Fermi energy as the bond dissociates. By contrast the Au-
thiol bond is a weak physisorbed bond with no electron sharing. Hence the conductance
simply decreases as the bond is stretched because the orbitals do not significantly
change.”

2. The model in eq.1 is simply a tunneling formula. While the authors manage to use it
(perhaps adding many similar terms) to fit their ATK numerical data in the figures, the
entire discussion (page 7) did not really provide a physical picture why conductance can
increase when S-Au bond is stretched. In other words, what's the reason the transmission
peak moved the way it did.

The discussion of figure 3 has been modified to explain why the transmission peaks move
the way they do. The following sentences have been added: “Orbital hybridization
between the Au based orbitals and S based orbitals decreases as the bond is stretched. At
small bond lengths the molecular S orbitals gain considerable character from the Au
substrate orbitals giving a density of states which is spread over a large energy region.
As the bond is stretched there is less mixing and the molecular S orbitals become more
localized in energy leading to a much larger density of states concentrated over a much
smaller energy window. This gives rise to the sharp peaks just below the Fermi level in
Fig 3(b) at large bond distances which are due to orbitals of the right sulfur atom
corresponding to the HOMO and LUMO orbitals of the isolated radical. This gives rise to
the large , narrow peak in the transmission spectrum at large bond-lengths..”

3. In their fitting, how is interaction energy obtained? Using alpha=0.1, what values
of coupling is obtained in unit of meV? Are these values reasonable?

Interactions energies are obtained directly from the ab initio calculations, this stated in
the discussion of the model. Coupling of order 240 meV, at equilibrium bond length, is
obtained. This is a reasonable value based upon comparison with values given in Datta.
A sentence has been added to this effect.

4. Why the alpha and beta spins behave so differently?

For the thiolate bond there is a pair of electrons shared between the S atom and surface
Au atoms. As the bond is dissociated one of these electrons remains on the S atom, and
hence there is a single unpaired electron on the thiolate radical. There is now one alpha
electron which is not paired with a beta electron, whereas all the beta electrons are paired.
Hence the alpha and beta electrons behave differently.

The following sentence has been added to the discussion of Figure 4: “The alpha and beta
electrons behave differently because there is a single unpaired alpha electron on the S
atom as the bond is broken.”

5. On the numerical calculations, very small number of 2d k-sampling is used for
converging the density (2d BZ in the transverse direction). Data should be provided to



show that this is enough. Did the authors check charge neutrality of their calculation in
the transport (ATK) simulations? What's the quality of charge neutrality?

It was necessary to compromise between use of computational resources, and the
accuracy of the k-point grid and orbital confinement parameters. Since a very large
orbital cutoff is desirable (see point 6 below), we used a 3x3 k-points in the xy-plane
(plane of the surface) for the ATK calculation (as opposed to 5x5 for the geometry
optimization, which we know from our previous work, ref 18, is very well converged).
The convergence of total energy and zero-volt conductance in ATK was tested as a
function of the size of the k-point grid used (see Fig. 1 below). Here use of a less accurate
orbital cutoff parameter allows us to do the calculation at much better k-point sampling.
Note that the number of k-points NtxNrt used in calculating the transmission function can
be different from the number of k-points NpgxNg used in the electronic structure
calculation, since the transmission function is calculated using the self-consistent
electronic structure. From Fig 1, values of Ny =2 and Nt= 5 give well-converged values.
In the results presented in this work, we have used Ng = 3 and Nt = 13 which is well
inside this convergence point. In the z-direction (perpendicular to the surface) we use
100 k-points both for the electronic structure and transmission parts of the ATK
calculation. Again we have tested convergence of zero-volt conductance and total energy
and suitable convergence is reached well below this point.
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Fig. 1: (a) Zero-volt conductance of the Au(111)-XYL-Au(111) system as a function of
the number of k-points used in the electronic structure and transmission spectrum
calculations. (b) The total energy of the system as a function of the number of k-points
used in the electronic structure calculation.

We have modified the methodology description to clarify these points. To conform to the
length restrictions on the manuscript and to avoid disrupting the flow of the paper we
have avoided including too much computational detail, such as the figure shown above.

The device region in the ATK calculations contains 2 layers of 3x3 gold atoms on either
side of the molecule. The ionic charge in the device region is therefore 448 (396+52) in
the thiolate bonded case and 449 (396+53) in the thiol bonded case. For the range of
calculations presented here, the electronic charge reported by ATK in the device region is



448.05 < Qe < 448.07 and 449.06 < Qe < 449.08 in the thiolate and thiol bonded cases
respectively. The deviation from charge neutrality is thus insignificant.

6. When S-Au bond is stretched to 54, I imagine there is very little orbital overlap
between the S and the Au atoms. What are the orbital cutoffs in their siesta basis? If this
orbital overlap is very small, I am worried about the accuracy of the calculations.

This is a very good point, a large orbital cut-off radius (i.e. small orbital confinement
energy) is crucial to obtaining well-converged results. We have also tested this
extensively in our previous work (ref 18) with respect to total and interaction energies
and concluded that an energy-shift parameter of 5 mRy (corresponding to the rise in
orbital energy due to the confinement) gives well-converged interaction energies.
However, as the referee points out, in the present work the bond length is stretched and
larger orbital radii may be needed. Consequently we have used an energy-shift parameter
of 0.1 mRy in the transport calculations. This corresponds to actual orbital radii of 4-5 A,
for the various orbitals. Note that this means when atoms are 8 A apart, the orbital
overlap will start being lost. Table 1 shows a test case where the zero-volt conductance
with an Au-S distance d= 7.0 A was calculated for different values of the energy-shift
parameter. We conclude that 0.1 mRy is a sufficiently accurate value to use in the present
context.

Energy shift parameter (mRy) | G(0) spin alpha (uS) G(0) spin beta (uS)
1.00 0.0000082 0.0040679
0.10 0.0000788 0.0412114
0.05 0.0000861 0.0488064

Table 1: Zero-volt conductance for different energy shift parameter values. Au-S distance
at right electrode 1s 7.0 A.

Orbital confinement parameters (energy-shifts) are given in the methods section. Due to
length restrictions we have not included a detailed discussion as given above.

In summary, while this referee thinks that understanding molecule-metal contact is a very
important problem in molecular conduction, I am not sure this paper has adequately
aided this field of work. I suggest the authors consider above points, revise the paper by
adding more physics and results, and resubmit it to this journal.

We have revised our manuscript as recommended and described above. A number of
other typographic errors have been corrected and minor re-wording made in order to meet
the length requirement. We believe these results do contribute to the field of work
because it is the first comprehensive exploration of this unexpected phenomenon. Our
work takes into account the fact that single-configuration calculations fail to describe
bond breaking under certain conditions. Using spin unrestricted calculations we can pin-
point exactly where the calculations fail. Previous calculations have not addressed this
point. Our results are significant, original and timely, and merit publication as a letter.
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Since theoretical prediction of current rectification in a single molecule by Aviram and
Ratner in 1974 [1], molecular electronics has become an active area of research. Interest
stems from the potential to exploit this transport phenomena to create electronic circuit
components from individual molecules [2]. Despite impressive advances in experimental
[3] and theoretical [4] techniques, there is often poor agreement between results for
electron transport through individual molecules [5]. The most common first principles
technique employed, namely density functional theory (DFT) [6, 7], is a theory designed
for equilibrium situations and potential problems with its application to the non-
equilibrium case have been pointed out by various authors [8, 9]. Nevertheless, current
understanding of the issues involved in these calculations will permit reliable predictions
provided that it is understood that the conductances are acutely sensitive to experimental
geometry, which is generally unknown. A statistically-based approach in which many
possible geometries are sampled and averaged gives improved congruence with
experimental data [10].

One of the most intriguing, recent theoretical predictions is increasing
conductance when the tunneling distance between electrode and molecule is increased
[10-12]. Here, we address this counter-intuitive phenomenon in detail. We study the
model system, Au(111)-XYL-Au(111) and perform spin-polarised DFT calculations with
the non-equilibrium Green’s function (NEGF) formalism for calculating transport. XYL,
or 1,4-phenylenedimethanethiol is a thiol-terminated aromatic molecule that easily self-
assembles on a gold substrate [13]. We perform a thorough investigation of the effect of
increasing the sulfur-gold distance, both with and without the presence of a terminal

hydrogen atom. Crucially, spin-polarised calculations are used to identify regions, during



bond-breaking, where single-configuration calculations fail due to spin-contamination.
Previous DFT+NEGF studies of benzene-dithiol molecules sandwiched between gold
electrodes have shown results that support our conclusions [11, 12], but do not appear to
address this problem of bond-breaking. The results, therefore, contain some degree of
uncertainty. In addition, there are differences in the computational approach used. In
Ref. 11 six Au electrode atoms are included in the “extended molecule” and treated using
DFT while the rest of the semi-infinite electrodes are treated using a tight-binding
approach. In Ref. 12 Au(100) leads with finite cross-section are used. Here, we treat the
electrodes as semi-infinite Au(111) surfaces, and treat the entire system on the same
footing using DFT (see Fig. 1). Our results demonstrate that this effect is not isolated to
one molecule and one surface, and more importantly is not an artifact caused by the
inability of DFT to describe bond dissociation correctly.

It is generally assumed that the sulfur-hydrogen bond cleaves and a strong chemical
bond forms when thiol molecules interact with a gold surface. There is considerable
evidence to support this formation of a thiolate bond [14]. A weaker, physisorbed bond is
possible without removal of the hydrogen. Both bond configurations are investigated
here. A thiolate bond, with equilibrium bond length, is kept between left Au(111)
electrode and molecule, whereas we interchange the geometry on the right electrode
between thiolate (geometry A) and thiol (geometry B) and vary the sulfur to surface
distance d (Fig 1).

Optimum adsorption geometries were calculated with the SIESTA software package
[15], a density functional code employing a linear combination of numerical atomic

orbitals as basis functions. Double zeta plus polarization orbitals are used for the valence



electrons with pseudo-potentials for the core electrons and nucleus Orbitals are strictly
localized, a single energy confinement parameter determines the cut-off radius. Here we
set this parameter to 5 mRy. The local density approximation (LDA) to the exchange-
correlation functional is used, incorporating the self-interaction correction by Perdew and
Zunger [16]. Calculations are spin-polarised with the (111) surface represented by a 3x3
unit cell, 4 layers thick. A 5x5 k-point Monkhorst and Pack [17] grid is used in the plane
of the gold surface. The surface layer is not relaxed during optimization. We have
previously examined the reliability of this type of calculation against the computational
conditions used [18], the present conditions give very well converged optimum
geometries.

This relaxed geometry is then used in the transport calculation conducted with the ATK
package [19]. This uses the SIESTA method to obtain electronic structures and the NEGF
formalism to calculate transport. The molecule with two layers of Au atoms on either side
is modeled as the device region, connected on the left and right by semi-infinite
electrodes (Fig. 1). Here, single zeta (double-zeta) plus polarization orbitals are used for
electrode (molecule) atoms. A 3x3 k-point grid in the plane of the surface and 100 k-
points in the perpendicular direction are used for the electronic structure part of the
calculation, and a 13x13x100 k-point grid for the transport calculation. The orbital
confinement is reduced to 0.1 mRy so that it does not affect the calculation. [20].
Extensive tests were performed to check convergence against the k-point grid and orbital
cut-off radius. The zero-volt conductance and total energy do not change if both these

parameters are increased. We have also tested the effect of re-optimisation of the



geometry as the bond-length is increased, at 3 A the change in tunneling current upon
relaxation is negligible.

For the gold-thiolate bond, the preferred adsorption site is between the bridge and fcc-
hollow sites, 2.0 A above the surface. For the gold-thiol bond it is between the on-top and
hep-hollow sites at a height of 2.4 A. In both cases the total spin is zero. The calculations
use a 25 meV Fermi smearing temperature to aid convergence and allow partial
occupation of states. Therefore the total spin is zero state in both systems, even though
they differ by one electron.

Fig. 2(a) shows the ab-initio zero volt conductance for a- and [-spin electrons for
geometry A (see Fig. 1) as function of sulfur-electrode distance. The shaded region
indicates where the system is not in a pure spin state, i.e. where spin-contamination
occurs. For this region more sophisticated multi-configurational methods need to be used.
To the left of the shaded region (d< 3.0 A) the XYL radical is bound to the gold and the
overall spin is zero (singlet state). To the right (d = 4.5 A) the sulfur-gold bond has been
broken and there is an unpaired electron on the sulfur atom, it is a doublet state. In these
two regions the present single-configuration calculations are reliable. Counter-intuitively,
the conductance rises as the bond is stretched to 3.0 A, in confirmation of observations
made by others using somewhat different computational techniques [11, 12]. Furthermore
the conductance for B-spin electrons continues to increase substantially after the bond
has been broken up to a distance of 5.0 A before decaying to zero at large d. For d-spin
electrons, the conductance decays after the bond is broken. Note that there is an unpaired
spin-a electron on the sulphur atom. The same trend is obtained for the tunneling current

at a low bias of 0.1 V (not shown).



In geometry B the system remains in a spin singlet state as d is increased as there is no
longer an unpaired electron. Fig. 2(b) shows the exponential decay in 0 V conductance for
a- and B-spin electrons (identical in this case) as a function of sulfur-surface distance.

The increase in conductance for the thiolate molecule can be attributed to a large,
narrow peak in the transmission spectrum for [3-spin electrons that develops as the sulfur-
gold bond is stretched, Fig 3(a). The origin of this becomes apparent from the density of
states projected onto the entire molecule (PDOS) as shown in Fig 3(b). Orbital
hybridization between the Au based orbitals and S based orbitals decreases as the bond is
stretched. At small bond lengths the molecular S orbitals gain considerable character from
the Au substrate orbitals giving a density of states which is spread over a large energy
region. As the bond is stretched there is less mixing and the molecular S orbitals become
more localized in energy leading to a much larger density of states concentrated over a
much smaller energy window. This gives rise to the sharp peaks just below the Fermi level
in Fig 3(b) at large bond distances which are due to orbitals of the right sulfur atom
corresponding to the HOMO and LUMO orbitals of the isolated radical. This gives rise to
the large , narrow peak in the transmission spectrum at large bond-lengths.

Fig. 4 (a) shows quantitatively how the orbital-eigenvalues of the [-spin electrons align
with the Fermi level as the bond is stretched. It is initially surprising that this change in the
HOMO and LUMO orbitals is able to overcome the exponentially decreasing coupling
between the molecule and the right electrode (as shown by the interaction energy in Fig
4(b)) and give an increased conductance. However, the phenomenon can be understood

with the aid of a simple one-level model to obtain a qualitative picture of the effect of the



change in orbital eigenvalues and coupling on the conductance. The current through a

channel with a single level with energy € between two reservoirs is given by [21]

eVvi2 -1
i(V) :%m f dE[(E-¢’ + ] (1)

—eV)2
where we have used the zero-temperature approximation and assumed a Lorentzian
density of states. y; and Yy, are the coupling strengths of the level to the left and right
reservoirs, Y= (Y1 + Y2)/2. E is the energy relative to the Fermi level. Equation (1) can
readily be integrated to find the current or differentiated to find the conductance as a
function of voltage.

In this model it is assumed that the coupling strength of the energy level to both
electrodes is the same and proportional to I, the interaction energy of the molecule with
the right electrode, i.e. y;=y,=y=al for some constant 0. This will have the right
qualitative behavior since an increase in d causes the two orbitals we are considering to
become less hybridized with the electrode orbitals. The coupling to both electrodes thus
decays exponentially with an increasing distance, as does the interaction energy with the
right electrode. We then calculate the total current and conductance as the sum of the
one-level values calculated from equation (1) for the HOMO and LUMO orbitals, using
the ab-initio eigenvalues and interaction energies from Fig 4. The results are plotted in
Fig 2. The only empirical parameter is 0 which was set to 0.1 in order to obtain the best
quantitative agreement between the one-level model and ab-initio results in the thiolate
bonded case. The qualitative behavior does not change if o is varied. This value of o
gives a coupling energy of about 240 meV at equilibrium bond length, a value which is

reasonable compared with values given by Datta [21].
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In summary, we have performed ab-initio calculations of the zero volt conductance for
the 1,4-phenylenedimethanethiol molecule absorbed between two gold electrodes as the
sulfur-surface distance on one electrode is increased. Contrary to expectation, the
maximum tunneling current for the thiolate molecule does occur not at the equilibrium
adsorption geometry. Rather, we predict the tunneling current increases as the sulfur-gold
bond is stretched and continues to increase after the bond is broken, before eventually
decaying to zero. For the thiol molecule we predict the expected exponential decay in
tunneling current with increased sulfur-electrode distance. The difference in behaviour
for the thiol-Au and thiolate-Au bonds can be attributed to the strong chemisorption
nature of the latter where electrons are shared between the S and surface Au atoms. It is
the fate of the shared electron as the bond is broken that gives rise to the anomalous
increase in conductance. The decrease in molecule-electrode coupling is, in this case,
more than offset by localization of the molecular orbitals close to the Fermi energy as the
bond dissociates. By contrast the Au-thiol bond is a weak physisorbed bond with no
electron sharing, and the conductance decreases as the bond is stretched because the
orbitals do not significantly change.

We believe the results presented here are a sound theoretical prediction which is worth
testing experimentally. They are counterintuitive and occur in a widely studied system,
and hence have potentially far reaching consequences in the field of molecular
electronics.

This work was supported by The University of Technology, Sydney. Computing facilities

were provided by the Australian Centre for Advanced Computing and Communication



(New South Wales) and the National Facility at the Australian Partnership for Advanced

Computing.
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FIG 2. Zero volt conductance (a) geometry A and (b) geometry B as a function of sulfur-
gold surface distance. Solid lines are ab-initio calculations, dashed lines are a qualitative

one-level model.
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FIG 3. (a) Transmission coefficient and (b) density of states projected onto the molecule

for sulfur-electrode distances, d=2.0 A, 3.0 A and 4.5 A in geometry A.
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FIG. 4: (a) HOMO (dashed lines) and LUMO (solid lines) eigenvalues for spin-a and spin-
B electrons and (b) molecule-surface interaction energy as a function of sulfur-gold

distance for geometry A.
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