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ABSTRACT 

The high demand for clean water resources has generated substantial research 

interest in terms of sustainable and low energy water purification technologies such 

as forward osmosis (FO). Compared to other membrane based technologies, the FO 

process is less energy intensive. However, there are challenges that need solutions to 

enable the FO to compete with other technologies for desalination. Suitable draw 

solution and a proper membrane are required to overcome the FO process challenges. 

Enormous effort has been expended to find a new material and better membrane 

design in order to develop a novel FO membrane that can meet high performance 

demands in relation to water flux, salt rejection and mechanical strength. This is of 

particular importance for the newly introduced concept of pressure assisted osmosis 

(PAO). The objectives of this dissertation are to understand the fundamentals of the 

FO and PAO as a basis for fabricating a suitable membrane for the FO and PAO 

process. 

In the first part of the work, PAO and its potential application to overcome the 

limitations of osmotic equilibrium in the FO process is investigated. One of the 

practical applications of the FO process is desalination for irrigation purposes 

through the means of hybrid desalination units such as fertiliser drawn forward 

osmosis (FDFO). The utilisation of PAO in FDFO desalination is assessed .By 

integrating the PAO process into the FDFO desalination unit, water flux can be 

generated beyond the point of osmotic equilibrium. As a result, diluted fertilizer as 

DS in the FDFO unit can be applied for direct fertigation without the need for an 

additional post-treatment process such as nanofiltration to recover the fertiliser draw 

solution (DS). Integration of the PAO process has proved to be very effective in 



 

xii 
 

generating extra water flux. This can serve to reduce the capital costs since no 

separate post-treatment process such as the NF is necessary.  

In the second part of the work, a thin film composite membrane for the FO and PAO 

process is fabricated through Polyethersulfone as a polymer materials base. Phase 

inversion in the precipitation bath and membrane formation mechanism of these 

polymers, both with and without backing fabric support, is investigated. The 

membrane chemical properties and hydrophilicity have been found to play a key role 

in the mass transfer of water flux during the FO process. Therefore, attention has 

been directed at increasing the hydrophilicity of the membrane through blending 

sulphonated materials. It has been found that sulphonation not only affects the 

membrane performance but also the membrane structure and morphology. Through 

sulphonation, porosity and hydrophilicity of the substrate increases while the finger 

like structure disappears. This leads one to suppose that the high water flux does not 

have a direct relationship with the finger like membrane structure. Regardless of 

membrane morphology, substrate hydrophilicity is the key to achieving a high 

performance membrane. Sulphonation has been found to have a tremendous effect on 

the physical and chemical properties of the membrane. While sulphonation 

dramatically increases the hydrophilicity of the substrate, it decreases the membrane 

mechanical strength. Due to higher hydrophilicity and lower ICP as a result of 

blending the sulphonation polymer, a membrane with better performance in terms of 

water flux and selectivity has been developed for the FO process. 

In the last part of the work, a special thin film composite (TFC) flat sheet membrane 

on a backing fabric is developed for the PAO application. The newly developed 

concept of PAO has introduced a hydraulic pressure to the feed side to overcome 
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osmotic equilibrium and the extraction of more water. Accordingly, under the PAO 

process, a membrane with considerable mechanical strength is required. A thin film 

composite membrane supported on woven mesh fabric is designed to specifically 

solve the problem by embedding a woven mesh fabric support. An earlier part of this 

study reveals that the mechanical stability and special physical properties of the 

support layer are critical for the PAO process.    
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