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Abstract

My study is part of an ARC linkage project between University of Technol-

ogy, Sydney and Centrelink Australia, which aims to applying data mining

techniques to optimise the debt detection and debt recovery. A debt indicates

an overpayment made by the government to a customer who is not entitled

to that payment.

In social security, an interaction between a customer and the government

department is recorded as an activity. Each customer’s activities happen

sequentially along the time, which can be regarded as a sequence. Based

on the experience of debt detection experts, there are usually some patterns

in the sequence of activities of customers who commit debts. The patterns

indicating the customers’ intention to be overpaid can thus be used to dis-

cover or predict debt occurrence. The development of debt detection and

recovery over sequential transaction data, however, is a challenging problem

due to following reasons. (1) The size of transaction data is vast, and the

transaction data are being generated continuously as the business goes on.

(2) Transaction data are always time stamped by the business system, and

the temporal order of the transaction data is highly related to the business

logic. (3) The patterns and relationships hidden behind the transaction data

may be affected by a lot of factors. They are not only dependent on business

domain knowledge, but also subject to seasonal and social factors outside the

business. Based on a survey of existing methods on debt detection and recov-

ery, data mining techniques are studied in this thesis to detect and recovery

debt in an adaptive and efficient fashion.
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ABSTRACT

Firstly, sequence data is used to model the evolvement of customer ac-

tivities, and the sequential patterns generalize the trends of sequences. For

long running sequence classification issues, even if the sequences come from

the same source, the sequential patterns may vary from time to time. An

adaptive sequential classification model is to be built to make the sequence

classification adapt to the sequential pattern variation. The model is ap-

plied to 15,931 activity sequences from Centrelink which includes 849,831

activity records. The experimental results show that the proposed adaptive

sequence classification framework performs effectively on the continuously

arriving data.

Secondly, a new technique of sequence classification using both positive

and negative patterns is to be studied, which is able to find the relation-

ship between activity sequences and debt occurrences and also the impact

of oncoming activities on the debt occurrence. The same dataset is used

for the evaluation. The outcome shows if built with the same number of

rules, in terms of recall, the classifier built with both positive and negative

rules outperforms traditional classifiers with only positive rules under most

conditions.

Finally, decision trees are to be built in the thesis to model debt recovery

and predict the response of customers if contacted by phone. The customer

contact strategy driven by the model aims to improve the efficiency of debt

recovery process. The model is utilized in a real life pilot project for debt

recovery in Centrelink. The pilot result outperforms the traditional random

customer selection.

In summary, this thesis studies debt detection and debt recovery in social

security using data mining techniques. The proposed models are novel and

effective, showing potentials in real business.
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