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ABSTRACT

DEVELOPMENT OF FPGA BASED CONTROL ARCHITECTURE

FOR PMSM DRIVES

by Quang Nguyen Khanh

The rapid advancement of the very large scale integration (VLSI) technology and

electronic design automation techniques in recent years has made a significant impact

on the development of complex and compact high performance control architecture

for industrial motion systems.

Specific hardware with the field programmable gate array (FPGA) technology

is now considered as a promising solution in order to make use of the reliability

and versatility of controllers. Indeed, FPGAs have been successfully used in many

control applications such as power converter control and electrical machines control.

This is because such an FPGA-based implementation can offer an effective repro-

grammable capability and overcome disadvantages of microprocessor-based or digital

signal processor-based embedded systems.

This thesis aims to provide a proof-of-concept for the control-system-on-chip and a

prototype for a fully-implemented FPGA control architecture for permanent magnet

synchronous motor (PMSM) drives. In this thesis, a special focus is given on analyti-

cal effects, design procedure, and control performance enhancement for PMSM drives

under sensor/sensorless vector control using a number of control techniques.

The control schemes include FPGA-based intelligent control and robust cascade

control for single axis and multiple axis tracking with PMSMs. An important con-

tribution of this thesis rests with a convincing demonstration of high performance

estimation schemes, using sliding mode observers and extended Kalman filters, in

terms of accuracy and robustness against noisy and/or perturbed currents for sensor-



less PMSM control based on the FPGA technology. In addition, a sequential finite

state machine is developed in this work to result in less logic gate resources, leading

to a faster processing time.

Significance of this thesis contribution includes in providing a feasible and effective

solution for the implementation of complex control strategies to fully exploit the

FPGA advantages in power electronics and drive applications.
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Chapter 1

Introduction

1.1 Motivation

Electrical drive controls are playing an important role in a wide range of industrial

control applications, commonly used in transportation systems, material handling,

precision machining, and many automation processes. The rising user demand in

terms of dynamic response, precision and flexibility forced by technological advance-

ment and energy conservation requires enhanced control. During recent decades, con-

trolled electrical drives have performed in various configurations and have become a

mature technology with an already substantial and continuously increasing worldwide

market. This is due to greater innovations in the semiconductor and microelectronics

industry in the form of efficient power-electronic devices and digital signal processors.

Mechanical loads in industry are mainly driven by AC motor drive due to its free

from the drawbacks of mechanically commutated DC drives. The stator and rotor of

an AC motor are the only contact bearing components. The spinning of the rotor

is caused by the stators magnetic field, and needs more complicated control technol-

ogy (such as the field oriented control) to implement its motion systems. Thanks

to the development of semiconductor control devices and the course of development

of different types of AC motor control algorithms, the computation requirements for

AC motor control can be met easily. This advantage has renewed variable-speed AC

motor drives and has contributed actively to the field of control engineering.
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The fast progress of the very large scale integration (VLSI) technology and elec-

tronic design automation (EDA) techniques in recent years has made a significant

impact on the development of complex and compact high performance control ar-

chitecture for industrial motion systems. Design verification and validation methods

were adopted in EDA tools to ensure correctness of the system design with very high

confidence in the right prototypical operation of the final product. For instance, EDA

Simulator Link allowed us to perform hardware verification on the FPGA board us-

ing FPGA-in-the-loop simulation. Therefore, FPGA technology is now considered as

a promising solution in order to make use of the reliability and versatility of con-

trollers. Indeed, FPGAs have been successfully used in many control applications

such as power converter control (for example, pulse-width-modulation inverters, ma-

trix converters) and electrical machines control (motion axis control, multi-machines

systems, neural network control of induction machine drives, fuzzy logic control of

power generators, and speed measurement). This is because such an FPGA-based

implementation can offer an effective reprogrammable capability and overcome disad-

vantages of microprocessor-based or digital signal processor-based embedded systems.

In this background, the motivation for this thesis is based on recent growing re-

search interest in the evaluation of FPGA-based AC drives for electrical applications.

1.2 Research Objectives

The goal of this thesis is the development of a fully-implemented FPGA control

architecture for permanent magnet synchronous motor (PMSM) drives. The main

emphasis of this research is laid on:

i. A feasible development of an effective design procedure for FPGA-based control

for PMSM drives with a substantial decrease in the resource usage, execution time



3

and control performance enhancement due to a sequential finite state machine design

method followed by computer simulation and experimental validation.

ii. Development of a hadware/software co-design of an FPGA-based intelligent

control and robust cascade control for single axis and multiple axis positioning and

tracking in dealing with unmodelled dynamics and cross-axis interferences of control

system.

iii. Development of the full hardware of the estimation and control paradigm on a

single FPGA chip. The high performance estimation schemes, using improved sliding

mode observer, adaptive extended Kalman filter, adaptive fading EKF and reduced-

order EKFs, in terms of accuracy and robustness against noisy and/or perturbed

currents for sensorless PMSM drives.

1.3 Thesis Structure

This thesis consists of nine chapters:

Chapter 1 provides the motivation of thesis. Next, the research objectives and

contributions of the thesis, are outlined.

Chapter 2 deals with FPGA technology and ModelSim/Simulink co-simulation

method. It starts with an overview of FPGA technology and issues related to digital

hardware implementation. Then, a sequential finite state machine method is pre-

sented to realize the mathematical operations, and the very high speed integrated

circuit-hardware description language is adopted to describe the circuit of the FSM.

Next, the chapter presents the ModelSim/Simulink co-simulation method. The co-

simulation work in ModelSim and Simulink environment, how two different softwares

can co-work with each other is also presented. Finally, a simulation work is introduced

to illustrate the ability of the co-simulation method.
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In Chapter 3, a brief survey of PMSM drives is presented. It begins with an

introduction of PMSM and then FPGA based realization of current vector control of a

PMSM drive is described. Next, this chapter gives a brief review of control techniques

for PMSM drives, which relates to studies in this thesis, that are intelligent control

and estimation schemes for PMSM drives.

Chapter 4 addresses the integration of a multi-loop PI and neural fuzzy control

system for multiple-axis motion positioning and tracking via the use of the FPGA

technology. In this chapter, a radial basis function neural network (RBF NN) is used

to identify the plant dynamic and provide more accurate plant information during

parameter tuning of fuzzy control (FC).

Chapter 5 presents the design and evaluation of an observer-based integral sliding

mode controller for a sensorless PMSM drive based on the FPGA technology. The

system performance can be substantially enhanced by integrating the observer-based

and integral sliding mode control techniques into speed control of a PMSM drive.

Chapter 6 addresses the design and implementation of an adaptive fading ex-

tended Kalman filter (EKF) for the sensorless PMSM on an FPGA chip. In this

chapter, the adaptive fading EKF has been developed to recover the estimation re-

sults in events of frequent and sharp state jumps in the control system.

Chapter 7 presents the design and implementation of an adaptive extended

Kalman filter for the sensorless PMSM on an FPGA chip. In this chapter, the im-

proved EKF versions can be obtained by incorporating an adjustment mechanism of

the noise covariances into the filter.

Chapter 8 presents the design and implementation of an FPGA-based architec-

ture for the speed control of sensorless PMSM drives using a reduced-order extended

Kalman filter. For the reduction of computation resources, as well as accuracy im-
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provement in the rotor position estimation, a parallel reduced-order EKF is proposed

in this chapter.

Finally, Chapter 9 presents the summary of the results obtained in this work,

conclusion reached as well as contributions made to advance the knowledge, and the

future works of research. The last section is a bibliography.
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Chapter 2

FPGA Technology, Finite State Machine, and

ModelSim/Simulink Co-simulation: An Overview

2.1 Introduction

Due to the growing complexity of control algorithms and the increasing of industrial

requirements, power electronics and drive control systems are nowadays becoming

more sophisticated. These requirements are not just limited to new algorithm issues

or high control performances. Indeed, the compactness, flexibility and low cost advan-

tages are also increasing with the adoption of the controller-on-programmable-chip

concept. Among novel digital signal processing technologies, FPGA technology not

only is an attractive solution for a wide range of applications, but also has brought

forward the concept of system-on-programmable-chip (SoPC) to implement a highly

complex control algorithm.

In this chapter, an overview of FPGA technology and methods for designing and

implementing the controller-on-programable-chip are presented. Firstly, the basic

concepts of FPGA are presented in section 2.2. Then, a sequential finite state ma-

chine (FSM) method is proposed and described in section 2.3 to show how to realize

the mathematical operations and functions computation on FPGA. This method will

be applied for VHDL (very high speed integrated circuit-hardware description lan-

guage) design for whole control algorithms in this thesis. Next, section 2.4 presents

ModelSim/Simulink co-simulation method, which is introduced and applied for the
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computer simulation work of this research. Co-simulation method is used to confirm

the effectiveness of VHDL code of control IP (Intelligent property) before realizing

this code in the FPGA based experimental system.

2.2 FPGA Technology

Field programmable gate arrays are digital integrated circuits (ICs), which are pro-

grammed by the customer or design engineers after manufacturing to perform a

very wide variety of tasks. The FPGAs technology is a middle ground between

programmable logic devices (PLDs) and ASICs because their functionality can be

customized in the field like PLDs, but they can contain millions of logic gates and are

dedicated to implement extremely large and complex combinational functions using

a hardware description language (HDL), similar to that which could be realized using

only ASICs.

2.2.1 FPGA Programming Technologies

As mentioned, FPGA is similar to a PLD but, whereas PLDs are generally limited

to hundreds of gates, FPGAs support millions of gates. FPGAs offer the possibility

to design the prototyping integrated circuit. Once the design is set, hardwired chips

are produced for faster performance. FPGAs are classified into two major categories:

- Reprogrammable: EPROM, EEPROM, Flash and SRAM based FPGAs (volatile).

- One time programmable: Fuses (destroy internal links with current), PROM

and Anti-fuse based FPGAs (grow internal links).

In the following, three different major technologies are in use today for programming

FPGAs: antifuse, SRAM, and FLASH EPROM.

- SRAM technology: It is mainly manufactured by Altera, Lucent and Xilinx
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vendors. The advantages are that such devices can be reprogrammed rapidly and

easily, and SRAM uses a standard fabrication technology that is constantly being

improved upon. Moreover, these circuits can be dynamically reconfigured partially

or entirely. The configurations are stored in the static SRAM. However, the main

drawback of SRAM-based FPGA is that each cell consumes a significant amount of

silicon real estate because the cells are formed from four or six transistors configured as

a latch. Another disadvantage is that the device’s configuration data will be lost when

power is removed from the system, so these devices always have to be reprogrammed

when the system is powered up. Therefore, the use of this technology is limited in

the case of critical safety applications such as aircraft and automotive fields [3],[96].

- Antifuse technology: It is proposed by Actel and QuickLogic vendors. This

technology is created by making physical connections, which are based on the injection

of a high current or a laser that heats and then melts the silicon layer between

endpoints. Hence, the configuration is maintained even after power is on and this

technology tends to be faster and requires lower power. However, it cannot be re-

programmed. This makes it impractical in the case of prototyping environments

[3],[96].

- Flash technology: This technology grew out of an earlier technology known

as erasable programmable read-only memory (EPROM) that allows devices to be

programmed, erased, and reprogrammed with new data. However, the main disad-

vantages of this technology are the limitation of the available internal resources and

the limited number of reconfiguration cycles [2].

Novel FPGAs that include microprocessors are used as the System-on-Chip in

computer architecture. They are typically described in a high level language, such as

VHDL, VeriLog, SystemC. Tool support, to turn the design and verify the layout, is
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provided by the device manufacturers.

2.2.2 Architecture of FPGA

FPGAs, as shown in Figure 2.1, generally consist of a two-dimensional array of con-

figurable logic blocks (CLBs) of potentially different types, including general logic,

memory and multiplier blocks, and linked to each other by an interconnection net-

work which is entirely reprogrammable. The memory cells control the logic blocks

as well as the connections so that the component can fulfill the required application

specifications [54].

� Configurable 

Logic Block 

CLB CLB CLB CLB 
CLB 

CLB CLB 
CLB 

CLB 
CLB 

CLB CLB 
CLB 

CLB 
CLB 

Programmable 

interconection 

Input/output 

block 

Figure 2.1 : General structure of FPGA

CLBs are designed with the programmable logic of FPGA. Their structures include

two, four, or more logic cells, also called logic elements. A logic element usually

consists of one or more RAM based on input look-up tables (LUTs), and one or more

flip-flops. LUTs are used to implement combinational logic. A typical logic element
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(LE) is shown in Figure 2.2. There may also be additional hardware support in each

logic element to enable other high speed arithmetic and logic operations.
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Q D 

CE 
FF 

MX 

LUT 

Y1 

Y2 

X 

X1 

X2 

X3 

X4 

Each logic element (LE) is Programmed to 
implement the desired function 

Figure 2.2 : Configurable logic block

2.3 Computation using Finite State Machine Method

Most on-chip programmable systems have relied on systolic arrays to deal with the

complicated computation of control algorithms [13],[25],[33],[34],[35],[57],[67],[69]. Al-

though systolic arrays, possessing parallel processing capability, are ideal to imple-

ment on FPGAs with a fast execution time, their parallel architecture is quite com-

plicated and requires much gate array resources.

The implementation of control algorithms on a FPGA is still at a primary level.

There is no fixed methodology for the algorithm development on these devices because

of their generic nature. Therefore, design engineers have greater flexibility to develop

strategies for implementation [67],[69],[90]. This section presents and demonstrates

that sequential finite state machine design method can solve the issue of optimal

usage of the limited resources on a FPGA. For a demonstration the computations of

some mathematical operations and special functions are considered and their detailed

implementation is described.
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2.3.1 Sum of Product Computation

Design a VHDL to compute the sum of product (SOP) as follows

y = a1x1 + a2x2 + a3x3. (2.1)

Solution: Two kinds of design method shown in Figure 2.3 are presented to realize the

computation of SOP . There are parallel processing method and sequential execution

method.

Parallel processing:
1a

Three multipliers 
and                         

two adders

X
1x

2a
X

2x

3a
X

3x

+

+
y

One clock 
execution time

(a)

� �

1x

1a

�

2x

2a

�

3x

3a

�

y

Sequential processing using FSM:

Five clocks 
execution time

One multiplier 
and                         

one adder

S1 S2 S3 S4 S5

(b)

Figure 2.3 : Sum of product computation

Parallel processing with the designed SOP circuit is shown in Figure 2.3(a), which

will operate continuously and simultaneously. The SOP circuit requires 2 adders,
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3 multipliers, and merely near one clock time to complete the overall computation.

With the advantage of fast computation ability, the parallel processing method, how-

ever, consumes much more FPGA resources. To solve this problem, a sequential

execution method using FSM to model the SOP circuit is adopted and is shown in

Figure 2.3(b). The FSM method uses one adder, one multiplier and manipulates 5

steps (or 5 clocks time) machine to carry out the overall computation of SOP. Com-

pared to the parallel processing method, the FSM method requires more operation

time (if one clock time is 80 ns, 5 clocks needs 0.4 μs) in executing SOP circuit;

nevertheless, it does not lose any computation power. As a result, the more compli-

cated computation in algorithm, the more FPGA resources will be saved by applying

FSM method. Besides, the state diagram in Figure 2.3(a) is easy to be described by

VHDL.

For the design of a VHDL to compute sum of product in equation (2.1), let us

transfer all coefficients and variables to the data type 16 bits length with Q15 format

with testing values as follows,

a0 = 0.1↔ 0.1∗32768 = 3277 = X”0CCD”; a1 = 0.2001↔ 0.2001∗32768 = 6557 =

X”199D”; a2 = −0.4525↔ −0.4525 ∗ 32768 = −14828 = X”C614”;

x0 = 0.2001 ↔ 0.2001 ∗ 32768 = 6557 = X”199D”; x1 = 0.2001 ↔ 0.2001 ∗ 32768 =

6557 = X”199D”; and x2 = 0.1↔ 0.1 ∗ 32768 = 3277 = X”0CCD”.

Therefore y = 0.01479↔ 0.01479 ∗ 32768 = 484 = X”1E4”;

2.3.2 Computation of the Polynomial Equation

Write a VHDL code to compute the following polynomial equation:

y = a5x
5 + a4x

4 + a3x
3 + a2x

2 + a1x+ a0, (2.2)
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with a5 = 2, a4 = 3, a3 = 5, a2 = 1, a1 = 12, a0 = 3, and x = 1, 2, 3, 4, 5, 6, 7, 8, 9, 10.

Solution: If we use the parallel processing method, it requires 5 adders, 5 multipliers,

and one clock time to complete the overall computation. However, for easy sequential

computation, the equation (2.2) is transferred in the following form

y = (x(x(x(xa5 + a4) + a3) + a2) + a1) + a0. (2.3)

FSM is employed to model the polynomial form in equation (2.3) and it is shown in

Figure 2.4, which uses one adder, one multiplier and needs 10 steps machine to do

the computation. The multiplier and adder apply Altera LPM (library parameter-

ized modules) standard and FSM can be easily described by VHDL. Moreover, the

operation of each step in Figure 2.4 can be completed within 80 ns (12.5 MHz clock);

therefore total 10 steps only need 0.8 μs operational times.

y

An FSM for describing the polynomial equation:

S8

��

x 3a

S2 S3

�

5a

x

4a

S0 S1

� ��

x 1a

S6S4

�

x 2a

S5

�

S7

�

x 0a

�

S9 S10

Figure 2.4 : State diagram of an FSM for describing the polynomial equation

Figure 2.5 shows the result of simulation of polynomial equation computation in

Quartus II software, if x = 0.1 then output is y = 0.137. Using Q15 format with 16

bits length, 0.1 corresponds to X”0CCD” (0.1 ∗ 32768 = 3277 = X”0CCD”) and

0.137 corresponds to X”1188” .
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Figure 2.5 : Simulation result of polynomial equation computation in Quartus II

2.3.3 Exponential Function Computation

If a digital signal processing algorithm is implemented with FPGAs and the algorithm

uses a nontrivial algebraic function such as square root or trigonometric functions or

exponential function, we can always use the Taylor series to approximate this function

[42],[69],[90]. For example, let us write a VHDL code to compute the exponential

function as,

y = e−x
2 � e−u. (2.4)

Solution: In order to simplify the computation, the input of exponential function is

limited within 0 − 4 because if u ≥ 4 the output y ≤ e−4 = 0.0183 ≈ 0 so y will be

approximated to zero, otherwise if 0 ≤ u < 4, (2.4) can be computed by using Taylor

series approximation:

y = e−u =
∞∑
r=1

(−1)nu
n

n!
. (2.5)

The bigger the order of the Taylor series is, the higher the degree of accuracy of

exponential function estimated. By MATLAB computation, a good approximation

of exponential function is shown in Figure 2.6 with 9th order. Therefore, we select

9th order in (2.5) and define r = u/4 to normalize the input value, equation (2.5)
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becomes,

y = e−4r =
12∑
n=1

(−1)n4
nrn

n!

= 1− 4r + 8r2 + 10.6667r3 + 10.6667r4 − 8.5333r5 + ...+ 0.035r9. (2.6)

To avoid the numerical overflow condition during computation, (2.6) is divided by 16

and it becomes,

y = 16
9∑

n=1

1

16
(−1)n4

nrn

n!
= 16

9∑
n=1

(−1)n4
n−2

n!
rn � 16

9∑
n=1

anr
n, (2.7)

where an =
9∑

n=1

(−1)n 4n−2

n!
∈ [−1, 1]. For easy sequential computation, we transfer the

form of (2.7) as follows,

y = 16(r(r(r(r(r(r(r(ra9 + a8) + a7) + a6) + a5) + a4) + a3) + a2) + a1) + a0. (2.8)

From (2.8) we can easily use the sequential FSM method to write a VHDL code for

exponential function computation like the polynomial equation calculation above.

Figure 2.6 : The result of exponential function with the ninth order in MATLAB

The result of exponential function computation is, if x = 0.3 (X”2666”: Q15
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format with 16 bits length) then output is y = 0.9139 (X”74FB”) as shown in

Figure 2.7.

Figure 2.7 : Simulation result of exponential function computation in Quartus II

2.4 ModelSim/Simulink Co-simulation Method

2.4.1 Introduction of ModelSim/Simulink Co-simulation

Simulation is performed by the Electronic Design Automation (EDA) Simulator link.

EDA Simulator Link provides a verification interface between MATLAB or Simulink

and the HDL simulator or FPGA board. Using EDA Simulator Link we verified our

Verilog HDL design against the Simulink model and MATLAB algorithm by using

co-simulation with a Verilog or VHDL simulator, such as Mentor Graphics Model-

Sim. The EDA Simulator Link also allowed us to perform hardware verification on

the FPGA board using FPGA-in-the-loop simulation. With EDA Simulator Link,

the MATLAB code and Simulink model developed can be used as a test bench to

generate stimulus for our HDL design for analysis of the system responses and design

elements [44],[53],[56],[66],[70],[72]. ModelSim and Simulink are two independent soft-

wares running in one computer. Therefore, a communication setup needs to be done

to co-simulate two softwares together. ModelSim software is the product of Mentor
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Graphics. Mentor Graphics was the first to combine single kernel simulator (SKS)

technology with a unified debug environment for Verilog, VHDL, and SystemC. The

combination of industry-leading, native SKS performance with the best integrated

debug and analysis environment make ModelSim an excellent choice for both ASIC

and FPGA design. The best standards and platform support in the industry make

it easy to adopt in the majority of process and tool flows [56]. The EDA Simulator

Link software consists of MATLAB functions and HDL simulator commands for es-

tablishing the communication links between the HDL simulator and The MathWorks

products. In addition, a library of Simulink blocks is available for including HDL sim-

ulator designs in Simulink models for co-simulation. EDA Simulator Link IN software

streamlines FPGA and ASIC development by integrating tools available for:

1. Developing specifications for hardware design reference models

2. Implementing a hardware design in HDL based on a reference model

3. Verifying the design against the reference design.

�

Develop specification 

Implement design 

Verify design 

EDA link IN 

Incisive Software 

HDL simulator 

MATLAB              

Signal Processing           

Filter Design Toolbox     

Simulink               

Signal Processing 

Blockset 

1 

2 
3 

Figure 2.8 : EDA Simulator Link software [56]

Figure 2.9 shows how the HDL simulator and MathWorks products fit into this

hardware design scenario. When linked with MATLAB, the HDL simulator functions
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as the client. A MATLAB server function waits for service requests that it receives

from an HDL simulator session in this scenario.

�

 

OUT 

Request 

IN 

IN 

OUT 

Response 

Link 

HDL 

simulator 

client 

MATLAB 

server 

Figure 2.9 : Linking MATLAB with HDL simulator [56]

After receiving a request, the server establishes a communication link and in-

vokes a specified MATLAB function that computes data for, verifies, or visualizes

the HDL module (coded in VHDL or Verilog) that is under simulation in the HDL

simulator. Figure 2.10 shows how a MATLAB test bench function wraps around and

communicates with the HDL simulator during a test bench simulation session.

�

MATLAB test bench M-function 

OUT 

Response 

HDL simulator 

HDL entity 

Stimulus 

IN Input     

Arguments 

Out     

Arguments 

MATLAB  

Figure 2.10 : MATLAB and ModelSim co-simulation structure [56]

ModelSim emulates the VHDL codes based on the output arguments from MAT-

LAB/Simulink as the input of designed entity and sends the result back to it. Thus,
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two softwares need to communicate and transfer data to each other. The mode

of communication that is used for a link between the HDL simulator and Matlab or

Simulink depends on whether the simulation application runs in a local, single-system

configuration or in a network configuration. If the HDL simulator and The Math-

Works products can run locally on the same system and the application requires only

one communication channel, we have the option of choosing between shared memory

and TCP/IP socket communication. In this work, communication via TCP/IP using

port 4449 is used as shown in Figure 2.11,

�
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client 

MATLAB 

server 
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�����
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client 
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server 

�����

�����

�����

���	�

Link 

Link 

Simulink 

client 

Figure 2.11 : Connection between ModelSim and Simulink via network port 4449 [56]

2.4.2 Simulation Work

Figure 2.12 shows ModelSim/Simulink co-simulation architecture of sensorless speed

control for the whole thesis simulation works. The PMSM, inverter and speed com-

mands are implemented in Simulink and the sensorless speed controller is described
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by the VHDL code in ModelSim with five modules. Module 1, Module 2 in Figure 6

perform the function of speed controller, the function of current controller and coor-

dinate transformation (CCCT) and SVPWM, and Module 3 to Module 5 perform the

function of rotor flux position estimation using parallel reduced-order EKF, full order

EKF and SMO, respectively. The sampling frequency of current and speed control is

designed with 16 kHz and 2 kHz, respectively. The clocks of 50 MHz and 12.5 MHz

supply all modules of ModelSim [66],[67],[68],[70],[71],[73].
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Figure 2.12 : The Simulink/ModelSim co-simulation architecture for sensorless speed control system
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Chapter 3

A Brief Survey on PMSM Drives

3.1 Introduction

Innovations in magnetic materials, semiconductor control devices, and control strate-

gies keep on increasing the popularity of permanent magnet synchronous motors in

drive applications.

In this chapter, a brief survey of PMSM drives is presented. It begins with an

overview of PMSM in section 3.2 and then FPGA based realization of current vector

control of PMSM drive is described in section 3.3 and 3.4. The chapter concludes with

a brief review on control techniques for PMSM drives in section 3.5, which related

to the main studies in this thesis; these are control schemes for motion axis control

systems and sensorless estimation methods for PMSMs.

3.2 Overview of PMSM [82]

With the advantages of superior power density, high performance motion control

with fast speed and enhanced accuracy, the PMSM has been increasingly used in

robotics, precision machining and many automation processes. These drives are the

best alternative for high-performance applications and are expected to see expanded

use as manufacturing costs decrease.

In permanent magnet motors, the magnets can be placed on the rotor surface, the so-

called surface-mounted permanent magnet (SPM) motors. Alternatively, they can be
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buried inside the rotor, as in the case of an interior permanent magnet (IPM) motor

(see Figure 3.1, which depicts the cross section of a SMP motor and an IPM motor).

The role of the magnets is to produce a permanent flux in the air-gap between the rotor

(a)

(b)

Figure 3.1 : Cross-section of PMSM (a) Surface mounted PMSM, and (b) Interior
PMSM.

and the stator. The SPMs have a smooth air gap, whereas saliency arises in the IPMs.

The utilization of permanent magnets in the rotor rather than by a DC field winding

facilitates efficiency, eliminates the need for brushes and slip rings, and eliminates the

electrical rotor dynamics that make control difficult especially vector control. The

permanent magnets have the disadvantages of adding significant capital cost to the

drive, although the long term cost can be less through improved efficiency. The PMSM
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also has the disadvantages of requiring rotor position feedback by either direct means

or by a suitable estimation system. Since many other high performance drives utilize

position feedback, this is not necessarily a disadvantage. Another disadvantageous

aspect of the PMSM is cogging torque, which depends on the rotor position and

exists when there are no stator currents resulting from the interaction of the magnets

and the stator teeth. There is also another pulsating torque due to space harmonics

and time harmonics. However, this cogging and pulsating effect can be virtually

eliminated either by appropriate design of the machine or by electronic mitigation.

There are variations of the stator design that are possible, particularly in regard to

slot skewing and tooth shape, that is, the stator slots or the magnet can be skewed

by one slot pitch, shaping of the magnets, coordinating the design of the number

of stator slots, slot opening and the magnet dimensions. There is a wide variety of

motor designs, each of which has its own performance and cost considerations.

Regarding the materials to retain magnetism, there are a number of diverse magnet

materials that are commonly used. Ferrite and cobalt-samarium (SmCos, Sm2Coi7)

magnets have previously been used in permanent magnet machines. Ferrite is a

reasonably priced but of less magnetic potential material that is frequently used. The

rare-earth (Neodymium-Iron-Boron - NdFeB) magnets have higher energy density

and coercivity that enable permanent magnet synchronous machines to have wider

applications. Consequently the manufacturing process is costly and complex. The

field strength of magnets decreases with an increase in temperature. The field strength

of rare earth magnets may be up to 1 T (Tesla) but it can saturate in the teeth and

increase iron losses. SmCo magnets are particularly resistant to temperature but

are comparably very expensive. Sintered NdFeB magnets have a stronger residual

field and lower cost than SmCo magnets, but are less temperature resistant. Bonded
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NdFeB magnets are not quite as strong as SmCo, but are less expensive and are more

easily shaped. Ferrite magnets are very common for lower-performance motors. Both

radial and parallel magnetization are commonly used, depending on the application.

The particular choice of magnets and other design factors is important, but does not

directly influence the basic principles of power converter control.

3.3 Current Vector Control of PMSM Drives

Vector control is one of the earliest closed loop control schemes developed to control

electric machine drives. It is widely used in industry for many electrical machines such

as permanent magnet, induction and switched reluctance machines. Current/torque

controlled and speed controlled vector drives are some of the commonly used vector

drives for practical applications [67],[69]. Details of the vector controlled PM machine

drive implementation are fully elaborated in this section .
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Figure 3.2 : Block diagram of current loop

The configuration of the current loop using vector control for a PMSM, including

a PI current controller, Park, Park−1, Clark, Clark−1, SVPWM coordinate trans-
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formation, detection of current and encoder signals, is depicted in the central block

of Figure 3.2. Under vector control, id=0, the decoupled characteristics of the motor

allows for control of only the q-axis current.

3.3.1 Coordinate Transformations

The rotor speed of PMSM is synchronous with the stator electrical speed, i.e. ωe =

(p/2)ωr and θe = (p/2)θr, where θe is the electrical angle and p is the number of

magnetic poles. The coordinate transformations between the stationary a − b − c

frame, stationary α− β frame and synchronously rotating d− q frame [70], shown in

Figure 3.3, are described as follows.

Figure 3.3 : Transformations between stationary and synchronously rotating axes

-Clark: stationary a− b− c frame to stationary α− β frame

⎡
⎢⎣fα
fβ

⎤
⎥⎦ =

⎡
⎢⎣

2
3

−1
3

−1
3

0 −1√
3

−1√
3

⎤
⎥⎦

⎡
⎢⎢⎢⎢⎣
fa

fb

fc

⎤
⎥⎥⎥⎥⎦ . (3.1)
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-Clark−1: stationary α− β frame to stationary a− b− c frame

⎡
⎢⎢⎢⎢⎣
fa

fb

fc

⎤
⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎣
1 0

−1
2

√
3
2

−1
2

−√3
2

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎣fα
fβ

⎤
⎥⎦ . (3.2)

-Park: stationary α− β frame to rotating d− q frame

⎡
⎢⎣fds
fqs

⎤
⎥⎦ =

⎡
⎢⎣ cos θe sin θe

− sin θe cos θe

⎤
⎥⎦
⎡
⎢⎣fα
fβ

⎤
⎥⎦ . (3.3)

-Park−1: Rotating d− q frame to stationary α− β frame

⎡
⎢⎣fα
fβ

⎤
⎥⎦ =

⎡
⎢⎣cos θe − sin θe

sin θe cos θe

⎤
⎥⎦
⎡
⎢⎣fds
fqs

⎤
⎥⎦ . (3.4)

3.3.2 Space Vector Pulse Width Modulation
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Figure 3.4 : 3-phase power converter and AC motor

Space vector pulse width modulation (SVPWM) is a special switching scheme

of a 3-phase power converter with the six power transistors. According to the ON-

OFF switching of upper transistors in Figure 3.4, there are eight possible combi-

nations. The eight vectors are called basic space vectors and they are denoted by

U0, U60, U120, U180, U240, U300, O000 and O111, which are shown in Figure 3.5.
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Figure 3.5 : Basic vector space and switching patterns

Using the Clark transformation, the project values in α − β axis for six basic

space vectors can be obtained. The SVPWM technique is applied to approximate

the reference voltage and it combines the switching pattern with the basic space vec-

tors. Therefore, the motor-voltage vector will be located at one of the six sectors

(S3, S1, S5, S4, S6, S2) at any given time. Thus, for any PWM period, it can be ap-

proximated by the vector sum of two vector components lying on the two adjacent

basic vectors, as the following:

Uout =
T1

T
Ux +

T2

T
Ux+60 +

T0(O000orO111)

T
, (3.5)

where T = T0 − T1 − T2 and T is half of PWM carrier period.

Computation procedures of the SVPWM design:

Step 1: Determination of the sector according to the following rule. We first modified

the Clark−1 transformation as follows,⎡
⎢⎢⎢⎢⎣
Vrefx

Vrefy

Vrefz

⎤
⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎣
1 0

−1
2

√
3
2

−1
2

−√3
2

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎣vβ
vα

⎤
⎥⎦ , (3.6)
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where Vrefx,Vrefy, Vrefz are the input signals of the SVPWM block circuit in Figure

3.2. Then we can determine the sector according to the following rules:

If Vrefx > 0 then a = 1 else a = 0, (3.7)

If Vrefy > 0 then b = 1 else b = 0, (3.8)

If Vrefz > 0 then c = 1 else c = 0, (3.9)

Sector = a+ 2b+ 4c. (3.10)

Step 2: Calculation of Tx, Ty and Tz from (3.11)

⎡
⎢⎢⎢⎢⎣
Tx

Ty

Tz

⎤
⎥⎥⎥⎥⎦ =

√
3T

Vdc

⎡
⎢⎢⎢⎢⎣
Vrefx

Vrefy

Vrefz

⎤
⎥⎥⎥⎥⎦ . (3.11)

Step 3: Determination of T1 and T2 from Table 3.1.

Table 3.1 : T1 and T2 in all specific sectors

S3 S1 S5 S4 S6 S2

T1 −TZ TZ TX −TX −TY TY

T2 TX −TY −TY TZ −TZ −TX

Step 4: Determination of the duty cycle Taon , Tbon , Tcon from (3.12) to (3.14).

Taon = (T − T1 − T2)/2 = T0/2, (3.12)

Tbon = Taon + T1, (3.13)

Tcon = Tbon + T2. (3.14)

Step 5: Assignment of duty cycles to CMPR1, CMPR2 and CMPR3 from Table 3.2.
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Table 3.2 : Assigning duty cycle to CMPx in any sector

0o-60o 60o-120o 120o-180o 180o-240o 240o-300o 300o-360o

S3 S1 S5 S4 S6 S2

CMPR1 Taon Tbon Tcon Tcon Tbon Taon

CMPR2 Tbon Taon Taon Tbon Tcon Tcon

CMPR3 Tcon Tcon Tbon Taon Taon Tbon

3.4 Digital Circuit Design of Current Vector Control

Current loop in Figure 3.2 includes current controllers and coordinate transforma-

tion (CCCT), SVPWM generation, ADC read-in and transformation. The sampling

frequency of current control is designed with 16 kHz.

3.4.1 Current Controller and Coordinate Transformations

In order to calculate park transformation and inverse park transformation, the cal-

culation of the sine and cosine value is needed for obtaining electrical angle. Sine

table and cosine table are stored in ROM in advance by MIF (Memory Initialization

File) file for sine/cosine look up. The data type is 12-bit length with Q11 format

and 2′s complement operation, so 1√
3
in equation (3.1) and

√
3
2

in equation (3.2) are

corresponding to:

1√
3
⇒ scaling(Q11)⇒ 10010011110 (3.15)

1√
3
⇒ normalization⇒ 1

2
+

1

16
+

1

128
+

1

256
+

1

512
+

1

2048
= 0.577148437 (3.16)
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√
3

2
⇒ scaling(Q11)⇒ 11011101101 (3.17)

√
3

2
⇒ normalization⇒ 1

2
+

1

4
+

1

16
+

1

32
+

1

64
+

1

256
+

1

512
+

1

2048
= 0.866210937

(3.18)

FSM Implementation of CCCT

To simplify FPGA resource while implementing the CCCT, the FSM is used to design

the circuit of Park, Park−1, Clark, Clark−1, and PI controllers in Figure 3.2. All

hardware calculations are divided into 24 states shown in Figure 3.6. The internal

circuit of CCCT performs the function of two PI controllers, table look-up for sin/cos

function and the coordinate transformation for Clark, Park, inverse Park, modified

inverse Clark. The CCCT circuit designed by FSM is shown in Figure 3.6, which

uses one adder, one multiplier, a one-bit left shifter, a look-up-table and manipulates

24 steps machine to carry out the overall computation. The data type is 12-bit length

with Q11 format and 2s complement operation. In Figure 3.6, steps S0 − S1 is for

the look-up sin/cos table; steps S2 − S5 and S5 − S8 are for the transformation of

Clark and Park, respectively; steps S9 − S14 is for the computation of d− and q−
axis PI controller; and steps S15 − S19 and S20 − S23 represent the transformation of

the inverse Park and the modified inverse Clark, respectively. The operation of each

step in FPGA can be completed within 40 ns (25 MHz clock); therefore total 24 steps

need 0.96 μs operation time. Although the FSM method needs more operation time

than the parallel processing method in executing CCCT circuit, it does not lose any

control performance in the overall system because the 0.96 μs operation time is much

less than the designed sampling interval, 62.5 μs (16 kHz) of the current control loop.

To prevent numerical overflow and alleviate windup phenomenon, the output values

of PI controller are both limited within a specific range.
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3.4.2 Circuit of SVPWM Generation

Figure 3.7 illustrates the process of generating IGBT control signals. After conversing

from two axis coordinate to three axis coordinate (modify Clark−1), the three-phase

reference output voltages (vref1, vref2, vref3), are inputs of the SVPWM block. After

five steps of the calculation of S1 - S5 program shown in Figure 3.8, the outputs

are CMPR1, CMPR2, and CMPR3. The value of triangular wave is compared with

these outputs. Each comparison has a pair of results; for example, comparator (1) in

Figure 3.8 has PWMEA-1 and PWMEA-2 which join with Dead-band unit to create

PWM1 and PWM2. Similarly, PWM3, PWM4, PWM5, and PWM6 are created.

Figure 3.7 : Circuit of SVPWM generation
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Figure 3.8 : State machines for describing SVPWM circuit
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3.5 Review on Control Techniques for Motion Axis Control

Systems

In modern control systems, single or multi-axis motion control systems have become

important elements. Motion axis control system is usually driven by linear motors

and the servo controllers for coordination of the positioning and trajectory tracking

tasks [32],[42],[51],[69],[99],[100]. These are widely used in manufacturing equipment,

transportation, and robots due to their high-speed and high-accuracy linear motions.

There are three main categories for linear motors; these are induction, permanent

magnet, and stepping motors. As is the case with mechanical transmission using

rotary motors, linear stepping motors and induction motors not only seriously reduce

linear motion speed and dynamic response, but also introduce backlash, large fric-

tional and inertial loads [52]. They are not necessarily of high performance but low

cost. However, they will not generate the high dynamic performance that permanent

magnet motors will do. Due to the advantages of superior power density, high perfor-

mance motion control with fast speed and enhanced accuracy, the permanent magnet

linear synchronous motor (PMLSM) has been increasingly used in motion control

systems. However, the PMLSM does not use conventional gears or ball screws, so

uncertainties such as parameter variations, external load disturbance, friction force

and unknown dynamics in the drive system greatly affect servo performance and di-

minish the performance of the predesigned PMLSM driving system. Therefore, many

control techniques such as robust control, adaptive control, fuzzy control and neural

network control have been developed for the axis control problem to improve tracking

performance in machine systems [32],[42],[45],[46],[69],[81],[86],[97]. First, reference

[81] presented robustness for the output tracking control problem for transportation
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within a manufacturing system. A linearised model for the motor was provided by

system identification using a dynamic signal analyser. In [45], a robust position

control is designed to reduce the control performance degradation due to system pa-

rameter changes and the effect of cogging force. The dynamic model of the motor

drive was estimated from measurements. [45] and [81] to simultaneously proposed

robust control designs for PMLSM drives, in which the controllers are based on the

parameters and model of motor; however, it is not easy to measure the parameters

of PMLSM in real world applications. To cope with this difficulty, some studies have

used conventional adaptive control for the PMLSM [86],[97]. Conventional adaptive

control method does not depend on accurate knowledge of the parameters of the

motor. Reference [86] presented the design and realization of a robust adaptive algo-

rithm to suppress the friction and ripple force phenomenon associated with a linear

motor. Unfortunately, this research focuses on friction and force ripple compensation

but not on position loop. [97] studies the high performance robust motion control of

PMLSM, which has negligible electrical dynamics, but this research only focuses on

self-tuning algorithm.

In recent years, intelligent control techniques such as fuzzy control, neural net-

works control, adaptive fuzzy control, and neural fuzzy controller have been proposed

and applied to the position control of servo motor drives to yield high operating per-

formance [32],[42],[46],[48],[50],[51],[69],[99],[100]. Reference [32] applied a fuzzy logic

scheme for on-line tuning the PI controller parameters for the speed- and position-loop

control of PMLSM drive. Fuzzy control has an advantage in simple implementation

from using heuristic inference, but it is not easy to obtain an optimal set of fuzzy

membership functions and rules. To address this issue, the concept of incorporating

fuzzy logic into a neural network has been developed thanks to the combination of the
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learning ability of the neural network and the advantage of the rule-base structure of

fuzzy logic [41],[48],[50],[51],[59],[79],[100]. For instance, if the domain knowledge or

human expert knowledge of the controller is only partially known, such integration

can automatically be incorporated into the adaptive system, in which the remaining

unknown control knowledge can then be obtained through the learning process of

a neural network [79]. Fixed membership functions with a limited number of fuzzy

rules are proposed in [41], where the defuzzifier parameters can be tuned by using

an adaptive mechanism. In many neural-control paradigms, the back-propagation

algorithm has been popularly used. However, being a gradient descent method, such

an algorithm has many problems associated with it which include network paralysis,

local minima and slow convergence [59]. Nevertheless, the execution of the intelligent

control techniques requires a lot of computations, so implementation of these highly

complex control algorithms depends on the PC systems in most studies [48],[50]. In

the development of very large scale integration technology, the FPGA has brought

more attention than before. Many practical applications in inverter [89],[104] and

motor control [47],[105] have been studied. [89] and [104] respectively have presented

an SVPWM for three-phase inverters by using FPGA. In [105], an FPGA-realization

of a speed servo controller of PMSM has been proposed, in which a conventional PI

controller was adopted in the speed loop of a PMSM drive. Reference [47], based on

FPGA, has presented an adaptive sliding-mode control for a linear induction motor

drive. However, these studies of the servo control system of an inverter or AC mo-

tor is only by FPGA hardware implementation with the use of simple computation

algorithms.



38

3.6 Review on Sensorless PMSM Estimation Techniques

In most real world applications, conventional motor control needs a position sensor or

an optical encoder to measure the rotor position for feedback to the controller to en-

sure speed control precision. However, a position sensor presents some disadvantages

affecting the cost, reliability, and noise immunity and is subject to such conditions as

humidity and corrosion [88]. In recent years, the sensorless control of PMSM drives

has become an important topic, and various sensorless control strategies have been

investigated [1],[10],[17],[20],[21],[67],[70],[71],[73],[91],[102],[103]. References [17] and

[102] have conducted a comprehensive literature review of estimating the rotor po-

sition to alleviate the need of physical sensors, which is the key to achieving rotor

position and speed of sensorless PMSM drives. There are two main streams of re-

search: Saliency- and model-based methods.

- In saliency-based methods, the detection of rotor position can be carried out

by using the additional signals (current [75] or voltage [1],[11]) injected into the mo-

tor. The applied signals interact with the rotor saliency the motor, rotor position

information is determined by processing the resulting response (voltage or current).

- Model-based methods in which fundamental-frequency models, measured stator

currents, and voltages aimed to estimate the rotor position information thanks to

the estimation of the back electromotive force (EMF) induced in the motor windings.

These methods show good performance for solutions in the medium and high speed

range since the magnitude is proportional to the rotor speed [67],[70],[71].

In the following, we also provide a survey of the most recent works focus on

model-based estimation methods.



39

3.6.1 PMSM Drive Model

The typical model of PMSM is expressed in d − q synchronous rotating reference

frame as follows,

did
dt

= − rs
Ld

id + ωe
Lq

Ld

iq +
1

Ld

vd, (3.19)

diq
dt

= −ωe
Ld

Lq

id +− rs
Lq

iq +
1

Lq

vq − ωe
λm

Lq

, (3.20)

where Ld, Lq are the d and q axis inductance; vd, vq are the d and q axis voltages; id,

iq, are the d and q axis currents, rs is the phase winding resistance; ωe is the rotating

speed of magnet flux; and λm is the permanent magnet flux linkage.

The coupled and nonlinear model of PMSM under field orientation can be ex-

pressed in d− q axes by,⎡
⎢⎣vd
vq

⎤
⎥⎦ =

⎡
⎢⎣rs + sLd −ωeLq

ωeLq rs + sLd

⎤
⎥⎦
⎡
⎢⎣id
iq

⎤
⎥⎦+ {(Ld − Lq)(−ωeid − i̇q) + ωeλf}

⎡
⎢⎣0
1

⎤
⎥⎦ , (3.21)

which can be re-transformed to the α− β axes as follows:⎡
⎢⎣vα
vβ

⎤
⎥⎦ =

⎡
⎢⎣ rs + sLd ωe(Ld − Lq)

−ωe(Ld − Lq) rs + sLd

⎤
⎥⎦
⎡
⎢⎣iα
iβ

⎤
⎥⎦

+ {(Ld − Lq)(−ωeid − i̇q) + ωeλf}

⎡
⎢⎣− sin θe

cos θe

⎤
⎥⎦ . (3.22)

This model is useful and can be applied to any type of synchronous motors such as

the surface mounted PMSM when (Ld = Lq), or interior PMSM when (Ld < Lq).

3.6.2 Survey on Model-based Estimation Methods

Back EMF-based Method
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The estimators where the estimated quantity is the back-EMF of PMSM model

in equation (3.21) or the extended-EMF (EEMF) components in equation (3.22)

including the rotor position information. The second term on the right side of (3.22)

is defined as the EEMF,

E =

⎡
⎢⎣Eα

Eβ

⎤
⎥⎦ = {(Ld − Lq)(−ωeid − i̇q) + ωeλf}

⎡
⎢⎣− sin θe

cos θe

⎤
⎥⎦ . (3.23)

The back-EMF which is estimated based of the voltage and current measurements,

is supposed to be accurate and then contains the position. The position of magnet

can be obtained from its phase and the rotor position estimation generally calculated

from the EEMF as,

θ̂e = tan−1
(
−Eα

Eβ

)
= tan−1

(
−vα − (rs + sLd)iα − ωe(Ld − Lq)iβ
vβ − (rs + sLd)iβ − ωe(Ld − Lq)iα

)
. (3.24)

The method is presented in [16],[22], which can be suitable to both surface mounted

or interior PMSM. In addition, this method is fast and straightforward without using

complex observers. However, the EEMF is influenced by stator currents, which vary

during motor transient state, so the performance of this method is subject to the

accuracy of the sensed current/voltage and machine parameters.

Flux-Based Method [74]

The flux linkage is estimated from measured voltages and currents. At steady state,

where diα/dt = 0 and diβ/dt = 0, the stator and rotor flux vectors rotate syn-

chronously. Therefore, if the position angle of the stator flux can be calculated, the

rotor flux angle can also be determined, which is the same as the rotor position an-

gle. The voltage and current components in the stator stationary reference frame in

equation (3.22) and the voltage equation of the machine are taken to compute the
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stator flux linkage as follows,
⎧⎪⎪⎨
⎪⎪⎩
ψsα =

∫
(vα − rsiα)dt

ψsβ =
∫
(vβ − rsiβ)dt

, (3.25)

and then rotor flux linkage is calculated by
⎧⎪⎪⎨
⎪⎪⎩
ψrα = ψsα − Lsiα

ψrβ = ψsβ − Lsiβ

, (3.26)

where ψsα, ψsβ and ψrα, ψrβ are respectively the stator and rotor flux linkages in fixed

coordinates.

Based on the initial position, machine parameters, and relationship between the flux

linkage and rotor position, the rotor position can be estimated with

θ̂e = tan−1
(
ψrα

ψrβ

)
= tan−1

(
ψsα − Lsiα
ψsβ − Lsiβ

)
. (3.27)

The advantage of this method is that it may work well in the steady state, but

the transient performance is usually unsatisfactory. The accuracy of the flux-based

methods highly depends on the quality and accuracy of the voltage and current mea-

surements. Since integrators are needed in this method, it has also an error accumu-

lation problem for integration at low speeds [74].

Inductance-Based Method

This method is based on the difference between the d− and q− inductance since it is

a function of the rotor position. The phase inductance can be calculated analytically

from the instantaneous voltage and current information. Then the rotor position can

be found with the calculated phase inductance. In a PMSM control system, if the

switching frequency is high enough, then the variation of inductance with the rotor

position can be neglected during one switching period. With this assumption the
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instantaneous voltage equation for the phase a of the motor can be obtained from

va = Raia + Lsa
dia
dt

+ ea, (3.28)

where all of the variables are phase a quantities, va is the terminal phase voltage, ia

is the phase current, Lsa is the synchronous inductance, Ra is the phase resistance,

and ea is the back EMF.

From equation (3.28), the phase inductance can be expressed as

Lsa =
va −Raia − ea

sia
. (3.29)

Based on equation (3.29), the rotor position can be obtained from a lookup table

method, in which the table of stored data contains the relationship between the rotor

position and calculated phase inductance. The accuracy of this method also highly

depends on the quality and accuracy of the voltage and current information. Since

the current and position derivatives need to be calculated in every switching cycle,

the rotor position is subjected to a high level of measurement noise.

Linear State Observer

The EMF or EEMF components can be estimated by using linear state observer,

in which the EMF is a kind of disturbance voltage. This method is based on the

electrical model of motors and estimates the EMF. For surface mounted PMSM, the

circuit equation of PMSMs in (3.22) is re-written as,⎡
⎢⎣vα
vβ

⎤
⎥⎦ =

⎡
⎢⎣rs + sLs 0

0 rs + sLs

⎤
⎥⎦
⎡
⎢⎣iα
iβ

⎤
⎥⎦+ ωeλf

⎡
⎢⎣− sin θe

cos θe

⎤
⎥⎦ , (3.30)

where Ls � Ld = Lq and s is differential operator. In addition, let us define the EMF

as

e =

⎡
⎢⎣eα
eβ

⎤
⎥⎦ � ωeλf

⎡
⎢⎣− sin θe

cos θe

⎤
⎥⎦ . (3.31)
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The EMF includes the position information from the flux. By estimating the EMF, it

is possible to get θe from its phase. To observe the EMF, equation (3.30) is rewritten

in the state space form by,

d

dt

⎡
⎢⎣iα
iβ

⎤
⎥⎦ = − rs

Ls

.

⎡
⎢⎣iα
iβ

⎤
⎥⎦+

1

Ls

⎡
⎢⎣vα
vβ

⎤
⎥⎦− 1

Ls

⎡
⎢⎣eα
eβ

⎤
⎥⎦ . (3.32)

In [9], to construct the disturbance observer, they assume that

d

dt

⎡
⎢⎣îα
îβ

⎤
⎥⎦ = − rs

Ls

.

⎡
⎢⎣îα
îβ

⎤
⎥⎦+

1

Ls

⎡
⎢⎣vα
vβ

⎤
⎥⎦− 1

Ls

⎡
⎢⎣êα
êβ

⎤
⎥⎦ , (3.33)

d

dt

⎡
⎢⎣êα
êβ

⎤
⎥⎦ = G.

d

dt

⎡
⎢⎣îα − iα

îβ − iβ

⎤
⎥⎦ , (3.34)

where the

[
îα îβ

]T
is the estimated current on fixed coordinates and

[
êα êβ

]T
is the

estimate of the back EMF, and G is the observer gain matrix, which can be chosen by

using the pole placement technique to obtain the desired tracking performance. Using

the estimate of the back EMF, the estimated flux angle or rotor magnet position can

be derived as θ̂e = tan−1
(
− êα
êβ

)
.

This observer has been developed for interior PMSM [9],[24],[27],[58],[60]. In [58],

the extended EMF in the rotating reference frame is utilized in order to estimate both

position and speed, while the EEMF model in the stationary frame is used in [9].

In reference [9], the structure of the current observer is the same as that in equation

(3.33), but the expression for the EMF observer in equation (3.34) is slightly different

as,

d

dt

⎡
⎢⎣êα
êβ

⎤
⎥⎦ = A

⎡
⎢⎣0 −1
1 0

⎤
⎥⎦
⎡
⎢⎣êα
êβ

⎤
⎥⎦+G.

d

dt

⎡
⎢⎣îα − iα

îβ − iβ

⎤
⎥⎦ . (3.35)
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Reference [27] have proposed a state observer, in which the rotor position can be

obtained by estimating flux quantities. In this method, the selection of the observer

gains is important to assure the stability of the observer. The variations of machine

parameters slightly affect the accuracy of the estimation since the machine parameters

are needed in the observers’ models, e.g. the variation is because of the cross-coupling

effect between the d− and q− axis equations. Besides, the quality of voltage and

current measurements also affect the performance of the observer.

Sliding Mode Observer [70],[73]

Linear state observers are based on the linear state space equations and use linear

state feedback as stated in equations (3.34) and (3.35). By using nonlinear state

feedback, non-linear state observers are also good methods for the rotor position

estimation.

A sliding mode observer (SMO) is a popular method for non-linear observers.

In the literature, the SMO usually is constructed based on the PMSM models in

the stationary reference frame [10],[18],[39],[65],[70],[73],[91]. For a surface mounted

PMSM, a typical SMO is designed as:

d

dt

⎡
⎢⎣îα
îβ

⎤
⎥⎦ = − rs

Ls

.

⎡
⎢⎣îα
îβ

⎤
⎥⎦+

1

Ls

⎡
⎢⎣vα
vβ

⎤
⎥⎦− 1

Ls

k.sign

⎡
⎢⎣îα − iα

îβ − iβ

⎤
⎥⎦ , (3.36)

where sign(.) is the sign function; and k is the gain of the switching terms. Here,

the sliding surface is defined by ei �
[
ĩα ĩβ

]T
=

[
îα − iα îβ − iβ

]T
. By choosing

the gain k to be large enough, i.e, k ≥ max(|eα|, |eβ|), the inequality eTi .ėi < 0 can

be reached and the SMO can induce a sliding mode, i.e, ei = ėi = 0. In this induced

sliding mode, the back EMF can be estimated by:⎡
⎢⎣êα
êβ

⎤
⎥⎦ = k.sign

⎡
⎢⎣îα − iα

îβ − iβ

⎤
⎥⎦ , (3.37)
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then the rotor position can be computed by the estimated EMFs [70],[73].

MRAS-Based Method

The model reference adaptive system (MRAS) based method has the desired state

from two different models, which are connected in parallel; one is the reference model

and another one is the adjustable model. The error between the two models is used

to estimate the unknown parameter. In MRAS only the adjustable model should de-

pend on the unknown parameter, the reference model is independent of the unknown

parameter. The error signal is fed into the adaptation mechanism, which provides

the estimated quantity which is used to tune the adjustable model. The output of

the adjustable model is expected to converge with the output of the reference model

under a proper adaption mechanism. In [93], the reference model is written in the

following form:

d

dt
x = A.x+ u , (3.38)

where x =

⎡
⎢⎣îd +

λm

Ld

îq

⎤
⎥⎦, u =

⎡
⎢⎣

vdLd+λm

L2
d

vq
Lq

⎤
⎥⎦, and A =

⎡
⎢⎣ −

Rs

Ld

Lqωe

Ld

−Ldωe

Lq
−Rs

Lq

⎤
⎥⎦ .

The adjustable model is defined as:

d

dt
x̂ = Â.x̂+ u . (3.39)

In the adjustable model, the estimated speed information is used as a corrective

term in the estimation of matrix A. The adaptive mechanism for the speed update is

expressed as:

ω̂e =

∫ t

0

k1[idîq − iq îd − λm

Ld

(iq − îq)]dτ + k2[idîq − iq îd − λm

Ld

(iq − îq)] + ωe(0),

(3.40)
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using the Popov super stability theory to guarantee stability of the MARS and the

convergence of the speed estimation [14]. If the tracking errors between the states of

the adjustable and reference models are close to zero, the estimated speed obtained

by equation (3.40) can be viewed as the actual speed. Then the rotor position can

be obtained by using an integrator, i.e., θe =
∫ t

0
ω̂edt.

Extended Kalman Filter [67]

Kalman filtering is an optimal, stochastic approach to state estimation and filtering

in linear systems. An EKF [7],[8],[36],[67],[92], which is a nonlinear version of the

recursive stochastic optimal Kalman filter, can be used for estimation of joint state

and parameters as well as unknown disturbances in noisy environments. The EKF

is an optimal estimator which minimizes the cost function J =
m∑

n=1

E{x̃2(n)} in the

least square sense, in which x̃(n) is defined by the difference between the system

state x(n) and its estimate x̂(n), i.e., x̃(n) = x(n) − x̂(n). The EKF algorithm

can be described in two-step recursive equations: prediction and update. The EKF

is a good candidate for the online estimation of the rotor position of PMSM. In

the EKF algorithm, the system state variables can be selected in either the rotor

reference frame [8] or the stationary reference frame [7], i.e., x(t) =

[
id iq ωe θe

]T

and x(t) =

[
iα iβ ωe θe

]T
, respectively. Due to the recursive stochastic optimal

Kalman filter, it has great advantages in the areas of robustness to measurement noise

and the inaccuracy of machine parameters [71].

3.6.3 Remarks

As mentioned, the estimation of the rotor position and speed can be achieved by

using an algorithmic estimator to alleviate the need for physical sensors. Available

sensorless techniques are mainly classified into two different types: the high frequency
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(HF) injection method and the model-based techniques.

These model-based methods are especially effective for medium and high speed

range applications. These methods also can be generally classified into two different

categories: open-loop calculation (e.g., back EMF-, rotor flux-, or stator inductance-

based method) and closed-loop observers (e.g., disturbance observers, SMO, MRAS,

and EKF). The open-loop calculation-based estimation methods are straightforward

to implement. However, the accuracy of the rotor position obtained by using these

methods is restricted by the numerical resolution, which depends on the sampling

frequency and control-loop frequency of the control system. The accuracy of these

methods strongly depends on the accuracy of the machine parameters and voltage

and current measurements. Compared to open-loop speed estimators, closed-loop

observers are more robust to motor parameter variations and provide high accuracy

over a wide speed range with relative simple implementation.

The HF signal injection method, using the zero crossing of the silent phases back

EMF of the motor to detect its rotor position, is more suitable for low-speed op-

erations. In this method, the HF signal may bring noise to the system to degrade

its performance, and its real-time implementation would need some special hardware

support, which increase the complexity and cost [1],[6],[43],[61]. The rotor position

estimation can be achieved via extended Luenberger state observers [64] or nonlinear

observers where the estimation error is driven to zero using the principles of, for exam-

ple, sliding modes, Kalman filtering, or a MRAS. For the sensorless drive technology,

while a SMO [18],[38],[65] may suffer from the chattering effect and the MRAS esti-

mator [61] may have a difficulty in the parameter adaptation, an extended Kalman

filter [30],[36],[40],[92], which is a nonlinear version for the recursive stochastic opti-

mal Kalman filter, can be used for the estimation of the joint state and parameters as
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well as unknown disturbances in noisy environments. However, EKF requires heavy

on-line matrix computing and the complex computation [30]. Difficulties exist in the

selection or in the inaccuracies of design parameters in the EKF equation. Therefore,

an extensive number of works has been published to improve the performance of the

extended Kalman filter [66],[67],[71].
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Chapter 4

FPGA-based Intelligent Control for Multiple Axis

Tracking Motion System

4.1 Introduction

Nowadays, manipulators or service robots are gradually replacing humans in assembly

lines with high accuracy or in dangerous tasks that require positioning a tool or mov-

ing it along a trajectory. However, most automated manipulators and parallel robots

have a very limited range of motion and workspace capabilities which prevent their

flexibility and high precision. To overcome this problem, high performance multi-axis

control systems are required in the assembly industry. Typical for multi axis control

is a linear X-Y table that is driven by linear motors and servo controllers for coor-

dination of positioning and trajectory tracking tasks. Nevertheless, the X-Y table

motion is usually subject to unmodelled dynamics, external load disturbance and

the cross-axis interferences, which often deteriorate the system performance during a

machining process.

On the control implementation aspect, the compactness, flexibility and low cost

advantages have recently given rise to the adoption of the controller-on-programmable-

chip concept in designing multiple-axis motion control systems. Indeed, the FPGA

technology has been widely recognized for its programmable hard-wired feature, fast

time-to-market, shorter design cycle, embedding processor, low power consumption,

and higher density for digital signal processing implementation with applications to
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motion and robotic control systems [37],[69],[76],[77],[80],[87],[101]. In FPGA-based

system developments, an essential requirement is to keep the number of logic elements

and resource usage as small as possible. Therefore, intelligent control is usually more

favorable than rigorous techniques for on-chip controller designs.

Many intelligent control techniques such as fuzzy sliding mode control, fuzzy con-

trol, neural network control, and adaptive control have been developed for FPGA-

based application to the axis control problem to improve tracking performance in a

machining and assembly process (see, e.g. [41],[49],[52] and references therein). Al-

though fuzzy control has an advantage in simple implementation from using heuristic

inference, it is not straightforward to obtain an optimal set of fuzzy membership

functions and rules. To address this issue, fixed membership functions with a lim-

ited number of fuzzy rules are proposed in [41], where the defuzzifier parameters can

be tuned by using an adaptive mechanism. In this study, for position control of a

permanent magnet linear synchronous motor, parameters of the fuzzy controller are

tuned by using a radial basis function neural network whose weights, node centers

and spreads are in turn adjusted from the gradient descent method. For further

performance improvement and application to robotic assembly, in this work we also

propose a PI speed controller in the inner loop, refine the position controller design

for the outer loop, and investigate motion performance as well as feasibility of the

FPGA-based implementation of the control paradigm for an X-Y table.

This chapter addresses the integration of a multi-loop PI and neural fuzzy control

system for multiple-axis motion positioning and tracking via the use of the FPGA

technology. The VHDL is adopted to describe advantageous behaviors of the pro-

posed control system. To implement the whole control paradigm, the FPGA chip is

developed in the Quartus II and Nios II software environment, provided by Altera for
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analysis and synthesis of VHDL designs. Simulation and experimental results of the

software/hardware co-design have verified the high performance and effectiveness of

the proposed chip-based control system in positioning and trajectory tracking for the

X-Y table motion.

4.2 System Description and Neural Fuzzy Controller Design

The proposed axis control system for both X- and Y coordinates is shown in Figure

4.1. The control system comprises two programmable servo-control systems for both

axes; each includes a motion planner, reference model, a PI speed controller in the

inner loop and a neural fuzzy controller together with its tuning mechanism in the

position loop which are all implemented in a single FPGA chip.
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Figure 4.1 : Motion control system for X- and Y-axes
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4.2.1 PMLSM Drive Model

The dynamic model of a typical PMLSM can be described in the synchronous rotating

reference frame, as follows

did
dt

= −Rs

Ld

id +
π

τ

Lq

Ld

ẋpiq +
1

Ld

vd, (4.1)

diq
dt

= −π

τ

Ld

Lq

ẋpid − Rs

Lq

iq − π

τ

λf

Lq

ẋp +
1

Lq

vq, (4.2)

where vd, vq and id, iq are respectively the voltages and currents in the motor’s d− q

frame, Rs is the phase winding resistance; Ld, Lq are the d and q axis inductance; ẋp

is the translator speed; λf is the permanent magnet flux linkage; τ is the pole pitch.

The developed electromagnetic thrust force is given by

Fe =
3π

2τ
((Ld − Lq)id + λf )iq. (4.3)

The current control of a PMLSM drive is based on a vector control approach. That is,

if we control id to zero, the PMLSM will be decoupled, so that control of a PMLSM

will become as easy as the control of a DC linear motor. After simplification and con-

sidering the mechanical load, the model of a PMLSM can be written as the following

equations,

Fe =
3

2

π

τ
λf iq � Ktiq, (4.4)

where Kt =
3
2
π
τ
λf , and the mechanical dynamic equation of a PMLSM is

Fe − FL = Mm
d2xp

dt2
+ Bm

dxp

dt
, (4.5)

where Fe, Kt, Mm, Bm and FL represent respectively the motor thrust force, the force

constant, the total mass of the moving element, the viscous friction coefficient and

the external load force.
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4.2.2 Neural Fuzzy Control Design

The speed control loop has a PI controller, whose gains KpS and KiS can be designed

by using any conventional control technique. As positioning and tracking is our focus

in this study, the design of the position controller using the proposed NFC in the

outer loop will be detailed here.

Fuzzy Controller

Let the tracking error and the change of the error, e, de, be defined as

e(k) = xm(k)− xp(k), (4.6)

de(k) = e(k)− e(k − 1), (4.7)

where xm are xp are respectively the model reference and the plant translational

displacement. A fuzzy position controller of the PI type is designed as follows,

u(k) = ui(k − 1) + (kp + ki
T

2
)uf (k) + ki

T

2
uf (k − 1), (4.8)

where kp, ki are the PI controller gains, ui is the integral control output, T is the

sampling period, and uf is the output variable of a fuzzy controller (FC) with e and

de as the input variables. The FC design can be summarized as:

(a) Take the e and de as the input variables of the FC, and define their linguist

variables as E and dE. The linguist value of E and dE are (A0, A1, A2, A3, A4, A5, A6)

and (B0, B1, B2, B3, B4, B5, B6), respectively. Each linguist value of E and dE is based

on the symmetrical triangular membership function which is shown in Figure 4.2.

(b) Compute the membership degree of e and de. Only two linguistic values are

excited (resulting in a non-zero membership) in any input value, and the membership
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degree μAi
(e) can be derived by

μAi
(e) =

ei+1 − e

2
and μAi+1

(e) = 1− μAi
(e), (4.9)

where ei+1 � −6 + 2(i + 1). Similar results can be obtained in computing the mem-

bership degree μBj
(de).

(c) Select the initial fuzzy control rules by referring to the dynamic response

characteristics, such as,

IF e is Ai and �e is Bj THEN uf is cj,i, (4.10)

where Ai and Bj are fuzzy numbers, and cj,i is a real number, i, j = 0, 1, 2, .., (Nr−1),

in which the number of rules, Nr, is usually an odd integer. The consequence cj,i will

be tuned by a neural network-based adjusting mechanism. The graph of fuzzification

and fuzzy rule table is shown in Figure 4.2.

(d) In Figure 4.2, since only 4 out of the totalN2
r rules (49 fuzzy rules) are activated

at a time, by using the singleton fuzzifier, product-inference rule, and central average

method for defuzzification, the fuzzy control signal can be expressed as:

uf (e, de) =

i+1∑
n=i

j+1∑
m=j

cm,n[μAn(e) ∗ μBm(de)]

i+1∑
n=i

j+1∑
m=j

μAn(e) ∗ μBm(de)

�
i+1∑
n=i

j+1∑
m=j

cm,n ∗ dn,m, (4.11)

where dn,m � μAn(e) ∗ μBm(de) and
i+1∑
n=i

j+1∑
m=j

dn,m = 1.

RBF NN-based Adjusting Mechanism of FC

The adjustment of the fuzzy controller parameters cm,n is achieved with a neural

network by using the least squared error criterion. For this, the cost function

Je �
1

2
e2 =

1

2
(xm − xp)

2 (4.12)
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Figure 4.2 : The symmetrical triangular membership function of e and de, fuzzy rule
table, fuzzy inference and fuzzification

is minimized with the adaptation law:

�cm,n = −α ∂Je
∂cm,n

, (4.13)

where α > 0 represents a convergence rate and ∂Je
∂cm,n

can be obtained from the chain

rule and by using (4.12) and (4.11):

∂Je
∂cm,n

=
∂Je

∂e

∂e

∂xp

∂xp

∂uf

∂uf

∂cm,n

= −edn,m ∂xp

∂uf

. (4.14)

To realize ∂xp

∂uf
and incorporate also the controlled system dynamics, a self-adjusted

adaptive RBF NN comprising one input layer, one hidden layer and one output layer

is used as shown in Figure 4.3. The network input vector is given by

X = [u(k), xp(k − 1), xp(k − 2)]T , (4.15)

and its output is expressed by

xrbf =

q∑
r=1

wrhr, (4.16)
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where wr and hr are respectively the weight and output of the rth neuron. The radial

basis function is of the Gaussian form:

hr = exp(−‖X − cr‖2
2σ2

r

), r = 1, 2, 3, 4, ....q, (4.17)

where cr = [cr1, cr2, cr3]
T and σr are respectively the center and spread, and ‖.‖

denotes the Euclidean norm. For adjustment of the network parameters, the following

instantaneous cost function is defined:

Jn =
1

2
(xp − xrbf )

2 � 1

2
e2nn, (4.18)

from which, the network weights, center and spread can be respectively updated

according to the gradient descent method and (4.17) as follows:

wr(k + 1) = wr(k) + ηenn(k)hr(k), (4.19)

crs(k + 1) = crs(k) + ηenn(k)wr(k)hr(k)
Xsr(k)− crs(k)

σ2
r

, (4.20)

σr(k + 1) = σr(k) + ηenn(k)wr(k)hr(k)
‖X − cr‖2

2σ3
r

, (4.21)

where r = 1, 2, ..q, s = 1, 2, 3 and η > 0 is a learning rate. Now from the chain rule

and equation (4.8) we obtain:

∂xp

∂uf

=
∂xp

∂u

∂u

∂uf

∼= (kp + ki)
∂xp

∂u
, (4.22)

where the Jacobian ∂xp

∂uf
can be derived from (4.17) and the relation xp = xrbf + enn

of the RBF NN shown in Figure 4.3 as:

∂xp

∂u
≈ ∂xrbf

∂u
=

q∑
r=1

wrhr
cr1 − u(k)

σ2
r

. (4.23)

Thus, from (4.13), (4.14), (4.22) and (4.23), the parameters cm,n of the fuzzy controller

can be adjusted as follows:

�cm,n(k) = αe(k)(kp + ki)

q∑
r=1

wrhr
cr1 − u(k)

σ2
r

, (4.24)

with m = j, j + 1 and n = i, i+ 1.



57

�

h1

h2

-

+ 
enn

xrbf

u(k)

xp(k) 

xp(k-1) 

xp(k-2) 

∑

hm

w1

w2

wm
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Figure 4.3 : Self-adjusted RBF NN schema

4.3 Hardware/software Co-design of Motion Control

The internal architecture of the proposed FPGA-based motion control IC for the

PMLSM drive is shown in Figure 4.4. The FPGA uses Altera Stratix II EP2S60

which has 48,352 ALUTs, maximum 718 user I/O pins, total 2,544,192 RAM bits,

and a Nios II embedded processor is downloaded into the FPGA to construct an

SoPC environment. The motion control IC which comprises a Nios II embedded pro-

cessor IP and a position control IP, is designed under the SoPC environment. The

position control IP implemented by hardware is adopted to realize the function of a

position NFC and speed PI controller, a current controller and coordinate transfor-

mation (CCCT), SVPWM generation, a quadrature encoder pulse (QEP) detection

and transformation, ADC interface. The sampling frequency of current control is

designed with 16 kHz. The operating clock rate of the designed FPGA controller is

50 MHz and the frequency divider generates 50 MHz (Clk), 25 MHz (Clk-step), 12

kHz (Clk-cur) and 2 kHz (Clk-sp) clock to supply all module circuits of the position
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control IP.
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Figure 4.4 : FPGA architecture of the motion control system

A finite state machine (FSM) is employed to model the NFC in position loop

and PI controller in speed loop which is shown in Figure 4.5, which uses adders,

multipliers and registers, and manipulates 102 steps machine to carry out the overall

computation. With the exception of the data type in the reference model are 24-

bits, others data types are designed with 12-bits length, 2’s complement and Q11

format. Although the algorithm of the NFC is highly complex, the FSM can give a

very adequate modeling and can easily be described by VHDL. Furthermore, steps

S0−S5 execute the computation of the reference model output; steps S6−S8 are for

the computation of velocity, position error and error change; steps S9 − S13 execute

the fuzzification and look-up the fuzzy table; S14 − S22 are for the defuzzification;
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S23 − S27 are the computation of velocity and current command; S28 − S91 describe

the computation of RBF NN and Jacobian transformation; finally S92− S101 execute

the tuning of fuzzy rule parameters. The operation of each step in Figure 4.5 can be

completed within 40 ns (25 MHz clock) in FPGA; therefore the total of 102 steps

need a 4.08 μs operation time.

The Nios II embedded processor IP is depicted to perform the function of the

position command in the software, which includes the main program and the interrupt

service routine (ISR) by 2 ms sampling interval. All programs are coded in the C

programming language. Then, through the complier and linker operation in the Nios

II IDE (Integrated Development Environment), the execution code is produced and

can be downloaded to the external Flash or SDRAM via JTAG interface.

Finally, the FPGA utility of the motion control IC is evaluated. The circuit

of a NFC uses 19,225 ALUTs resource and the overall circuits including a Nios II

embedded processor IP (4,744 ALUTs and 45,824 RAM bits) as well as a position

control IP (22,954 ALUTs and 301,056 RAM bits), use 57.3 % of the ALUTs resource

and 13.6 % of the RAM resource of a Stratix II EP2S60.
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Figure 4.5 : State diagram of an FSM for describing the neural fuzzy controller
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4.4 Experimental Results on One Axis of Motion System

4.4.1 Experiment Set-Up

The overall experimental system depicted in Figure 4.6 includes an FPGA (Stratix

II EP2S60F672C5), a voltage source IGBT inverter and a PMLSM. The PMLSM is

cog-free linear motor and a stroke length with 600 mm. The parameters of the motor

are: Rs = 27 Ω , Ld = Lq = 23.3 mH, Kt = 79.9 N/A. The input voltage, continuous

current, peak current (10% duty) and continuous power of the PMLSM are 220 V ,

1.6 A, 4.8 A and 54 W , respectively. The maximum speed and acceleration are 4 m/s

and 4 g but depend on the external load. The moving mass is 2.5 Kg, the maximum

payload is 22.5 Kg and the maximum thrust force is 73 N under continuous operating

conditions. A linear encoder with a resolution of 5 μm is mounted on the PMLSM as

the position sensor, and the pole pitch is 30.5 mm (about 6100 pulses). The inverter

has three sets of IGBT power transistors. The collector-emitter voltage of the IGBT

is rated 600 V ; the gate-emitter voltage is rated ±20 V , and the DC collector current

is rated 25 A and for a short time (1 ms) is 50 A. Input signals of the inverter are

PWM signals from the FPGA device.

4.4.2 Experimental Results

The dynamic performance of the PMLSM drive is evaluated while the NFC is applied

in the position control loop of Figure 4.1. The control sampling frequency of the cur-

rent, speed and position loops are designed as 16 kHz, 2 kHz and 2 kHz, respectively.

In the proposed motion control IC, the current controller, the speed controller and

the NFC are all realized by hardware in FPGA. The NFC is used in the position

loop, the membership function and the initial fuzzy rule table are designed, and the
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Figure 4.6 : Experiment set-up photograph

PI gains are chosen by kp = 0.3, ki = 0.003. The transfer function of the reference

model is a second order system with the natural frequency of 20 rad/s and damping

ratio of 1. Figure 4.7 shows the position step responses of the mover using the FC

and NFC when the position command is a 0.5 Hz square wave with amplitude varied

at 0 − 10 mm and 20 − 30 mm. The parameters cj,i of the fuzzy rule table are ad-

equately selected at the 0 kg external load condition, which are presented in Figure

4.7, and the step response shows a good dynamic response with a rising time of 0.2

s, no overshoot and a near-zero steady state in Figure 4.9(a). However, when 11 kg

external load is added upon the mover and the same fuzzy control rule table and

controller parameters are used, the position dynamic response worsens and exhibits

a 19.5 % overshoot in Figure 4.9(b). It reveals that the dynamic performance of the

PMLSM is affected by the external load on the mover. Accordingly, a NFC is adopted

in Figure 4.1 to solve this problem. When the proposed NFC is used with learning

rate being 0.05, the tracking results are highly improved and are presented in Figure

4.9(c). Initially, the mover of the PMLSM tracks the output of the reference model
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with overshoot. After one or two square wave commands, the cj,i parameters are

tuned to adequate values as shown in Figure 4.8, and the mover can closely follow

the output of the reference model. Therefore, the experimental results in Figure 4.9

demonstrate that the proposed FPGA-based NFC for the PMLSM drive is effective

and robust.

Figure 4.7 : Membership functions, fuzzy rule table and surface for step responses

Figure 4.8 : Rule table after adjustment and the control effort surface
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(a)

(b)

(c)

Figure 4.9 : Step response at 0− 10 mm to 20− 30 mm square save command under
case of (a) FC without external load (b) FC with 11 Kg external load (c) NFC with
11 Kg external load
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4.5 Computer Simulation of Multiple Axis Tracking Motion

System

To develop FPGA based control architecture integration for a multiple axis tracking

motion system, the simulation work is implemented in this section. The simulation

results will verify the effectiveness of the proposed on-chip motion control system for

a linear X-Y table under window motion trajectories.

4.5.1 Quartus II and Nios II based Simulation

Simulation is performed by using Quartus II and Nios II for a single FPGA chip. The

motion trajectory is generated in Nios II integrated development environment and

dynamics of two PMLSMs and control algorithms are described in VHDL code and

executed in Quartus II software environment.

For simulation work, the discrete-time transfer function of the motion equation

(4.5) at no-load is described as

xp(z
−1)

i∗q(z−1)
=

θz−1

(1− φz−1)(1− z−1)
, (4.25)

where φ = exp(BmT/Mm), θ = Kt(1 − φ)/Bm with z−1 being the backward shift

operator. The difference equation for the output displacement is therefore:

xp(k) = θi∗q(k1) + (1 + φ)xp(k − 1)− φxp(k − 2), (4.26)

and its digital circuit design is implemented by the FSM method. Therein, the FSM

uses one 24-bit multiplier, one 12-bit adder, and seven steps machine to carry out

computation of the motion equation. With an encoder gain ke, the displacement

of the table to the pulse number is obtained as xe = kexp , where xe is the pulse

number generated from the linear encoder. The FC input is allocated with 16-bit
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lengths in Q0 format; and all parameters and computations in the NFC and speed

loop controller are designed with a 16-bit length in Q15 format, and the variables

in the drive system are designed with a 12-bit length in Q11 format. All numerical

operations adopt 2’s complement operations. In simulation, the parameters φ, θ and

ke in Figure 4.10 are respectively set as 0.3, 0.12 and 100 pulse/mm. The travel

displacement of xp is designed within the range of ±40 mm, and it will be mapped to

the±(Q11) numerical value or binary value that is between -2048 and 2047. Moreover,

ke is 100 pulses/mm, the ±40 mm travel displacement in xp will generate ±4000(Q0)

pulse value in xe. Thus, the logic circuit that transforms from xp to xe in Figure 4.10

is given by

xe(15..0) = xp(11) & xp(11) & xp(11) & leftshift (xp(11..0)) ∗ 0.97, 1) & ′0′.

(4.27)

The FC rule base and control effort surface for Nr = 7 (49 rules) is shown in Figure

4.2. It is followed by a PI controller (4.8) with kp = 0.6 and ki = 0.002. From a

desired second order system model, the speed PI controller gain is set at KpS = 0.9

and KiS = 0.01. The parameters cj,i of the fuzzy-rule table are tuned by using

(4.24), whereby the self-adjusted RBFNN has a learning rate chosen as η = 0.5. The

frequency divider generates 50 MHz (Clk), 12.5 MHz (Clk-step) and 5 MHz (Clk-

sp). After completing hardware/software co-design, the hardware code is directly

downloaded to the FPGA chip (Altera Cyclone II EP2C70), and the software code

is downloaded to the external SDRAM. In the Quartus II and Nios II integrated

development environment, the simulation work can be done, and the response results

of some state variables can be collected. MATLAB can then be used for analysis and

plotting.
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Figure 4.10 : Implementation diagram for on-chip simulation

4.5.2 Trajectory Planning

The trajectory planner, as shown in Figure 4.1, can be programmed to generate the

model references and for both axes by Nios II software environment. The window

shape trajectory is used in this simulation test, which is presented below.

Window Shape Trajectory

Typically, a window shape trajectory is shown in Figure 4.11, which can be divided

into 9 parts from a- segment to i - segment of the trajectory. The window trajectory,

from a start point on the negative X - axis, can be described as follows:

a- segment and i - segment:

xi = xi−1, yi = S + yi−1, (4.28)

b- segment:

xi = Ox1 + r cos(θi), yi = Oy1 + r sin(θi), θi ∈ [
3π

2
, 2π], (4.29)
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c- segment:

xi = S + xi−1, yi = yi−1, (4.30)

d - segment:

xi = Ox2 + r cos(θi), yi = Oy2 + r sin(θi), θi ∈ [π,
3π

2
], (4.31)

e- segment:

xi = xi−1, yi = −S + yi−1, (4.32)

f - segment:

xi = Ox3 + r cos(θi), yi = Oy3 + r sin(θi), θi ∈ [
π

2
, π], (4.33)

g- segment:

xi = −S + xi−1, yi = yi−1, (4.34)

h- segment:

xi = Ox4 + r cos(θi), yi = Oy4 + r sin(θi), θi ∈ [0,
π

2
], (4.35)

where on the four circular corners, the step S and angular increment are constant,

depending on the size of the trajectory.

Trajectory Performance Measures

To measure the performance of various controllers, the average tracking error ētr and

the standard deviation of the tracking error σtr for the motion tracking are defined

as follows:

ētr =
N∑
k=1

etr(k)

N
, (4.36)
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Figure 4.11 : Window motion trajectory

σtr =

√√√√ N∑
k=1

(etr(k)− ētr)2

N
, (4.37)

where N is the total number of sampling periods for a trajectory cycle and etr(k) =√
e2x(k) + e2y(k) is the tracking error distance in an X -Y coordinate frame.

4.5.3 Simulation Results and Discussion

Simulation is realized to verify the correctness and the effectiveness of the proposed

controller for positioning and tracking of the X-Y table. The tracking performance is

tested by using a window motion trajectory by using FC and NFC which are evaluated

in two cases with parameter variations in (4.26): Case 1: θ = 0.3, φ = 0.12 and case

2: θ = 0.3 ∗ 3, φ = 0.12 ∗ 3.
Corresponding results are shown in Figures 4.12, 4.13 and 4.14. The X-Y table

system parameters are initially designed at the normal condition (case 1) with FC
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applied. The simulation results, as shown in Figure 4.12 present good tracking re-

sponses. When the system is subject to parameter changes (case 2), the results, shown

in Figure 4.13, exhibit a deviation in the bends and corners of the window trajectory.

To overcome this problem, the NFC is adopted and its simulation results are shown

in Figure 4.14. Owing to the capability of adjusting the control parameters in FC

the tracking error is significantly reduced. The comparison results between FC and

NFC are shown in Table 4.1, where the resource usage is also tabulated. Performance

improvement, in terms of average tracking error and standard deviation, is achieved

with a slight increase of the resource usage. These together have demonstrated the

effectiveness of the proposed NFC for position control of the X-Y table using the

FPGA technology.

4.6 Chapter Conclusion

This chapter has presented an FPGA-based motion control system for positioning and

window tracking of an X-Y table, driven by permanent magnet linear synchronous

motors in vector control. The proposed architecture includes a motion planner, a PI

speed control loop and a self-adjusted neural fuzzy PI position control loop.

The work herein is summarized as follows, (1) The functionalities required to

build a fully digital motion controller of PMLSM drive for an X-Y table have been

integrated in one FPGA chip, and (2) The behavior of a NFC has been successfully

described by VHDL.

Tracking performance has been successfully demonstrated through experimental

results. The control paradigm using this system-on-programmable-chip not only is en-

ergy efficient but also retains high control performance, and hence has great potential

in multiple axis tracking motion systems in automation applications.
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Table 4.1 : Comparison results between FC and NFC

Average tracking Tracking error standard FPGA resource usage

error etr(mm) deviation σtr(mm) ALUTs (RAM bits)

FC(case 1) 0.62 0.031 29,701 45,742

FC(case 2) 1.37 0.072

NFC(case 2) 0.35 0.016 37,704 48,947

Figure 4.12 : Window trajectory response by using FC for case 1: (a) Window tracking
(b) Position tracking (c) Control efforts (d) Tracking errors in X and Y-axis.
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Figure 4.13 : Window trajectory response by using FC for case 2: (a) Window tracking
(b) Position tracking (c) Control efforts (d) Tracking errors in X and Y-axis.

Figure 4.14 : Window trajectory response by using NFC for case 2: (a) Window
tracking (b) Position tracking (c) Control efforts (d) Tracking errors in X and Y-axis.
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Chapter 5

Observer-based Integral Sliding Mode Control for

Sensorless PMSM Drives using FPGA

5.1 Introduction

As mentioned in chapter 3, in recent years, sensorless controllers for PMSM drive

become more attractive and various sensorless control techniques have been inves-

tigated. Available sensorless methods are mainly based on the back EMF, SMO,

EKF, neural network, etc. which require to be implemented by a fix-pointed pro-

cessor [34],[38],[44],[57],[67],[70],[73]. In industrial applications, existing difficulties

such as system parameter variations, external load disturbances, unmodeled uncer-

tainties. always diminish the performance quality of the drive system. Although

the proportional-integral (PI) controllers have been widely used in PMSM servo sys-

tem due to their simple implementation and robustness, it is not easy to obtain a

desired performance in the entire operating rage. To this end, intelligent control

techniques, such as fuzzy control, neural network control, sliding mode control, have

been developed and applied to the speed control of servo motor drives to achieve

high operating performance. The sliding mode control (SMC) is a very useful non-

linear control method due to its good robustness for parameter variations, external

disturbances, and fast response. To construct a common sliding surface, the sliding

mode speed control requires both speed and acceleration signals. However, it is well

known that transforming the sensed or the estimated speed into an acceleration sig-
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nal is very sensitive to noisy effects and uncertainties of parameters. To cope with

this problem, an integral sliding mode control (ISMC) with an integral sliding surface

is proposed to regulate the PMSM speed [4],[38],[95]. With rapid developments of

the system-on-chip technology, field programmable gate arrays with programmable

hard-wired feature, fast computation ability, shorter design cycle, embedding pro-

cessor, low power consumption and higher density become an alternative solution.

FPGA-based controllers have been successfully implemented in many research areas

including motion control and PMSM sensorless speed drive.

This chapter presents the design and evaluation of an observer-based integral

sliding mode controller for sensorless PMSM drive based on the FPGA technology.

For enhancement of robustness, a flux angle estimator using an improved sliding

mode observer is proposed to estimate the current and back EMF as well as to derive

the flux angle. These estimated values together with the computed rotor speed of

the motor are fed back for control purposes in both the current loop and the speed

loop. To increase the performance of PMSM speed control, an integral sliding mode

control (ISMC) is designed with integral operation to improve steady state accuracy

against parameter variations and external disturbances. The developed controller has

been implemented in an FPGA-based environment and the VHDL is adopted to show

advantages of the proposed control system. The validity of the proposed approach

is verified through simulation results based on ModelSim and Simulink co-simulation

method [44],[66],[70].

5.2 Observer-based Integral Sliding Mode Control Design

The architecture of the proposed speed control system for a sensorless PMSM drive

is shown in Figure 5.1, while the modelling of the PMSM, flux angle and rotor speed
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Figure 5.1 : The proposed speed control system for a sensorless PMSM drive using
SMO

estimation using improved SMO, and the speed ISMC are described in this section.

5.2.1 Motor Drive Model

The current loop control of the PMSM drive in Figure 5.1 is based on a vector control

approach to control id to zero and decouple the nonlinear model of the PMSM to a

linear system. Therefore, after decoupling, the torque of the PMSM can be written

as the following equation,

Te =
3pλm

2
iq � Ktiq . (5.1)

Considering the mechanical load, the overall dynamic equation of PMSM drive system

is obtained by,

Te − TL = Jm
d

dt
ωr + Bmωr , (5.2)

where Te is the motor torque, p is pole pairs, Kt is torque constant, Jm is the inertial

value, Bm is damping ratio, TL is the external torque, ωr is rotor speed.
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5.2.2 Improved SMO based Rotor Flux Position Estimation

Based on a conventional SMO, the rotor flux position can be estimated by using a

current observer, a on-off controller, a low pass filter and a position calculation, as

shown in Figure 5.2. The detailed observer design is described in the following.

As stated in equation (3.31), the EMF includes the position information from

the flux. Therefore, it is possible to get position information θe from its phase by

estimating the EMF. The EMF is observed by using equation (3.32). From this

equation, a sliding mode observer is designed by,

d

dt

⎡
⎢⎣îα
îβ

⎤
⎥⎦ = − rs

Ls

.

⎡
⎢⎣îα
îβ

⎤
⎥⎦+

1

Ls

⎡
⎢⎣vα
vβ

⎤
⎥⎦− 1

Ls

Z , (5.3)

where

[
îα îβ

]T
is the estimated current on fixed coordinates and Z �

[
zα zβ

]T

is the output gain of the switching controller. The dynamic estimation error ei �[
ĩα ĩβ

]T
=

[
îα − iα îβ − iβ

]T
is obtained by subtracting equation (5.3) from equa-

tion (3.32); we have:

d

dt

⎡
⎢⎣ĩα
ĩβ

⎤
⎥⎦ = − rs

Ls

.

⎡
⎢⎣ĩα
ĩβ

⎤
⎥⎦+

1

Ls

⎡
⎢⎣eα
eβ

⎤
⎥⎦− 1

Ls

⎡
⎢⎣zα
zβ

⎤
⎥⎦ . (5.4)

In conventional SMO, Z is defined as,

Z =

⎡
⎢⎣zα
zβ

⎤
⎥⎦ � k.sign

⎛
⎜⎝
⎡
⎢⎣îα − iα

îβ − iβ

⎤
⎥⎦
⎞
⎟⎠ , (5.5)

To solve the chattering problem, the signum function is replaced by a saturation

function in this study and is defined as:

sat(
ei
ξ
) =

⎧⎪⎪⎨
⎪⎪⎩

ei
ξ

| ei
ξ
| ≤ 1

sign( ei
ξ
) | ei

ξ
| > 1,

(5.6)
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where the constant factor ξ defines the thickness of the boundary layer and the

current error ei. Further, by properly choosing the gain k to be large enough, i.e.,

k ≥ max(|eα|, |eβ|), the inequality eTi .ėi < 0 can be reached and the SMO can induce

a sliding mode, i.e, ei = ėi = 0. In this induced sliding mode, according to (5.4), Z

will approach to the EMF,

⎡
⎢⎣zα
zβ

⎤
⎥⎦ =

⎡
⎢⎣eα
eβ

⎤
⎥⎦ = ωeλm

⎡
⎢⎣− sin θe

cos θe

⎤
⎥⎦ . (5.7)

In order to alleviate the high frequency in switching control, a low-pass filter is applied:

d

dt

⎡
⎢⎣êα
êβ

⎤
⎥⎦ = −ωo.

⎡
⎢⎣êα
êβ

⎤
⎥⎦+ ωo

⎡
⎢⎣zα
zβ

⎤
⎥⎦ , (5.8)

where ωo = 2πfo and fo is the cut-off frequency of the filter. Finally, the rotor position

θ̂e can be computed by,

θ̂e = tan−1
(
− êα
êβ

)
. (5.9)
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5.2.3 Integral Sliding Mode Control Design in Speed Loop

From equation (5.2), the torque equation of the PMSM system can be derived as:

d

dt
ωr =

3pλm

2Jm
iq − Bm

Jm
ωr − TL

Jm
=

3pλm

2Jm
i∗q + μ(t), (5.10)

where μ(t) =
3pλm

2Jm
(iq − i∗q) −

Bm

Jm
ωr − TL

Jm
is the lumped disturbances. Define the

speed error as e = ω∗r − ωr where ω∗r is reference speed. Taking the derivative of e

and substituting (5.10) into it, we obtain:

ė = ω̇∗r −
3pλm

2Jm
i∗q − μ(t). (5.11)

The integral sliding surface is defined as,

s = e+m

∫ t

0

edτ, (5.12)

and the variable structure speed controller is designed as follows,

i∗q =
2Jm

3pλm

m.e+
2Jm

3pλm

.ω̇r
∗ + ks.sign(s), (5.13)

where m, ks > 0 and

(
2Jm
3pλm

m.e+
2Jm

3pλm

.ω̇∗r

)
is the equivalent control.

Assume that the lumped disturbances of the system μ(t) satisfies 0 ≤ |μ(t)| < d.

Choosing Lyapunov function V =
1

2
s2, and taking the derivative of it along (5.12),

yields:

V̇ = s.ṡ = s[ė+me]. (5.14)

Substituting (5.11) into (5.14), the stability condition can be derived as,

V̇ = s

[
ω̇∗r −

3pλm

2Jm
i∗q − μ(t) +me

]
< 0

= −3pλm

2Jm
s

[
i∗q −

2Jm
3pλm

me− 2Jm

3pλm

ω̇∗r +
2Jm
3pλm

μ(t)

]
< 0. (5.15)
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By substituting (5.13) into (5.15), we have:

V̇ = −3pλm

2Jm
s

[
ks.sign(s) +

2Jm
3pλm

μ(t)

]
< 0

= −3pλm

2Jm

[
ks.sign(s).s+

2Jm
3pλm

μ(t).s

]
< 0

= −3pλm

2Jm

[
ks|s|+ 2Jm

3pλm

d.s

]
< 0, (5.16)

where the switching control gain can be derived to satisfy the inequality condition as

follows,

ks >
2Jm

3pλm

d. (5.17)

5.3 FPGA based Sensorless Control Implementation

5.3.1 Control Architecture

Figure 5.3 shows the FPGA-based architecture of the proposed sensorless control

system for the PMSM drive. The controller includes an ISMC speed controller, a

PI current controller and coordinate transformation (CCCT), a SVPWM generation

and SMO-based rotor position estimation. All modules presented in Figure 5.3 are

described by Verilog HDL and simulated in ModelSim as well as tested in the Altera

Cyclone II EP2C70 board. On the basis of the fact that the velocity of the outer

control loop is much slower than the estimated inner loop, the sampling frequency is

designed with 16 kHz in the current loop, and 2 kHz in the speed loop. The frequency

divider generates 50 MHz (Clk), 12.5 MHz (Clk-step) and 16 kHz (Clk-ctr) clock to

supply all circuits.
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Figure 5.3 : The proposed speed ISMC controller for a sensorless PMSM drive

5.3.2 Design procedure for SMO

A design procedure for the estimation of the rotor position by using SMO is summa-

rized as follows:

Step 1 : Measure the values of iα(n), iβ(n), vα(n), vβ(n) from the PMSM drive.

Step 2 : Estimate the estimated current by SMO from equation (5.3)

⎡
⎢⎣îα(n+ 1)

îβ(n+ 1)

⎤
⎥⎦ = φ.

⎡
⎢⎣îα(n)
îβ(n)

⎤
⎥⎦+ ψ

⎡
⎢⎣vα(n)
vβ(n)

⎤
⎥⎦− ψ

⎡
⎢⎣êα
êβ

⎤
⎥⎦ , (5.18)

where φ = e−
rs
Ls

TsI, ψ = 1
rs
(1− e−

Rs
Ls

Ts) and Ts is the sampling time.

Step 3 : Calculate the current error by

⎡
⎢⎣ĩα(n)
ĩβ(n)

⎤
⎥⎦ =

⎡
⎢⎣îα(n)− iα(n)

îβ(n)− iβ(n)

⎤
⎥⎦ , (5.19)
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Step 4 : Obtain the Z gain of the switching controller from equations (5.5) and (5.6)

Z(n) =

⎡
⎢⎣zα(n)
zβ(n)

⎤
⎥⎦ � k.sat

⎛
⎜⎝
⎡
⎢⎣îα(n)− iα(n)

îβ(n)− iβ(n)

⎤
⎥⎦
⎞
⎟⎠ , (5.20)

where sat(.) is calculated by using look up table (LUT).

Step 5 : Estimate the EMF by equation (5.8)⎡
⎢⎣êα(n+ 1)

êβ(n+ 1)

⎤
⎥⎦ =

⎡
⎢⎣êα(n)
êβ(n)

⎤
⎥⎦+ 2πfo

⎡
⎢⎣zα(n)− êα(n)

zβ(n)− êβ(n)

⎤
⎥⎦ , (5.21)

Step 6 : Obtain the estimated rotor position in equation (5.9)

θ̂e(n) = tan−1
(
− êα(n)

êβ(n)

)
, (5.22)

then set n = n+ 1 and back to Step 1.

5.3.3 Algorithm Implementation

A finite state machine is employed to describe the control algorithm of SMO-based

rotor position estimation, as shown in Figures 5.4 and 5.5, respectively. Although the

algorithms of ISMC and SMO described are complex, the FSM adequately incorpo-

rates the control structure and can be easily described by VHDL. The multiplier and

adder apply the Altera LPM (Library Parameterized Modules) standard.

In Figure 5.4, the data type adopts a 16-bit length with Q15 format and 2’s

complement operations. It manipulates 13 steps machine to carry out the overall

computations of the ISMC algorithm. The steps S0 − S6 are for the computation of

the speed error and sliding function; step S7 executes the signum function; and finally

the sliding mode control is realized in steps S8− S13. The operation of each step can

be completed within 80 ns (12.5 MHz); therefore total 13 steps need 1.04 μs for the

ISMC operation.
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The SMO-based rotor position estimation algorithm is shown in Figure 5.5. The

data type adopts a 12-bit length with Q11 format. The steps S0 − S8 execute the

estimation of currents; steps S9 − S10 compute the current errors; S11 calculate the

saturation function for the switching control; steps S12−S16 describe the computation

of EMF and S17−S36 perform the computation of the rotor position. The implemen-

tation of SMO needs 2.88 μs for 36 steps. Other circuit designs such as CCCT and

SVPWM, shown in Figure 5.3, were presented in the section on digital circuit design

of current vector control, in Chapter 3.

Finally, the resource usage of ISMC, CCCT and SMO are 4,268 Logic Elements

(LEs) and 73,728 RAM bits resource for the Cyclone II EP2C70.
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5.4 Results and Discussion

Simulation is performed by using ModelSim/Simulink co-simualtion method. The

ModelSim performs the function of ISMC controller, SMO and current vector con-

troller which is described using VHDL code. In the Simulink, the SimPowerSystem

blockset can provide the components of PMSM and the inverter and it also can gener-

ate stimuli to ModelSim and analyze the simulations responses. The designed PMSM

parameters applied in simulation of Figure 5.3 are that pole pairs is 4, stator phase

resistance is 1.3 Ω, stator inductance is 6.3 mH, inertia is J = 0.00011 kg.m2 and

friction factor is F = 0.0014 N.m.s.

In the simulation of sensorless PMSM drive, rotor position estimation based on

SMO is firstly evaluated. The conventional SMO method with signum function and

the improved one with saturation function are tested with PMSM running speed at

500 rpm and these simulation results are presented in Figures 5.6, 5.7. The results

show that the response of the estimated rotor flux position can follow with the actual

rotor flux position in both methods. On comparing the results of the two methods,

it is clearly observed that the chattering of rotor position estimation is reduced and

its accuracy is improved significantly in SMO where saturation function is used. Sec-

ondly, the performance of sliding mode control using integral operation is verified.

Three tested cases are evaluated with parameter variations: Case 1 (Normal-load

condition): J = 0.00011, F = 0.0014; case 2 (Light-load condition): J = 0.00011/3,

F = 0.0014/3; and case 3 (Heavy-load condition): J = 0.00011 ∗ 3, F = 0.0014 ∗ 3.
The 20 Hz square wave with magnitude of 500 rpm is used as the tested command.

When the speed controller is adopted by the PI controller only (Kp=0.36, Ki=0.005)

and the PMSM parameters are initially designed at the normal load condition (case

1), the simulation result is shown in Figure 5.8 which presents a good following re-
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sponse. However, when the running condition is changed to the light-load condition

(case 2) and heavy-load condition (case 3), the results in Figures 5.9 and 5.10 show

that the step speed response become worse with overshoot in the light-load condi-

tion and slow response occurred in the heavy-load condition. It demonstrates that

although the sensorless control based on SMO in PMSM drive can give a good speed

tracking, it is still easily affected by external load variation. To cope with this prob-

lem, an integral SMC is adopted in Figure 5.1. The ISMC has an integral sliding

surface to reject the requirement of the acceleration signal, which is usual in tradi-

tional sliding-mode speed control techniques. Due to the nature of the sliding control,

this control scheme is robust under uncertainties caused by parameter variations or

by changes in the external load. Figures 5.11 to 5.13 show the simulation results

while it uses the proposed ISMC control in the sensorless PMSM drive. The results

show an improvement with the rotor speed responses exhibiting no overshoot and less

rising time in both cases 1 and 2. They also indicate that the proposed ISMC can

enhance robustness in the sensorless PMSM drive.

5.5 Chapter Conclusion

In this chapter, a FPGA-based sensorless sliding-mode vector control has been pre-

sented. The proposed system comprises a sliding mode observer, a field-oriented PI

current controller, and an ISMC for the speed control loop. All the control system

components can be integrated and realized in one FPGA chip. The SMO is used to

estimate the rotor position and speed of the PMSM due to its strong robustness, and

the signum function is replaced by the saturation function to reduce system chatter-

ing, and the traditional SMO is improved. In addition, a sliding-mode controller with

an integral switching surface is proposed. This control scheme is robust under uncer-
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tainties. Simulation results validate the feasibility and effectiveness of the proposed

control system.

Figure 5.6 : Flux angle (FA) waveforms obtained by the conventional SMO method
using the signum function

Figure 5.7 : Flux angle (FA) waveforms obtained by the improved SMO method using
the saturation function



88

Figure 5.8 : Simulation result when PI controller is used while sensorless PMSM
operated at normal load condition

Figure 5.9 : Simulation result when PI controller is used while sensorless PMSM
operated at light load condition
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Figure 5.10 : Simulation result when PI controller is used while sensorless PMSM
operated at heavy load condition

Figure 5.11 : Simulation result when ISMC controller is used while sensorless PMSM
operated at normal load condition
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Figure 5.12 : Simulation result when ISMC controller is used while sensorless PMSM
operated at light load condition

Figure 5.13 : Simulation result when ISMC controller is used while sensorless PMSM
operated at heavy load condition
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Chapter 6

FPGA Sensorless PMSM Drive with Adaptive

Fading Extended Kalman Filter

6.1 Introduction

A variety of filtering and observation techniques have provided promising results

for the PMSM rotor position and speed estimation, see, e.g. [6],[12],[13],[20],[88],

[103]. It was found, nonetheless, that the estimator may not be able to trace abrupt

changes [20], [68]. Further, in most practical systems, the models are simplified from

complex dynamics in real-world situations and the statistic characteristics of noise and

initial states may not be known accurately. These inaccuracies may seriously degrade

performance and generate a divergence of the filter. These may result in a large overall

discrepancy in the state estimation. To overcome this problem, fading filtering and its

adaptation have been proposed [12],[23],[29],[62],[94]. The adaptive fading extended

Kalman filter (AF-EKF) introduced in [63] was based on the weighting of the error

covariance equation with a scalar forgetting factor. In addition, a different adaptive

fading extended Kalman filter was proposed to improve the filter performance to

deal with the case of incomplete information of modelling or measurement [39]. In

reference [98], another AF-EKF was suggested, using an adaptive tracking technique

with a diagonal matrix forgetting factor to identify time-varying parameters of linear

and non-linear dynamics in structural health monitoring.

This chapter addresses the design and implementation of an adaptive fading ex-
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tended Kalman filter for the sensorless PMSM on a FPGA chip. In this study, we

consider the estimation of PMSM rotor position and speed, in which the reference

speed may involve sudden changes during operations or the drive is subject to abrupt

loading conditions. To solve this problem, an AF-EKF is proposed to improve the

robustness and tracking ability of the estimator and implement a sensorless PMSM

control algorithm based the AF-EKF on fully FPGA technology. Here, for realization

of the PMSM sensorless control using the system-on-programmable-chip technology,

high-speed arithmetic functions and pipelining are employed in the FPGA implemen-

tation. The finite state machine method is also used to facilitate the execution timing

and chip design. The co-simulation of ModelSim/Simulink shows effectiveness of the

proposed chip-based AF-EKF PMSM speed estimation.
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6.2 Extended Kalman Filter based Rotor Flux Position Es-

timation

6.2.1 Extended Kalman Filter Algorithm

Kalman filtering is an optimal, stochastic approach to state estimation and filtering

in linear systems. For nonlinear systems, the state space equation can be written in

the following form:

ẋ(t) = f(x(t)) +Bu(t) + σ(t), (6.1)

y(t) = h(x(t)) + μ(t), (6.2)

where x(t), u(t) and y(t) are respectively the system’s state, input and output. The

system noise σ(t) and measurement noise μ(t) are assumed to be zero-mean, white

with Gaussian distributions of covariances Q(t) and R(t), respectively. Once a nomi-

nal solution to the non-linear equations (6.1)-(6.2) have been obtained, the linearized

perturbation equations of the system are

δẋ(t) = F (x(t))δx(t) +Bδu(t) + σ(t), (6.3)

δy(t) = H(x(t))δx(t) + μ(t), (6.4)

where the Jacobian and output matrices are defined respectively as follows

F (x(t)) =
∂f

∂x
|x=x(t), (6.5)

H(x(t)) =
∂h

∂x
|x=x(t). (6.6)

After discretization with a sampling period Tc, (6.3) becomes

x(tn) = Φ(tn, tn−1, x(tn−1))x(tn−1)

+ (

∫ tn

tn−1

Φ(tn, tn−1, x(tn−1))Bdτ)u(tn−1) + ν(tn−1), (6.7)
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where computation of the state transition matrix for system (6.3), Φ(tn, tn−1, x(tn−1)),

can be simplified by Euler approximation:

Φ(tn, tn−1, x(tn−1)) ∼= I + FTc, (6.8)∫ tn

tn−1

Φ(tn, tn−1, x(tn−1))Bdτ ∼= BTc. (6.9)

Therefore, the discrete model of (6.3)− (6.6) becomes approximately,

x(tn) = (I + FTc)x(tn−1) + BTcu(tn−1) + ν(tn−1), (6.10)

y(tn) = Hx(tn) + ξ(tn), (6.11)

where ν(tn) and ξ(tn) are the discrete forms respectively of system noise, with covari-

ance Qd(tn), and measurement noise, with covariance Rd(tn). The EKF is an optimal

estimator which minimizes the cost function J =
m∑

n=1

E{x̃2(n)} in the least square

sense, in which x̃(n) is defined by the difference between the system state x(n) and

its estimate x̂(n), i.e., x̃(n) = x(n) − x̂(n). Accordingly, the EKF algorithm can be

described by the following two-step recursive equations:

(i) Prediction: The predicted estimate is obtained from (6.3) and by using a simple

rectangular integration as

x̂n|n−1 = x̂n−1 + (F (x̂n−1) +B.un−1)Tc, (6.12)

or from (6.10),

x̂n|n−1 = (I + FTc)x̂n−1 + BTc.un−1. (6.13)

The estimate covariance is predicted by

Pn|n−1 = Φn−1Pn−1ΦT
n−1 +Qd. (6.14)
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(ii) Updating : From (6.4) and by using a simple rectangular integration, the updated

estimate and correspondingly its covariance are obtained as,

x̂n = x̂n|n−1 +Kn(yn −Hx̂n|n−1), (6.15)

Pn = Pn|n−1 −KnHPn|n−1, (6.16)

where the Kalman gain is calculated by

Kn = Pn|n−1HT (HPn|n−1HT +Rd)
−1. (6.17)

6.2.2 Adaptive Fading Extended Kalman Filter Algorithm

The Kalman filter provides the best estimation when the model for the system dy-

namics and measurement relation are perfect. However, the estimation performance

does not maintain when applying to an erroneous model [94]. Since the filter esti-

mation depends highly upon past data, any large deflection from the current system

state may cause the state estimation to diverge [84]. To solve this problem, the filter

should be capable of eliminating the effect of older data from a current state estimate

if these data are no longer meaningful due to modelling errors. In [19], a method was

proposed to limit the memory of the Kalman filter by using exponential fading of

past data via a forgetting factor, λ(n). For applying to our AF-EKF, the equations

describing the fading EKF are identical to those of the EKF in equations (6.12)-(6.17)

except for the inclusion of the forgetting factor λ(n) in the state covariance equation

as,

P (n|n− 1) = λ(n)Φ(n, n− 1)P (n− 1)ΦT (n, n− 1) +Q(n), (6.18)

where λ(n) ≥ 1. As a result, the influence of the most recent measured data in the

state estimation has a higher weight and thus divergence is avoided. The performance

of the fading Kalman filter fully depends on the selection of the forgetting factor. In
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this study, we adopt the method proposed in [94] to choose the forgetting factor λ(n)

for our EKF.

In developing the algorithms, we employ an important property, that the residual

r(n) defined in the following equation is a white noise sequence when applying the

filtering gain

r(n) = y(n)−H(n)x̂(n|n− 1). (6.19)

From Algorithm 3 given in [94], the simplified one step procedure for designing the

adaptive fading Kalman filter is applied to compute the forgetting factor of AF-EKF

as described in the following:

i) Compute the residual covariance C0(n) by using on-line measured data as

C0(n) = (1 + ρ)−1[ρC0(n− 1) + r(n)rT (n)], (6.20)

where C0(1) = r(1)r(1)T and 0 < ρ < 1.

ii) Obtain the forgetting factor λ(n) as follows. The optimal forgetting factors

can be computed by,

λ(n) = max{1, tr[N(n)]/tr[M(n)]}, (6.21)

where

N(n) = C0(n)−H(n)Q(n)HT (n)− βR(n), (6.22)

M(n) = Φ(n, n− 1)P (n− 1)ΦT (n, n− 1)H(n)HT (n), (6.23)

in which Q(n), R(n) and P (0) are all positive definite matrices, the measurement

matrix H(n) is full-ranked, tr[.] is the matrix trace, and β is the weakening factor for

avoiding over regulation and smoothing estimated states.

From the circuit equation of PMSM on the α−β fixed coordinates system in (3.30),

if we choose x(t) =

[
iα iβ ωe θe

]T
as the vector control of the state variables, then
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(6.7) can be expanded to the following formulations

d

dt

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

iα

iβ

ωe

θe

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

− rsiα
Ls

+
ωeλf sin θe

Ls

− rsiβ
Ls
− ωeλf cos θe

Ls

0

ωe

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
+

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

1
Ls

0

0 1
Ls

0 0

0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎣vα
vβ

⎤
⎥⎦ , (6.24)

⎡
⎢⎣iα
iβ

⎤
⎥⎦ =

⎡
⎢⎣1 0 0 0

0 1 0 0

⎤
⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

iα

iβ

ωe

θe

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
. (6.25)

Thus, from (6.24)−(6.25) the dynamic model of the PMSM in the state variable form

can be expressed generally as,

ẋ(t) = f(x(t)) +Bu(t), (6.26)

y = Hx(t), (6.27)

where y(t) =

[
iα iβ

]T
and u(t) =

[
vα vβ

]T
.

To proceed with the filter design, the Jacobian, output matrix, and state transition

matrix are obtained in accordance respectively with (6.5), (6.6) and (6.8) as,

F =
∂f

∂x
|x=x(t) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

−rs
Ls

0
λf sin θe

Ls

ωeλf cos θe
Ls

0 −rs
Ls

−λf cos θe
Ls

ωeλf sin θe
Ls

0 0 0 0

0 0 1 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
, (6.28)

H =

⎡
⎢⎣1 0 0 0

0 1 0 0

⎤
⎥⎦ , (6.29)
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Φ(n|n− 1) = I + FTc

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

1− rsTc

Ls
0

λfTc sin θe
Ls

ωeλfTc cos θe
Ls

0 1− rsTc

Ls
−λfTc cos θe

Ls

ωeλfTc sin θe
Ls

0 0 1 0

0 0 Tc 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

G 0 φ13 φ14

0 G φ23 φ24

0 0 1 0

0 0 Tc 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
. (6.30)

The initial values of Q, R and P (0) need to be chosen. Through the recursive calcu-

lation, estimated values of the state vector x̂(t) =

[
îα îβ ω̂e θ̂e

]T
are obtained at

each sampling period. Thus, the estimated angular position, θ̂e, and rotor speed, ω̂e

are computed directly from these sampled values.

6.3 Control Architecture and Implementation of AF-EKF

Figure 6.1 shows the FPGA-based architecture of the proposed speed control system

for the sensorless PMSM drive. The control system includes a PI-speed controller, a

CCCT module, a SVPWM generator as well as an AF-EKF. All modules are described

by the VHDL language and simulated in ModelSim to test their feasibility before

implementation in Altera Cyclone II EP2C70. The sampling frequency for the current

and speed controllers is designated at 16 kHz and 2 kHz, respectively. The operating

clock rate of the designed FPGA controller is 50 MHz and the frequency divider

generates 50 MHz, 12.5 MHz, 16 kHz and 2 kHz clock to supply to all module circuits

of the application system-on-chip.

6.3.1 Design Procedure of AF-EKF Algorithm

Step 1 : Set the initial values of Q, R, P (0) and n = 1.

Step 2 : Measure the values of iα(n), iβ(n), vα(n), vβ(n) from the PMSM drive.
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Step 3 : Predict the temporary state variables by using (6.13). In particular, the

scalar form of the prediction equation can be obtained from (6.24) as follows:

îα(n|n− 1) = (1− rsTc

Ls

)̂iα(n− 1) +
ωe(n− 1)λf sin θe(n− 1)

Ls

+
Tc

Ls

vα(n− 1),

(6.31)

îβ(n|n− 1) = (1− rs
Ls

Tc)̂iβ(n− 1)− ωe(n− 1)λf cos θe(n− 1)

Ls

+
Tc

Ls

vβ(n− 1),

(6.32)

ω̂e(n|n− 1) = ω̂e(n− 1), (6.33)

θ̂e(n|n− 1) = θ̂e(n− 1) + ω̂e(n− 1)Tc. (6.34)

Step 4 : Calculate the error covariance C0(n) from (6.20).

Step 5 : After computation of the forgetting factor from (6.21), obtain the temporary

covariance matrix P (n|n− 1) from (6.14), where Φ(n, n− 1) is given by (6.30). Due

to its symmetry, positive definite matrix P (n|n− 1) is chosen in the following form:

P (n|n− 1) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

P11 P21 P31 P41

P21 P22 P23 P24

P31 P23 P33 P43

P41 P24 P43 P44

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
. (6.35)

Step 6 : Update the present covariance matrix P (n) from (6.16) and compute the

Kalman gain from (6.17) for the filter by using(6.29) and (6.35) as,

K(n) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

P11 P21

P21 P22

P31 P23

P41 P24

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
(

⎡
⎢⎣P11 P21

P21 P22

⎤
⎥⎦+R)−1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

P11 P21

P21 P22

P31 P23

P41 P24

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎣T11 T21

T21 T22

⎤
⎥⎦ �

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

k11 k21

k21 k22

k31 k23

k41 k24

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
.

(6.36)
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Step 7 : Update the predicted state variables from (6.15) as follows

îα(n) = îα(n|n− 1) + k11ĩα(n) + k21ĩβ(n), (6.37)

îβ(n) = îβ(n|n− 1) + k21ĩα(n) + k22ĩβ(n), (6.38)

ω̂e(n) = ω̂e(n|n− 1) + k31ĩα(n) + k23ĩβ(n), (6.39)

θ̂e(n) = θ̂e(n|n− 1) + k41ĩα(n) + k24ĩβ(n), (6.40)

where

ĩα(n) = iα(n)− îα(n|n− 1), (6.41)

ĩβ(n) = iβ(n)− îβ(n|n− 1), (6.42)

in which kij are elements of the Kalman gain K(n).

6.3.2 Algorithm Implementation of AF-EKF

A FSM is employed to describe the AF-EKF algorithm, as shown in Figure 6.2, where

the data type adopts a 16-bit length with Q15 format and 2’s complement operations.

Despite the high complexity of the EKF algorithm, the FSM adequately incorporates

the control structure and can be described by VHDL. Here, the adder, multiplier and

divider apply the Altera LPM standard. It manipulates 149 steps machine to carry

out the overall computations.

In our FSM, the steps S0 − S12 execute the computation of the Jacobian matrix,

predicted state variables and calculate the prediction error; steps S13−S17 are for the

calculation of the residual covariance C0(n); steps S18 − S31 calculate the forgetting

factor λ(n); steps S30 − S86 are the computation of temporary covariance matrix;

steps S87 − S138 update the present covariance matrix P (n) and the calculation of

Kalman gain K(n); and finally, steps S138 − S148 describe the present state tuning,
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execute the computation of rotor flux position and rotor speed. Since the execution

of each step can be completed within 80 ns corresponding to frequency 12.5 MHz in

FPGA, a total of 149 steps needs 11.92 μs for the AF-EKF operation.

Overall, the resource usage of the speed PI controller, CCCT, SVPWM and the

proposed adaptive fading EKF are 6,264 LEs and 73,728 RAM bits resource for the

Cyclone II EP2C70, as summarized in Table 6.1 below.

Table 6.1 : Utility Evaluation of Sensorless Control IC in FPGA

Module circuits Logic elements (LEs) Memory (bits)

1. CCCT 864 24,576

2. SVPWM generation 1,221 0

3. Speed PI controller 254 0

4. AF-EKF 3,925 49,152

TOTAL 6,264 73,728
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Figure 6.2 : State machine diagram of AF-EKF algorithm
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6.4 Results and Discussion

In order to verify effectiveness of the proposed AF-EKF and sensorless control scheme,

the rotor flux angle and speed estimation are tested at 100 rpm. Figure 6.3 shows

that the estimated flux angle with the proposed AF-EKF almost matches the actual

flux angle (1.29o phase error, 50 μs delay time) and is much better than with the

EKF method (3.78o phase error, 150 μs delay time). We then consider the case when

the motor speed command is varied from −100 rpm to 100 rpm. Figure 6.4 presents

a good tracking of speed in both methods in the normal load condition.

In addition, to prove the proposed method is an effective estimator, in the case of

abrupt load variations of PMSM drives, the system is then evaluated with a sudden

loading. In Figure 6.5(a), the simulation result shows that the PMSM is initially

running with good tracking responses with a normal load, but when the operation

condition is changed abruptly to a heavy load after 0.15 second, the speed estimation

becomes worse and loses the speed tracking in the standard EKF case while the

proposed AF-EKF still provides a good response. It demonstrates that although

the sensorless control based on the standard EKF in the PMSM drive can give good

speed tracking, it is still easily affected by external load variations. Responses of d−q

axes currents of the proposed AF-EKF are presented in Figure 6.5(b), which show

successful vector control performance with the d−current component being controlled

to zero while the q−current consistently following the step speed patterns.

Table 6.2 summarizes the comparison of FPGA sensorless control of PMSMs be-

tween SMO in [70], the standard EKF in [68], and AF-EKF proposed in this work,

including hardware resource consumption and execution time, the estimated speed

error and estimated flux angle error with load variation cases. Although hardware re-

source usage and execution time with an AF-EKF implementation (7,037 LEs; 49,152
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bits; 14.4 μs) are the largest because of the calculation of forgetting factor λ(n) and

adjusting estimated covariance P (n|n − 1), the control performance when using the

proposed AF-EKF is quite better than others with fast response and small estimation

errors (2.96 rpm speed response and 1.49o flux angle) under speed variations from

100 rpm to −100 rpm as well as the external load changing abruptly to a heavy load.

That is the main advantage of this method which improves the estimation robustness.

In addition, for the initial condition matrix P (0), Q and R of the EKF algorithm, it

is very difficult to select suitable values while with the proposed AF-EKF, they can

be tuned via adjustments of the fading factors.

Table 6.2 : Comparison of Estimation Algorithms in Control Implementation

Sensorless techniques LEs Estimation errors Ex. time (μs)

1. SMO 4,626 (6.8%) 5.75 rpm, 8.63o 5.84

2. Standard EKF 6,633 (9.7%) 3.35 rpm, 3.78o 13.36

3. Proposed AF-EKF 7,037 (10.2%) 2.96 rpm, 1.49o 14.4

Figure 6.3 : Actual and estimated rotor flux angle from standard EKF and AF-EKF
under speed condition at low speed 100 rpm
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Figure 6.4 : Speed responses by using standard EKF and AF-EKF under speed
condition at low speed 100 rpm and inverse -100 rpm

(a)

(b)

Figure 6.5 : (a) Speed responses by using the standard EKF and proposed AF-EKF
under varying external load; (b) Current responses with AF-EKF
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6.5 Chapter Conclusion

In this chapter, we have presented the design and implementation of an adaptive

fading extended Kalman filter for a FPGA-based sensorless permanent magnet syn-

chronous motor control system. The proposed system comprises a PI speed controller,

a field-oriented PI current controller, and a rotor flux angle and rotor speed estimator

using an adaptive fading EKF.

The proposed algorithm for estimation of the motor’s rotor position and speed

is introduced with the incorporation of an adjustable forgetting factor in the con-

ventional EKF. The adaptive fading EKF has a faster response and higher accuracy

than the EKF. This is important in such applications that require frequent loading

and speed reference variations, as the sensorless estimation offers improvements of

the system precision and dynamic responses.

The whole system architecture has been integrated and successfully realized in one

FPGA chip. The proposed flux angle and speed estimator algorithms have shown

their effectiveness in estimation of the rotor position and speed as verified by the

co-simulation method.
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Chapter 7

FPGA-Based Sensorless PMSM Speed Control

using Adaptive Extended Kalman Filter

7.1 Introduction

In general estimation application of extended Kalman filtering, there remains a dif-

ficulty in the selection and adjustment of design parameters in the EKF equations,

which appear to affect the filtering performance. As such there has been intensive

research efforts paid to the development of adaptive Kalman filtering algorithms [5].

Different adaptive EKF algorithms have been successfully used in many practical sys-

tems such as navigation, radar tracking, signal processing, battery usage, and robotics

[26],[28],[63],[83],[85]. In the context of sensorless drive and control, a procedure for

the offline tuning of covariance matrices in EKF-based PMSM drives has been pre-

sented in [6]. Nevertheless, uncertainty of the covariance matrices of the system noise

(Q) and the measurement errors (R) appearing in the on-line estimation process may

seriously degrade the filtering performance. There is also the need for a feasible im-

plementation of a suitable adaptive EKF, especially in the area of position and speed

estimation in electric motor drives.

In this chapter, an adaptive extended Kalman filter for a sensorless PMSM with

the combination of an online stochastic modelling and a system noise scaling algo-

rithm, for estimation performance improvement, is designed and implemented in a

cacasde control system for sensorless PMSM speed control using the SoPC concept
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with the FPGA technology. This is achieved by using a sequential finite state ma-

chine of multipliers, adders, comparators, registers and a look-up table, to implement

high speed arithmetic functions and pipelining operations for improvement of drive

performance and resource usage saving. In order to verify the performance of the

proposed on-chip control system, the co-simulation method ModelSim/ Simulink is

adopted for extensive simulation.

7.2 Adaptive Extended Kalman Filter

There have been several online estimation of dynamic and measurement noise co-

variance matrices Q and R. Basically, the adaptation is based on (i) fixing Q and

varying R, (ii) fixing R and varying Q, or (iii) varying Q and R simultaneously, to

ultimately find the best stable estimate. This chapter is aimed on the one hand to

take advantage of online correction of the process noise covariance and on the other

hand to guarantee the feasibility of the adaptation algorithm when implemented on

an FPGA chip.

7.2.1 Adaptive Algorithm

The updating sequence, representing the difference between the measurement and its

predicted value, is defined as:

dn = yn −Hx̂n|n−1. (7.1)

Substituting the measurement model (6.11) into (7.1) yields:

dn = H(xn − x̂n|n−1) + μn, (7.2)

where the updating sequences dn are white Gaussian noise with zero mean when the

filter is in an optimal mode.
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Adaptive Kalman filtering algorithms can be implemented based on online es-

timation of the process and measurement noise covariances. One commonly-used

technique is based on the covariance matching principle to make the elements of the

covariance matrix for sequences dn consistent with their theoretical values [55]. By

taking variances on both sides of (7.2), we obtain:

E{dndTn} = HPn|n−1HT +Rn, (7.3)

which can be estimated with Ĉv by using a limited number of innovation samples:

Ĉv =
1

m

m∑
i=1

dn−idTn−i = HP̂n|n−1HT +Rn, (7.4)

where m is the estimation window size and P̂n|n−1 is the estimated prediction of the

state covariance.

If Rn and Pn|n−1 are assumed to be known, Qn can be corrected online with

a scaling factor by calculating the ratio between the estimated updating sequence

covariance and the predicted state covariance, defined as

α =
trace[HP̂n|n−1HT ]

trace[HPn|n−1HT ]
=

trace[Ĉv −Rn]

trace[HPn|n−1HT ]
, (7.5)

where trace[.] is the sum of all elements on the main diagonal of a square matrix.

By substituting (6.14) and (7.4) into (7.5), the scaling factor α can be calculated

and updated as:

αn−1 =
trace[H(Φn−1P̂n−1ΦT

n−1 + Q̂n−1)HT ]

trace[H(Φn−1Pn−1ΦT
n−1 +Qn−1)HT ]

. (7.6)

From (7.5) and (7.6), an adaptation rule for the estimated process noise covariance

Q̂n is proposed as [15]:

Q̂n = Qn−1
√
αn−1. (7.7)
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If the current estimated Q̂ is smaller than its true value Q, the algorithm tends to

increase the estimated covariance, and hence the Kalman gain, with a scaling factor α

greater than 1, and vice versa. This results in an increase or decrease in the Kalman

gain correspondingly to prevent the divergence of the filter.

7.2.2 Design Procedure of Adaptive EKF

Step 1 : Set the initial values of Q, R, P and n = 1.

Step 2 : Measure the values of iα(n), iβ(n), vα(n), vβ(n) from the PMSM drive.

Step 3 : Predict the temporary state variables as the same as the implementation of

AF-EKF in Chapter 6 from (6.31)-(6.34).

Step 4 : Calculation of the estimated updating covariance Ĉv from (7.4) and (7.1).

Step 5 : Using Ĉv to adjust Q from (7.5) and (7.7).

Step 6 : Obtain the temporary covariance matrix P (n|n−1) from (6.14) with updated

Q̂n−1, where Φn−1 is given by (6.30). Due to its symmetry, P (n|n − 1) is chosen in

the form as the same as equation (6.35).

Step 7 : Update the present covariance matrix P (n) from (6.16) and compute the

Kalman gain from (6.17) for the filter by using (6.29) and (6.35) and we have the

gain calculation as in equation (6.36).

Step 8 : Update the predicted state variables from (6.15) as in the calculation manner

of equations from (6.37) to (6.40).
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7.3 FPGA Realization of Sensorless Control Design

7.3.1 Controller Architecture

The control system features the cascade control principle including in the inner loop

a PI current controller and CCCT module, and in the outer loop a PI speed controller

with a SVPWM generation module and adaptive EKF-based rotor flux angle and rotor

speed estimation module. All modules are described by Verilog HDL and simulated

in ModelSim as well as tested in Altera Cyclone IV EP4CE115 board. The frequency

divider generates 50 MHz (Clk), 12.5 MHz (Clk-sp) and 16 kHz (Clk-ctr) clock to

supply for all circuits.

7.3.2 Algorithm Implementation

A finite state machine is employed to describe the adaptive EKF algorithm as shown

in Figure 7.1, where the data type adopts a 16-bit length with Q15 format and 2’s

complement operations. Although the sensorless architecture using the adaptive EKF

algorithm described is rather complex, the FSM can sufficiently incorporate the whole

control structure and can be described by VHDL. The multiplier and adder apply the

Altera LPM standard. The FSM for the adaptive EKF algorithm manipulates 97

steps machine to carry out the overall computations. The steps S0 − S12 are for

calculation of the Jacobian matrix and prediction of state variables; steps S13 − S21

execute the computation of the innovation covariance matrix Ĉv; steps S22−S54 are for

the prediction of process noise matrix Q and the temporary covariance matrix Pn|n−1;

steps S55 − S86 update the present covariance matrix Pn and calculate the Kalman

gain Kn; and finally, steps S87 − S96 describe the present state tuning, execute the

computation of rotor flux position and rotor speed. Since the execution of each step
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can be completed within 80 ns corresponding to frequency 12.5 MHz in FPGA, a

total of 97 steps needs 7.76 ms for the adaptive EKF operation.

The implementation for the rest of the control architecture has been reported in

the previous chapters. Overall, the resource usage of the speed PI controller, CCCT,

SVPWM and the proposed adaptive EKF are 5,824 logic elenments (LEs) and 73,728

RAM bits resource for the Cyclone IV EP4CE115.
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Figure 7.1 : State machine diagram of the adaptive EKF algorithm
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7.4 Co-Simulation and Results

Verification of the design is performed in simulation by using the ModelSim and

Simulink co-simulation method, which provides an interface environment between

MATLAB/Simulink and the VHDL simulator. The PMSM, inverter and speed com-

mands are implemented in Simulink and the sensorless speed control system is de-

scribed with the VHDL code in ModelSim using five modules. These modules are

created for a PI current controller, CCCT and SVPWM units, the rotor flux position

estimator using the proposed adaptive EKF and the PI speed controller.

To be consistent with the hardware implementation, the sampling frequency of

current and speed control is selected respectively as 16 kHz and 2 kHz. The clocks

of 50 MHz supply to all multipliers, dividers, adders, comparators, registers and the

clock of 12.5 MHz is used for each operation step of the finite state machines used. The

parameters of an 8-pole PMSM used in this simulation are the same as in the previous

chapters. The initial values for Q(0), R(0), P (0) and α(0) are selected respectively

as diag(0.045 0.045 3.1.10−5 0.0013), diag(1 1), diag(0.01 0.01 0.01 0.01), and

1, where diag(dii) is a diagonal matrix with entries dii on its main diagonal.

In the simulation of the flux angle estimation, the PMSM operation conditions are

tested in the range of 500 rpm, 1000 rpm and 2000 rpm. To evaluate the correctness

of the measured flux angle, the motor speed and the flux angle signals are obtained

from the PMSM model for judging the accuracy of the estimated value, as shown

in Figure 7.2(a). In addition, in order to illustrate the effectiveness of the proposed

adaptive EKF in such FPGA-based sensorless control system, both speed responses

by using the proposed adaptive EKF and a full-order EKF are compared with actual

speed, as depicted in Figure 7.2(b). The obtained results indicate that not only for

speed tracking but also for flux angle (FA) tracking, the flux estimation performance
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has been improved by adopting the adaptive EKF method, leading to better speed

estimation performance at different command values.

7.5 Chapter Conclusion

In this chapter we have presented an FPGA-based speed control system for a sen-

sorless permanent magnet synchronous motor. The proposed system comprises a

PI speed controller, a field-oriented PI current controller, and a rotor flux angle

and rotor speed estimator based on adaptive extended Kalman filtering. All the

system modules have been integrated and successfully realized in one FPGA chip.

The whole control architecture consumes less than 6000 logic elements on a Cy-

clone IV environment. The proposed flux angle and speed estimator algorithms have

proven their effectiveness in the estimation of the rotor’s flux angle and speed as ver-

ified by the co-simulation method. Responses obtained from this control-system-on-

programmable chip have shown better performance when compared with conventional

EKF for FPGA-based sensorless speed control in PMSM drives.
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Figure 7.2 : Comparison between adaptive EKF and conventional EKF: (a) Rotor
flux angle, (b) Rotor speed.
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Chapter 8

Reduced-Order Extended Kalman Filters-based

Sensorless PMSM Speed Control using FPGA

8.1 Introduction

Adaptive fading- and adaptive-EKF showed a good estimation and control perfor-

mance in Chapter 6 and Chapter 7. However, as remarked in [30], an EKF requires

heavy online matrix computing, and the complex computation becomes a challenge

for a fixed-point processor system, particularly for implementation on an FPGA chip.

In addition, the linearization in EKF may cause the filter algorithm to quickly diverge

while the computational cost for its realization increases very considerably with the

system complexity. A two-stage Kalman estimator could be used to reduce the num-

ber of arithmetic operations [31]. Here, motivated by the work in [36], the problem

is addressed via a reduction in the system order by using two parallel EKFs [68],

in order to meet the limited computational resources and processing time of FPGA

implementation.

This chapter aims to design and implement a fully FPGA based sensorless control

paradigm for PMSM drives using reduced-order EKFs that can ensure both a signif-

icant reduction in the required FPGA resources and a fast execution time. For this,

we seek, on the one hand, to lessen the number of matrix calculations in our EKF

algorithm [92] and to reduce the EKF order, as generally outlined in [78]. Here, by

estimating the back EMF according to the stator current observed as state variables,
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the decoupling of the system equation can be obtained to facilitate a reduced-order

EKF. On the other hand, a finite-state machine is developed in this work to result

in less logic gates used, leading to a faster processing time. In order to verify the

performance of the proposed on-chip control system, the co-simulation method Mod-

elSim/Simulink is used for extensive simulation. Then, experimental validation on a

PMSM is conducted using an Altera kit and laboratory instrumentation.

8.2 Reduced-Order Extended Kalman Filter for Sensorless

PMSM Drive

For the reduction of computation resources, as well as accuracy improvement in the

rotor position estimation, a parallel reduced-order extended Kalman filter is proposed

in this work. Compared with an EKF, the system order is reduced and the iteration

process is greatly simplified, resulting in significant savings of resource utility, while

maintaining high estimation performance. The development of the algorithm will be

detailed here.

8.2.1 PMSM Decoupled Dynamics

The basic emf model in (3.31) is time-varying in practice and from the assignment of

α− β coordinates it can be incorporated in (3.30) to form the following dynamics:

d

dt

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

iα

iβ

eα

eβ

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

−rs
Ls

0 −1
Ls

0

0 −rs
Ls

0 −1
Ls

0 0 0 −ωe

0 0 ωe 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

iα

iβ

eα

eβ

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
+

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

1
Ls

0

0 1
Ls

0 0

0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎣vα
vβ

⎤
⎥⎦ . (8.1)
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To achieve the order reduction purpose, model (8.1) can be decoupled according to

currents iα and iβ into:

d

dt

⎡
⎢⎢⎢⎢⎣
iα

eα

eβ

⎤
⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎣

−rs
Ls

−1
Ls

0

0 0 −ωe

0 ωe 0

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣
iα

eα

eβ

⎤
⎥⎥⎥⎥⎦+

⎡
⎢⎢⎢⎢⎣

1
Ls

0

0

⎤
⎥⎥⎥⎥⎦
[
vα

]
, (8.2)

and

d

dt

⎡
⎢⎢⎢⎢⎣
iβ

eβ

eα

⎤
⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎣

−rs
Ls

−1
Ls

0

0 0 ωe

0 −ωe 0

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣
iβ

eβ

eα

⎤
⎥⎥⎥⎥⎦+

⎡
⎢⎢⎢⎢⎣

1
Ls

0

0

⎤
⎥⎥⎥⎥⎦
[
vβ

]
. (8.3)

Thus, the dynamic models of the PMSM in the state variable form can be expressed

generally as,

ẋ(t) = Ax(t) +Bu(t), (8.4)

y(t) = Cx(t), (8.5)

where x(t) =

[
iα eα eβ

]T
, y(t) =

[
iα

]
, and u(t) =

[
vα

]
, or x(t) =

[
iβ eβ eα

]T
,

y(t) =

[
iβ

]
and u(t) =

[
vβ

]
, respectively, in which the system matrices are given by:

A =

⎡
⎢⎢⎢⎢⎣

−rs
Ls

−1
Ls

0

0 0 ∓ωe

0 ±ωe 0

⎤
⎥⎥⎥⎥⎦ , B =

⎡
⎢⎢⎢⎢⎣

1
Ls

0

0

⎤
⎥⎥⎥⎥⎦ , C =

[
1 0 0

]
.
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8.2.2 Parallel Reduced-Order EKFs

To proceed with the EKF design, the Jacobian, output matrix, and state transition

matrix are obtained in accordance respectively with (6.5), (6.6) and (6.8) as,

F =
∂f

∂x
|x=x(t) = A =

⎡
⎢⎢⎢⎢⎣

−rs
Ls

−1
Ls

0

0 0 ∓ωe

0 ±ωe 0

⎤
⎥⎥⎥⎥⎦ , (8.6)

H =
∂h

∂x
|x=x(t) = C =

[
1 0 0

]
, (8.7)

Φ(tn, tn−1, x(tn)) ∼= I + FTc =

⎡
⎢⎢⎢⎢⎣
1− rsTc

Ls

−Tc

Ls
0

0 1 ∓ωeTc

0 ±ωeTc 1

⎤
⎥⎥⎥⎥⎦ �

⎡
⎢⎢⎢⎢⎣
φ1 φ2 0

0 1 φ3

0 −φ3 1

⎤
⎥⎥⎥⎥⎦ .

(8.8)

In our sensorless control scheme, according to the parity of the index n of the sampling

time tn, currents iα and iβ are predicted/updated in subsequent samples, making use

of the time continuity of the inductive current. Then, the previous data of the rotor

speed and EMF components eα, eβ are applied to two corresponding third-order EKFs

in the prediction/updating steps to obtain the estimates êα, êβ. Hence, operating at a

time is only EKF of third order (p=3), instead of fourth order (p=4). This, therefore,

reduces the number of arithmetic operations involved and saving the logic elements

used. Thus, the estimated angular position, θ̂e, and rotor speed, ω̂e, to be used in the

next step, are obtained by the following equations:

θ̂e(n) = tan−1
(−êα(n)

êβ(n)

)
, (8.9)

ω̂e(n) =
1

λf

√
ê2α(n) + ê2β(n). (8.10)
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8.2.3 Design Procedure of Reduced-Order EKF

Step 1 : Set the initial values of Qd, Rd, Po and n = 1.

Step 2 : Measure the values of iα(n), iβ(n), vα(n), vβ(n) from the PMSM drive.

Step 3 : Predict the temporary state variables by using (6.13). In particular, the

scalar form of the prediction equation can be obtained from (8.1) as follows:

îα(n|n− 1) = (1− rs
Ls

Tc)̂iα(n− 1)− Tc

Ls

êα(n− 1)

+
Tc

Ls

vα(n− 1) (if n is odd), (8.11)

îβ(n|n− 1) = (1− rs
Ls

Tc)̂iβ(n− 1)− Tc

Ls

êβ(n− 1)

+
Tc

Ls

vβ(n− 1) ( if n is even), (8.12)

êα(n|n− 1) = êα(n− 1)− ω̂e(n− 1)Tcêβ(n− 1), (8.13)

êβ(n|n− 1) = êβ(n− 1) + ω̂e(n− 1)Tcêα(n− 1). (8.14)

Step 4 : Obtain the temporary covariance matrix Pn|n−1 from (6.14), where Φn−1 is

given by (8.8). Due to its symmetry, positive-definite matrix Pn|n−1 is chosen in the

following form:

Pn|n−1 =

⎡
⎢⎢⎢⎢⎣
P11 P21 P31

P21 P22 P23

P31 P23 P33

⎤
⎥⎥⎥⎥⎦ . (8.15)

Step 5 : Compute the Kalman gain (6.17) for the reduced-order filter by using (8.7)

and (8.15) as,

Kn =

⎡
⎢⎢⎢⎢⎣
P11

P21

P31

⎤
⎥⎥⎥⎥⎦ (

[
P11

]
+Rd)

−1 =

⎡
⎢⎢⎢⎢⎣
P11

P21

P31

⎤
⎥⎥⎥⎥⎦
[
T11

]−1
�

⎡
⎢⎢⎢⎢⎣
k11

k21

k31

⎤
⎥⎥⎥⎥⎦ . (8.16)
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Step 6 : Update the predicted state variables from (6.15) for the following cases:

(i) n is odd:

îα(n) = îα(n|n− 1) + k11ĩα(n), (8.17)

êα(n) = êα(n|n− 1) + k21ĩα(n), (8.18)

êβ(n) = êβ(n|n− 1) + k31ĩα(n), (8.19)

(ii) n is even:

îβ(n) = îβ(n|n− 1) + k11ĩβ(n), (8.20)

êβ(n) = êβ(n|n− 1) + k21ĩβ(n), (8.21)

êα(n) = êα(n|n− 1) + k31ĩβ(n), (8.22)

where

ĩα(n) = iα(n)− îα(n|n− 1), (8.23)

ĩβ(n) = iβ(n)− îβ(n|n− 1), (8.24)

in which kij are elements of the Kalman gain Kn.

Step 7 : Update the present covariance matrix Pn from (6.16).

Step 8 : Compute the rotor angular speed and rotor flux position from (8.9)− (8.10).

Then, set n = n+ 1, and go back to Step 2.

8.3 FPGA Control Architecture and FSM Implementation

8.3.1 FPGA Architecture for Sensorless PMSM Speed Control

Figure 8.1 shows the FPGA-based architecture of the proposed speed control system

for the sensorless PMSM drive. The control system includes a PI-speed controller,
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a speed command read-in unit, a CCCT module, a SVPWM generator, a quadra-

ture encoder pulse (QEP) detection and transformation module, an analog-to-digital

converter (ADC) read-in and conversion, a frequency divider as well as a parallel

reduced-order EKF-based rotor flux angle and rotor speed estimation module. All

modules are described by the VHDL and simulated in ModelSim to test their feasibil-

ity before implementation in Altera Cyclone II EP2C70. The sampling frequency for

the current and speed controllers is designated at 16 kHz and 2 kHz, respectively. The

operating clock rate of the designed FPGA controller is 50 MHz and the frequency

divider generates 50 MHz (Clk), 12.5 MHz (Clk-step), 16 kHz (Clk-cur) and 2 kHz

(Clk-sp) clock to supply to all module circuits of the application system-on-chip.

�
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Figure 8.1 : Proposed EKF based sensorless speed control IC circuitry
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8.3.2 EKF Complexity and Implementation with FSM

The computational cost for EKF realization increases drastically with the algorithm

complexity. In our approach, this has been significantly reduced thanks to a decrease

in the system order by using two parallel EKFs. The complexity, in terms of the

number of arithmetic operations, for the full-order EKF (p=4) and proposed reduced-

order EKF (p=3) are evaluated in Table 8.1.

Table 8.1 : Complexity of EKF Algorithms

Operations Full-order EKF(p=4) Reduced-order EKF(p=3)

Multiplications 94 32

Additions 67 21

Subtractions 31 8

Divisions 7 4

For implementation, a sequential FSM is employed to describe the parallel reduced-

order EKF algorithm, as shown in Figure 8.2, where the data type adopts a 16-bit

length with Q15 format and 2’s complement operations. Although the reduced-order

EKF algorithm described is highly complex, the FSM adequately incorporates the

control structure and can be described by VHDL. Here, the divider, multiplier and

adder apply the Altera LPM standard. It manipulates 75 steps machine to carry out

the overall computations.

In our FSM, the steps S0 − S1 select one of the two EKFs; steps S2 − S7 execute

the computation of the Jacobian matrix and predicted state variables; steps S8− S31

are for the calculation of the temporary covariance matrix; steps S32 − S35 describe

the computation of the state error and the Kalman gain Kn; steps S36− S39 perform

the present state updating; steps S40 − S45 update the present covariance matrix Pn;
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steps S46 − S59 compute the rotor flux position; steps S40 − S45 compute the rotor

speed; and finally step S75 is for getting back to step 1 for a new iteration loop.

Since the execution of each step can be completed within 80 ns corresponding to

frequency 12.5 MHz in FPGA, a total of NEKF=75 steps needs 6 μs for the parallel

reduced-order EKF operation. Similarly, the numbers of steps for execution of CCCT

and SVPWM are respectively NCCCT=24 and NSV PWM=13 steps. The total resource

usage in FPGA are 5,996 LEs; 5 hardwired (hw) 18-bit multipliers and 73,728 RAM

bits resource for the Cyclone II EP2C70, as summarized in Table 8.2.

Table 8.2 : FPGA Utility Evaluation for Sensorless PMSM Speed Control

Module circuits LEs Memory (bits) hw 18-bit multipliers

1. CCCT 864 24,576 1

2. SVPWM generation 1,221 0 1

3. ADC read-in and conversion 136 0 1

4. Speed PI controller 254 0 1

5. Parallel reduced-order EKF 3,521 49,152 1

TOTAL 5,996 73,728 5
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8.3.3 Sensorless Control Timing Diagram

The designed sampling interval is Tc=62.5 μs (16 kHz), the same as the PWM switch-

ing period. Since all processes are implemented by using FSM, the execution time tex

is calculated by

tex = tEKF + tCCCT + tSV PWM

= (NEKF +NCCCT +NSV PWM).TClk−step, (8.25)

where TClk−step, tEKF , tCCCT and tSV PWM are respectively the clock step period, exe-

cution time for reduced-order extended Kalman filtering, current control and coordi-

nate transformation, and space vector pulse width modulation. The ADC conversion

and the divider, multiplier, adder all use 50 MHz clock (Clk) and 12.5 MHz (Clk-step)

is used for step implementation. Figure 8.3 shows the timing diagram of all blocks

in the FPGA-based sensorless control for PMSM using the proposed reduced-order

EKFs.

At the beginning of the nth sampling period nTc, the ADC read-in and conversion

block reads and converts the values of the stator currents from two external ADCs

(AD574AJN). This block is implemented by 80 steps and at 50 MHz clock, i.e., 1.6

μs operation time. At the same time the EKF estimation is activated and generates

the estimated position angle θe to CCCT and the estimated rotor speed to the speed

control loop. The EKF estimation block is executed in 75 steps with 6 μs in total.

The CCCT block including the circuits of d−, q−axis PI control, transformation, and

cosine/sine look-up table operates sequentially with 24 steps at 12.5 MHz clock, re-

sulting in an execution time of 1.92 μs. Its outputs are three-phase reference voltages

(vref1, vref2, vref3), which are input to the SVPWM block, implemented by a state

vector machine with a computation time of 1.04 μs for 13 steps.
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The total execution time is tex=8.96 μs. Although the FSM method needs more

operation time, it consumes less FPGA resources than the parallel processing method.

�

ADC 

EKF estimation CCCT 

nTC (n+1)TC 

t

tex = 8.96 μs 

TC =  TPWM  = 62.5 μs 

EKF estimation SVPWM 

ADC 

tEKF tCCCT  tSVPWM

Figure 8.3 : Timing diagram of the sensorless control system

8.4 Computer Simulation

8.4.1 ModelSim/Simulink Co-simulation

Simulation is performed by using the Electronic Design Automation (EDA) Simulator

Link, which provides a verification interface between MATLAB/Simulink and the

VHDL simulator on an FPGA board.

Five modules are created for a PI speed controller, CCCT and SVPWM units, the

rotor flux position estimator using either the proposed parallel reduced-order EKFs,

full-order EKF or SMO, respectively. To be consistent with the hardware implemen-

tation, the sampling frequency of current and speed control is selected respectively

as 16 kHz and 2 kHz. The clocks of 50 MHz, 12.5 MHz and 16 kHz supply to all

other modules of ModelSim in accordance with the architecture of Figure 8.1. The
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parameters of an 8-pole PMSM used in this simulation are the same as in the previous

chapters.

8.4.2 Estimation and Speed Control: Simulation Results

To show the effectiveness of the proposed parallel reduced-order EKF technique for

sensorless PMSM control, we compare it with cases using a full-order EKF and SMO

with the same algorithm and estimator parameters as reported respectively in [34]

and [70]. The simulation results are shown in Figures 8.4-8.6. In Figure 8.4(a), the

actual rotor flux angle and its estimates are shown for a full-order EKF, SMO and the

proposed parallel reduced-order EKFs, typically at 900 rpm. Their zoom-in responses

between 0.123 and 0.126 (s) are depicted in Figure 8.4(b) to show the accuracy of the

three estimation techniques. The estimated flux angle has a 3o phase error, about

150 μs delay time under reference speed 900 rpm by using the parallel reduced-order

EKF method.

We then consider the case when the motor speed command is varied with a stair-

case pattern 90→600→900→1200 rpm using the full-order and parallel reduced-order

EKFs. Figures 8.5(a) and (b) show respectively the actual and estimated rotor flux

angle, and the actual and estimated speed responses for both EKF techniques. A

slight improvement in the estimation performance with a rising time of 20 ms and

steady-state error near 0 rpm is accounted for by the easy tuning of the filter param-

eters with a lower order. Responses of the currents are presented in Figure 8.6(a) for

the d− q axes and in Figure 8.6(b) for three phases when using the parallel reduced-

order EKFs. The current responses are consistent with the staircase speed patterns

applied to the sensorless PMSM.
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(a)

.123 0.124 0.125 0.126

0

5

0

5

0

Time(s)

Actual rotor FA

Estimated rotor FA using 
full−order EKF

Estimated rotor FA using 
parallel reduced−order EKF

Estimated rotor FA using 
SMO

(b)

Figure 8.4 : Speed 900 rpm: (a) actual and estimated rotor flux angle from SMO,
full-order EKF and parallel reduced-order EKFs, (b) zoom-in responses

Figure 8.5 : Speed pattern 0→90→600→900→1200 rpm: (a) actual and estimated
rotor flux angle, (b) actual and estimated speed
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(a)

(b)

Figure 8.6 : Responses with reduced-order EKFs: (a) d− q currents, (b) three-phase
currents

8.4.3 Resource Consumption and Execution Time Analysis

Table 8.3 summarizes the overall hardware resource consumption and execution time

for speed control of sensorless PMSM drives using the low cost Altera Cyclone II

FPGA (EP2C70F896C6) with three different types of sensorless techniques men-

tioned above in comparison with another low cost FPGA, the Xilinx Spartan 3E

(XC3S1600E), reported in [34]. Hardware resource usage and execution time for the

system with an EKF implementation are larger than for a SMO as it requires more

matrix computations. However, simulation results show that EKFs yield better per-

formance than SMO. It is clear from Figure 8.4(b) that SMO has a larger error (9o)

and slower response (400 μs) compared to the full-order EKF (5o, 250 μs) and our

proposed method (2o, 150 μs). Compared with an FPGA-based standard EKF im-
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plementation using parallel processing systolic arrays, which are ideal to implement

on FPGAs, the systolic array, albeit having a fast execution time, requires much

FPGA resources and its parallel architecture is quite complicated. The results given

in [34], using Xilinx Spartan 3E (XC3S1600E) with a 44 MHz clock frequency and

22-bit format in the standard EKF, showed good control performance with 6.82 μs

for execution thanks to the parallel design methodology, but at a high expense of

the computational resource with 7,376 LEs; 18,000 RAM bits and 36 hardwired 18-

bit multipliers. The proposed method has thus achieved a very good compromise

between the hardware resource consumption (5,996 LEs; 49,152 bits; 5 hw 18-bit

multipliers), execution time 8.96 μs (with a 12.5 MHz clock frequency) and overall

control performance of the system.

8.5 Implementation and Results

8.5.1 Laboratory Set-Up

The on-chip control system and IGBT inverter voltage source supplied to the sensor-

less PMSM drive is depicted in a photograph shown in Figure 8.7.

- Motor : The PMSM’s name-plate specifications are 100 W , 4 poles, 100 V , 1.7

A, and 3000 rpm. The brake torque of the motor is 0.32 Nm. It uses an optical

encoder of 1000 pulses/rev.

- Supply : The inverter has 6 sets of power transistors of the IGBT type. The

collector-emitter voltage of the IGBT is rating 500 V , the gate-emitter voltage is

rating ±20 V , and the collector current is rating 20 A in DC. Input signals of the

inverter are PWM signals from the FPGA.

- On-chip Control System: The FPGA chip Cyclone II (EP2C70F896C6), pro-



133

duced by Altera, has 68,416 LEs, 1,152,000 bits of on-chip RAM, 150 hardwired

18-bit embedded multipliers, 36 DSP blocks and maximum user I/O pins of 622.

Figure 8.7 : Set-up photograph

8.5.2 Experimental Results

For implementation, the PWM frequency, inverter dead-band interval, current loop

sampling frequency, and speed loop sampling frequency are designated respectively at

16 kHz, 1 μs, 16 kHz and 2 kHz. In the proposed sensorless control IC, the modules

for current control, speed control, current vector control scheme, SVPWM generation,

ADC read-in and conversion, coordinate transformation and parallel reduced-order

EKFs for rotor flux angle and rotor speed estimation are all realized by hardware

in the FPGA chip. Again, the PMSM is experimentally tested at various speed

commands. For verification, the encoder attached to the PMSM is used to obtain

the actual rotor flux position. As shown in Figure 8.8, at 200 rpm the estimated flux
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angle exhibited around 4◦ phase error as compared with the measurements from the

encoder sensor. When the PMSM reversed from 1000 to -1200 rpm, the estimated

flux angle almost matched the actual value obtained from the encoder, as shown

in Figure 8.9. Experiment results indicate that the proposed parallel reduced-order

EKFs for estimating the flux angle is suitable for a wide speed range of the motor,

including a low speed, a moderate or a high speed motor running in both forward

and reverse directions. At a low speed of the motor, the weak back emf signal tends

to affect the accuracy of the flux position but it is not considerable. At a speed

command of 1000 rpm, the PMSM was loaded from a 2 Nm external load, the step

response using the proposed estimation method is shown in Figure 8.10, where the

rising time and steady-state error value are observed as 250 ms and near 0 rpm.

Experimental results show that all the rotor speed tracks the electrical reference

speed in different operation conditions of the PMSM. These together have confirmed

the effectiveness and correctness of the proposed FPGA-based control architecture

for sensorless PMSM drives.

8.6 Chapter Conclusion

In this chapter, we have presented a fully FPGA-based speed control system for a

sensorless permanent magnet synchronous motor by using the parallel reduced-order

EKFs for estimation and the finite state machine method for algorithm implementa-

tion. The proposed system comprises a PI speed controller, field-oriented PI current

controllers, a rotor flux angle and rotor speed estimator together with other modules

for command read-in, frequency divider, ADC conversion and SVPWM generation.

The whole system architecture has been successfully realized in one FPGA chip with

a small resource usage as well as a fast execution time. The proposed flux angle
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and speed estimator algorithms have proven their effectiveness in the estimation of

the rotor speed as verified by the co-simulation method and in extensive experiments.

Simulation results have shown better performance when compared with other schemes

for FPGA-based sensorless speed control in PMSM drives. Real-time responses ob-

tained from a laboratorial set-up with a Cyclone II FPGA platform are included for

performance validation of the control-system-on-programmable chip design.

Figure 8.8 : Estimated and measured flux angle when PMSM runs at 200 rpm
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Figure 8.9 : Estimated and measured flux angle with PMSM running from 1000 to
-1200 rpm

Figure 8.10 : Speed step response of the sensorless PMSM drive
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Chapter 9

General Conclusion

9.1 Conclusions

In all the thesis topics, the analysis and design are mostly based on a detailed an-

alytical effects, design procedure, and control performance enhancement along with

a sequential FSM design method followed by computer simulation and experimental

validation. The ModelSim/Simulink is used for extensive simulation and experimental

validation is conducted using an Altera kit and laboratory instrumentation.

To accomplish the thesis objectives, the integration of a multi-loop PI and neural

fuzzy control system for multiple-axis motion positioning and tracking via the use

of the FPGA technology is firstly presented in Chapter 4. The controlled plant

here is an X-Y table driven by permanent magnet linear synchronous motors. The

control system comprises two programmable servo control systems for both axes; each

includes a motion planner, a PI speed controller in the inner loop and a NFC in the

position loop. Here, to increase the tracking performance in dealing with unmodelled

dynamics and cross-axis interferences, the NFC is designed by using a radial basis

function neural network in combination with a parameter adjusting mechanism.

High performance estimation schemes for sensorless PMSM control based on the

FPGA technology, are demonstrated in Chapter 5, Chapter 6, Chapter 7 and Chap-

ter 8, respectively. In Chapter 5, an observer-based integral sliding mode controller

is presented. By integrating the observer-based and integral sliding mode control
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techniques into speed control of a PMSM drive, the system performance can be sub-

stantially enhanced while improving its cost-effectiveness and reliability.

The improvements of EKF algorithm for the sensorless PMSM have been devel-

oped in Chapters 6-8. In conventional Kalman filtering, abrupt state changes may not

be tracked adequately since sudden variations may seriously affect the auto-correlation

Gaussian property of white noise in the filter residuals. For this, the AF-EKF has

been developed in Chapter 6 to recover the estimation results in events of frequent

and sharp state jumps. The AF-EKF is, therefore, a promising estimator for PMSM

drives that are subject to frequently-varying loads speed commands.

Chapter 7 presents the design and implementation of an adaptive extended Kalman

filter. This improved EKF versions can be obtained by incorporating an adjustment

mechanism of the noise covariances into the filter to tune online the process noise

covariance to improve the filtering performance. Therefore, it is also a good solution

for sensorless PMSM drives with more accurate estimation features, provided it is

feasible in implementation.

In Chapter 8, for reduction of computation resources as well as accuracy improve-

ment in the rotor position estimation, a parallel reduced-order EKF is proposed.

Compared with an EKF, the system order is reduced and the iteration process is

greatly simplified, resulting in significant savings of resource utility, while maintain-

ing high estimation performance.

In conclusion, the significance of this thesis contribution includes providing a

feasible and effective solution for the implementation of complex control strategies to

fully exploit the FPGA advantages in power electronics and drive applications.
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9.2 Thesis Contributions

In the field of power electronics and drive applications, this research aims to con-

tribute a proof-of-concept for the control-system-on-chip and a prototype for a fully-

implemented FPGA control architecture for PMSM drives. Based on a sequential

finite state machine design method, this work aims to optimally design the controllers-

based FPGA. In the following, thesis contributions are elaborated,

i. A design and validation methodology for FPGA-based digital controller is pro-

posed throughout this thesis based on analytical effects, design procedure, and control

performance enhancement along with a sequential FSM design method for PMSM

drives under sensor/sensorless vector control using a number of control techniques.

The proposed method is first tested by ModelSim/Simulink co-simulation method as

well as Altera Cyclone boards and then validated by experimental systems.

ii. An FPGA-based intelligent control and robust cascade control for single axis

and multiple axis tracking with PMSMs have been implemented in this study. It is

based on the neural fuzzy controller in the position loop which increases the tracking

performance in dealing with unmodelled dynamics and cross-axis interferences of

multi-axis control systems.

iii. An important contribution of this thesis rests with a convincing demonstration

of high performance estimation schemes, using sliding mode observers and extended

Kalman filters, in terms of accuracy and robustness against noisy and/or perturbed

currents for sensorless PMSM control based on the FPGA technology.

In general, this thesis aims to provide a feasible and effective solution for the

implementation of complex control strategies to fully exploit the FPGA advantages

in power electronics and drive applications.
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9.3 Future Works

Future work in FPGA control architecture for PMSM drives can be explored to com-

plement the findings of this thesis. The tasks suggested for it are listed below:

(1) In the development for neural fuzzy control, the parameters of a fuzzy rule

table are tuned to adequate values; however, most adaptive fuzzy control approaches

have quite often a fixed membership function. As such, fuzzy membership functions

can also be tuned based on a RBF NN identification technique, or a suitable fuzzy

membership function can adopt the Gauss function. These proposed algorithms can

be applied for servo control of an X-Y or X-Y-Z table.

(2) In the sensorless PMSM estimation control, the chattering is still a challenging

problem in SMC. Therefore, the performance of an FPGA based motor drive system

using a combination of high order sliding mode observer and control is worth be-

ing investigated. Regarding filtering technique, EKF suffers from being sensitive to

uncertainties of PMSM parameters. So the combination of EKF and online estima-

tion of motor parameters (such as resistor, inductor, flux linkages) is an open topic.

Additionally, a smooth transition scheme between adaptive algorithms and reduced

order models can be further developed into new EKFs. Further, Kalman filtering is

normally based on the assumption that the uncertainties of the PMSM system follow

a Gaussian distribution; however, it may not be the case in practice. Particle filter,

a new approach with unity distribution assumption of uncertainties distribution has

become a hot research topic in this context for process variables estimation.

(3) In the realization aspect, the comparison of hardware/software co-design

method and fully hardware design method will be considered. The proposed FPGA

design methodology with developed algorithms can further be investigated for other

control and automation applications, or various robotic and mechatronic systems.
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