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Abstract

In supervised learning, the distance or similarity measure is widely used in
a lot of classification algorithms. When calculating the categorical data sim-
ilarity, the strategy used by the traditional classifiers often overlooks the
inter-relationship between different data attributes and assumes that they
are independent of each other. This can be seen, for example, in the overlap
similarity and the frequency based similarity. While for the numerical data,
the most used Euclidean distance or Minkowski distance is restricted in each
single feature and assumes the features in the dataset have no outer connec-
tions. That can cause problems in expressing the real similarity or distance
between instances and may give incorrect results if the inter-relationship be-
tween attributes is ignored. The same problems exist in other supervised
learning, such as the classification tasks of class-imbalance or multi-label. In
order to solve these research limitations and challenges, this thesis proposes
an insightful analysis on coupled similarity in supervised learning to give an
expression of similarity that is more closely related to the real nature of the

problem.

Firstly, we propose a coupled fuzzy kNN to classify imbalanced categorical
data which have strong relationships between objects, attributes and classes
in Chapter 3. It incorporates the size membership of a class with attribute
weight into a coupled similarity measure, which effectively extracts the inter-
coupling and intra-coupling relationships from categorical attributes. As it
reveals the true inner-relationship between attributes, the similarity strate-

gy we have used can make the instances of each class more compact when



ABSTRACT

measured by the distance. That brings substantial benefits when dealing
with class imbalance data. The experiment results show that our supposed
method has a more stable and higher average performance than the classic

algorithms.

We also introduce a coupled similar distance for continuous features, by
considering the intra-coupled relationship and inter-coupled relationship be-
tween the numerical attributes and their corresponding extensions. As de-
tailed in Chapter 4, we calculate the coupling distance between continuous
features based on discrete groups. Substantial experiments have verified that
our coupled distance outperforms the original distance, and this is also sup-

ported by statistical analysis.

When considering the similarity concept, people may only relate to the
categorical data, while for the distance concept, people may only take in-
to account the numerical data. Seldom have methods taken into account
the both concepts, especially when considering the coupling relationship be-
tween features. In Chapter 5, we propose a new method which integrates our
coupling concept for mixed type data. In our method, we first do discretiza-
tion on numerical attributes to transfer such continuous values into separate
groups, so as to adopt the inter-coupling distance as we do on categorical
features (coupling similarity), then we combine this new coupled distance to
the original distance (Euclidean distance), to overcome the shortcoming of
the previous algorithms. The experiment results show some improvement

when compared to the basic and some variants of kNN algorithms.

We also extend our coupling concept to multi-label classification tasks.
The traditional single-label classifiers are known to be not suitable for multi-
label tasks anymore, owing to the overlap concept of the class labels. The
most used classifier in multi-label problems, ML-A£NN, learns a single classi-
fier for each label independently, so it is actually a binary relevance classi-
fier. As a consequence, this algorithm is often criticized. To overcome this
drawback, we introduce a coupled label similarity, which explores the inner

relationship between different labels in multi-label classification according

x1
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to their natural co-occurrence. This similarity reflects the distance of the
different classes. By integrating this similarity with the multi-label ANN
algorithm, we improve the performance significantly. Evaluated over three
commonly used verification criteria for multi-label classifiers, our proposed
coupled multi-label classifier outperforms the ML-kNN, BR-kANN and even
IBLR. The result indicates that our supposed coupled label similarity is ap-
propriate for multi-label learning problems and can work more effectively
compared to other methods.

All the classifiers analyzed in this thesis are based on our coupling simi-
larity (or distance), and applied to different tasks in supervised learning. The
performance of these models is examined by widely used verification criteria,
such as ROC, Accuracy Rate, Average Precision and Hamming Loss. This
thesis provides insightful knowledge for investors to find the inner relation-

ship between features in supervised learning tasks.

xii
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