DEVELOPING THIN FILM COMPOSITE MEMBRANES FOR ENGINEERED OSMOSIS PROCESSES

by

Soleyman Sahebi

A Thesis submitted in fulfilment for the degree of

Doctoral of Philosophy

School of civil and Environmental Engineering Faculty of Engineering and Information Technology University of Technology, Sydney (UTS), New South Wales, Australia

Jun 2015

Certificate of Authorship

I certify that the work in this thesis has not previously been submitted for a degree nor has it been submitted as part of requirements for a degree except as fully acknowledged within the text.

I also certify that the thesis has been written by me. Any help that I have received in my research work and the preparation of the thesis itself has been acknowledged. In addition, I certify that all information sources and literature used are indicated in the thesis.

Soleyman Sahebi

Production Note:Signature of Student:Signature removed prior to publication.

Date: <u>28-06-2015</u>

ACKNOWLEDGEMENTS

I wish to express my heartfelt gratitude for my mother Mrs Sara for whom my success and progress matter the most. Her encouragement and inspiration gave me strength throughout my entire life. She was mother and father for me and my siblings from the very moment of our childhood since my father passed away early. Nothing is enough to appreciate her young life she spent for me, my brother and sister. Then I would like to dedicate this thesis that I achieved through a great challenge to my dear mom. Without her sacrifices, I never could have reached this stage. I also dedicate my thesis to my father who passed away very early but through his hard work and wise planning, our family managed to overcome all challenges and financial hardship years after his passing.

This dissertation would not have been possible without the support and encouragement of my principal supervisor Dr. Ho Kyong Shon. I would like to express my deepest gratitude and appreciation to him. I would like also to thank my co-supervisor Dr. Sherub Phuntsho for his kind support and his wisdom during my study at UTS. I also would like to express my sincere appreciation to Prof. Chung Tai-Shung (Neal) who give me a training opportunity into his fascinating membrane research group and Dr Han Gang who worked with me during the time in the National University of Singapore (NUS). I have learned and benefited a lot from the training workshop and without this opportunity this thesis would not be possible.

I also would like to thank my friends and research group members at UTS who made this journey memorable. I want to thank Lura Chekli, Fouze Lotfi, Ibrahim El Saliby, Tahir Majeed, Jung Eun Kim, Yun Chul Woo, Myoung Jun Park and I also appreciate Dr.Leonard D. Tijing for his kind help during my study. I also thank my elder brother Mr Saeed Sahebi and dear friend Dr. Diako Ebrahimi for their support and encouragement during my thesis when I faced very hard, stressful and challenging moments. Their advice gave me the light and encouragement to maintain the momentum.

Finally, I thank my beloved fiancé Nasim for the pain she has had to endure during my absence and cope with this condition in order to support my study while she had an internship and was passing through a difficult period of her study. I would like also to thank Nasim's family, especially her mother Mrs. Ziba Hesami who has been like a loving mother and Mr Salimiaghdam, who been as a precious father to me. I also want to thank my brother in-law Dr. Chia Salimiaghdam for his support during the time I was away and busy with this study.

Last but not least, I would like to thank the University of Technology, Sydney for offering me APA scholarships for my PhD studies at UTS and later on NCEDA scholarship by the National Centre of Excellence in Desalination Australia.

TABLE OF CONTENTS

Certificate of Authorship	2
ACKNOWLEDGEMENTS	iii
TABLE OF CONTENTS	v
Journal Articles Published	ix
Conference papers and presentations	X
ABSTRACT	xi
LIST OF ABBREVIATIONS	xiv
LIST OF SYMBOLS	XV
LIST OF FIGURES	xvi
LIST OF TABLES	xxiii

Chapte	er 1	
INTRO	DUCTION	1
1.1	Background	2
1.2	Research Motivation	4
1.3	Objectives and Scope of the Study	5
1.4	Structure Outline of the Thesis	7
Chapte	er 2	
LITER	ATURE REVIEW	8
2.1	Introduction	9
2.2	Current and emerging technologies for global water crises	9
2.3	Forward osmosis (FO)	12
	2.3.1 Pressure Assisted Osmosis (PAO)	15
	2.3.2 PAO for energy savings in desalination units, oil and gas was	stewater
	treatment	
	2.3.3 Pressure Retarded Osmosis (PRO)	
2.4	Hybrid FO applications	
	2.4.1 Hybrid RO-FO system	23
	2.4.2 Hybrid PRO-MD system	
2.5	FO challenges	
	2.5.1 Draw solution	
	2.5.2 Membrane	
	2.5.3 Fluid management	

2.6	Mei	nbrane for engineered osmosis	
	2.6.1	Polymeric membranes	40
2.7	Eng	ineering principles for the design of polymeric membranes	45
	2.7.1	Phase inversion induced asymmetric membranes	46
2.8	For	ward osmosis membrane fabrication methods	
	2.8.1	Phase inversion membranes	50
	2.8.2	Composite membranes	53
	2.8.3	Inorganic membranes	61
2.9	Cus	tom designs of flat sheet FO membranes	64
	2.9.1	Selective rejection layer	65
	2.9.2	Support polymeric layer	68
	2.9.3	Support backing fabric	73
2.10) Imp	oortant factors in fabricating TFC FO membrane	78
	2.10.2	l Membrane wrinkling, creasing and defect points	78
	2.10.2	2 Membrane pore size in support layer	81
	2.10.3	3 Membrane pore size in skin layer	
2.11	Con	cluding remarks and recommendations	
Chapt	er 3		
MATE	RIALS	AND METHODS	
3.1	Intr	oduction	
3.2	Exp	erimental Materials	
	3.2.1	Membranes fabrication materials	
	3.2.2	Chemicals used as draw and feed solution	90
	3.2.3	Membrane fabrication procedure	91
3.3	Mei	nbrane characterizations	93
	3.3.1	Basic characterisation	93
	3.3.2	Field Emission Scanning Electron Microscope (FESEM)	93
3.4	For	ward osmosis (FO) and pressure assisted osmosis (PAO) test	94
	3.4.1	FO lab scale set up and performance tests	94
	3.4.2	PAO lab scale set up and performance tests	96
	3.4.3	Water contact angle	97
	3.4.4	Membrane porosity	
	3.4.5	Mechanical strength	99
3.5	Mea	asurement and data analysis	100

	3.5.1	Pure water permeability	100
	3.5.2	Salt rejection and salt permeability tests	100
	3.5.3	Measurement of the reverse solute flux	101
	3.5.4	Determining membrane structural parameter	101
Chapt	er 4		103
PRESS	SURE A	SSISTED FERTILISER DRAWN OSMOSIS PROCESS TO ENHANCE FI	NAL
DILUT	TION O	F FERTILSER DRAW SOLUTION BEYOND OSMOTIC EQUILIBRIUM	103
4.1	Intr	oduction	104
4.2	Clas	ssification of osmotic processes and modelling	108
4.3	Mat	erials and Methods	114
	4.3.1	Feed and draw solutions	114
	4.3.2 opera	Bench-scale pressure assisted osmosis (PAO) experimental setup an tion	d its 115
4.4	Res	ults and discussion	117
	4.4.1	Validating the pressure assisted osmosis (PAO) process	117
	4.4.2 desali	PAO process for the pressure assisted fertiliser drawn osmosis (PAF ination	DO) 124
	4.4.3 proce	Reverse draw solute diffusion and feed solute rejection in the PAO	131
	4.4.4	Understanding the significance and implications of the PAFDO proce 134	SS
4.5	Con	cluding remarks	139
Chapt	er 5		141
THIN	FILM C	COMPOSITE FORWARD OSMOSIS MEMBRANE ON A SULPHONATE	D
POLY	ETHER	SULFONE SUBSTRATE	141
5.1	Intr	oduction	142
5.2	Mat	erial and methods	145
	5.2.1	Chemicals	145
	5.2.2	Synthesis of SPES polymer	145
	5.2.3	Fabrication of flat-sheet TFC FO membranes	147
	5.2.4	Membrane characterizations	149
	5.2.5	FO performance experiments	150
5.3	Res	ults and discussion	152
	5.3.1	Characteristic of membrane substrates	152
	5.3.2	Characterization of TFC-FO membranes	157
	5.3.3	Performance of TFC-FO membranes for FO process	160

5.4	Con	cluding remarks	165
Chapt	er 6		167
THIN-	FILM (COMPOSITE MEMBRANE SUPPORTED ON A COMPACTED WOVEN	
FABR	IC MES	H SUPPORT FOR PRESSURE ASSISTED OSMOSIS	167
6.1	Intr	oduction	168
6.2	Mat	erials and Methods	172
	6.2.1	Chemicals and membrane materials	172
	6.2.2	Synthesis of flat-sheet TFC PAO membranes	173
	6.2.3	Membrane characterization	177
6.3	Res	ults and discussion	181
	6.3.1	Membrane substrate layer	181
	6.3.2	Membrane rejection layer	195
	6.3.3	PAO performance evaluation	201
6.4	Con	cluding remarks	210
Chapt	er 7		212
CONC	LUSIO	NS AND RECOMMENDATIONS	212
7.1	Pre	ssure assisted fertilizer drawn osmosis process	213
7.2	Thi	n film composite forward osmosis membrane	214
7.3	Thi 216	n film composite supported on woven fabric for pressure assisted osr	nosis
7.4	Rec	ommendations and future work	219
REFE	RENCE	S	221

Journal Articles Published

- *Sahebi, S., Phuntsho, S., Eun Kim, J., Hong, S., & Kyong Shon, H. (2015). Pressure assisted fertiliser drawn osmosis process to enhance final dilution of the fertiliser draw solution beyond osmotic equilibrium. Journal of Membrane Science, 481(0), 63-72.
- *Phuntsho, S., Sahebi, S., Majeed, T., Lotfi, F., Kim, J. E., & Shon, H. K. (2013). Assessing the major factors affecting the performances of forward osmosis and its implications on the desalination process. Chemical Engineering Journal, 231, 484-496.
- *Majeed, T., Sahebi, S., Lotfi, F., Kim, J. E., Phuntsho, S., Tijing, L. D., & Shon, H. K. (2014). Fertilizer-drawn forward osmosis for irrigation of tomatoes. Desalination and Water Treatment, 53(10), 2746-2759.
- **Chae, S.-R., Noeiaghaei, T., Jang, H.-C., Sahebi, S., Jassby, D., Shon, H.-K., Park, J.-S. (2015). Effects of natural organic matter on separation of the hydroxylated fullerene nanoparticles by cross-flow ultrafiltration membranes from water. Separation and Purification Technology, 140(0), 61-68.
- *Majeed, T., Phuntsho, S., Sahebi, S., Kim, J. E., Yoon, J. K., Kim, K., & Shon, H. K. (2014). Influence of the process parameters on hollow fiberforward osmosis membrane performances. Desalination and Water Treatment, 54(4-5), 817-828.
- **Ahmadi, M., Ramavandi, B., & Sahebi, S. (2014). Efficient Degradation of a Biorecalcitrant Pollutant from Wastewater Using a Fluidized Catalyst-Bed Reactor. Chemical Engineering Communications, 202(8), 1118-1129.
- **Ramavandi, B., Asgari, G., Faradmal, J., Sahebi, S., & Roshani, B. (2014). Abatement of Cr (VI) from wastewater using a new adsorbent, cantaloupe peel: Taguchi L16 orthogonal array optimization. Korean Journal of Chemical Engineering, 31(12), 2207-2214.
- **Asgari, G., Ramavandi, B., & Sahebi, S. (2013). Removal of a cationic dye from wastewater during purification by Phoenix dactylifera. Desalination and Water Treatment, 52(37-39), 7354-7365.
- **Ramavandi, B., Jafarzadeh, M., & Sahebi, S. (2014). Removal of phenol from hyper-saline wastewater using Cu/Mg/Al–chitosan–H2O2 in a fluidized catalytic bed reactor. *Reaction Kinetics, Mechanisms and Catalysis, 111*(2), 605-620.

Conference papers and presentations

- *Soleyman Sahebi, Ho Kyong Shon, Sherub Phuntsho, Fezeh Lotfi, Jung Eun Kim. Factors Affecting the Performances of Forward Osmosis Desalination Process. Euro-membrane conference. Sep 23 – 27, 2012, London, UK.
- **Chae, So-Ryong; Jang, Hee-Chan; Lee, Jieun; Noeiaghaei, Tahereh; Sahebi, Soleyman; Shon, Ho-Kyong; Kim, Jong-Oh and Wiesner, Mark R. Recovery of engineered nanomaterials by dead-end and cross-flow ultrafiltration membranes from water : Chemeca 2012: Quality of life through chemical engineering: 23-26 September 2012, Wellington, New Zealand
- **3.** *Sherub Phuntsho, **Soleyman Sahebi**, Amit Chanan, Ho Kyong Shon.," Pressure assisted osmosis: overcoming limitations of osmotic equilibrium in forward osmosis process", IWA-WWC&E 2014 Portugal.
- *Soleyman Sahebi, Ho Kyong Shon, Sherub Phuntsho, Major factors affecting performances of forward osmosis desalination, FEIT Showcase June 12, 2012, Faculty of Engineering & Information Technology, University of Technology Sydney (UTS), Sydney, Australia.

^{**}Publications made during the PhD candidature including articles not entirely related to the Thesis. *Articles related to the Thesis.

ABSTRACT

The high demand for clean water resources has generated substantial research interest in terms of sustainable and low energy water purification technologies such as forward osmosis (FO). Compared to other membrane based technologies, the FO process is less energy intensive. However, there are challenges that need solutions to enable the FO to compete with other technologies for desalination. Suitable draw solution and a proper membrane are required to overcome the FO process challenges. Enormous effort has been expended to find a new material and better membrane design in order to develop a novel FO membrane that can meet high performance demands in relation to water flux, salt rejection and mechanical strength. This is of particular importance for the newly introduced concept of pressure assisted osmosis (PAO). The objectives of this dissertation are to understand the fundamentals of the FO and PAO as a basis for fabricating a suitable membrane for the FO and PAO process.

In the first part of the work, PAO and its potential application to overcome the limitations of osmotic equilibrium in the FO process is investigated. One of the practical applications of the FO process is desalination for irrigation purposes through the means of hybrid desalination units such as fertiliser drawn forward osmosis (FDFO). The utilisation of PAO in FDFO desalination is assessed .By integrating the PAO process into the FDFO desalination unit, water flux can be generated beyond the point of osmotic equilibrium. As a result, diluted fertilizer as DS in the FDFO unit can be applied for direct fertigation without the need for an additional post-treatment process such as nanofiltration to recover the fertiliser draw solution (DS). Integration of the PAO process has proved to be very effective in

generating extra water flux. This can serve to reduce the capital costs since no separate post-treatment process such as the NF is necessary.

In the second part of the work, a thin film composite membrane for the FO and PAO process is fabricated through Polyethersulfone as a polymer materials base. Phase inversion in the precipitation bath and membrane formation mechanism of these polymers, both with and without backing fabric support, is investigated. The membrane chemical properties and hydrophilicity have been found to play a key role in the mass transfer of water flux during the FO process. Therefore, attention has been directed at increasing the hydrophilicity of the membrane through blending sulphonated materials. It has been found that sulphonation not only affects the membrane performance but also the membrane structure and morphology. Through sulphonation, porosity and hydrophilicity of the substrate increases while the finger like structure disappears. This leads one to suppose that the high water flux does not have a direct relationship with the finger like membrane structure. Regardless of membrane morphology, substrate hydrophilicity is the key to achieving a high performance membrane. Sulphonation has been found to have a tremendous effect on the physical and chemical properties of the membrane. While sulphonation dramatically increases the hydrophilicity of the substrate, it decreases the membrane mechanical strength. Due to higher hydrophilicity and lower ICP as a result of blending the sulphonation polymer, a membrane with better performance in terms of water flux and selectivity has been developed for the FO process.

In the last part of the work, a special thin film composite (TFC) flat sheet membrane on a backing fabric is developed for the PAO application. The newly developed concept of PAO has introduced a hydraulic pressure to the feed side to overcome

xii

osmotic equilibrium and the extraction of more water. Accordingly, under the PAO process, a membrane with considerable mechanical strength is required. A thin film composite membrane supported on woven mesh fabric is designed to specifically solve the problem by embedding a woven mesh fabric support. An earlier part of this study reveals that the mechanical stability and special physical properties of the support layer are critical for the PAO process.

LIST OF ABBREVIATIONS

AL-DS	:	Active layer – draw solution
AL-FS	:	Active layer - feed solution
AL	:	Active layer
BW	:	Brackish water
CA	:	Cellulose acetate
СТА	:	Cellulose triacetate
СР	:	Concentration polarization
DI	:	Deionized water
DS	:	Draw solution
ECP	:	External concentration polarization
FDFO	:	Fertilizer drawn forward osmosis
FO	:	Forward osmosis
FS	:	Feed solution
ICP	:	Internal concentration polarization
IP	:	Interfacial polymerization
LMH	:	$L/m^2/h$
MW	:	Molecular weight
NF	:	Nanofiltration
PA	:	Polyamide
PAI	:	Poly (amide-imide)
PAO	:	Pressure assisted osmosis
PBI	:	Polybenzimidazole
PES	:	Polyethersulfone
PRO	:	Pressure-retarded osmosis
PSf	:	Polysulfone
PWP	:	Pure water permeability
RO	:	Reverse osmosis
RSF	:	Reverse solute flux
SEM	:	Scanning electron microscope
SL	:	Support layer
SRSF	:	Specific reverse solute flux
SW	:	Sea water
TFC	:	Thin film composite
TFN	:	Thin film nanocomposite

LIST OF SYMBOLS

А	:	Water permeability coefficient (L .m ⁻² .h ⁻¹ .bar ⁻¹)
В	:	Salt permeability coefficient (m.s ⁻¹)
D/Ds	:	Diffusion coefficient $(m^2 s^{-1})$
J_s	:	Solute flux $(g.m^{-2}.h^{-1})$
J_{w}	:	Water flux $(L m^{-2} h^{-1})$
k	:	Mass transfer coefficient
Κ	:	Solute diffusion resistance (s.m ⁻¹)
Μ	:	Molar concentration of the solution
Mw	:	Molecular weight (mol.g ⁻¹)
n	:	Van't Hoff factor
Р	:	Applied hydraulic pressure (bar)
Re	:	Reynolds number
Sc	:	Schmidt number
Sh	:	Sherwood number
Т	:	Absolute temperature (in K)
t	:	Thickness of the membrane (m)
Δt	:	Time interval (h)
ΔV	:	Volume change (L)
ΔP	:	Pressure change (bar)
π	:	Osmotic pressure (bar)
φ	:	Osmotic pressure coefficient
σ	:	Reflection coefficient,
3	:	Porosity
β	:	van't Hoff coefficient
τ	:	Tortuosity
		-

LIST OF FIGURES

Figure 2.1 Illustration of major desalination technologies with their relative
contributions to worldwide capacity for desalination
Figure 2.2 Water flow and relationship between RO, PRO, FO and PAO for an ideal
semi-permeable membrane. In FO, water diffuses to the more saline side of the
membrane and ΔP is approximately zero. PAO is similar to FO but additional
pressure is applied on the feed side. In PRO, positive pressure ($\Delta \pi > \Delta P$) occurs and
as a result of water diffuses to the more saline liquid side. In RO, due to hydraulic
pressure ($\Delta P > \Delta \pi$), water diffuses to the less saline side
Figure 2.3 Schematic of FDFO desalination unit for fertigation using NF for DS
recovery
Figure 2.4 (a) Schematic of oil and gas waste water treatment applying FO and PAO
process, adapted with permission from (Coday et al. 2014) , and (b) Illustration of
Oasays' membrane brine concentrator (MBC)
Figure 2.5 Illustration of a PRO system with relevant dimension
Figure 2.6 Schematic of hybrid forward osmosis systems for desalination of
seawater, wastewater treatment and energy production
Figure 2.7 Schematic of hybrid pressure retarded osmosis-membrane distillation
system for power generation from low-grade heat
Figure 2.8 Energy conversion from salinity gradients by forward osmosis-
electrokinetics
Figure 2.9 Water flux transport in the PRO and FO mode in FO process (Wang et al.
2010) 36
Eisure 2.10 Illustration of the minoiral times of membrane in terms of their
rigure 2.10 illustration of the principal types of memorane in terms of their
structure
Figure 2.11. Schematic for membrane modules
Figure 2.12 Ternary phase diagram of system with three component used in Loeb-
Sourirajan membranes fabrication (Husain 2012)

Figure 2.23 Schematic illustration of membrane formation from polymer solution

with graphene oxide (GO) through phase inversion (Ganesh et al. 2013)
Figure 2.24 (a) shows CTA FO membrane from HTI with woven polyester mesh, (b) CTA FO from HTI with non-woven backing fabric, (c) thin film composite FO membrane on a non-woven fabric from Woongjin, (d) thin film comosoite FO membrane on woven polester mesh from University of Technology Sydney
Figure 2.25 (a) non woven backing fabric used in RO membrane, (b) poleyster mesh woven backing fabric used in TFC-HTI FO membrane
Figure 2.26 Schematic of Nanocelluloses thin membrane film (a) and SEM image of Nanocelluloses fibre (b) (Klemm et al. 2006)
Figure 2.27 (a) Membrane fabrication RO-style, and (b) FO style. Modified figure from (Herron 2008)
Figure 2.28 (a) SEM images of CA membranes fabricated from acetone and 2- methyl-2,4-pentanediol. The evaporation time is different for four samples (Mark & Kroschwitz 1989), (b) SEM images of PSF membranes fabricated from a solution of NMP and different non solvent in the precipitation bath (Guillen et al. 2011).
Figure 2.29 Schematic diagram of the interfacial polymerization process
Figure 2.30 Illustration of polyamide–polysulfone layers for two type TFC membrane (Singh et al. 2006)
Figure 2.31 The effects of PSF substrate and chemistry in producing TFC membrane through MPD-TMC reaction (a) higher permeability and surface with relative roughness, (b) relatively impermeable and medium surface roughness, (c) the highest permeability and the highest roughness, and (d) the lowest permeability and medium surface roughness (Ghosh & Hoek 2009a)
Figure 3.1: Stainless steel film applicator and the glass plate
Figure 3.2: Membrane frame which was used for the interfacial polymerization96
Figure 3.3: High-resolution Schottky field emission scanning electron microscope (SEM Zeiss Supra 55 VP)

Figure 4.2: Schematic of the lab-scale experimental setup for PAO process.......119

Figure 4.5: Variation of the water fluxes when the hydraulic pressure is applied under the condition in which the osmotic equilibrium occurs at different DS-FS concentrations levels (a) using three fertilisers as DS with BW as FS (with concentrations ranging from 0 to 35 g/L NaCl at an applied pressure of 10 bar and (b) using NaCl as DS with FS ranging from 0 to 35 g/L NaCl at an applied pressure of 6 bar and the variation of the effective osmotic pressures of the DS and FS at the

Figure 5.1: Chemical structure of PES and SPES synthesized in this study......148

Figure 5.6: Performance comparison of fabricated membranes in terms of water flux and reverse solute flux under FO and PRO with various NaCl concentrations as DS and DI water as feed. (a) performance of membrane samples in terms of water flux, (b) performance of membrane samples in terms of reverse solute flux. (TFC₁ contains 0 wt % sulphonated material in the membrane substrate while TFC₂ and

Figure 6.7: SEM cross section images of Woongjin FO membrane substrate displaying (a) new membrane and (b) after few FO experiments. Woongjin membrane is a TFC-FO membrane cast on unknown nonwoven fabric support....193

Figure 6.9: SEM images of membrane rejection thin layer displaying (a) top surface view for T_1 sample and (b) cross section view for T_2 sample cast on PES membrane substrate through interfacial polymerisation. Thin polyamide cross-linked rejection layer formed through reaction between 3.5 wt % MPD in water and 0.15 % TMC in hexane.

Figure 6.10: Performance comparisons of fabricated membranes with commercial membranes in terms of water flux (a) with 0.5 M NaCl as DS and DI water as FS and (b) 0.5 M NaCl as DS and BW10 as FS at different applied hydraulic pressure.....205

LIST OF TABLES

Table 2.1 History of draw solutes used in FO with different regeneration methods.Modified from (Ge et al. 2013)
Table 2.2 Recent FO membranes made through phase inversion. DI water was used as the feed. .55
Table 2.3 Recent FO composite membranes. DI water was used as a feed
Table 5.1: TFC-FO casting solutions composition with different sulphonatedpolymer blending ratio.150
Table 5.2: Characteristics of membrane substrates at different sulphonation rates157
Table 5.3: Mechanical properties of membranes with a different degree of sulphonation.
Table 5.4: Transport properties and structural parameters of fabricated membranesamples in comparison with CTA-HTI membrane.162
Table 5.5: Performance of fabricated TFC-FO membrane using 2 M NaCl as DS and
DI as FS under FO and PRO mode
Table 5.6: Performance comparison of flat sheet TFC-FO membranes in FO mode of operation.
Table 6.1: Synthesis conditions for TFC PAO membranes. 175
Table 6.2: Characterisation of membrane substrates. 194
Table 6.3: Mechanical properties of TFC membrane substrates. 196
Table 6.4: Properties of fabricated TFC and other commercial membranes 201