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Abstract

A Methodology for Operationalising the
Robot Centric HRI Paradigm:

Enabling Robots to Leverage Sociocontextual
Cues During Human-Robot Interaction

Sonja Caraian

October 2015

The presence of social robots in society is increasing rapidly as their reach

expands into more roles which are useful in our everyday lives. Many of these new

roles require them to embody capabilities which were typically not accounted for

in traditional Human-Robot Interaction (HRI) paradigms, for example increased

agency and the ability to lead interactions and resolve ambiguity in situations

of näıvety. The ability of such robots to leverage sociocontextual cues (i.e. non-

verbal cues dependent on the social-interaction space and contextual-task space in

order to be interpreted) is an important aspect of achieving these goals effectively

and in a socially sensitive manner.

This thesis presents a methodology which can be drawn on to successfully op-

erationalise a contemporary paradigm of HRI – Kirchner & Alempijevic’s Robot

Centric HRI paradigm – which frames the interaction between humans and robots

as a loop, incorporating additional feedback mechanisms to enable robots to lever-

age sociocontextual cues. Given the complexities of human behaviour and the dy-

namics of interaction, this is a non-trivial task. The Robot Centric HRI paradigm

and methodology were therefore developed, explored and verified through a series

of real-world HRI studies (ntotal = 435 = 16 + 24 + 26 + 96 + 189 + 84).

xiii



Firstly, by drawing on the methodology, it is demonstrated that sociocon-

textual cues can be successfully leveraged to increase the effectiveness of HRI in

both directions of communication between humans and robots via the paradigm.

Specifically, cues issued by social robots are shown to be recognisable to people,

who generally respond to them in line with human-issued cues. Further, enabling

robots to read interaction partners’ cues in situ is shown to be highly valuable to

HRI, for example by enabling robots to intentionally and effectively issue cues.

In light of the finding that people will display HHI-predicted sociocontextual cues

such as gaze around robots, a novel head yaw estimation framework which showed

promise for the HRI space was developed and evaluated. This enables robots to

read human-issued gaze cues and mutual attention in situ.

Next, it is illustrated that a robot’s effectiveness at achieving its goal(s) can

be increased by adding to its ability to moderate the cues it issues based on

information read from humans (i.e. increased interactivity).

Finally, the above findings are shown to generalise to other sociocontextual

cues, social robots and application spaces, demonstrating that the developed

methodology can be drawn on to successfully operationalise the Robot Centric

HRI paradigm, enabling robots to leverage sociocontextual cues to more effec-

tively achieve their goal(s) and meet the requirements of their expanding roles.
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Chapter 1
Introduction

Can you tell when a friend might be sad, happy or frustrated just by looking

at their face? How is it that, when you watch a television program in a foreign

language, you are still able to capture important social information such as the

status and rapport between people, and the overall atmosphere of interactions?

When you see a directional indicator, such as someone pointing, why is it that

your instinct is to look or move in that direction?

As a continuous source of information, sociocontextual cues (i.e. non-verbal

cues dependent on the social-interaction space and contextual-task space in order

to be interpreted) play a vital role in communication, for example as indicators

of intention. As social robots move into positions in which they coexist in close

proximity and work collaboratively with humans, they are increasingly assuming

the role of interaction peers, with increased agency and the ability to lead interac-

tions and resolve ambiguity in situations of näıvety. In order to effectively achieve

their goal(s) and communicate in a socially sensitive manner, an important aspect

of this is the capability of leveraging sociocontextual cues [81].

This thesis presents a devised methodology which can be drawn on to suc-

cessfully operationalise a contemporary paradigm of Human-Robot Interaction

(HRI) – Kirchner & Alempijevic’s Robot Centric HRI paradigm – which posi-

tions robots as interaction peers by framing the communication during HRI as a

loop, incorporating additional feedback mechanisms to enable robots to leverage

sociocontextual cues to more successfully achieve their goals [81]. In light of the

complexities of human behaviour and the dynamics of interaction, this is a non-

trivial task.

1



This chapter introduces the research questions covered by this thesis, com-

mencing with a discussion of the changing roles of social robots in society, which

are increasingly viewed as interaction peers and expected to communicate in a

socially sensitive manner. The new roles and requirements of robots provides

the motivation for the development of a methodology to enable sociocontextual

cues to be leveraged in HRI via the Robot Centric HRI paradigm. The following

sections detail the objectives of this research, the approach taken to achieve said

objectives, and the contributions arising from this work. Finally, an outline of

the remaining chapters of this dissertation is presented.
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1.1 Leveraging Sociocontextual Cues to Increase

the Effectiveness of HRI

1.1.1 The Increasing Presence of Social Robots in Society

The presence of robots in society is increasing rapidly as their reach expands

from traditional industrial applications and research laboratories into more roles

which are useful in our everyday lives. In many of these new roles it is neces-

sary for robots to interact and work closely with humans, leading to the emer-

gence of social robots: “physical entities embodied in complex, dynamic, and

social environment[s] sufficiently empowered to behave in a manner conducive

to their own goal(s) and those of their community” [30]. These autonomous or

semi-autonomous robots interact and communicate with humans by following be-

havioural norms and rules attached to their roles by the people with whom they

interact [12].

The aged-care industry is one example where a real need for such robots exists.

Over the next few decades, globally ageing populations will significantly increase

the strain on aged-care services. In Australia, the proportion of working-age

people to older people (those aged 65 years and over) is projected to drop from the

current ratio of 5:1 to 2.7:1 by 2050, as illustrated in Figure 1.1a. The resultant

reduction in workforce availability to support the elderly is increasing associated

aged care costs; from 2009–10 to 2049–50, for example, health spending on those

aged over 65 years and over 85 years is expected to grow around seven-fold and

twelve-fold, respectively [153], as shown in Figure 1.1b. This is increasing the

necessity of residential aged-care and emphasising the concept of ageing-in-place,

which it is widely recognised that socially interactive and humanoid assistive

robots can play an important role in facilitating [81].

Another example of a potential application for social robots can be seen in

the increasing levels of congestion and crowding on public transport systems,

which is being driven by cities’ growing populations. For example, the Sydney

Trains network has over 3 million annual journeys, with an average annual growth

rate of 2.5%. Each weekday, there are over 1 million total journeys, resulting in

trains being regularly filled to upwards of 130% of their average load factors

(passengers as a percentage of seat capacity). Almost 160,000 of these passengers

pass through Sydney’s Central Business District (CBD) stations during each of
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(a) Proportion of the Australian
population aged over 65, showing the

projected increasing proportion of elderly
people.

(b) Modelled projections of
Australian government spending,
showing increasing aged care

costs.

Figure 1.1: Ageing populations, such as that in Australia, are raising aged-care costs and
necessitating ageing-in-place.

Source: [153]

both the morning and afternoon peak periods, as shown in Figure 1.2, with a

majority of this traffic (approximately 85%) concentrated at three of the eight

stations [19]. Such high passenger volumes on networks running at their upper

capacity results in significant congestion.

One potential method of addressing this issue is to guide people in physical

space to increase the efficiency of passenger movement though such train stations,

and public transport environments more widely. This would enable people to

move more quickly through these environments, improving safety by easing con-

gestion and reducing the dwell time of trains at stations. Given the large numbers

of passengers and the often sprawling layout of many public transport environ-

ments, robotics has the potential to play a key role in achieving this goal. For

example, a disembodied social robot built into the transport environment itself

could direct people towards a less-crowded entrance to their platform, or oversee

the disembarking and subsequent boarding of passengers from public transport.

The recognised potential of social robots is also driving their expansion into

many other applications, such as education, entertainment, and domestic use, and

roles such as assistants and companions [134]. Researchers in Japan, for example,

have developed Paro, a robotic seal which is being used to provide physical and
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emotional support to the sick and elderly [141], shown interacting with the elderly

in Figure 1.3. Such close interactions can also be seen in robots which work in

collaboration with human nurses to lift medical patients and help disabled peo-

ple move their limbs [111, 157]. Similarly, ‘TIM’ (Thought-controlled Intelligent

Machine), a hands-free wheelchair aimed at quadriplegics, can be controlled via

a combination of head movements and thoughts [118]. Such robots are also in-

creasingly being deployed as receptionists, secretaries and teachers [60], taking

on new societal roles which were previously unimaginable.

Figure 1.2: Sydney CBD station entries and exits by time of day and day type, showing high
volume morning and afternoon peak periods.

Source: [19]

Figure 1.3: Socially interactive and assistive robots such as Paro, which interacts with the
elderly in Japan, are emerging.

Source: [124]
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1.1.2 Social Robots as Interaction Peers Leveraging

Sociocontextual Cues

These changing roles of social robots and the growing importance of socially-

appropriate behaviour to HRI is a sign of the significant evolution of the relation-

ship between humans and robots, which were originally perceived as simply task

completers, or tools. Traditional HRI paradigms often involved humans extend-

ing their influence on the environment through simply acting upon a machine,

which would then complete a task [55]. This can be seen in examples such as [74],

which presents a design philosophy for service robots which positions humans as

‘operators’ who command robots which have limited autonomy. The new roles

which social robots are fulfilling, however, require them to embody new capa-

bilities such as social sensitivity, autonomy, and intentional action, capabilities

which were typically not accounted for in traditional HRI paradigms. Thus, in

many of these new applications robots are assuming the role of interaction peers,

having increased agency and the ability to lead interactions and resolve ambiguity

in situations of näıvety.

In order to achieve an acceptable level of social integration as well as to more

successfully achieve their goal(s) (such as instantiating interactions and/or resolv-

ing ambiguity) [81], robots in interaction peer roles must be capable of communi-

cating in a socially sensitive manner [55, 130, 151, 166]. An important aspect of

this is the capability of leveraging non-verbal cues [20, 84], which can enrich and

increase the effectiveness and expediency of communication [81]. Research has

shown that opening this non-verbal communication channel and integrating such

cues into HRI can improve the understandability of HRI and the perception of the

robot for the human subject, while also increasing the efficiency of human-robot

task performance [17, 39, 65, 120].

As summarised in [81], however, it is known from psychology and behavioural

science literature that while non-verbal cues have well defined and known mean-

ings (social norms), further meanings are often ascribed to these cues based on

the situation in which they are being interpreted (context); that is, the social-

interaction space and contextual-task space – the sociocontext, a term coined

by Kirchner & Alempijevic [81] – in which a non-verbal cue is being issued can

affect whether it communicates a socially interpretable message. Thus, to convey

a specific message, an appropriate non-verbal cue for the particular sociocontext

(henceforth referred to as a sociocontextual cue, for brevity) should be leveraged.
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1.1.3 Effects of Robot Human-Likeness on

Sociocontextual Cues

To understand and effectively leverage such cues in HRI, however, the question

first becomes: to what extent will the characteristics and effects of sociocontextual

cues in HRI correspond to those of human-human cues? That is, to what extent

can the psychology and behavioural science research on HHI cues be used to

predict the outcomes of similar cues in HRI?

In exploring this question, it is first necessary to consider social robots’ levels

of anthropomorphism; that is, the extent to which such robots behave, respond

and look like humans: their human-likeness (HL). Social robots’ HL ranges from

disembodied and overtly non-human robots (e.g. from the iRobot Roomba [69]),

along a continuum to perfect androids completely indistinguishable from humans

(e.g. Arnold Swarzenegger’s Terminator). Today’s social robots sit along different

points of this continuum. As such, depending on the type of sociocontextual cue

the particular social robot is attempting to issue, direct ‘translation’ of these cues

from HHI to HRI is not guaranteed.

Figure 1.4: With increasing human-likeness, people prescribe robots a greater number of
human characteristics.

However, if an appropriate cue is selected for the particular HL level of a

robot, translation of sociocontextual cues from HHI to HRI is foreseeable [115].

As discussed in more detail in [31], as HL increases, people tend to prescribe

robots a greater number of human characteristics [97], as depicted in Figure 1.4,
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leading to increased perception of the social robot’s social capabilities and thus

facilitating greater social understanding. When a balance is struck between peo-

ple’s expectations and the robot’s capabilities, ambiguity and misinterpretations

about the robot’s ability and role can be avoided, facilitating humans’ acceptance

of social robots’ mechanisms for communication and social interaction [31].

Consider, for example, HRI with higher-HL humanoid social robots. During

HHI, bodily sociocontextual cues – “motion[s] of the body that contain infor-

mation” [88] – are a continuous source of information about the feelings, mental

state, personality and other traits of people [133]. This aspect of communication

is used, both deliberately and unconsciously, to supplement and/or substitute for

spoken language [28], in some cases carrying up to thirteen times the information

of verbal cues [7, 103]. There are many bodily cues that humans display and

are sensitive to, ranging from coarse, whole body cues to finer cues issued by

single body parts, and can be static and/or dynamic, some examples of which

are shown in Figure 1.5. Generally, they fall into the following categories: body

orientation, posture, gestures, touching behaviour, facial expressions, and gaze

behaviour [87]. For example, humans can issue sociocontextual cues via changes

in physical distance during interaction, the location, orientation and configura-

tion of their upper and/or lower body, shoulder slumps, head tilts, arm and hand

movements, feet orientation, smiles or furrowing of the brow, or direction and

length of gaze [102, 103].

Figure 1.5: Non-verbal cues play an important role in communication.
Photo (a) source [168], (b) source [22], (c) source [32]

Higher-HL humanoid social robots are likely to be physically capable of emu-

lating a growing number of these bodily sociocontextual cues during HRI. Given

humans’ innate reliance on bodily cues during interaction [7, 28, 133], and the

growing perception of social robots as interaction peers, it is likely that humans

will be increasingly expectant of and responsive to these cues during interaction

with humanoid robots; thus the characteristics and effects of bodily cues in HHI

seem likely to translate to HRI with such robots. Conversely, if a completely
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non-HL robot attempted to issue a bodily sociocontextual cue it seems less likely

humans would recognise or respond to it in line with HHI cues. A simpler, socio-

contextual directional indicator (such as an arrow), on the other hand, may be a

more appropriate cue for a lower-HL robot to issue.

1.1.4 The Robot Centric HRI Paradigm and Robot

Interactivity Through Sociocontextual Cues

Thus it seems reasonable that appropriate sociocontextual cues are likely to be

able to be leveraged by social robots to aid in achieving their goal(s) and commu-

nicating in a socially sensitive manner. As previously mentioned, contemporary

paradigms of HRI, such as that developed by Kirchner & Alempijevic [81], now

frame the interaction between humans and robots as a loop, positioning robots

as interaction peers: robots are no longer perceived as only task completers as

in traditional master/slave-style HRI paradigms (e.g. [55, 74]). To achieve this,

Kirchner & Alempijevic’s Robot Centric HRI paradigm incorporates additional

feedback mechanisms to account for growing social robot capabilities (particu-

larly their ability to present sociocontextual cues designed to elicit particular

behavioural responses to the human interaction partner) and the influence of the

social feedback they generate by providing these cues to humans. These two key

additional communication branches/mechanisms create a communication loop

between humans and robots, giving robots increased agency and the ability to

lead interactions and resolve ambiguity in situations of näivety.

The first branch of Kirchner & Alempijevic’s paradigm, Read, shown in Fig-

ure 1.6, sees the robot able to sense behavioural sociocontextual cues displayed

by the interacting human(s), including cues such as human presence and lo-

cation, head pose, and gestures. As discussed by the authors, these cues can

then be interpreted through a combination of contextual understanding and hu-

man behaviour-to-meaning mapping available from the fields of psychology and

behavioural science. This sensing capability enables the robot to incorporate

human-sensed information into a derived action plan, if necessary. Additionally,

this Read capability increases the perception of the robot as a social entity [81]:

it has been shown that robotic systems capable of adapting and responding to

human social signals in polite, unintrusive, or persuasive manners are likely to

be perceived as more natural, efficacious, and trustworthy [163]. This has been

demonstrated in contexts such as education, where human teachers use pupils’
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social signals to inform the shape of their instructional messages: robotic agents

able to learn context-dependent social behaviour and employ socially adept pre-

sentation language through the accurate sensing and interpretation of the social

signals and context of the pupils are likely to be more successful [125, 163].

The second additional branch presented by Kirchner & Alempijevic, Elicit,

which is also illustrated in Figure 1.6, indicates the ability of the robot to sur-

reptitiously present sociocontextual cues in order to elicit particular behavioural

responses from the interaction partner(s). This ‘probing’ of the user for informa-

tion, which the robot can then add to its contextual understanding, can aid the

robot in resolving ambiguity or eliciting specific human action [81]. This branch

focuses on influence through sociocontextual cues because of their non-verbal na-

ture, which makes their influence more surreptitious and implicit, and thus less

susceptible to negative human response [113]: it has been demonstrated that

humans often respond negatively to perceived robot-issued commands or task

dictation [154]. Implicit interactions can also enable robots to be assistive when

interacting humans are otherwise physically, socially, or cognitively engaged, or

näıve to the robot’s intentions [71, 84].

Figure 1.6: A contemporary Robot Centric HRI paradigm proposed by [81], which sees robots
as interaction peers with increased agency.

Source: [81]

Further, depending on the design of the Robot Centric HRI paradigm im-

plementation, different levels of robot interactivity can be achieved; that is, the

potential of the robot to exhibit causal behaviour (respond in reaction to interac-

tion with a human) [12]. In the context of the Robot Centric paradigm, a robot’s

interactivity is its ability to moderate the sociocontextual cues it issues based

on the behavioural information it reads from humans: its ability to Read, then

moderate its Elicit strategy based on this information and known behaviour-to-

meaning mappings in such a way as to increase its effectiveness in achieving its
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desired outcome. Due to the piecemeal exploration of the Robot Centric HRI

paradigm in [81], this concept has not yet been holistically tested. Kirchner &

Alempijevic theorise, however, that the more interactivity a robot has, the more

it will be able to operate as an interaction peer to achieve its goal(s).

Such a paradigm of HRI seems suitable to enable HHI sociocontextual cues

to be effectively and predictably exploited during HRI, giving social robots the

means to leverage such cues in order to more effectively achieve their goal(s). The

question then becomes: how can this Robot Centric paradigm be successfully

operationalised during real-world HRI? Given the complex nature of both human

behaviour and the dynamics of interaction, this question is non-trivial. In order to

achieve successful operationalisation, the target problem, the robot’s goal(s) and

the application space must be defined, and design and implementation of the Read

and Elicit branches of the paradigm – as well as the necessary interactivity level

of robot – must be considered and accomplished. It seems likely, however, that

the steps of design and implementation of the paradigm could be formalised into

a methodology which could be drawn on to operationalise the paradigm during

real-world HRI, and hence also enable holistic verification of the paradigm itself.
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1.2 Research Questions

This thesis explores the feasibility of developing such a methodology, which

could be drawn on to successfully operationalise the Robot Centric HRI paradigm

during real-world HRI outside of research centre environments, where lab-based

assumptions do not always hold true. In doing so, the ability of social robots to

leverage sociocontextual cues is also investigated, enabling them to more effec-

tively achieve their goal(s) (such as instantiating interactions, shaping interaction

participant roles and resolving ambiguity) [81] and meet the expectations of com-

municating in a socially sensitive manner (as required by their growing interaction

peer role).

1.2.1 Methodology for Robot Centric HRI Paradigm

Operationalisation

The primary research question thus becomes:

RQ: Methodology – Can a methodology be developed which could be drawn on

to successfully operationalise the Robot Centric paradigm during real-world HRI?

1.2.2 Transferability of Sociocontextual Cues to HRI

In exploring this, it is first necessary to determine if the possibility does

exist to successfully leverage sociocontextual cues in HRI via the Robot Centric

paradigm; that is, if/how these cues will manifest in HRI. Thus the first sub-

question to arise is:

RQ A: Sociocontextual cues in HRI – To what extent will the characteristics

and effects of sociocontextual cues in HRI correspond to those of human-human

cues?

This research question breaks down into two main areas of exploration, as the

interaction peer role of social robots requires two-way, reciprocal interaction – the

ability of the robot to Elicit via issuing cues, and Read human-issued cues. Thus,

for sociocontextual cues to be reliably implemented and utilised during HRI it is

necessary to explore both of these areas, which are further detailed below.
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Elicit - Can Robots Issue Cues?

The first area requiring investigation is the Elicit branch of the Robot Centric

HRI paradigm. In order for robots to effectively ‘probe’ interacting humans for

information, this branch requires robots to present sociocontextual cues to human

interaction partners to elicit specific responses. However, as social robots have

varying levels of human-likeness, the following questions need to be explored in

order to understand the characteristics and effects of these cues in this direction

of communication between robots and humans:

RQ A.1: Elicit Feasibility – Are today’s social robots physically capable of

issuing recognisable sociocontextual cues?

RQ A.1: Elicit Response – During real-world HRI, will people respond to

social robot-issued cues in line with the way they respond to human-issued cues?

Given their growing relevance as the roles of robots evolve, robot-issued so-

ciocontextual cues are currently an area undergoing a great deal of HRI research.

However, the focus of such research has generally been on its outcomes in HRI

(e.g. [17]), rather than on whether humans perceive and respond to such cues

equivalently in HRI as in HHI. For example, [59] specifically state that their ex-

periment does not explore the underlying psychology of the gesture and gaze cues

they employ. The difference of the work presented here is the focus on the extent

to which psychology and behavioural science research on HHI cues can be used to

predict the outcomes of similar cues in HRI, specifically during real-world HRI.

While some research touches on this HHI-HRI equivalency – for example,

[114] explore whether a robot’s gaze results in the outcome of people perceiving

it more favourably and performing better on a task, as a human’s gaze would – a

key addition of the work presented here is consideration of the factor of human-

likeness, and the relevance of selecting appropriate sociocontextual cues based on

the particular HL level of a robot.

Read - Can Robots Decipher Human-Issued Cues?

The second consideration when exploring the characteristics of sociocontex-

tual cues in HRI is the ability of the robot to Read human-issued cues. A com-

bination of contextual understanding and human behaviour-to-meaning mapping

from the fields of psychology and behavioural science could enable robots to inter-

pret these cues and incorporate the information into derived action plans. This
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has the additional advantage of strengthening the perception of robots as inter-

action peers capable of communicating sensitively with humans. However, before

this channel of communication can be leveraged in HRI, a number of questions

need to be addressed:

RQ A.2: Read Value – Will people display HHI-predicted sociocontextual cues

around social robots? That is, is it valuable for such robots to have in situ cue

detection?

RQ A.2: Read Feasibility – Will social robots be capable of detecting and

interpreting these cues during real-world HRI?

The reading of human-issued cues is also an ongoing research topic within the

HRI community, and has led to a range of established techniques, for example of

recognition of human facial expressions (an overview is given in [107]). Similarly

to the Elicit branch, however, the key contribution of this work is exploring the

underlying psychology of this, and whether people will display cues during HRI

similarly to HHI.

The feasibility of robots detecting and interpreting these cues is also often

limited to controlled and structured lab environments; the novelty of this work,

conversely, is on whether this is possible during during real-world HRI outside of

research centre environments, which generally lack such structure and constraints.
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1.2.3 Robot Interactivity Moderating Effectiveness

With an understanding of the transferability of the characteristics and effects

of sociocontextual cues to HRI, the next question to arise when exploring whether

a methodology can be developed regards the design of the Robot Centric HRI

paradigm itself:

RQ B: Interactivity – Will a robot’s effectiveness at achieving its goal(s) be

increased by adding to its ability to moderate its Elicit strategy based on informa-

tion gained through Reading (i.e. increased interactivity)? That is, are both the

Read and Elicit branches of the Robot Centric HRI paradigm valuable to a social

robot in effectively achieving its goal(s)?

While research within the HRI community is being carried out with regards

to how to operationalise the Elicit and Read branches, the novel contribution of

this work is exploring how these branches can be utilised to moderate a robot’s

level of interactivity in order to to increase its effectiveness at achieving its desired

outcomes.

1.2.4 Summary

The above questions are explored in this thesis. As summarized in the sec-

tions above, these research areas of this work have been partially explored by

others. However, the research questions posed in this work focus on novel areas

not directly addressed by others’ work. Initially, a methodology for operationali-

sation of the Robot Centric HRI paradigm during real-world HRI is devised. This

methodology is subsequently drawn on to successfully operationalise the individ-

ual components of the paradigm, enabling exploration of the further research

questions: first, the transferability of sociocontextual cues to HRI is investigated

through a combination of literature and a number of real-world, social HRI studies

in which an exemplar humanoid social robot issues an exemplar sociocontextual

cue appropriate for its level of human-likeness. Next, the responses of people to

such a cue are compared with the literature-predicted effects of similar human-

issued cues, and a method of detecting an exemplar human cue is developed. The

relationship between a robot’s interactivity and its effectiveness is then explored

with the exemplar humanoid robot and cue. Finally, the developed methodology

and the findings from these explorations are shown to generalise to other cues

and social robots in other application spaces.
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1.3 Principal Contributions

The work presented in this thesis addresses the above research questions. The

significant contributions are as follows:

1. A methodology for operationalising Kirchner & Alempijevic’s Robot

Centric paradigm [81] during real-world HRI

Through the devised methodology, the paradigm can be operationalised to

enable robots to leverage sociocontextual cues during HRI in order to more

effectively achieve their goal(s) and meet the requirements of their Interac-

tion Peer roles in a socially sensitive manner. In devising and validating

the methodology, the following was also achieved:

(a) Demonstration that sociocontextual cues can be successfully

leveraged during HRI via the Robot Centric HRI paradigm

Through literature and a series of experiments, it was demonstrated

that sociocontextual cues are transferable from HHI to HRI, and can

be leveraged during HRI via the Robot Centric paradigm. This was

shown in a piecemeal fashion through exploration of the four topics

below. These explorations drew together literature, methods and tech-

nology from others’ work, and novel technology developed during the

work presented in this thesis. The topics are summarised below, and

the different permutations of topic exploration have been published in

[J1] , [J2] , [C2] , [C3] , and [W1] listed in Appendix A.

i. Elicit Feasibility – Sociocontextual cues issued by social robots

are shown to be recognisable to people.

ii. Elicit Response – It is demonstrated that people generally re-

spond to robot-issued sociocontextual cues in line with human-

issued cues, as outlined in literature from psychology and be-

havioural science. Thus social robots can successfully Elicit par-

ticular behavioural responses from interaction partners.

iii. Read Value – It is established that people will display HHI-

predicted sociocontextual cues around robots. For example, as per

the predictions, no generalisable pattern of gaze behaviour towards

robots is observable during real-world HRI; thus, enabling robots

to Read interaction partners’ sociocontextual cues in situ is highly
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valuable to HRI, for example by enabling robots to intentionally

and effectively Elicit.

iv. Read Feasibility – To address the need established in (c) Read

Value, a novel head yaw estimation framework which shows promise

for this application was devised, enabling robots to Read exemplar

human gaze cues and mutual attention in situ.

• Head yaw estimation framework for the HRI space

AHYE framework was developed which leverages the strengths

of multiple HYE methods to achieve operation over the en-

tirety of the HRI space while maintaining an HRI-suitable,

landmark level of accuracy. Two key developments made this

possible:

– Novel use of Gaussian processes to inherently fuse

multiple HYE methods (including the novel method

below), and hence leverage their strengths.

– A novel HYE method which utilises the planar char-

acteristic of people’s faces to complement and ex-

tend the operation space of state of the art HYE

methods within the HRI space.

(b) Deepened understanding of the Robot Centric HRI paradigm

The work presented in this thesis also deepened the understanding of

the Robot Centric HRI paradigm and demonstrated that it can be

operationalised holistically during real-world HRI. In addition to the

above explorations, this was achieved by investigating the relationship

between social robots’ interactivity – a concept Kirchner & Alempi-

jevic speculatively proposed [81], but did not holistically test due to

the piecemeal exploration in that work – and effectiveness at achiev-

ing their goal(s). It was demonstrated through a number of studies

that increased levels of interactivity are beneficial to social robots: a

robot’s effectiveness at achieving its goal(s) is increased by adding to

its ability to moderate its Elicit strategy based on information gained

through Read ing (i.e. increased interactivity). This is further detailed

in the publications [J1] and [C1] listed in Appendix A.
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(c) Demonstration of generalisability of the Robot Centric HRI

paradigm and the devised methodology

After holistic evaluation of the Robot Centric HRI paradigm with an

exemplar sociocontextual cue and social robot, it was then empirically

demonstrated that the findings of this thesis generalise to other cues,

social robots and application spaces (as detailed in [C1] of Appendix

A), and that the methodology can be drawn on to successfully opera-

tionalise the Robot Centric paradigm during real-world HRI.
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1.4 Outline of Thesis

In order to conduct this research, background information surrounding the

operationalisation of the Robot Centric HRI paradigm with an exemplar socio-

contextual cue and humanoid social robot was first gathered. A methodology

for operationalisation of the Robot Centric paradigm during real-world HRI was

then developed, which was subsequently drawn on in a number of studies which

were carried out with the exemplar cue and robot, including individual explo-

rations of the Elicit and Read branches. This was followed by an investigation

into the relationship between a robot’s level of interactivity and its effectiveness

at achieving its goal(s), specifically the value of the Elicit and Read branches.

The developed methodology and the findings from the exemplar instance were

then shown to generalise through an empirical evaluation with a sociocontextual

cue and non-humanoid social robot distinct from the exemplar cue and robot.

The specific breakdown of this thesis is as follows:

Chapter 2 presents background information necessary to understand the

work presented in this thesis. This begins with an outline of the suitability of

gaze cues as an exemplar sociocontextual cue for further investigation in HRI with

an exemplar humanoid social robot (as per RQ A.1: Elicit Feasibility). This

is followed by foundational information about these cues in HHI, against which

their effects in HRI can be compared. Next, background information necessary

to explore transferring and operationalising gaze cues in the Elicit and Read

directions of communication during real-world HRI is outlined. These exemplar

cues are subsequently leveraged in Chapters 4–6 as the foundation for explorations

of the Robot Centric HRI paradigm and the devised methodology (Chapter 3).

Chapter 3 sets out the methodology which was developed as part of this work

to enable successful operationalisation of the Robot Centric paradigm during

real-world HRI, including the Elicit and Read branches and the interactivity

of the robot (as per RQ: Methodology). This methodology is leveraged in

the subsequent chapters to successfully operationalise the Robot Centric HRI

paradigm to empirically explore the remaining research questions.

Chapter 4 describes a study of an exemplar social robot’s ability to Elicit via

issuing gaze cues during real-world HRI. Firstly, the measures developed to enable

this study are described, followed by details of the methodology used to explore

whether humans will respond to robot-issued gaze cues in line with human-issued
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cues, as outlined in psychology and behavioural science literature (as per RQ

A.1: Elicit Response). Empirical results are then presented, and the chapter

ends with conclusions and a discussion of the limitations of the study.

Chapter 5 details an investigation into the Read branch of the Robot-Centric

HRI paradigm. Firstly, a study focusing on understanding people’s natural gaze

behaviour towards social robots is discussed. From the resultant finding that in

situ human gaze cue Read ing capabilities will have advantages to HRI (as perRQ

A.2: Read Value), a head yaw estimation framework was developed (as per RQ

A.2: Read Feasibility) and is next described. The methodology and results

of an empirical evaluation of the framework are presented, then the chapter ends

with conclusions and a discussion of the limitations of the framework.

Chapter 6 presents a study which explores whether a robot’s effectiveness

at achieving its goal(s) will be increased by adding to its ability to moderate

its Elicit strategy based on information gained through Read ing (i.e. increased

interactivity, RQ B: Interactivity), while simultaneously extending and ad-

dressing the shortcomings of the previous chapters’ Elicit and Read studies. The

methodology of exploring the value of the Read and Elicit branches of the Robot

Centric HRI paradigm is presented; specifically, the wider effects of robot-issued

cues are investigated, as well as the way people’s gaze behaviour impacts on the

effects and perceptions of such cues. Results of the study are discussed, then

conclusions and a discussion of the study limitations are detailed.

Chapter 7 describes a real-world, externally valid social HRI study which

demonstrates the generalisability of the developed methodology and the findings

from the exemplar cue and robot presented in previous chapters. The methodol-

ogy and results of an empirical evaluation with a sociocontextual cue, social robot

and application space distinct from the exemplar instance are detailed, demon-

strating that the methodology can be drawn on to successfully operationalise the

Robot Centric paradigm during real-world HRI (as per RQ: Methodology).

Chapter 8 highlights the contributions of this thesis and draws conclusions

from the findings. The limitations of the work presented in this dissertation are

then discussed, and avenues for future work are proposed.

20



Chapter 2
Background and Aspects of the

Transferability of an Exemplar

Sociocontextual Cue to HRI

In order to address the research questions posed in this work, it is first nec-

essary to narrow the wide exploration space of sociocontextual cues with social

robots to an exemplar cue which can be thoroughly explored with an exemplar

robot. This chapter begins in this way, outlining the suitability of sociocontex-

tual gaze cues for further investigation in HRI. A foundational understanding of

the importance, characteristics and effects of gaze cues during HHI is then given,

providing a baseline to which gaze cues in HRI with an exemplar humanoid so-

cial robot can be compared. Next, background information necessary to explore

transferring and operationalising gaze cues in the Elicit and Read directions of

communication during real-world HRI with a humanoid social robot is outlined.
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2.1 Bodily Sociocontextual Cues in HHI

During HHI humans display and perceive a wide spectrum of sociocontextual

cues, from complex bodily cues to simpler, finer cues. In order to investigate

the feasibility of developing a methodology to operationalise the Robot Centric

HRI paradigm, beginning with exploring the characteristics and effects of socio-

contextual cues in HRI, it was necessary to narrow the focus down to a single

exemplar cue which could be thoroughly investigated in HRI. It is known that

when and how cues are utilised during HHI varies with the situation in which

the interaction takes place [110], necessitating the selection of a cue appropriate

for the exemplar higher-HL, humanoid social robot which was available and thus

utilised during a majority of the work presented in this thesis.

A bodily cue which is likely congruent with humanoid social robots’ HL is

gaze. Gaze is also sociocontextually important to many HHI social situations:

humans are sensitive to the social significance of their gaze and the gaze of others,

with studies of the relative weight of different sociocontextual cues during social

interactions showing that facial and gaze behaviour play a major role [163]. This

sensitivity begins in infancy: it has been demonstrated that infants as young as

3 months old can detect the direction of adults’ gaze, and that this perception of

deviated gaze induces corresponding shifts of infants’ gaze direction [25, 63, 149].

This ingrained gaze behaviour, the typical observability and detectability of the

head region [85], and the significance of gaze to social interaction, makes it an ideal

exemplar selection for further investigation in HRI with the exemplar humanoid

social robot.

2.1.1 The Role of Gaze Cues During Interactions

In order to explore the extent to which the characteristics and effects of gaze

cues in HRI will correspond to those of human-human cues, it is first necessary

to understand the functions of gaze during HHI, in order to establish a baseline

against which gaze cues in HRI can be compared. It is known from the fields of

psychology and behavioural science that gaze is an important cue for supporting

successful human-human interaction during all stages of interactions. For exam-

ple, during the initialisation of interactions, gaze can signal openness to and/or

desire for interaction, as mutual gaze can indicate when each constituent is at-

tending primarily to the other and that further interaction can proceed [48, 90].
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Similarly, gaze has several main functions during situated interaction. As an

indicator of attention direction, it can reveal attention on, level of interest in and

intentions towards both people and objects in the environment, while mutual

gaze indicates attentiveness to an established interaction partner [86, 90, 112].

Gaze also plays a vital role in shaping people’s preferences for objects: when

the ‘mere exposure effect’ (the more we look at something, the more we like it)

and ‘preferential looking’ (we look more at things we like), interact in a positive

feedback loop leading to a conscious decision (the ‘gaze cascade effect’) [41, 126,

137, 143, 173], preference influence can occur. Analysis of the ‘gaze bias’ that

develops can be an accurate predictor of a person’s eventual preference, as it has

a number of characteristics which emerge during a decision-making process.

2.1.2 Dynamics of Gaze and the Interaction Zone

Given the perception of robots as interaction peers, it is reasonable to assume

that during HRI with a higher-HL humanoid social robot gaze will have similar

functions to the HHI functions discussed above. In order to examine the equiva-

lency of gaze cues during both HRI initialisation and situated HRI, it is necessary

to understand how these cues are employed in such HHI situations. It is known

that an important moderating factor of cues in HHI is the three-dimensional phys-

ical configuration of interaction partners: the spacial arrangement of individuals

impacts both the formation of cues and how they are interpreted by the addressee

during both interaction initialisation and situated interaction [76, 94, 122, 123].

Therefore, a comprehensive analysis of sociocontextual cues in HRI cannot be

achieved without understanding and accounting for this factor [13].

The framework which describes how spacial configuration affects communi-

cation is known as proxemics, a term coined by anthropologist E. Hall [56, 57].

Proxemic theory describes interpersonal spacial relationships between individuals,

with a focus on how physical distance affects when and how people interact and

communicate with those around them. In particular, the framework correlates

physical distance to ‘social distance’, the level of comfort and familiarity between

interaction partners. This social distance is categorised into four discrete distance

zones, each of which is characterised by a progression of interactions ranging from

highly intimate to public [57], moderating the functions of sociocontextual cues

such as gaze. The zones, illustrated in Figure 2.1, consist of the intimate (∼0–

0.5m), personal (∼0.5–1.2m), social (∼1.2–3m), and public zone (>∼3m).
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Proxemic cues, that is, how people position themselves in these zones, are

exploited during the initiation and course of interactions, as people greet and

engage in situated social interaction only when another person is located within

an appropriate proxemic zone [42, 98]. For example, subtle gaze cues are difficult

to detect at public zone distances, and this zone is therefore generally outside the

reach of interaction potential [57, 163]. On the other hand, a majority of situated

interactions occur within the social zone, in which gaze cues and their perception

play an important role in the initiation and course of interactions [54, 57].

In addition to this, individuals have a 30◦ wide “transactional segment” di-

rectly in front of them in which a majority of their activities occur [76], also

depicted in Figure 2.1. During social interactions, individuals typically posi-

tion themselves such that they are separated by social zone distances [57] and

their transactional segments overlap [76]. Thus, when a person’s transactional,

forward-facing zone of attention [61] is projected over their proxemic zones, the

overlap between the social proxemic zone and transactional segment can be con-

sidered a person’s interaction zone, illustrated in Figure 2.1, within which social

interactions are more likely to take place and gaze cues play a particularly impor-

tant role in communicating during interactions. There are two key subdivisions

within the interaction zone, in which distinct types of interaction tend to take

place: interaction initiation likely occurs in the far-interaction zone (∼2–3m in

the x direction, ±∼1m in the y direction), while situated interactions are more

likely to take place in the near-interaction zone (∼1.2–2m in the x direction,

±∼0.5m in the y direction) [77, 119].

2.1.3 Mutual Gaze and Joint Attention

The social interaction zone described above is also the proximity at which HRI

with social robots is likely to take place; humans are typically most comfortable

carrying out situated human-robot interactions at far-personal and near-social

zone distances, the larger distances being more comfortable with robots having

greater humanoid appearance and higher levels of autonomy, such as social robots

[67, 155]. As such, it becomes necessary to determine the gaze cues which typi-

cally support the common interaction types in this zone – interaction initiation

and situated interaction – which are likely to play similarly important roles in

HRI. Mutual gaze and joint attention (JA) are, respectively, two gaze cues which

are particularly important to these interaction types. These are therefore conve-

nient cues to explore in order to determine if such sociocontextual cues can be
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Figure 2.1: Hall’s proxemic zones [57] depicted along with Kendon’s transactional segment
[76], the overlap of which is a person’s likely interaction zone.

reliably implemented and utilised in HRI. To serve as a foundation for this HRI

investigation, the characteristics and effects of mutual gaze and JA in HHI must

be understood.

Mutual Gaze

Mutual gaze – gazing at another person’s face [86] – is commonly used in HHI

in the far-interaction zone as a means of establishing union between potential

interaction partners during interaction initiation [144]. Mutual gaze indicates

whether it is appropriate to initiate an interaction, signalling attentiveness and

openness to interaction [26, 62]. You may be the recipient of another’s gaze, for

instance, because you are someone with whom they would like to interact [90].

However, this mutual gaze is unlikely to be steady or constant: it is known

from studies in the fields of psychology and behavioural sciences that during social

interaction gaze is directed at interaction partners repeatedly but for short periods

[8]. This gaze behaviour (including frequency and duration of gaze) varies widely

between individuals and depends on a number of mutually-moderating factors

[34, 35, 150] which can be broken down into four broad categories [8, 86]:

1. Personal – age, sex, personality, culture, and clinical diagnoses such as

autism (e.g. [37, 43])

2. Experiential – history and mood (e.g. [116])
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3. Relational – interpersonal sentiment, intimacy and dependency, and percep-

tions of competence and power hierarchy, including aggression and domi-

nance (e.g. [38, 58, 99])

4. Situational – interaction setting, physical proximity and orientation, task

and motivation (e.g. information or response seeking, competition or co-

operation), affective nature of the interaction, and intimacy of task/topic

(e.g. [52, 92]).

The dynamics of mutual gaze in HHI are thus a complex function of individ-

ual and environmental variables which interplay to result in large gaze behaviour

variations between individuals: the percentage of HHI encounter time spent gaz-

ing at an interaction partner can range from 28% to over 70% [75], with glance

lengths in the range of 3–10s [8]. It is thus likely that similar mutual gaze char-

acteristics will be displayed by humans during HRI, further necessitating in situ

gaze Read ing capabilities for the robot, as further discussed in Section 2.3.

Joint Attention

While mutual gaze is particularly important during interaction initiation, it

is also the establishing cue of joint attention (JA), a gaze cue commonly utilised

during situated interactions in the near-interaction zone. An example of JA, the

shared focus on an object or location, is depicted in Figure 2.2: the image shows

three people who appear to be interacting, but also seem to be mutually engaged

with and sharing focus on the salient object, the laptop. As can be appreciated

by viewing the image, JA is an important tool in understanding others’ minds,

establishing reference for communication and/or marking desire for or intention

to act on an object [14, 36].

The sensitivity of humans to the gaze of others, and the attention following

that results, is the foundation of JA. It has been shown that infants as young as

3 months old can detect the direction of adults’ gaze via mutual gaze, and that

the perception of deviated gaze induces corresponding shifts of infants’ attention

direction [25, 63, 149], entering them into JA. Figure 2.3 shows young children

engaged in JA, and this reflexive attention-orienting to a gazed-at location contin-

ues into adulthood: [45] and [46] demonstrated that adults respond more quickly

to targets appearing at a location that is gazed at by a centrally presented face

than to targets appearing at a location that is not gazed at, suggesting that the

human brain may be specialised to shift attention in response to others’ gaze.
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Figure 2.2: Three people engaged in joint attention, the shared focus on an object or location.
Source: [145]

Joint attention can also influence preference by affecting the way we evaluate

visual stimuli in the environment [14], as objects that fall under the gaze of others

acquire properties that they would not display if not looked at [36]. For example,

the direction of another person’s gaze can provide information about relevant

events and objects within the environment, signal which objects are of current

value, and also transfer to the object the intentionality of the person looking

at it [14, 15]. Thus, observational learning about specific objects in the world

would be impossible without gaze following [36]. By triggering this enhanced

information processing about objects in observers [131, 132], JA can affect the

observers’ evaluation and affective appraisal of objects in the environment. This

results in objects that are looked at by others being more likeable than those that

do not receive much attention [14, 15, 159]. This effect further translates into an

increased preference for JA objects, as an enriching of the objects results from

the intentionality of the perceived gaze (i.e. observing another person looking at

an object) [15] and the tendency for people, on observing the actions of others,

to spontaneously adopt the goals that may account for these actions [1].

However, it is also known that a specific sequence of gaze shifts must be

displayed for this enriching effect and influence on object desirability to take

place. The first step of this specific object-enriching cue is to signal an intention

to communicate with an observer [159]. This can be achieved via a number of
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Figure 2.3: Young children engaged in joint attention.
Source: [9]

means (e.g. verbally or through gestures), however via gaze this can be conveyed

through mutual gaze from a communicator to an observer [156]. This mutual

gaze at an observer is shown in Figure 2.4a. Next, to signal that an object is of

value to the communicator, the gaze should be shifted from an observer towards

the object, as attention naturally settles on desirable objects in the environment

[15, 142]. This second, object-directed gaze step is shown in Figure 2.4b. Finally,

gaze should shift back to the observer, in order to signal that the object is also

of value to them [149] (shown in Figure 2.4c). The complete object-enriching cue

can be appreciated by viewing Figure 2.4.

(a) Direct gaze (b) Object-directed gaze (c) Direct gaze

Figure 2.4: The three-step joint attention sequence to increase object desirability.
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It has been found that only through observation of this specific sequence

(henceforth called a JA cue, for brevity) – as opposed to direct gaze followed

by gazing at the object (i.e. without looking back to the observer) – is object

desirability increased.

2.1.4 Characteristic Effects of Joint Attention

A pre-requisite to investigating whether JA will operate as described above

during HRI is an understanding of the effects of JA on observers in HHI, which

can then be used as a baseline against which JA in HRI can be compared. Con-

sequently, it becomes necessary to understand the typical characteristics of re-

sponses to JA in HHI. The first step is to consider a scenario in which the effects

of JA are known and able to be observed. One such scenario is decision-making

situations, as JA is known to have the power to influence preference. Thus, as a

baseline for what characteristics and effects could be expected in HRI decision-

making situations, an understanding of the characteristics of JA’s effects in HHI

decision-making situations, which manifest in gaze behaviour, becomes necessary.

As previously discussed, it is known from work in the fields of psychology and

behavioural science that in human-human decision making scenarios, a person’s

gaze behaviour is a revealing characteristic: it contains information about atten-

tion direction and intentions towards objects in the environment [86], and plays a

vital role in shaping people’s preference for objects. This effect on preference can

occur when the ‘mere exposure effect’ (the more we look at something, the more

we like it) and ‘preferential looking’ (we look more at things we like), interact in

a positive feedback loop leading to a conscious decision (the ‘gaze cascade effect’)

[41, 126, 137, 143, 173].

The ‘gaze bias’ that develops can be an accurate predictor of a person’s even-

tual preference, as it has a number of characteristics and patterns which emerge

over the course of the decision-making process. As the decision moment ap-

proaches, for example, the breadth of the person’s visual search decreases. This

includes a decrease in the number of alternatives fixated on and the duration of

each fixation. This search narrowing can be seen in Figure 2.5a, which illustrates

how the proportion of time and saccades to unchosen objects decreases as the

decision moment approaches. This is accompanied by a corresponding increase

in the focus of the search, as the duration of each fixation and the proportion

of total eye fixations on the chosen alternative rise [51, 135, 137, 143]. Finally,
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the number of saccades to the object which will be selected increases [100, 126].

These characteristics are shown in Figure 2.5b and Figure 2.5a: Figure 2.5b de-

picts how the frequency of looking (i.e. dwell frequency) at the preferred object

is higher than the dwell frequency on the not preferred object, and Figure 2.5a

shows how the proportion of time and saccades to the preferred object increases

during search narrowing as the decision approaches.

(a) Plot of the proportion of gaze times and
saccades which were directed at chosen and other

(distractor) items during visual search of
mock-company logos

(b) Dwell frequency of visual
search of photographs during a
two-alternative forced choice

experiment

Figure 2.5: Visual search patterns during HHI decision-making scenarios.
Image (a) source: [51], (b) source: [137]

Thus, such gaze characteristics are an indicator of preference in decision-

making scenarios, and can be summarised in a number of measures:

1. Number of fixations on alternatives

2. Duration of fixations on alternatives

3. Proportion of total eye fixations on alternatives

4. Proportion of time fixated on alternatives.

These known characteristics and effects of JA in HHI are useful as a baseline

for exploration of JA cues in HRI.
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2.2 Feasibility of Robot-Issued Gaze Cues

As discussed above in Section 2.1, the importance and known characteristics

of gaze cues in HHI makes them ideal for investigation in HRI in the Elicit and

Read directions of communication. Beginning with robots Elicit ing particular

responses from human interaction partners via issuing mutual gaze and JA cues,

the first question which arises is: are today’s social robots physically capable

of issuing recognisable gaze cues (RQ A.1: Elicit Feasibility)? It thus first

becomes necessary to understand the feasibility of social robots issuing these gaze

cues during HRI.

2.2.1 Human-Likeness of Exemplar Humanoid Social

Robots

As previously mentioned in Section 1.1, social robots sit along different points

of the human-likeness continuum, ranging from disembodied and overtly non-

human robots to perfect androids. Given the increased perception of social robots’

social capabilities, which arises from increasing levels of HL, it is important to

balance people’s expectations and the robot’s capabilities [31]. As such, it be-

comes necessary to investigate JA cues on a social robot with appropriate HL, for

example a humanoid robot. Today’s typical humanoid social robots have not pro-

gressed to the point where they look identical to and are indistinguishable from

humans: Figure 2.6a and Figure 2.6b show two such typical robots from lead-

ing robotics research laboratories: Figure 2.6a depicts the RobotAssist platform

from the Centre for Autonomous (CAS) Systems at the University of Technology,

Sydney (UTS) [76], and Figure 2.6b shows Japan’s ATR Intelligent Robotics and

Communication Laboratories’ Robovie platform [70, 72]. From examination of

these images, non-human elements of the robots can be seen: for example, both

sit on wheeled platforms rather than legs, use cameras as ‘eyes’, and have some

degree of visible cabling and sensory hardware.

However, the HL of such robots is also apparent. They are recognisably

humanoid in shape, with distinguishable upper and lower bodies, arms, heads

and ‘eyes’ – many of the body parts necessary to issue bodily sociocontextual

cues. The RobotAssist platform seen in Figure 2.6a, for example, has a 2 degree-

of-freedom (DOF) head (pan-tilt) actuated by two servos, in which a Microsoft

Kinect [105] is positioned. Similarly, the Robovie head contains two cameras as
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‘eyes’ for binocular, stereo vision, which are actuated via 2×2 DOF (pan-tilt) for

gaze control and/or the 3 DOF head (pan-tilt-roll). These configurations enable

the sensors in the two robots’ heads to be moved quasi-independently from their

respective platforms. While this capability is vital to the functionality of the

robots, facilitating active sensing [3], it also gives them the physical ability to

issue static and dynamic gaze cues. With such humanoid appearances and cue-

issuing capabilities, combined with their perception as interaction peers, it is

reasonable to assume that the HL of such robots will be such that bodily gaze

cues they issue will have similar effects and characteristics to human-issued gaze

cues during HHI (described in Section 2.1.3 and Section 2.1.4), as depicted in

Figure 2.7.

(a) The RobotAssist platform
[82] (b) The Robovie platform [70, 72]

Figure 2.6: Two leading social robotics research platforms, illustrating their humanoid shape.
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Figure 2.7: The humanoid shape and capabilities of the RobotAssist platform make it likely
that gaze cues issued by the robot will have similar effects and characteristics to gaze cues

issued during HHI.

2.2.2 Robot-Generated Joint Attention Cues

With humanoid social robots such as the RobotAssist platform having the

physical potential of issuing gaze cues, in order to explore mutual gaze and JA in

HRI it becomes necessary to understand whether these cues will be recognisable

by humans when they are issued by robots. In fact, JA cues for robots is an

established concept, and a great deal of research has been done into the physical

operationalisation and outcomes of JA in human-robot interaction and collabo-

ration (for example in [27, 29, 59, 66, 68, 73, 128]). As such, human-recognisable

JA cues for robots have been designed by others’ as a necessity for their work.

For example, Figure 2.8 shows a robot executing two of the three JA steps re-

quired to increase object desirability during an experiment carried out by [65].

In Figure 2.8a the robot engages in mutual gaze with the observer, then executes

an object-directed gaze in Figure 2.8b. Not shown, but detailed in the paper, the

robot then gazes back at the observer, thus completing the JA cue to increase

object desirability.

Similarly, JA cues have previously been constructed for the RobotAssist plat-

form as part of other work, detailed in [81]. The authors constructed the cues

based on the three-step JA cue depicted in Figure 2.4 and findings in work such as
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(a) Direct gaze from robot to human (b) Robot object-directed gaze

Figure 2.8: A robot displaying two steps of the three step sequence to increase object
desirability during an experiment.

Source: [65]

[15, 81, 142, 149, 159]. Figure 2.9a shows the RobotAssist platform executing the

establishing action of the JA cue, which, as discussed above, consists of mutual

gaze from the communicator to the observer. To achieve this, the robot orients

its ‘eyes’ (in the sense of the entirety of its head, rotated about the vertical axis

via the pan-DOF in the robot’s neck) along the vector between itself and the

participant. Following this, the attention guiding, object-directed cue is achieved

by lowering the ‘eyes’ around 20◦–30◦ (as shown in Figure 2.9b) and then again

raising them (as in Figure 2.4), as can be seen by viewing Figures 2.9a, 2.9b and

2.9c sequentially. The authors’ work has shown that for this action to be reliably

perceived as JA the ‘eyes’ must move at approximately 150◦/s, as slower speeds

can lead to the cue being interpreted as individualising [81].

Figure 2.10a and Figure 2.10b show, as per Figure 2.9b, what an observer

would see if the RobotAssist platform issued the JA cue at a left or right object,

respectively. As Figure 2.9 and Figure 2.10 illustrate, the RobotAssist platform is

physically capable of issuing the recognisable JA cue necessary to increase object

desirability (as per RQ A.1: Elicit Feasibility).

(a) Direct gaze (b) Object-directed gaze (c) Direct gaze

Figure 2.9: The RobotAssist platform executing the three-step JA sequence.
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(a) Joint attention left (JAL) (b) Joint attention right (JAR)

Figure 2.10: The RobotAssist platform executing joint attention left (JAL) and joint
attention right (JAR) cues.

The question then becomes, as per RQ A.1: Elicit Response: will people

respond to RobotAssist platform-issued JA cues in line with they way they re-

spond to human-issued JA cues? As discussed in Section 2.1.4, the characteristics

and effects of JA in HHI decision-making situations are well known; in equiva-

lent HRI decision-making scenarios, through observation of human interaction

partners’ gaze behaviour, the measures described in Section 2.1.4 can be used

to determine if a robot’s JA cues are operating equivalently. Thus, the charac-

teristics of the influence of robot-issued JA cues on an observer are able to be

investigated.

2.2.3 Summary

The shape and capabilities of humanoid social robots, such as the RobotAs-

sist platform, mean such robots are physically able to issue human-recognisable

bodily gaze cues such as the JA cue necessary to increase object desirability (as

per RQ A.1: Elicit Feasibility). Literature from the fields of psychology and

behavioural science outlined in Section 2.1.4 suggests that the influence of this

JA cue on human interaction partners should manifest as an effect on their gaze

behaviour, an indicator of preference. Thus, equivalent effects and gaze charac-

teristics should be observed during JA in HRI in this exemplar situation. There

is therefore a need to explore the extent to which JA in HRI will mirror HHI JA

and thus the characteristics, if any, of its influence in HRI. As HRI is reciprocal,

it then becomes necessary to understand whether it is possible for social robots

to Read and interpret such gaze cues displayed by interacting humans.
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2.3 Considerations Surrounding Sensing Human-

Issued Gaze Cues

Literature presented thus far has given a baseline of expected human gaze

behaviour around humanoid social robots, including large mutual gaze variations

between individuals during interaction (Section 2.1.3) and gaze bias in decision-

making scenarios when the robot is Elicit ing via JA cues (Section 2.1.4). In order

to understand the equivalency of gaze cues in HRI, the reciprocal communication

direction must also be understood; that is, the ability of the robot to Read these

human-issued gaze cues.

The first question that arises is whether people will display these exemplary

HHI literature-predicted gaze cues around robots during real-world HRI, necessi-

tating in situ cue Read ing capabilities for robots (as perRQ A.2: Read Value)?

Given the growing perception of robots as interaction peers and their increasing

human-likeness and ability to communicate in socially sensitive manners, it is

likely that the answer to this will be ‘yes’. While this is still worth empirically

determining, it is reasonable to assume that it will be necessary for robots to

have the in situ ability to Read human-issued gaze cues, among other cues.

The question then becomes: will human-issued gaze cues be detectable and

interpretable by social robots (as per RQ A.2: Read Feasibility)? It is foresee-

able that in real-world HRI there will be situations in which a person’s eyes (and

hence their exact gaze) are not observable. However, gaze estimation is intrinsi-

cally linked with head pose (the orientation of a person’s head in object space,

which is more observable), as the perceived direction of gaze is highly influenced

by the pose of the head [89, 169, 172]. Before sensitivity to eye orientation devel-

ops in infants, for example, they use head direction in isolation as a directional

cue [23]; the relative contributions of head movement to gaze re-orientations is re-

lated to the do the eye movement which would have been required if the gaze shift

had been performed without a head movement, as head movement amplitudes

are subconsciously selected to return the eyes towards central position [146].

It is also known that the head contributes preferentially to the horizontal

component of gaze shifts, with head movement amplitude decreasing and eye

movement amplitude increasing as gaze shifts are directed away from the hori-

zontal meridian. The slope of the generally linear relationship between head and

gaze movement decreases both as gaze re-orientations are directed away from the
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horizontal plane, and as gaze direction becomes increasingly vertical. Instead, in

such cases where gaze re-orientations are more vertical, eye movement is instead

used to compensate for this lower head movement [44].

It is likely, though, that objects and areas of interest during HRI, at which gaze

would be directed, will tend to be located on a relatively planar area, for example

on counters, tables, or desks. Thus, in foreseeable social HRI applications, when

the requirement is often to detect which landmarks gaze is directed at, gaze

can be reasonably approximated through the use of head yaw alone [36, 42, 91,

138, 148, 171]. As a result, at far-interaction zone distances when gaze cues

are likely to be limited to interaction initiation, it is necessary for robots to be

capable of detecting mutual gaze via head yaw estimation (HYE). During situated

interactions when interaction distance decreases into the near-interaction zone,

more accurate HYE is necessary [147] to detect cues such as JA and gaze bias.

In order to enable HYE which can successfully operate over the entirety of

the interaction zone to Read these human-issued gaze cues, it first becomes nec-

essary to determine which tools can be leveraged to achieve this. This begins

with identifying facial features suitable for HYE given the capabilities of Kinect

sensors, especially in the far-interaction zone, to later fuse the complementary

information of these features.

2.3.1 Head Features Exploitable for Head Yaw Estimation

The human head has a number of features which may be suitable for HYE

in the interaction zone to enable robots to Read interaction partners’ gaze cues.

Many of these features have been previously used for HYE, as summarised in

[112], including:

• Eyes – location of inner and outer corners and size (e.g. [2, 53])

• Nose – nostril and tip location (e.g. [101])

• Lower face – chin, jaw line, or mouth (e.g. [140])

• General head shape – width or roundness (e.g. [21, 93])

• Ears – for profile face detection (e.g. [161]).

HYE via a combination of features is also common, e.g. eyes and mouth [95],

eyes, nose and mouth [47], eyes and nose [152, 161], and cylindrical head model

and eye locations [158].
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2.3.2 Characteristics of Sensors Available for Head

Yaw Estimation

In order to exploit these features for HYE, they must first be detected in the

data generated by sensors suitable for social robots. Many of these sensors have

sensing characteristics which can effect how robustly this feature detection can

take place, characteristics which should be understood before the determination

of features which can be utilised to achieve HYE.

Figure 2.11: Standard deviation of plane-fitting residuals at different distances of the plane to
the sensor. The best fit quadratic curve is plotted in red.

Source: [79]

One such sensor is the Microsoft Kinect, which is commonly used in today’s

social robots, including the RobotAssist platform. According to its specifications,

the operating range of the Kinect is ∼0.5–5m, and [70] give an overview of the

geometric qualities of its depth data in this range through analysing both the

resolution (points per unit area density) and accuracy of the points. The reso-

lution of the Kinect’s depth data on the XY plane (perpendicular to the camera

axis) is determined by the resolution of its infrared camera; that is, its pixel size.

The constant 640×480 pixels of the depth image mean that the point density will

decrease with increasing distance of the object from the sensor; specifically the

point density p is known to be inversely proportional to the square of the distance

from the sensor, Z, as in, p ∝ 1
Z2 . Thus, at a range of 2m, the depth resolution

is ∼1cm, while at 5m the resolution is ∼7cm [78].

In addition to decreasing depth measurement resolution at greater distances,

the random error e of the measurements increases. This random error is known
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to increase proportionally with square distance from the sensor according to the

formula e ∝ Z2. As shown in Figure 2.11, this error e ranges from a few millime-

tres at 0.5m from the sensor up to ∼4cm at the maximum range of 5m, where it

is further influenced by the low resolution of the depth measurements [78].

1m-1m

3m

2m

1m

Sensor

Interaction Zone

Finer feature,
higher accuracy

HYE

Coarser feature,
lower accuracy

HYE

Figure 2.12: Typical operation spaces of coarser and finer facial feature HYE methods.

The lower point resolution and increasing measurement error of the Kinect

data make it difficult to observe finer facial features at larger distances. For

example, at a 2m range from the sensor, well within the interaction zone, the

depth point resolution of ∼1cm in combination with the measurement error of

∼0.7cm result in an uncertainty of ∼1.7cm; robustly detecting eye corners or

nose tips in such data would be a considerable challenge. Thus, the usability of

methods which rely on these features for HYE will be decreased at these distances

as the data becomes increasingly featureless.

As a result, while they tend to have higher accuracy, the usability of methods

which rely on finer facial features is decreased at far-interaction zone distances as

the data becomes increasingly featureless. The operation space of such methods is

therefore typically limited to the near-interaction zone, as depicted in Figure 2.12.

However, these geometric data qualities can also be exploited for far-interaction

zone HYE; at larger distances, the combined effect of the random error and low

depth resolution result in surfaces perpendicular to the sensor becoming strat-

ified and appearing more featureless and planar [79], as shown in Figure 2.13.

As a result, features such as the facial plane become artificially exaggerated in
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the data at larger distances, are therefore more likely to be observable. Thus,

a HYE method based on these features, while similarly susceptible to noise at

larger distances and possibly less accurate, is likely to be usable in a wider area

of the interaction zone than those based on finer facial features, as illustrated in

Figure 2.12.

(a) 1m (b) 3m (c) 5m

Figure 2.13: Point cloud of a planar surface at different distances from the sensor, projected
on the YZ plane. Colours represent distance to the best-fit plane in centimetres.

Source: [79]

Thus, HYE methods based on finer and coarser facial features have distinct

strengths: accuracy vs coverage of the interaction zone, respectively. As such,

it would be ideal to fuse, and in doing so exploit any correlations between, such

complementary data in order to leverage these strengths into a head yaw esti-

mate which operates across the entirety of the interaction zone. Such an esti-

mate would fulfil the HRI requirements of detection of coarser, mutual gaze in

the far-interaction zone, and finer, more accurate gaze detection during situated

interactions in the near-interaction zone.

2.3.3 Leveraging Multiple Imperfect Head Yaw Estimates

Before this can be achieved, it becomes necessary to understand ways in which

this complementary data could be fused. A number of tools exist which could be

used to achieve this fusion, including Bayesian fusion and Gaussian processes.

Bayesian Fusion

Bayesian fusion is a technique which probabilistically fuses input entities in

a statistically sound manner. In the intended application, Bayesian fusion could
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be used in such a way as to actively select a more reliable head yaw estimate in

a particular area on the basis of the uncertainty associated with each estimate.

For example, in areas where a finer feature, higher accuracy head yaw estimate is

available, its estimate could be ‘trusted’ over the coarser feature, lower accuracy

head yaw estimate, maintaining the estimate’s higher accuracy. When no finer

feature estimate is available, the coarser feature HYE can be used instead.

Gaussian Processes

A second technique which could be used for fusion is Gaussian processes (GPs)

[127], powerful non-parametric Bayesian learning techniques. GPs are commonly

used for both regression and classification. However, as discussed in [162], GPs

are also increasingly used as a method to achieve data fusion (for example [33, 50,

160]): learning a joint model of multiple input entities enables a single inference

to be made, inherently ‘fusing’ the input data in such a way as to exploit a

relationship between the input entities through the regression model. This is a

key difference between utilising GPs to achieve fusion and employing Bayesian

fusion, which does not incorporate such a relationship during fusion unless it is

specifically modelled.

GPs are stochastic processes in which any finite set of training data and

test data are jointly Gaussian distributed. Statistical inference is used to learn

dependencies between points in the input (training) dataset, thus incorporating

and handling uncertainty and incompleteness in a statistically sound manner. In

addition to reducing the amount of training data required to adequately train the

model, this yields continuous representations such that inferences can be made

between sparse data [160] and noise is inherently filtered out, an advantageous

characteristic given the levels of Kinect data error discussed in Section 2.3.2.

Generally, the primary drawback of using GPs is their typical computation

time; this is especially relevant in an HYE application when close to real-time

performance is desirable. The complexity of GPs is O(N3), where N is the number

of training data points. While the focus of this work was on validating the

proposed framework, in the proposed application this computational online use

bottleneck could be addressed in a number of ways, for example by pre-computing

and storing K−1, which is independent of query points, or by selectively training

the model. This involves first training the model with a limited training dataset,

then selectively adding training points by first testing them through the model
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to determine if they add useful information to the training (as indicated by their

level of covariance) [121].

Thus, GPs are a viable solution for developing a joint model – and in this way

‘fusing’ – finer and coarser feature head yaw estimates and their relationship into

a single estimate.

2.3.4 Summary

The perception of social robots as interaction peers makes it likely that hu-

mans will display HHI literature-predicted gaze cues (as outlined in Section 2.1.3

and Section 2.1.4) around social robots, necessitating that robots have in situ cue

Read ing capabilities (as per RQ A.2: Read Value). Thus, there is a need for

HYE which operates over the entirety of the interaction zone, depicted in Fig-

ure 2.1, while maintaining levels of accuracy necessary to detect gaze cues during

real-world HRI across the entire zone. During real-world HRI, where people’s eyes

and hence exact gaze direction may not always be detectable, literature shows

that head yaw can be used as an indicative measure of gaze direction. Many

features of the human head could be used for head yaw estimation, however the

reliability of distinguishing different facial features in data such as that from the

commonly used Kinect depends on the interaction distance. In the interaction

zone it would be advantageous to leverage multiple HYE methods which rely on

different facial features. This data could then potentially be fused into a single

head pose estimate via the use of a tool such as Bayesian fusion or Gaussian

processes, giving a robot the necessary ability to Read both mutual gaze in the

far-interaction zone and JA and gaze bias cues in the near-interaction zone.
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2.4 Conclusion

This chapter has discussed the background of gaze cues in HHI – one example

of sociocontextual cues – and aspects of transferring these cues to HRI in both

the Elicit and Read directions of communication. Gaze cues have been selected

as an exemplar cue for further exploration into whether sociocontextual cues

can be reliably implemented and utilised in HRI due to: a) the necessity to

narrow the wide exploration space of sociocontextual cues down to a single cue;

b) the sociocontextual significance of gaze cues to social interaction; and c) their

congruency with the higher-HL social robot available for this work.

In Chapter 3, a methodology is detailed for operationalising the Robot Cen-

tric HRI paradigm – including the Elicit and Read branches and the interactivity

of the robot – to enable robots to leverage sociocontextual cues such as the ex-

emplar gaze cues. In the subsequent chapters the exemplar gaze cue information

outlined in this Chapter 2 is leveraged as a baseline against which the method-

ology is validated, and to enable exploration of sub-research questions RQ A:

Sociocontextual cues in HRI and RQ B: Interactivity.

Finally, in order to demonstrate that the findings and methodology gener-

alise, a distinct sociocontextual cue and social robot are utilised during the study

detailed in Chapter 7.
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Chapter 3
Methodology for Robot Centric HRI

Paradigm Operationalisation

This chapter presents, in response to RQ 1: Methodology, a methodology

which can be leveraged to successfully operationalise the Robot Centric paradigm

during real-world HRI, a non-trivial task. In addition to addressing the primary

research question, this methodology will also facilitate exploration of the sub-

research questions RQ A: Sociocontextual cues in HRI and RQ B: Inter-

activity, as detailed in subsequent chapters. This is achieved by drawing on the

information of Chapter 2, where the importance, characteristics and effects of

exemplar sociocontextual cues during HHI were outlined, serving as a baseline

against which such cues during HRI with an exemplar humanoid social robot can

be compared.
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3.1 Introduction

The primary research question of this work, RQ: Methodology, poses the

question of whether a methodology can be developed which could be drawn on to

successfully operationalise the Robot Centric paradigm during real-world HRI. A

devised methodology could address this question, and also facilitate exploration

of the sub-research questions: firstly, through isolated operationalisation of the

Elicit and Read branches via the methodology, RQ A: Sociocontextual cues

in HRI can be investigated. Next, RQ B: Interactivity, concerning whether

a robot’s effectiveness at achieving its goal(s) can be increased by greater levels

of interactivity, can be addressed through leveraging the methodology to design

different levels of interactivity for a robot. Thus, a methodology for operational-

isation of the paradigm was devised, as detailed below.
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3.2 Methodology for Paradigm

Operationalisation

As mentioned in Section 1.1, operationalising the Robot Centric paradigm

during real-world HRI is a non-trivial task, given the complex nature of both

human behaviour and the dynamics of interaction.

To achieve successful operationalisation, the devised methodology consists of

four main stages, as depicted in Figure 3.1. Initially, the target problem and

robot goal(s) must be defined in order to determine what the robot is attempt-

ing to achieve in the application space and interaction. Next, the application

space in which the human-robot interaction will take place must be defined in

order to understand and account for any external influences on the interaction

and/or human behaviour which may exist. Following this, the Robot Centric

HRI paradigm itself must be designed for the particular interaction, including

the Read and Elicit branches and the robot’s interactivity, thus ensuring that

the branches are successfully activated and an appropriate interactivity level is

achieved. Finally, the implementation must be designed to ensure that factors

and practicalities which may affect the operationalisation are considered. These

stages are described in more detail in the following sub-sections.

3.2.1 Target Problem and Robot Goal Definition

The initial stage of the methodology is to define the problem which interaction

between human(s) and a social robot is attempting to address, and the robot’s

goal(s) in order to address that problem. Through this, an understanding of what

the robot is trying to achieve in the application space and interaction – and why –

can be determined. For example, a socially assistive robot may not be physically

able to retrieve one of two objects on a table; its goal may then be to influence

a person towards selecting the particular object it can reach. To address the

issue of congestion in a public transport environment such as a train station, a

social robot’s goal may be to guide people through physical space to increase the

efficiency of passenger movement.
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Figure 3.1: Process flow of the methodology for operationalisation of the Robot Centric HRI
paradigm.

3.2.2 Application Space Definition

With an understanding of the problem and robot goal(s), it is next necessary

to define the physical application space in which the interaction will take place,

particularly its sociocontext (the contextual-task space and the social-interaction

space [81]). There are two principal ways in which this can affect the interaction

and design of the Robot Centric HRI paradigm:

1. Other sources of thinking pattern and/or behaviour influence

Firstly, the application space sociocontext may result in particular influ-

ences on people’s thinking pattern and/or behaviour, either promotion or

suppression. For example, there may be physical obstacles which prompt

people to walk along a certain path (a corridor closed for renovation, for in-

stance), or social norms which discourage people from walking on the right

side of a corridor (in left-hand-side driving countries).
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An understanding of any such systematic influences in the environment

is important to achieve effective and predictable operationalisation of the

paradigm. If the sociocontext promotes a particular thinking pattern and/or

behaviour which is in line with the robot goal(s), it may be that any influ-

ence the robot might have would be over-whelmed by the sociocontextual

influences: for example, a robot directing passengers to take an alternative

route when the direct route is already physically blocked. Thus, it may be

unnecessary or of no value to put the robot in that application space at all.

On the other hand, the sociocontextual suppression of a thinking pattern

and/or behaviour may be such that it prohibits the robot goal(s) from

possibly being achieved. For example, a robot directing people to move right

in a corridor may not be able to overcome the social norm of keeping left. In

these cases, the robot goal(s) must be reconsidered (from Section 3.2.1), the

application space itself must be altered, or the Robot Centric HRI paradigm

design (discussed below in Section 3.2.3) must be configured to increase the

effectiveness of the robot’s ability to Elicit behaviour modification.

2. Interacting people’s familiarity with robots

A second consideration surrounding the application space is the familiarity

of the people in the space with robots: it is known that the behaviour around

robots of those familiar with robots (such as engineers) does not necessarily

match the behaviour of those less familiar with robots (e.g. the wider-

population) [31]. If the application space of the interaction is such that a

large proportion of the interacting people will be familiar with robots – e.g.

engineering/technology related – their behaviour and responses may not

necessarily be in line with psychology and behavioural science predictions,

which are more applicable to the general population. In such application

spaces people’s responses are thus likely to be less predictable, potentially

compromising the effectiveness of the robot in achieving its goal(s). It may

therefore be necessary to alter or reconsider the application space.

3.2.3 Robot Centric HRI Paradigm Design

The next stage of the methodology is to design the Robot Centric HRI

paradigm, which is comprised of the Read and Elicit branches and the inter-

activity of the robot, as depicted in Figure 3.1. This process is further detailed

in the following subsections.
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Read and Elicit Branch Design

As previously discussed, the Robot Centric HRI paradigm positions robots as

interaction peers more equal with humans in terms of agency and ability to lead

interactions. Given this positioning of robots and humans on more equivalent

levels, design of the Read branch (what the person is doing) and Elicit branch

(what the robot is doing) of the paradigm have common core considerations, as

shown in Figure 3.3, the perspective of which changes depending on whether the

human (Read) or robot (Elicit) is the focus of the branch.

In designing the branches, these four core considerations are intention, be-

haviour, cues, and interpretation. These considerations are depicted in Figure 3.2,

along with the flow between them in terms of designing the branches: the hu-

man or robot’s intention is expressed in their behaviour, which manifests as cues,

which must be interpretable to the other party (robot or human) by drawing on

social norms (as detailed in psychology and behavioural science literature). These

considerations and flow are further detailed below.

Intention 

Behaviour Set 

Sociocontextual 
Cue Set 

Interpretability 

{Cue(s) from set} 

{Behaviour(s) 
from set} 

{Cue(s) to remove 
from set} 

{Intention} 

{Behaviour(s) to  
remove from set} 

Figure 3.2: Process flow of design of the Read and Elicit branches of the paradigm.

• Intention

Firstly, the intention of the human (Read branch case) or robot (Elicit

branch case) must be considered. In a choice situation in which the robot

intends the person to choose a particular object, for example, it may be

useful for the robot to know which, if any, of the objects a person already
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prefers and intends to choose, as discussed in Chapter 2. Similarly, it may

be useful for the robot to know the intended destination of a passenger in

a public transport environment, if it intends to influence their movement.

• Behaviour Set

Secondly, the set of behaviours which could be indicative of these intentions

should be identified. Extensive literature from the fields of psychology and

behavioural science shows that behaviours are expressions of underlying

intentions and/or patterns of thinking and can also have the ability to in-

fluence others (as outlined in an exemplar instance in Section 2.1). This

literature can be drawn on, in combination with the understanding of socio-

contextual promotion/suppression of behaviours defined in Section 3.2.2, to

identify intention-indicative behaviours which may be likely to be displayed

by humans (Read branch case) or are appropriate to be displayed by the

robot (Elicit branch case) in the intended application space.

For instance, in a choice influence situation, a person’s preference could be

indicated by visual focus of attention (i.e. gaze) or tactile behaviour, while

intended destination in a public transport environment could potentially be

expressed via visual focus of attention, physical movement, or ticket details.

Similarly, robot behaviour such as visual focus of attention or physical arm

gestures could have the potential to influence preference in choice situations,

while directional indicators or physical barriers could foreseeably result in

path movement alterations.

From these behaviour sets, a particular or several behaviours should be

selected for the human or robot.

• Sociocontextual Cue Set

Next, with intention-indicative and sociocontext-appropriate behaviour(s)

selected to be detected from the human or displayed by the robot, the set

of sociocontextual cues in which this behaviour could manifest should be

considered by again drawing on literature from psychology and behavioural

science; that is, the sociocontextual cues a human may display as a man-

ifestation of their behaviour which could be Read by the robot, or, in the

case of the Elicit branch, the sociocontextual cues which the robot could

surreptitiously present back to the interaction partner in order to Elicit

particular behavioural responses.
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For example, a person’s visual focus of attention, and hence intended choice,

could manifest in cues such as eye gaze or head or torso orientation, while

position or velocity may be manifestations of physical movement behaviour,

which expresses intended destination. On the other hand, a robot’s eye or

head gaze cues may be sociocontextually appropriate to express its visual

focus of attention, while directional indication behaviour could manifest as

cues such as arrows or crosses.

From these cue sets, a single cue or multiple appropriate cues should be

selected to Read from the human or for the robot to issue in order to Elicit.

If no sociocontextually appropriate cue(s) can be identified, different be-

haviour(s) may need to be selected from the behaviour set identified above.

• Interpretability

With cue(s) selected to be Read from the human or issued by the robot to

Elicit, it then becomes necessary to determine if the cue will be interpretable

by the other party in the interaction (robot or human).

In the case of Read, the selected cue must be both sensible by the robot

(what sensors/tools are available to Read? What are their capabilities?

What software is available to interpret the data?) and meaningful in the

application space (i.e. interpretable through the robot’s contextual under-

standing and through human behaviour-to-meaning mapping available from

the fields of psychology and behavioural science). For example, in a choice

influence situation, a robot may need to Read both human presence in the

interaction zone and gaze via depth camera data. Appropriate capabilities

must be available to achieve this given the characteristics of typical depth

camera data (as outlined in Section 2.3.2).

Similarly, there are several factors which must be considered with regard to

the Elicit cue. Firstly, the cue should be suitable for the particular social

robot to issue in the application space, given its human-likeness. This has

two key affects:

1. The robot must have sufficient human-likeness – and thus humanoid

characteristics – to be physically capable of issuing the selected cue.

A joint attention cue, for example, requires it to be able to actuate

its ‘eyes’ (or what can be perceived as its eyes) in the pan and tilt

directions at the speed necessary for the meaning behind the cues to

be correctly interpreted (as described in Section 2.2.2). In a public
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transport environment, a lower-HL robot may only require icons to

issue directional arrow cues.

2. It is ideal to have as information-rich a cue as possible, but the type

of cue issued by the robot must remain congruent with its human-

likeness, as a robot’s HL is known to affect how its cues will be in-

terpreted by interacting people [31, 106]. As HL increases, people

prescribe robots a greater number of human characteristics [31, 97];

if a completely non-human robot attempted to issue a bodily socio-

contextual cue such as joint attention, it seems less likely humans

would recognise or respond to it in line with HHI cues, while the cues

of perfect androids seem more likely to Elicit responses in line with

human-issued bodily cues. Less human-like cues such as directional

indicators, conversely, seem more likely to be recognised even when

issued by less Human-Like robots. Therefore a higher-HL, humanoid

social robot may plan to issue a joint attention cue to influence a per-

son towards the intended object, as such cues are known to be capable

of increasing preference for joint attention objects in decision making

situations. On the other hand, a simpler directional indicator cue may

be planned for a lower-HL disembodied social robot built into a trans-

port environment, in order to influence people who are moving in an

undesired direction.

In addition to human-likeness, a second factor affecting Elicit cue inter-

pretation by the human is whether the cue is sufficiently sociocontextual

and application space-appropriate; that is, whether it will communicate the

specific intended message. From [81], which draws on literature from psy-

chology and behavioural science, it is known that a simple cue which is

heavily reliant on context will not only be enactable by a robot but will fea-

sibly result in effective, expedient and surreptitious communication. Thus,

unintended side-effects due to the context (different meanings can be as-

cribed to cues based on the situation in which they are being interpreted)

and the complexities of behaviour can be minimised through selection of an

appropriate cue.

If the selected Read or Elicit cue is unlikely to be interpretable, given the

above, a different cue may need to be selected from the identified cue set.
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Interactivity Design

Following the Read and Elicit branches, the next step of design of the Robot

Centric HRI paradigm is to consider the interactivity of the robot (its ability

to Read, and leverage the resultant information to moderate its Elicit strat-

egy). Through different designs and activation sequences of the Read and Elicit

branches of the paradigm, different levels of robot interactivity can be achieved,

which may moderate the effectiveness of the robot’s ability to achieve the desired

behaviour via Elicit (and hence its goal(s)). For example, a traditional ‘Task

Completer’ robot has low interactivity: without the ability to Read, such a robot

is inherently unable to moderate its Elicit, and hence is only able to carry out a

single type of Elicit ; that is, its Elicit remains static.

On the other hand, greater levels of interactivity can be achieved by increasing

the size of the cue set the robot is able to Read from the human, and/or the set of

Elicit cues it can select from when moderating its Elicit strategy. This is depicted

in Figure 3.3: the robot may be able to Read and interpret multiple cues (and

hence behaviours) from the human, and leverage that information to moderate

its Elicit strategy by drawing from a set of potential robot behaviours. These

behaviours may be manifested as either a single robot cue (which is issued or

not issued, in a binary fashion), or a set of human-interpretable cues from which

the robot can select the most appropriate cue, given the situation. By displaying

these cues, the robot attempts to lead the interaction by influencing the human’s

underlying intention, as also shown in Figure 3.3, which seems likely to manifest

as a change in behaviour and cues.

An example of a higher level of robot interactivity can be seen in a study which

investigated ensuring that a particular and unsuspecting member of a crowd is the

recipient of a salient-item hand-over by a robot [81, 84]. In this case, sociocontex-

tual cues were utilised to individualise the intended recipient and communicate

the robot’s intention (resolve ambiguity), influencing the participant to come for-

ward to retrieve the object: through Read ing person location, the robot was able

to physically direct its Elicit cues towards the intended recipient. Another study

in which a robot was able to instantiate interaction with näıve passersby through

issuing a combined physical presentation and gaze cue, achieved even higher inter-

activity: through Read ing a greater number of human cues (both person presence

and position within the interaction zone), the robot was able to issue its cues at

the appropriate time to influence the passerby to enter into an interaction, in one

case responsively issuing cues as the participant approached the robot [81].
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Figure 3.3: Detail of the process flow of the ‘Design of the Robot Centric HRI Paradigm’
stage of the methodology.

In a choice influence situation, similarly, a robot’s interactivity could be in-

creased by: a) Read ing both person presence and if the person is at gazing at a

particular object (an object preference) and/or the robot, and; b) utilising the

resultant information to moderate if/when (binary cue issuance) and/or to which

object (a cue set) the robot will issue a joint attention Elicit cue. The importance

of this ability will be shown in Chapter 6, where it is found that while JA cues

in HRI can have effects in line with HHI JA cues, people have a greater tendency

towards suspicion of, rather than compliance with, the robot, especially if they

are not looking when the JA cue is issued. Thus, in the case where the robot

is intentionally attempting to influence a person towards a particular object, if

it is suspected that the person has already chosen the desired object (as indi-

cated by Read ing their gaze direction through a method such as that presented

in Chapter 5), the robot may be more likely to achieve its goal by not issuing a

cue. However, if the person has not already chosen the desired object, a JA Elicit

cue towards that object has the potential to positively influence people.

Likewise, in public spaces such as transport environments where a robot is

attempting to influence passenger movement, Passenger Information (PI) sys-

tems incorporate the above characteristics, resulting in a range of fidelity and

interactivity. Presently, Static and Dynamic PI systems are ubiquitous. At the

54



information communications level, information appears to the viewer as being

fixed and not readily changed in Static PI systems. Thus, Static PI systems map

to the traditional paradigm for HRI where the robot/machine assumes the pas-

sive role of ‘Task Completer’ with low interactivity. On the other hand, Dynamic

PI systems’ information appears to the viewer as potentially changeable (i.e. an

Elicit cue set exists). As demonstrated by the Robot Centric HRI paradigm,

opportunity exists to change the fundamental paradigm for interaction via PI

systems, and to leverage psychological and behavioural triggers to increase their

interactivity, thus making PI systems more responsive; that is, to develop Re-

sponsive PI systems.

The above examples explain the hypothesis that the level of interactivity of the

robot is correlated to its effectiveness at achieving its goal(s), where effectiveness

is considered to be the ability of the robot to target its influence to achieve a

specific desired outcome. However, this will be further empirically investigated

in this work.

3.2.4 Implementation Design

With ‘Robot Centric HRI Paradigm Design’ complete, the final stage of the

devised methodology is to design the implementation. It is here that factors and

practicalities which may affect the operationalisation are considered. There are

two key factors which must be taken into account:

1. Configuration of the interaction

The configuration of the human and robot in the interaction is key to ensur-

ing the Read and Elicit branches can be effectively operationalised. While

minimal constraints are desirable, the configuration must be designed such

that the person’s behavioural cues can be successfully Read, and the person

can witness and successfully interpret the robot’s issued Elicit cues. For

example, in a choice influence situation, the configuration must be such that

the person can see the robot’s joint attention cues and the robot, given the

capabilities of available sensors, can sense the participant’s gaze behaviour.

In a public transport environment, it must be unambiguous where the robot

is directing the person to go via its Elicit cue(s).
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2. Perception of robot autonomy

It is known that the perception of the level of autonomy of a robot can

influence the way people interact with it [31, 80], with greater perceptions

of autonomy likely to encourage greater ‘natural’ interaction by ensuring the

people interact solely with the robot rather than with the robot’s controllers.

As such, during implementation of the paradigm it is desirable for the robot

to appear autonomous in order to encourage interaction more likely to be

aligned with behavioural expectations formed based on literature from the

fields psychology and behavioural science.
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3.3 Conclusion

This chapter has presented a methodology for operationalisation of the Robot

Centric HRI paradigm, as per RQ: Methodology, a non-trivial task given the

complexities of human behaviour and interaction dynamics. In the following chap-

ters, this methodology is subsequently leveraged to successfully operationalise

the Robot Centric HRI paradigm and empirically explore the remaining research

questions of this work. In doing so, understanding of the transferability of so-

ciocontextual cues such as exemplar gaze cues to HRI in the Read and Elicit

directions of communication can be deepened (RQ A: Sociocontextual cues

in HRI), and the relationship between robot interactivity and effectiveness can

be investigated (RQ B: Interactivity).
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Chapter 4
Elicit – Exploring the Effects of

Robot-Issued Cues During Real-World

HRI

With a methodology devised, developed and detailed in Chapter 3 which can

be leveraged to operationalise the Robot Centric HRI paradigm, including its

individual branches, this chapter presents a study of a typical humanoid social

robot’s ability to Elicit via issuing gaze cues during real-world HRI. This so-

cial exploration of the characteristics and effects of joint attention in HRI is an

attempt to empirically evaluate qualitative human gaze behaviour in order to

determine if humans will respond to exemplar humanoid robot-issued gaze cues

in line with how they respond to human-issued cues, as outlined in Chapter 2.

As per RQ A.1: Elicit Response, the findings support the hypothesis that

exemplar cues such as joint attention gaze cues are transferrable to HRI, and

that today’s social robots can successfully Elicit particular behavioural responses

from interaction partners, as necessitated by their interaction peer role.
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4.1 Introduction

As previously discussed, as robots move into interaction peer roles it becomes

necessary to understand the extent to which the characteristics and effects of

their gaze cues will correspond to those of human-issued cues (as per RQ A:

Sociocontextual cues in HRI), enabling them to Elicit particular behavioural

responses from interaction partners. The first research question to arise – whether

today’s social robots are physically capable of issuing recognisable gaze cues such

as JA (as perRQ A.1: Elicit Feasibility) – has been addressed in the literature

presented in Section 2.2.2: the shape and capabilities of exemplar humanoid social

robots, such as the RobotAssist platform, mean such robots are physically able to

issue human-recognisable cues such as the JA cue to increase object desirability.

The question then becomes: during real-world HRI, will people respond to

such robot-issued JA cues in line with how they respond to human-issued cues

(as per RQ A.1: Elicit Response)? If the response is in line, equivalent char-

acteristics and effects should be observed during JA in HRI as in HHI; literature

from the fields of psychology and behavioural science outlined in Section 2.1.4

suggests that the influence of JA cues on human interaction partners is likely to

manifest as an effect on the human’s gaze behaviour, an indicator of preference.

Drawing on the methodology detailed in Chapter 3 to individually opera-

tionalise the Elicit branch of the Robot Centric paradigm, an empirical evalu-

ation of the characteristics and effects of JA in HRI was carried out to explore

these effects.
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4.2 Measures of Expected Human Gaze

Behaviour in HRI Joint Attention Scenarios

A prerequisite of an empirical evaluation of the equivalency of exemplar JA

in HRI to HHI was a set of quantitative measures to gauge and analyse whether

human interaction partners were displaying the expected behaviour in response to

robot-issued JA cues. As outlined in Section 2.1.4, during HHI decision-making

scenarios, when susceptibility to choice influence is likely to exist, people develop

a ‘gaze bias’ towards their preferred object [143]. This bias, an indication of

choice, results in two main visual search patterns that develop over the course of

the decision-making process: 1) the breadth of the visual search decreases, and;

2) the focus increases [51].

These search patterns are marked by two primary gaze characteristics known

to be indicators of interest and preference. Firstly, time spent looking at a loca-

tion: this is a measure of the time people spend gazing at the objects, interaction

partners or other locations during an interaction. Secondly, the number of fixa-

tions, or times that gaze saccades to those locations. Given the known effects of

JA, as outlined in Section 2.1.4, these gaze characteristics can be broken down

into a number of measures to gauge the effects of JA.

Gaze-bias towards objects

It is known from the literature in Section 2.1.4 that the JA of an interaction

partner on an object assigns to that object properties that it would not display

were it not gazed at. Thus, a set of measures were developed to gauge whether

a robot’s JA cues can similarly increase the saliency of objects to interaction

partners. As gaze naturally settles on interesting objects in the environment

[15, 142], this can be coarsely indicated by an interaction partner’s tendency to

look at objects more when JA cues are issued by the robot than when not. Figure

4.1 illustrates the locations relevant to a measure of this behaviour in a scene.

The measures developed are:

• Percentage of the total time spent looking at the objects (OB), as high-

lighted in blue in Figure 4.1. The remaining time will by definition be spent

looking at locations other than the objects (!OB), as highlighted in orange in

Figure 4.1. Henceforth this measure will be abbreviated as %t(OBvs!OB).
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Figure 4.1: Object (OB) and Not Object (!OB) locations in a scene.

• Percentage of the total number of saccades that were directed at the objects

(OB). Henceforth this measure will be abbreviated as %s(OBvs!OB).

Gaze-bias towards JA object

As outlined in Section 2.1.4, JA towards an object can go further than simply

increasing observers’ general interest in objects. Through triggering enhanced

information processing about the specific JA object in observers [132, 131], JA can

affect the observers’ evaluation and affective appraisal of that object, potentially

influencing their choice. Thus, measures were also developed to gauge these finer

effects of the influence of robot-issued JA cues on observers’ interest; specifically,

whether these cues increase the interest of interaction partners in a specific object

to which a a robot issues a JA cue, rather than other, non-JA objects. Figure 4.2

illustrates the relevant locations in a scene. It is important to note that a third

location, neither of the objects, also exists in this scene. This area will henceforth

be referred to as ‘Other’.

The measures are:

• Percentage of the total time spent looking at the JA object (JA). Figure

4.2 illustrates the JA object (highlighted in blue). Henceforth this measure

will be abbreviated as %t(JAvsTotal).
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Figure 4.2: Joint attention (JA) and Not joint attention (!JA) objects in a scene.

• Percentage of the total saccades that were directed at the JA object. Hence-

forth this measure will be abbreviated as %s(JAvsTotal).

• Percentage of the total time spent looking at the non-JA object (!JA).

Figure 4.2 illustrates the !JA object (highlighted in orange). Henceforth

this measure will be abbreviated as %t(!JAvsTotal).

• Percentage of the total saccades that were directed at the !JA object. Hence-

forth this measure will be abbreviated as %s(!JAvsTotal).

Gaze-bias towards chosen object

As gaze naturally settles on desirable objects in the environment [15, 142],

measures were developed to quantify the ‘gaze bias’ that literature predicts will

develop towards preferred objects [143] in decision-making situations. Thus, hu-

man interaction partners will likely develop a tendency to look more at the object

they will eventually choose (vs towards other objects) over the course of their de-

cision making process. Figure 4.3 illustrates locations relevant to these measures

in a scene. It is important to note that a third location, neither of the objects,

also exists in this scene. This area will henceforth be referred to as ‘Other’.

The developed measures are:

• Percentage of the total time spent looking at the chosen object (CH). Figure

4.3 illustrates the CH object (highlighted in blue). Henceforth this measure

will be abbreviated as %t(CHvsTotal).
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Figure 4.3: Chosen (CH) and Not Chosen (!CH) objects in a scene.

• Percentage of the total saccades that were directed at the CH object. Hence-

forth this measure will be abbreviated as %s(CHvsTotal).

• Percentage of the total time spent looking at the not CH object (!CH).

Figure 4.3 illustrates the !CH object (highlighted in orange). Henceforth

this measure will be abbreviated as %t(!CHvsTotal).

• Percentage of the total saccades that were directed at the !CH object.

Henceforth this measure will be abbreviated as %s(!CHvsTotal).

An additional measure of this phenomenon can be found by considering only

the looks at the objects, rather than all looks as above.

These measures are:

• The time spent looking at the object which will be chosen (CH) as a per-

centage of time spent looking at the objects. The remaining time will by

definition be spent looking at the not chosen object (!CH). Henceforth this

measure will be abbreviated as %t(CHvs!CH).

• The number of saccades that were directed at the object that will be chosen

(CH) as a percentage of the total saccades directed at objects. The remain-

ing saccades will by definition be directed at the not chosen object (!CH).

Henceforth this measure will be abbreviated as %s(CHvs!CH).
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4.3 Empirical Evaluation of the Effects of Joint

Attention During HRI

With quantitative measures developed, an empirical evaluation was carried

out to explore the extent to which people respond to robot-issued JA cues in

line with how they respond to human-issued cues. By drawing on the developed

methodology discussed in Chapter 3, the experiment scenario was constructed in

order to Elicit participant gaze behaviour which could be analysed in terms of the

measures outlined above in Section 4.2. However, Elicit ing this gaze behaviour

is non-trivial: a situation must be constructed which is sufficiently controlled to

effectively observe the behaviour, while at the same time maintaining a reasonable

level of ‘natural’ interaction with the robot and hence external validity, i.e. the

extent to which the results can be more widely generalised. This was achieved

through the design and execution of the experimental method detailed below,

which was published in [C3] and [W1] , listed in Appendix A.

4.3.1 Hypotheses

From the understanding of typical human behaviour during JA in decision-

making scenarios, the following hypothesis and predictions were developed:

Hypothesis – The robot’s presentation of JA cues will have similar characteris-

tics and effects to JA cues issued during an HHI decision-making situation.

Predictions – Upon presenting such cues towards human interaction partners

in an HRI decision-making scenario, the robot will be able to successfully Elicit

HHI-literature predicted gaze and choice behaviour. Specifically, it is predicted

that:

1. OB gaze bias : The robot’s JA cues will lead participants to look more at

the objects than when no cue is issued.

2. JA object gaze bias : The robot’s JA cues at a specific object (the JA object)

will lead participants to look more at that object than the other, !JA object.

3. CH object gaze bias : Over the course of their decision-making process,

the participant will develop a tendency to look more at the object they

eventually choose than towards other objects in the environment, i.e. they

will develop a gaze bias towards their chosen object.

64



4.3.2 Participants

There were 16 participants in the experiment (14 female, 2 male). The par-

ticipants were robot-näıve students from faculties of UTS besides the Faculty of

Engineering & IT (predominantly the Faculty of Design, Architecture and Build-

ing), in order to increase the external validity of the experimental results as well

as the likelihood that their responses would be in line with those predicted by

literature in psychology and behavioural science (as discussed in Section 3.2.2).

4.3.3 Setting and Setup

As outlined in Section 2.1.4, the effects of JA are predictable and able to be

observed in HHI decision-making situations, where JA is known to have the poten-

tial to influence preference. In order to enable the exploration of the equivalency

of JA in HRI, an HRI decision-making scenario was constructed; specifically, a

forced-choice paradigm with a dichotomous response format.

The RobotAssist platform (Figure 2.6a), which is approximately 1.4m tall

with a 0.35m radius, was utilised during the experiment. As can be seen from the

figure, the robot is equipped with a wheeled base and anthropomorphic upper

body. The upper body consists of a six degree-of-freedom manipulator and a

perspex head which encloses a Microsoft Kinect sensor and multi-coloured lights.

The head is mounted on two servos which can rotate it in the pan (−110◦ < θ <

64◦) and/or tilt (−45◦ < θ < 80◦) directions, enabling the robot to execute the

JA cue described in Section 2.2.2. Not shown in the figure are two USB speakers,

which are mounted facing forwards underneath the robot’s shirt.

The RobotAssist platform was positioned behind a table in the corner of an

office within the Faculty of Engineering & IT, as pictured in Figure 4.4a. The

office was relatively small with few distractions (other sources of mental state

and/or behaviour influence, as discussed in Section 3.2.2) for the participants.

Positioned on the table were two objects: soft drink cans. To ensure the two

cans were both identical and neutral, and thus avoid pre-existing preference bias

on the part of the participants – another potential source of mental state and/or

behaviour influence (towards a brand they may prefer, for example) – the cans

were both covered with large RobotAssist stickers. Participants’ positioning di-

rectly in front of the table, and hence the robot, ensured it was possible for them

to witness the robot’s cue (as prescribed in the methodology, Section 3.2.4).
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To give the impression of complete robot autonomy, as also specified in Sec-

tion 3.2.4, the Wizard-of-Oz experimenter controlling the robot was positioned

outside the office, completely concealed behind a large partition (shown in Figure

4.4b) and observing the participant via a live feed from a webcam mounted on the

robot’s chest. This impression of robot autonomy reduced the required involve-

ment/intervention by experimenters in the experiment execution, encouraging

natural interaction on behalf of the participants.

4.3.4 Experimental Conditions

The experiment was a 3×2 design: Robot Attendance: None / Joint attention

object / Not joint attention object × Participant’s Selection: Selected attended

object / Didn’t. It had two conditions:

Control (C) - In this baseline condition the robot did not perform any gaze

cues and its head remained stationary throughout the experiment.

Joint Attention (JA) - In the JA condition the robot issued one joint

attention cue (as described in Section 2.2.2) to the participant. There were two

cues in the JA cue set:

• Joint Attention Left (JAL) - The robot performed the joint attention cue

at the Left object (as shown in Figure 2.10a).

• Joint Attention Right (JAR) - The robot performed the joint attention cue

at the Right object (as shown in Figure 2.10b).

4.3.5 Procedure

The experimental procedure was a key element of ensuring that natural be-

haviour was elicited and that measurable results were gathered during the ex-

periment. The experiment was conducted on a weekday during semester time at

UTS. The solicitation of participants was carried out by an experimenter, who

approached students in one of the university’s buildings. In order to exclude engi-

neers familiar with robots, potential participants were pre-screened to determine

if they were from the Faculty of Engineering & IT. If they were not, they were

shown a flyer stating that a robotics experiment was being carried out and they

would be given a free chocolate and soft drink in exchange for participating.
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(a) The RobotAssist platform setup
within an academic’s office

(b) Partition concealing the
Wizard-of-Oz experimenter

Figure 4.4: Experiment setup.

Figure 4.5: Experiment scenario.

If they agreed to partake in the experiment, the participant was led to the

office where the robot was positioned, during which time they were not given any

additional information. Instead, just outside of the office door, they were asked

to read brief instructions. These instructions thanked them for participating

67



in the study, and directed them to enter the office and approach the robot, at

which time the robot would give them further instructions and begin a simple

interaction. The instructions also informed them that if they did not understand

the robot, they could ask it to repeat its instructions. This procedure ensured

the participants had no explicit directions about how to interact with the robot,

and thus interacted naturally.

When the participant entered the office, as illustrated in Figure 4.5, the exper-

imental procedure shown in Figure 4.6 began. This commenced with the random

selection of the experimental condition (Control, JAL or JAR), then the robot

stating, “Thank you for coming. In a moment I am going to need you to choose

which drink you’d like. You can think about which drink you’d like now.” This is

subsequently referred to as the Initial Statement (IS) stage, and made the partic-

ipant aware that they would be required to make a choice during the experiment,

encouraging the display of the desired decision-making and JA gaze behaviour.

The IS stage was followed by a 2s wait (Initial Wait (IW) stage) during which the

participants could inspect the objects. It is in this stage that participants were

expected to develop a decision-making ‘gaze bias’ towards their object of choice.

After this wait, if in the Joint Attention condition, the robot would issue

either the JAL or JAR cue (Glancing (GL) stage), then wait another 2s (Post

Glance Wait (PG) stage). It was expected that the effects of the robot-issued

JA cue would manifest in the GL and this PG stage. Following this pause (or

immediately after the first wait, in the C condition), the robot requested the

participant to “Please point at the drink you would like. When you have selected

a drink, I will hand it to you” (Asking for Choice (AC) stage), and their choice

was manually recorded by the remotely observing Wizard-of-Oz experimenter.

This completed the relevant stages of the experiment and triggered a hard-

coded pickup sequence, which was included purely for the entertainment of the

participants. When the robot’s arm had retrieved the drink, the robot stated

“Please get ready for me to hand you the drink”, before extending the drink to

the fixed {x, y, z} handover location and releasing it. To end the experiment, the

robot thanked the participant and informed them that they could keep the drink

if they wished.

68



IS
 

Start 

Randomly select case Randomly select case

Person 
detected? 

Robot randomly selects object, 
looks at object then back at person 

End 

JOINT ATTENTION CASE 

NO 

YES 

Wait 2s 

Wait 2s 

“Can you please point at the drink you'd like. 
When you have selected a drink I will hand it to you.” 

Choice manually recorded 

Robot picks up chosen object 

CONTROL CASE 

“Thank you for coming. In a moment I'm going to  
need you to choose which drink you'd like.  

You can think about which drink you'd like now.” 

Robot hands object over to fixed {x, y, z} 

“Please get ready for me to hand you the drink.” 

“Thank you for participating. Please feel free to keep the drink, I hope you like it.” 

IW
 

G
L 

PG
 

A
C

 

Figure 4.6: Experimental procedure.

4.3.6 Measurement

The type of cue performed by the robot was the only independent variable.

The dependent variables involved the quantitative measures of participant gaze

behaviour outlined above in Section 4.2. Data from the chest-mounted USB

camera was coded post-hoc to quantify these measures.
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4.3.7 Results

There were 16 trials (8 Control and 8 JA [5 JA Right and 3 JA Left]) avail-

able for analysis. The experiment was run between the hours of 10.15am–12pm,

and approximately one hour of camera (∼13,900 frames) and RGB-D person de-

tection data of the trials was autonomously collected by the robot during the

experiment. A Robot Operating System (ROS) script was written that auto-

matically replayed the camera images frame by frame along with a Graphical

User Interface (GUI) which was designed and coded as part of this work. Figure

4.7 shows an example of a single frame from the replayed experiment data. On

the left the chest-mounted USB camera image is displayed, while the developed

GUI on the right enables information about the participant’s gender (Male or

Female), gaze direction in the frame (Left object, Right object, Robot or Other),

point direction in the frame (Left object, Right object or None) and whether

they had picked up an object (Yes or No) to be coded. The Next button recorded

the entered data and refreshed the image with the next recorded frame. Also

logged for each frame, but not shown in the GUI, were the current time-stamp,

experiment condition (Control or JA), experiment state (IS, IW, GL, PG, AC),

the robot look direction (Left object or Right object), and the person’s choice.

Figure 4.7: The ROS coding image and Graphical User Interface.
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The participant trial distribution is shown in Table 4.1. While there was

a similar gender representation per trial in both conditions, there was a strong

overall bias towards female participation. This bias seemed (subjectively) to be

consistent with the demographics of the business students who are often around

the hallway area in which they were approached during semester time, and who

may have been recruited for the study.

Table 4.1: JA experiment participant trial distribution.

Case Male Female Total
Control 1 7 8
JA 1 7 8
Total 2 14 16

The stages of the experiment were grouped for planned contrast analysis (un-

less otherwise noted): pre cue-issuing (IS & IW) with post cue-issuing (AC), and

cue-issuing (GL & PG).

Gaze towards objects

Figure 4.8 shows the pattern of visual attendance of the OB and !OB locations

in the JA condition. A repeated measures Analysis of Variance (ANOVA) of the

%t(OBvs!OB) measure with a planned contrast of the pre and post cue-issuing

states against the cue-issuing states found that the participants developed a gaze

bias towards the objects during the cue-issuing states, spending a significantly

larger percentage of time attending the OB during these states on average, δx̄ =

17.4%, F (1,7)=8.715, p=0.036.

Gaze towards JA object

Figure 4.9 shows the pattern of visual attendance of the JA and !JA objects.

It was found through a repeated measures ANOVA of the %t(JAvsTotal) measure

that JA participants did not display a significant JA object gaze bias during cue-

issuing compared to pre and post cue-issuing, in contrast to what was expected.

To explore this further, an additional unplanned contrast of the GL against

the PG state was conducted. This revealed a significant reduction in percentage

of time attending the JA object in the PG state of δx̄ = 20.3% below the GL

state and δx̄ = 8.8% below the pre cue-issuing stage, F (1,7)=8.168, p=0.024.

Furthermore, a repeated measures ANOVA of the percentage time JA participants
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spent looking at the JA object and !JA object grouped showed that participants

spent a significantly larger percentage of time, on average, attending the JA object

than the !JA object during cue-issuing δx̄ = 8.7%, F (1,7)=6.768, p=0.035.
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Figure 4.8: Participants’ attendance to the OB and !OB locations during the experiment.
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Figure 4.9: Participants’ attendance to the JA and !JA objects during the experiment.
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Gaze towards CH object

Figure 4.10 shows the pattern of visual attendance of the Chosen (CH) and

Not Chosen (!CH) object. A repeated measures ANOVA of the %t(CHvsTotal)

measure found that JA participants looked significantly more at the CH object in

cue-issuing than pre and post cue-issuing (δx̄ = 17.3%, F (1,7)=6.078, p=0.043).

This gaze bias effect lasted until the end of the PG stage, when gaze at the CH ob-

ject significantly declined (δx̄ = 18.3%, F (1,7)=9.674, p=0.017) to approximately

pre-cue levels. Further, a repeated measures ANOVA of the %t(CHvsTotal) and

%t(!CHvsTotal) measures grouped found the CH gaze to be significantly different

(δx̄ = 8.6%, F (1,7)=6.768, p=0.035) from gaze at the !CH object, which remains

relatively level.
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Figure 4.10: Participants’ attendance of CH and !CH objects during the experiment.

A repeated measures ANOVA of the %s(CHvsTotal) measure was conducted

with a planned contrast of the pre and post cue-issuing states against the cue-

issuing states in the JA condition. It was found that the participants issued

borderline-significantly smaller percentage of saccades during the cue-issuing states

on average, δx̄ = 17.4% F (1,7)=5.461, p=0.052. A second planned contrast, of

the post cue-issuing state against the cue-issuing states, revealed the participants

issued a borderline-significantly larger percentage of saccades during the post cue-

issuing states on average, δx̄ = 22.3%, F (1,7)=5.390, p=0.053.
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A repeated measures ANOVA of the %t(JAvsTotal) measure between the JA

and Control condition found participants spent a significantly larger percentage of

time attending the CH object during post than pre cue-issuing on average, δx̄ =

9.1%, F (1,7)=8.808, p=0.010. There was also a significant interaction effect,

with the difference being more pronounced in post cue-issuing (F (1,7)=8.808,

p=0.010). This appears to have been driven by the Control condition, with

Control participants spending δx̄ = 16.3% more time attending the CH object

than JA participants.

4.3.8 Discussion

The empirical results presented provide support for the hypothesis that the

robot’s presentation of JA cues will have similar characteristics and effects to

JA cues issued during an HHI decision-making situation (as per RQ A: So-

ciocontextual cues in HRI). Support was found for the three predictions that

participants in the JA condition would develop gaze biases towards 1) the objects

in general; and, 2) the JA object and 3) their CH object in particular.

Gaze-bias towards objects

Participants in the JA condition spent a significantly larger percentage of time

(δx̄ = 17.4%, F (1,7)=8.715, p=0.036) attending the OB during the cue-issuing

states than the pre and post cue-issuing states. This suggests that the robot-

issued JA cue increased the saliency of the objects to the interaction partners, in

line with HHI literature.

Gaze-bias towards JA object

Participants displayed a non-significant tendency towards looking at the JA

object during the cue-issuing states. Somewhat interestingly, whilst the planned

contrasts had anticipated that the participants’ gaze would linger on the JA

object for a period after the cue was issued in GL, the participants turned their

gaze towards the !JA object soon after GL (shown in Figure 4.9). Specifically,

immediately following the cue (PG), they looked significantly less (δx̄ = 20.3%,

F (1,7)=8.168, p=0.024) at the JA object compared to during the cue (GL).

This unexpected finding potentially adds an opposing influence of the robot’s

JA cue (perhaps a suspicion of the robot’s intentions), which will be further

74



explored in Chapter 6. However, during cue-issuing states the participants spent

a significantly larger percentage of time attending the JA object than the !JA

object(δx̄ = 8.7%, F (1,7)=6.768, p=0.035), suggesting that the robot-issued JA

cue does increase the participant’s gaze towards the JA object compared to the

!JA object.

Gaze-bias towards chosen object

Participants in the JA condition displayed a δx̄ = 17.3% gaze bias towards

the object they would eventually choose (CH object) while the robot was issuing

the JA cue (F (1,7)=6.078, p=0.043), gaze behaviour which was significantly dif-

ferent to that towards the !CH object (F (1,7)=6.768, p=0.035). In conjunction

with the finding that during the cue-issuing states participants issued borderline-

significantly smaller (δx̄ = 17.4%, F (1,7)=5.461, p=0.052) percentage of saccades

than during the pre and post cue-issuing states, this suggests an increase in the

focus of the search. As it is known from HHI literature that this narrowing of the

search develops over the course of the decision-making process, this suggests that

JA participants’ decisions may have been made during the cue-issuing states, as

predicted by the HHI literature on gaze bias.

This is further supported by the finding that, in the post-cue stage when par-

ticipants were asked for their choice, JA participants displayed significantly less

gaze bias towards the CH object compared to Control participants (δx̄ = 16.3%,

F (1,7)=8.808, p=0.010). This suggests that, while JA participants may have

made their decision during the cue-issuing stage, Control condition participants

made theirs during the post cue-issuing stage.
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4.4 Conclusions

The study presented in this chapter, which was published in [C3] and [W1]

of Appendix A, focused on quantifying the characteristics and effects of JA in

HRI. An empirical evaluation was conducted in which 16 participants took part

in a forced-choice paradigm with a dichotomous response format, real-world HRI

scenario in which the humanoid social robot issued JA cues to one of two identical

objects.

It was found that the robot’s presentation of a JA cue resulted in significant

effects on gaze-based measures of influence, specifically the development of gaze

biases towards the objects in general, and the JA object and chosen object in

particular. These results suggest that participants responded to the robot-issued

JA cue in line with how they respond to human-issued cues, as predicted by

literature on the characteristics and effects of JA in HHI. This supports the

hypothesis that the exemplar JA cue is transferable to HRI (as per RQ A.1:

Elicit Response), and hence that today’s social robots can successfully Elicit

particular behavioural responses from interaction partners, as necessitated by

their interaction peer role.

Additionally, verification of the prediction that the characteristics and effects

of sociocontextual cues in HRI correspond to those of HHI cues also provides

support for RQ: Methodology: the developed methodology was drawn on to

successfully operationalise the Elicit branch of the Robot Centric paradigm during

real-world HRI.

However, along with further exploration of these findings, this Elicit explo-

ration would benefit from increased external validity and sample size in order to

generalise and extend the understanding of the influence of robot-issued JA cues

on surrounding humans.
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Chapter 5
Read – Enabling Robots to Decipher

Human-Issued Cues

Given exemplar social humanoid robots’ ability to successfully Elicit via is-

suing gaze cues during real-world HRI (as per RQ A.1: Elicit Response), as

detailed in Chapter 4, this chapter presents an exploration of the further ability of

such robots to Read human-issued gaze cues during HRI in order to fulfil the re-

quirements of their interaction peer role. Operationalisation of the Read branch is

achieved by again drawing on the methodology for Robot Centric HRI paradigm

operationalisation presented in Chapter 3. Firstly, in order to determine the value

of in situ human gaze cue Read ing capabilities (as per RQ A.2: Read Value), a

study focusing on understanding people’s natural gaze behaviour towards robots

is discussed. From the finding that no generalisable pattern of gaze behaviour

was observable, a head yaw estimation framework was developed and is next de-

tailed in this chapter. As head yaw is known to be generally indicative of gaze

direction, through employing the framework typical social robots can successfully

Read interaction partners’ gaze behaviour in situ during HRI (as per RQ A.2:

Read Feasibility), including both mutual gaze in the far-interaction zone and

joint attention and gaze bias cues in the near-interaction zone.
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5.1 Investigating Human Gaze Behaviour in the

HRI Space

Thus far it has been shown in Chapter 4 that the gaze cues of exemplar social

humanoid robots are perceived by observing humans as communication, and have

similar characteristics and effects during HRI as HHI (as per RQ A.1: Elicit

Feasibility and RQ A.1: Elicit Response). This suggests that exemplar JA

cues can be leveraged by such robots to Elicit particular behavioural responses

from interaction partners, and thus that sociocontextual cues can be reliably

implemented and utilised during HRI in the robot to human direction of com-

munication. For robots to communicate in a socially sensitive manner and fulfil

the requirements of their interaction peer role, however, it is equally important

for the reciprocal direction of communication to be addressed, i.e. the ability of

such robots to Read gaze cues issued by interacting humans.

For example, consider the scenario depicted in Figure 5.1. In this situation,

the robot would like to issue a JA cue to the water glasses on the table in order

to bring them to the human’s attention. However, in order for this Elicit ing to

be successful, the cue must be witnessed by the human; that is, it must be issued

when the human is engaging in mutual gaze with the robot. Literature on HHI

outlined in Section 2.1.3 has given a baseline of expected mutual gaze behaviour

around robots, suggesting that large mutual gaze variations will exist between

individuals during interaction. Thus, without the ability to Read the gaze of the

human and detect mutual gaze, the robot cannot guarantee that its cue will be

witnessed.

Figure 5.1: To ensure cues are witnessed, a robot needs an understanding of when people are
gazing at it.
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In order to address this issue, the first question which arises is whether people

will actually display HHI-predicted gaze cues around robots, necessitating in situ

gaze cue detection for robots (as perRQ A.2: Read Value). The empirical eval-

uation presented in Chapter 4 demonstrated that humans display HHI-predicted

gaze bias in decision-making scenarios (as outlined in Section 2.1.4) when the

robot is Elicit ing via JA cues, suggesting that such mutual gaze predictions will

similarly exist in HRI. Thus, the question becomes: during real-world interactions

in the HRI space, what natural mutual gaze behaviour, and hence attentiveness,

will people display towards a robot? This question was examined in the experi-

ment detailed below, which was published in [C2] of Appendix A.

5.1.1 Hypotheses

It is known from the literature presented in Section 2.1.3 that the dynamics

of mutual gaze in HHI are a complex function of individual and environmental

variables which interplay to result in large gaze behaviour variations between

individuals. For example, the percentage of HHI encounter time spent gazing at

an interaction partner can range from 28% to over 70% [75], with glance lengths

in the range of 3–10s [8]. From this understanding of typical human mutual gaze

behaviour during interactions, the following hypothesis was developed:

Hypothesis – There will be no generalisable pattern of participant mutual gaze

behaviour towards a robot, necessitating online, in situ gaze estimation capabil-

ities to enable robots to effectively Elicit.

5.1.2 Participants

There were 24 unsolicited participants in the experiment (3 female, 21 male).

They were passersby to the experiment location and no particular demographic

was evident.

5.1.3 Setting and Setup

In order to explore participants’ natural mutual gaze behaviour towards robots

during real-world HRI, a semi-constrained interaction scenario was constructed.

The RobotAssist platform was positioned adjacent to the buttons of a set of

elevators within a UTS building, as shown in Figure 5.2. In order to give the
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impression of robot autonomy and encourage natural interaction on behalf of the

participants, an experimenter was surreptitiously positioned at a laptop (giving

the appearance of studying) around 30m away. The experimenter’s sole role was

to remotely trigger the data recording on the robot as participants approached

the elevator foyer.

5.1.4 Procedure

Participants approached the elevator foyer from one of two directions in a

nearby hallway, and the experiment began when they entered the foyer and the

robot was within their line of sight, as depicted in Figure 5.3. The duration of the

experiment was moderated by the length of time it took for the elevator to arrive,

with x̄ = 31.3s and σ = 28.7s. The experiment concluded when the participant

exited the elevator foyer, either by getting on an elevator or by returning back

down the hallway. The robot was stationary for the duration of the experiment,

and thus issued no cues which would have affected people’s natural mutual gaze

behaviour.

(a) The RobotAssist platform setup in
an elevator foyer.

(b) View of the experiment setup from
one of the entry hallways.

Figure 5.2: The experiment setup.

5.1.5 Experimental Conditions

There was only one experimental condition, in which the robot remained

stationary throughout the experiment.
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Figure 5.3: The experiment scenario.

5.1.6 Measurement

The participants’ gaze behaviour was the only dependent variable. This in-

cluded their gaze times and characteristics of Looking (L) or Not Looking (!L)

at the robot. Data from a robot head-mounted Kinect camera was analysed

post-hoc to quantify these measures.

5.1.7 Results

There were 24 trials available for analysis. The experiment was run over two

weekdays approximately one week apart, between the hours of 10.15–11.30am

and 11.00am–3.30pm, respectively. Approximately 14 minutes of camera (∼2,500

frames) and RGB-D person detection data of the trials was collected during the

experiment from a Kinect mounted in the robot’s head. The ground truth of

participants’ gaze behaviour was independently coded by three experimenters and

averaged together post-hoc to quantify at which points participants were Looking

and Not Looking at the robot: example images of participants Not Looking

and Looking are shown in the top and bottom rows of Figure 5.4, respectively.

Participants included in the results are those who were manually observed to have

looked at the robot at some point during their interaction. Thus, the robot could

have issued a cue directed at them which would have been witnessed.
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Figure 5.5 shows the gaze patterns of the participants towards and away from

the robot over the duration of their interactions. White represents points at which

participants’ gaze was directed towards the robot (L), and black represents the

opposite (!L). Grey areas indicate the participant had exited the interaction and

the trial had concluded. From the figure, it can be seen that there was a large

degree of variation in the number (x̄ = 3.5, σ = 2.4) and length of looks at the

robot (x̄ = 2.1s, σ = 4.3s), and the total percentage of time spent Looking at

the robot over the course of the interactions (x̄ = 24%, σ = 22.7%).

The number of participants whose gaze was directed at the robot and the

total number of participants still interacting over time are shown in Figure 5.6.

It can be seen that, on average, approximately 50% of participants were looking

at the robot at any point in time.

Figure 5.4: Participants Not Looking (top row) and Looking (bottom row) at the RobotAssist
platform during the experiment.

5.1.8 Discussion

The results provide support for the hypothesis. No participant spent the

entirety of their interaction Looking at the robot, and no readably generalisable

pattern of Looking behaviour was observable between participants, as shown in

Figure 5.5 and in the empirical results. For example, 11 participants were in

their interaction for a length of time before their first look at the robot, and
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22 participants carried out their final look at the robot a length of time before

exiting the interaction; the interactions lacked a point at which a cue issued by

the robot would have been reliably observed by all participants. Instead, as can

be seen from Figure 5.6, at any one time only some of the people still in their

interaction were Looking at the robot, and an issued cue was only likely to be

observed by a maximum of approximately 50% of people. Similarly, it is difficult

to determine a time when an action not intended to be witnessed could have been

carried out (i.e. all participants were Not Looking).
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Figure 5.5: Looking patterns of participants at the robot over the course of their interactions.
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Figure 5.6: The number of participants looking at the robot and those still interacting over
time.
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5.1.9 Conclusions

This study, published in [C2] of Appendix A, focused on understanding peo-

ple’s natural gaze behaviour towards robots during unsolicited, real-world HRI.

The results show that there is no observable generalisable pattern of gaze towards

robots during real-world HRI. This suggests that the capability of detecting gaze

behaviour in situ would be advantageous (as per RQ A.2: Read Value), for

instance by enabling robots to effectively Elicit : issuing cues the robot wants

reliably witnessed when the intended recipient is engaged in mutual gaze with

the robot, for example.
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5.2 Development of Head Yaw Estimation for

the HRI Space

The results of the experiment presented above in Section 5.1 demonstrated

that there is no observable generalisable pattern of mutual gaze towards robots

during real-world HRI. Thus, it becomes necessary for robots to have an under-

standing of interaction partners’ gaze, for example to ensure their issued cues are

reliably witnessed, as well as to detect the gaze cues humans display in response

to robot-issued JA cues (as investigated in Chapter 4). The question then arises:

will human-issued gaze cues be detectable and interpretable by social robots (as

per RQ A.2: Read Feasibility)?

Several considerations around enabling robots to have in situ gaze cue Read ing

capabilities were discussed in the literature presented in Chapter 2. Firstly, it was

shown in Section 2.1.2 that humans have an interaction zone in which a majority

of their interactions take place, and therefore in which HRI is also likely to take

place. Thus, this interaction zone can also be considered the HRI space.

As outlined in Section 2.1.3, the positioning of interaction partners within

this interaction zone moderates how cues such as gaze are utilised: interaction

initiation via mutual attention likely occurs in the far-interaction zone (∼2–3m

in the x direction, ±∼1m in the y direction), while situated interactions – where

cues such as JA are often employed – are more likely to take place in the near-

interaction zone (∼1.2–2m in the x direction, ±∼0.5m in the y direction).

Additionally, during real-world HRI, where people’s eyes and hence exact

gaze direction may not always be detectable, literature shows that head yaw can

be used as an indicative measure of gaze direction, as discussed in Section 2.3.

Many features of the human head could be used for such head yaw estimation

(Section 2.3.1). However, due to the characteristics of the commonly used Kinect

data, the reliability of distinguishing different facial features in such data depends

on the interaction distance (Section 2.3.2): finer features are more reliably de-

tected in the near-interaction zone, however coarser facial features, while possibly

less accurate, are likely to be usable for head yaw estimation in a wider area of

the interaction zone.

It would therefore be ideal to incorporate such complementary data into a

single model to leverage the individual strengths of multiple head yaw estimation

(HYE) methods (accuracy vs coverage of the interaction zone) into a head yaw
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estimate which operates across the entirety of the interaction zone. This data

could then potentially be fused into a single head yaw estimate, as discussed in

Section 2.3.3. This would give a robot the ability to Read both mutual gaze in

the far-interaction zone and JA and gaze bias cues in the near-interaction zone

during real-world HRI, while maintaining necessary levels of accuracy across the

entire zone (where the requirement is often to detect which landmarks gaze is

directed at, as in Chapter 4).

5.2.1 Existing Head Yaw Estimation Approaches

A number of fusion systems currently exist which have been designed to over-

come the limitations of independent HYE methods by fusing estimates from com-

plementary approaches into a single result, leveraging the strengths of multiple

sources [112]. Some examples of fusion systems include [10, 109, 139, 170]. In

[139], for example, appearance template matching is fused with geometric cues.

However, thus far many hybrid methods have focused on increasing estimation

accuracy within a defined area (either near or far), rather than on operating over

a greater proportion of the interaction zone. This makes them unsuitable for the

intended application, where the requirement is for HYE which operates over the

entirety of the interaction zone, depicted in Figure 2.1, while maintaining levels

of accuracy necessary for HRI across the entire space.

As such, investigation into individual HYE approaches found that many cur-

rently exist which have the potential to be utilised in a developed HYE fusion

framework. An overview of these methods can be found in [112], which can be

broadly categorised into 2D (image-based) and 3D (depth data-based) techniques.

Methods based on 2D images can be further segregated into appearance

model-based methods (e.g. [164]), which analyse the entire facial region, and

feature-based methods, which localise specific facial features such as the eyes or

nose (e.g. [21, 47]). Yet there are a number of disadvantages to 2D image-based

methods which make them unsuitable for the target interaction zone, particu-

larly the far-interaction zone, such as sensitivity to facial expression, identity and

illumination variations, their limitation to discrete poses, and the low resolution

of images which makes it necessary for the person to be fairly close to the sensor.

Additionally, many feature-based 2D methods require the same facial features to

be visible across different poses, or define pose-dependent features, limiting them

to applications where near frontal images of people’s faces are ensured [112, 152].
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In response to some of these 2D image HYE challenges, the use of depth-

sensing technologies and range data (such as that generated by the Kinect) has

become more widespread. A state of the art example is the work of Fanelli et

al. [40]. This work presents a real-time algorithm to estimate head pose from

low quality depth data by learning a mapping between simple depth features

and real parameters, such as 3D head position and rotation angles. The process

and information flow of this method is depicted in Figure 5.7. As shown in the

figure, discriminative random regression forests are used to classify depth image

patches belonging to a person’s head, making the method independent of torso

pose, then to perform a regression in the continuous spaces of head positions and

orientations to estimate head pose.

Discriminative random regression forests are used to classify depth image

patches belonging to a person’s head, making the method independent of torso

pose, then to perform a regression in the continuous spaces of head positions and

orientations to estimate head pose.
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Figure 5.7: Process and information flow of the Fanelli et al. HYE method.

From a labeled head pose database of people positioned ∼1m from the sensor

and captured by the Kinect, the trees which constitute the forest are trained

in order to jointly optimise their classification (of head vs not head points) and

regression (of head pose) power. By maximising these two separate measures, a

mean HYE accuracy of ∼ 5.7◦±15.2◦ is achieved when participants are located in

similar regions to those in the training data, equaling or exceeding that of many
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other established methods [112]. This accuracy is suitable for a foreseeable set of

HRI applications, in which the requirement is often to detect which landmarks

gaze is directed at. Additionally, the Fanelli et al. method works on a frame-by-

frame bases, does not require initialisation, and is capable of handling multiple

people, large head pose variations, variations in appearance due to features such

as facial hair or glasses, and partial occlusions. Thus, the Fanelli et al. method

is suitable for inclusion in a developed fusion HYE framework, as its strength lies

in accurate HYE in the near-interaction zone.

However, a key shortcoming of the Fanelli et al. method is that it only operates

with HRI-suitable levels of accuracy over a limited section of the interaction

zone (as depicted in Figure 2.12): to estimate head pose, the method relies on

facial features which can be reliably detected within the near-interaction zone,

but become more difficult to distinguish in the lower resolution data from far-

interaction zone distances as the data becomes increasingly featureless.

To overcome this limited usefulness of the Fanelli et al. method, it is necessary

to include a method of HYE which encompasses a wider area of the interaction

zone in a developed HYE framework, for fusion with the Fanelli et al. estimate.

However, while a variety of other head pose estimation methods exist, many have

similar characteristics, as discussed in [112]: near-interaction zone accuracy is

often prioritised at the expense of breadth of operation space (as seen in [95, 108],

for example). This limits the additional useful information they would add if fused

with the Fanelli et al. estimate.

5.2.2 Developed Head Yaw Estimation Framework

Thus, there was a need for HYE which operates over the entirety of the

interaction zone while maintaining HRI-suitable, landmark levels of accuracy

across the entire space. To address this need, a HYE framework was developed

which fuses multiple HYE methods, including the Fanelli et al. method discussed

above, and a novel method which is detailed below.

The framework, which is detailed in a publication currently under review

([J2] of Appendix A), is depicted in Figure 5.8. It consists of two main stages:

fusion input preparation (discussed below in Section 5.2.2), and data fusion. In

order to evaluate both Bayesian and GP HYE fusion techniques, each of which

have individual advantages, the data fusion was configured and tested in two

ways. This is further detailed in Section 5.2.2.
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Figure 5.8: Process and information flow of the HYE framework.

Fusion Input Preparation

Preparation of the data to be fused involves a number of steps, which are

illustrated in Figure 5.8. Firstly, a sensing step outputs 3D depth data from the

Kinect sensor in point cloud and depth image form. In order to achieve higher

accuracy HYE in the near-interaction zone, the depth image is fed through a

HYE step which leverages finer facial features. Here the Fanelli et al. method

[40] is used to produce the first head yaw estimate for fusion, θFine = θFanelli.

A preliminary investigation verified that the operation space of the finer fea-

ture HYE step is limited, as discussed in Section 2.3.2 and depicted in Figure 2.12.

In order to complement and extend this estimate’s operation space, a coarser fea-

ture HYE step is also employed. To reduce the computational expense of the

search for these features, people in the environment are first robustly detected

and segmented, limiting the data which must be processed in the coarser fea-

ture stage: the data is passed through a previously developed person detection

system [64] known to work in both the near- and far-interaction zones [85]. For
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development purposes, in this case the system was configured to detect just one

person, however it is capable of detecting multiple people (having been shown to

detect all 9 people in a crowded scene [83]). The output of this step is the person

location (xperson, yperson) and a high-confidence person point cloud which can be

used for HYE.

With the data reduced to the person of interest, the person point cloud is

passed to the coarser feature HYE step. Further discussed below in Coarser-

Feature Head Yaw Estimation, this stage employs a novel HYE method based

on features which can be reliably detected in both the near- and far-interaction

zone, complementing and extending the area of the interaction zone over which

the finer feature HPE stage operates to produce a head pose estimate θCoarse

for fusion. The operation space of this stage was also verified in a preliminary

investigation: it was found that the method operates over a wider area of the

interaction zone, as depicted in Figure 2.12.

However, the features on which the finer and coarser methods rely for HYE

will vary between individuals, resulting in inaccuracies in the θFine and θCoarse

head yaw estimates between people. It is reasonable to assume, though, that a

contributor to this facial feature variance will be the shape of people’s heads, and

that the feature variance will in some way be proportional to this head shape. For

example, facial plane characteristics will be similar between people with narrower

heads, and likewise for those with wider heads. To increase the accuracy of the

fused head yaw estimate, this association between facial features and head shape

variation is also made available for data fusion via the method detailed below.

Finally, as the finer and coarser HYE steps operate over different areas of the

interaction zone, the position of the person relative to the sensor (xperson, yperson),

as determined by the person detection stage, is also sent to the data fusion stage.

This location information adds useful information to the process, which is further

discussed in Section 5.2.2.

Coarser-Feature Head Yaw Estimation

A novel method, Face Plane Yaw Estimation (FPYE), was developed which

leverages the planar facial feature of people’s heads for HYE; while no less sus-

ceptible to sensor noise at larger distances than finer facial features, the coarser

facial plane is more likely to be reliably observable, making it a suitable feature

for far-interaction zone HYE. As a person’s facial plane is inherently perpendic-
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ular to their heads, determination of its orientation can be utilised to estimate

head yaw.

In order to ensure reliable detection of the facial plane and independence from

torso pose, the first step of the FPYE method is to segment the head region of

the person. Operating on the high-confidence point cloud of the person from

the person detection step, the person’s point cloud data is searched to find the

highest value, ymax. A second value yhead = ymax − Cy is then calculated, which

specifies the height threshold for the head. Figure 5.9a depicts the segmentation

parameters: ymax is shown to be at the maximum point in the cloud, with yhead

at the bottom of the segmented region. The shape height constant, Cy, defines

the vertical size of the shape to be segmented.

ymax 

yhead 

Cy 

‒0.1

(a) Frontal view, showing the
segmentation parameters.

(b) Side view, showing the point
stratification and planer appearance of the

head point cloud at greater distances.

Figure 5.9: The segmented head point cloud.

The point cloud is then processed to remove pixels whose height is less than

yhead. As the threshold height, yhead, is relative to the height of the person’s

point cloud, ymax, the segmentation is invariant to the height of the person. A

constant value of Cy = 0.2m was empirically determined in previous work to

robustly capture the head region [64]. The output of this process is depicted in

Figure 5.9a: the head region has been segmented from the person point cloud.

With this 3D representation of the person’s head extracted, the orientation of

the facial plane can be used to determine head yaw. The orientation of a person’s

facial plane is inherently perpendicular to their head yaw; thus, the normal of

their facial plane should align with this head yaw. Figure 5.10a illustrates this

normal on the point cloud of a person’s head, viewed from the top down. This
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head yaw can be estimated by calculating the angle between the facial plane

normal and the sensor’s x -axis, θFPYE, as depicted in the figure. To calculate this

angle, the coefficients of the facial plane in the x and y directions can be used,

θFPYE = arctan
(

yFacial plane

xFacial plane

)
.

In calculating these coefficients, both the natural planar characteristics of a

person’s face – and the fact that at far-interaction zone distances the planar

appearance of the face is also artificially emphasised by the characteristics of the

Kinect sensor data, as discussed in Section 2.3.2 – is exploited. This phenomena

can be seen in Figure 5.9b, which illustrates how the data stratification at larger

distances results in the true depth features of a person’s face being compressed

into a flatter-than-reality representation in the x direction, as highlighted by the

box drawn in the figure. This results in a greater density of points in the facial

plane area, with minimal variance in the x direction and greater variance in the

y and z directions.

This characteristic high point density and minimal variance in the x direction

is exploited through Principal Component Analysis (PCA) to determine the co-

efficients of the facial plane in the 3D head point cloud. When applied to such

a point cloud, PCA calculates the principle components of the data, i.e. the

vectors with the greatest projection covariance. The first component is that with

the largest possible variance (thus this component will ‘explain’ the largest part

of the data variance), and subsequent components are each computed with the

constraint that they are orthogonal to the previous component, and explain a

maximum possible part of the remaining variance.

For example, consider when a person’s face is oriented towards the sensor,

and thus their facial plane is the primary visible plane, as in Figure 5.10a. In

such a head point cloud, there will have a greater density of points in the facial

plane area, and maximum variance in the y and z directions. The first two PCA

components are thus likely to be aligned with the y- and z-axes, respectively,

as there is less variance along the x-axis due to the point cloud’s planar nature.

Thus the plane formed by these first two principle components will align with the

facial plane, and θFPYE can be calculated as the angle between the PCA-plane’s

normal and the sensor x-axis, as shown in Figure 5.10a.

When the person’s head is oriented towards the sensor, this estimate θFPYE is

aligned with the true head yaw, as seen in Figure 5.10a. In this case, the principal

plane visible to the sensor – and thus the plane with which the PCA coefficients

will align – will be the facial plane area. However, with increasing rotation of the
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head from the sensor, different areas of the head become increasingly observable

and begin to have greater point density than the facial plane. This can be seen

in Figure 5.10b, where the primary plane visible to the sensor has become the

side of the head. As a result, the principle visible plane, and hence PCA plane,

no longer align with the facial plane. The angle of the PCA plane’s normal to

the sensor x-axis then begins to diverge from the true angle of the person’s head

yaw relative to the sensor. The FPYE method therefore has its highest accuracy

when gaze is on the robot, i.e. mutual gaze. As previously discussed, this is an

important attention cue, especially at far-interaction zone distances when people

show signals of openness to interaction and where interaction initiation is likely

to take place.

However, in the far-interaction zone it is also valuable to have a general

indication of head yaw, for example to gauge people’s level of interest in and

intentions towards objects in the environment. Thus, the FPYE method was

adapted into Face Plane Yaw Estimation’ (FPYE’). As the head rotates and

the PCA plane normal diverges from the true head yaw, at some degree of head

rotation the angle of the normal to the sensor will cross over the 0◦ point into

the negative. This can be seen in Figure 5.10b: though the true head rotation

is in the positive direction, the angle of the PCA plane normal to the sensor is

in the negative direction. After this point, with increasing head rotation in the

positive direction, the normal angle will become increasingly negative, and vice

versa. By taking the negative of this angle (i.e. the negative of the FPYE result,

θFPYE’ = −θFPYE), as shown in Figure 5.10c, the estimation error (compared to

the FPYE method) is reduced.

This simple technique results in the FPYE’ method having its highest accu-

racy when head orientations are away from the sensor, complementing the head

yaw estimation range of the FPYE method. There is no rule to discern between

these two cases: as discussed below in Section 5.2.2, the subsequent GP modelling

of the data, including the coarse head yaw estimates θCoarse={θFPYE, θFPYE’}, is
able to inherently capture, via training, the relationship between these methods

and the weights which should be assigned to each in different situations.

Facial Feature and Head Shape Variation Correlation

However, the facial features on which the FPYE and FPYE’ methods rely for

HYE will vary between individuals. This could result in discrepancies in readings

between people, even when their true head yaw is similar. Yet it is likely that this
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(a) FPYE (the angle between the direct
line to the sensor and the visible plane

normal) when head orientation is towards
the sensor.
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(b) FPYE (the angle between the direct
line to the sensor and the visible plane
normal) when head orientation is to the

side of the sensor.
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(c) FPYE’ (the angle between the direct
line to the sensor and the negative of the

visible plane normal) when head
orientation is to the side of the sensor.

Figure 5.10: Illustration of the visible plane and FPYE and FPYE’ methods on a head point
cloud viewed from the top down. The direct line between the sensor and head is indicated in
red dashes, the visible plane is shown in solid black, and the visible plane normal ((a) and (b))

or its negative (c) in lighter gray.
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facial feature variance will in some way be correlated with the particular individ-

ual from which the data arose. In order to ‘calibrate’ the readings between people,

this correlation is exploited through our Head-to-Shoulder Signature (HSS) [85],

shown in Figure 5.11, in the coarse-feature HYE method. Originally developed

to achieve robust in situ person recognition, the HSS encapsulates individual-

specific head, neck and shoulder region size and and shape information in a scale

and viewing angle robust feature vector, and has been shown to be robust against

a large spread of variations in appearance and clothing [83].

While [85] demonstrated the HSS as the basis for robust Support-Vector

Machine-based person recognition, it is used here to enable the fusion to be

responsive to differing facial characteristics between people, and their relation-

ship with head yaw. While cases may potentially exist in which outliers are not

handled by the HSS, it has been frequently used with large samples sizes (for

example N = 420 [83]) and this issue has not appeared to be prevalent.

(a) Narrower head person. (b) Wider head person.

Figure 5.11: Point clouds of two different people with 10 slice spans of the HSS illustrated.
Source: [85]

Data Fusion

A number of entities are now available from the fusion input preparation stage

of the framework: θFine = θFanelli, θCoarse = {θFPYE, θFPYE’}, xperson, yperson and

20× HSS. This information is then passed to the fusion stage. As illustrated in

Figure 5.8, two different fusion configurations were trialled to determine which

configuration most successfully achieves head yaw estimation over the entirety of

the interaction zone with HRI-suitable accuracy.

As both configurations incorporate GPs, they are first described in detail.
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Gaussian Processes

The fusion of data via GPs can be carried out by learning a joint model of

an input feature vector, g, which varies slightly between the two fusion configu-

rations. GPs are characterised by a mean m(g) and covariance k(g,g′) function

which together specify a distribution over functions; that is,

f(g) ∼ GP (m(g), k(g,g′)). (5.1)

In the current context, the mean function m(g) can be assumed to be zero by

scaling the data such that it has a mean of zero. With corresponding head yaw

outputs f(g) = h, where h is the head yaw angle, and denoting groups of these

points as (G, f,h) = ({gi}, {fi}, {hi})Ni=1 for the training set and (G∗, f∗,h∗) =

({g∗,i}, {f∗,i}, {h∗,i})Ni=1 for the testing points, the joint Gaussian distribution with

m(n)=0 is: [
f

f∗

]
∼ N

(
0,

[
K(G,G) K(G,G∗
K(G∗, G) K(G∗, G∗)

])
(5.2)

where N (μ,P) is a multivariate Gaussian distribution with mean μ and covari-

ance P, and K is used to denote the covariance matrix computed between all the

points in the set. If head yaw outputs are assumed to have Gaussian noise ε and

variance σ2 such that h = f(g) + ε, the joint distribution becomes [104]:

[
h

f∗

]
∼ N

(
0,

[
K(G,G) + σ2I K(G,G∗)

K(G∗, G) K(G∗, G∗)

])
(5.3)

The covariance function models the relationship between the random variables

corresponding to the given data [50, 160] and has a set of hyperparameters φ

associated with it. The covariance function selection plays a significant role in

the success of the GP; the process of learning with a GP is the problem of learning

these hyperparameters. After consideration of several covariance functions, the

Squared Exponential (SE) covariance function kSE was chosen. This covariance

function is widely used [127] and has been successfully applied in a broad variety

of applications (e.g. [5, 16, 4]). Additionally, it is a stationary covariance function;

it is infinitely differentiable, resulting in a GP with this covariance function having

mean square derivatives of all orders and thus being very smooth [127]. This is

appropriate for the real-life variable being modelled by the GP, head yaw, the

behaviour of which is inherently smooth.
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After observing with the Automatic Relevance Determination (ARD) SE co-

variance function that all input features were being weighted with the same order

of magnitude, the Isotropic Squared Exponential covariance function kSE-ISO was

utilised. This is a less complex and therefore faster running version of the SE

covariance function. It is parameterised as:

kSE-ISO(g,g
′) = σ2

f exp(−
1

2�2
(g− g′)�(g− g′)) (5.4)

where σ2
f is the signal variance and � is the characteristic length-scale.

The learning of the hyperparameters was achieved by maximising the log of

the marginal likelihood with respect to φ [127]:

log p(h|G, φ) = −1

2
hTK−1

h h− 1

2
log |Kh| − N

2
log 2π (5.5)

where Kh = K(G,G) + σ2I is the covariance matrix for the targets h.

By training the model on a training dataset Dtr = (gi, hi) | i = 1, . . . , N ,

the predictive distribution of the input 24-dimension feature vector gi to the

corresponding scalar training output hi can be obtained. This training output

is the ground truth (GT) head to sensor angle θGT, and this training data was

gathered via the method outlined below. The predictive distribution is:

p(f∗|G∗, G,h) = N (μ∗, P∗) (5.6)

where
μ∗ = K(G∗, G)[K(G,G) + σ2I]−1h

P∗ = K(G∗, G∗)−K(G∗, G)[K(G,G) + σ2I]−1 . . .

. . . K(G,G∗) + σ2I

Training Dataset for GP Model

In order to build the joint model of the input entities and fuse them into a

single head yaw estimate, training data for the GP model was required in the

form Dtr = (gi, hi) | i = 1, . . . , N , as described above. To capture interpersonal

variations, approximately N=2,400 training data points were gathered from 4

student subjects (3 male and 1 female).
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As training data from the subjects was required over the entirety of the in-

teraction zone, a methodology for estimating ground truth with a usable level of

accuracy for social HRI was necessary. A wide range of head yaws relative to the

sensor were therefore captured through the following procedure: the subject sat

on a roller chair in front of a Kinect sensor at y direction offsets of yperson≈0m,

yperson≈0.5m and yperson≈1m, as depicted in Figure 5.12.

At each offset, 15 tests were carried out. At the beginning of each test the

person was directed to orient their head towards one of 15 signs posted ≈1.8m

high on the wall directly in front of them and behind the Kinect. The signs

were placed in order to give an accurate angle β measurement at a distance

6m from the wall (1m from the sensor). The range of β at this distance was

β = −35◦ : 5◦ : 35◦, which was selected because of the primary goal of detecting

mutual attention, when a person’s head is oriented towards the robot. During

tests, the person’s head position relative to the sensor was extracted and the

corresponding sign post’s location was known, thus, the head orientation β could

be computed.

Over a period of ∼4–6s, the subject then rolled the chair backwards from a

distance of xperson≈1m from the sensor to xperson≈3m, keeping their head oriented

towards the appropriate wall sign during the movement. As the data from the

yperson≈0.5m and yperson≈1m offsets is likely to be symmetrical and thus also cor-

respond to yperson≈–0.5m and yperson≈–1m offsets, the entirety of the interaction

zone is represented.

Though there may be uncertainties in the training data due to the above

procedure (such as inexact β), such uncertainties are handled in a statistically

sound manner by the GP model, which incorporates the uncertainty into the prior

and learns the ground truth noise from the data during model training.

In order to verify the value of both the HSS and person location to the GP

model, the training dataset was divided into training and testing data, and a

number of 5-fold cross validations with different input feature vectors, g , were

run. The resulting root mean square (RMS) errors are shown in Table 5.1. It

can be seen that the removal of the HSS, and both the HSS and person loca-

tion, resulted in eRMS increases of 1.5◦ and 2.4◦, respectively, compared to the

full 25-dimension feature vector. Similarly, the removal of θFanelli from the model

resulted in a higher eRMS of 13.2◦, demonstrating the value of including θFanelli in

the fusion, whether Bayesian or GP.
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Figure 5.12: Setup and procedure of GP model training data acquisition.

Bayesian Fusion

The first configuration utilises Bayesian fusion. The advantage of this ap-

proach is that the strengths of each of the methods can be maximised: in areas

where θFine is operating, its higher-accuracy estimate can be given larger weight-

ing in the fusion by manually assigning the estimate a small variance. However, in

the wider-interaction zone, when no θFine estimate is available, a very large vari-

ance can manually assigned to θFine, which results in other data being weighted

more highly.

Table 5.1: 5-fold cross validation RMS model errors for different input feature vectors, g.

Input feature vector, g eRMS

25D: {θFanelli, θFPYE, θFPYE’, xperson, yperson, 20× HSS} 11.5◦

24D: {θFPYE, θFPYE’, xperson, yperson, 20× HSS} 13.2◦

5D: {θFanelli, θFPYE, θFPYE’, xperson, yperson} 13.0◦

3D: {θFanelli, θFPYE, θFPYE’} 13.9◦
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The first input to Bayesian fusion is a prior. In this fusion configuration, the

prior was developed using the entities available from the fusion input preparation

stage, excluding θFine. These entities have a relationship in the wider-interaction

zone: the HSS adds useful information about individuals’ planar facial features,

information relevant to θFPYE and θFPYE’, and the person location relative to the

sensor (xperson, yperson) is also useful as FPYE and FPYE’ operate over a wide area

of the interaction zone. To capture this relationship, the data is compiled into a

24-dimension input feature vector, g={θFP2E, θFP2E’, xperson, yperson, 20 × HSS}.
A joint model of g is then learnt through a GP, inherently fusing the entities into

a single head yaw estimate θGP = μ∗ with covariance matrix PGP . This becomes

the Bayesian fusion prior, p(θ|G) ∼ N (μ−, P−), where μ− = θGP , P
− = PGP ,

and θ is the true head yaw relative to the sensor.

This GP fusion is similar to that carried out in the second framework config-

uration, detailed below in Gaussian Process Fusion. In the Bayesian fusion con-

figuration, however, θFine is left out of the GP fusion, resulting in a 24-dimension,

rather than 25-dimension, input feature vector.

The second input to the Bayesian fusion is another measurement, θFine. This is

modelled as p(θFine|θ,G) =N (μ, σ), with R = σ2
Fine. In this case, σ2

Fine = σ2
Fanelli,

the noise variance of the θFine = θFanelli estimate. The Fanelli et al. method

does not inherently output a variance; instead, its true operating variance was

experimentally characterised via training data to be σ2
Fanelli = 0.66◦. This was

calculated by averaging the variance of the method over 10 readings at 3 different

locations throughout the interaction zone. As a result of this low uncertainty,

this more accurate head yaw estimate is likely to be ‘trusted’ over the coarser

feature based θGP estimate. Conversely, in areas where the Fanelli et al. method

is not operating, it is assigned a large variance of σ2
Fanelli = 1000◦ such that the

GP estimate will be used.

The maximum a posterior estimator is then used to integrate the prior GP

inference together with the θFine measurement. It is formulated as

argmax
θ

p(θ|θFine, G). (5.7)

Then the posterior density is

p(θ|θFine, G) ∝ p(θFine|θ,G)× p(θ|G) (5.8)
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computed as

P+ = ((P−)−1 + (H�RH)−1)−1

μ+ = μ− + P+((P−)−1μ− + (H�RH)−1z),
(5.9)

where H is an m × n matrix that intrinsically selects part of the state that is

observed through z. The result is a probabilistic estimate {μ+, P+} with an

updated mean and covariance function. The posterior is the output of the first

fusion configuration of the framework, where θB Fusion = μ+.

Gaussian Process Fusion

The second configuration incorporates all of the available input entities, and

the relationship between them, into the data fusion. In this configuration, θFine

is directly included into the GP fusion, rather than being probabilistically fused

afterwards. Therefore the data is compiled into a 25-dimension input feature

vector, and g = {θFanelli, θFPYE, θFPYE’, xperson, yperson, 20 × HSS}. Thus, given

the trained joint model, and online data g, the GP is able to model this data and

produce a single head yaw estimate θGP Fusion = μ∗.

5.2.3 Online Head Yaw Estimation Framework Evaluation

This section presents qualitative and quantitative results from a number of

experiments carried out to evaluate the developed HYE method and framework.

Operation Space Analysis

Firstly, in order to verify the predicted operation spaces of the fine and coarse

feature HYE methods, θFine = θFanelli and θCoarse = {θFPYE, θFPYE’}, their out-

put readings from the readings of the 4 subjects in the training dataset were

captured and visualised, as shown in Figure 5.13. In these graphs, the x -axes

represent varying head yaws relative to the person’s shoulders (β, shown in Fig-

ure 5.12). The y-axes represent the person’s position xperson along the length of

the interaction zone, as defined in Figure 2.1, and their position in the width of

the interaction zone is represented by the three graphs. Raw reading value is

represented by pixel colour, as per the colour scale below the plots. As readings

were only available in 5◦ β increments, linear interpolation was carried out be-

tween the readings. The plot of readings from a perfectly accurate method would

101



follow this colour scale, centred around θ = 0◦ (the head to sensor angle, shown

in Figure 5.12): a gradual change from light blue to dark purple.

In order to capture the sensitivity of the methods to mutual gaze, their mean

reading along the length of the interaction zone was calculated for when the

head was theoretically oriented directly towards the sensor (θ = 0◦). This re-

sult is shown on the graphs, along with the line upon which the calculation is

based: the lighter line represents the angle β at which the head would need to be

rotated relative to the shoulders to remain oriented directly towards the sensor,

and around which the colour scale should theoretically be centred. White space

indicates where the methods did not operate.

It can be seen from these graphs that the fine feature Fanelli et al. HYE

method only operates in the near-interaction zone, as predicted in Section 2.3.1

and Section 2.3.2. The coarse feature methods, on the other hand, operate over

the wider interaction zone.

However, in areas where it is operating reliably (x ≤ ∼1.5m, y ≤ ∼0.5m),

the reading pattern of the Fanelli et al. method is consistent with the theoretical

reading pattern, and along the θ=0◦ line it has mean readings of 1.3◦ and 3.1◦

at ∼0m and ∼0.5m offsets, respectively. The FPYE method also has reasonable

accuracy in these situations (0.8◦ and 5.8◦, respectively). However, its readings

deviate from the theoretical reading pattern as the head to sensor angle increases.

This indicates, as predicted, that this method is most sensitive to mutual gaze.

To give a general indication of head pose where the fine feature method is not

operating, the FPYE’ method is useful: while its mutual gaze readings (5.8◦ and

5.8◦, respectively) are not as accurate as the FPYE method, its reading pattern

in the wider interaction zone is consistent with the theoretical pattern.

Furthermore, Figure 5.14 illustrates the methods’ raw errors with the training

data; that is, the difference between the mean of the methods’ head yaw estimates

and the calculated ground truth (as depicted in Figure 5.17). The complementary

nature of the methods can be seen: in combination, the methods operate over

the entirety of the interaction zone with reasonable levels of accuracy.

These results verify the predicted strengths of HYE methods based on finer

and coarser facial features: accuracy vs coverage of the interaction zone, respec-

tively. As such, the advantages of fusing such methods into a single head yaw

estimate can be appreciated: this will exploit their individual strengths, achieving

the desired operation space while maintaining HRI-suitable accuracy.
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Figure 5.13: Raw readings of the HYE methods from the training data, with head to shoulder
angle β on the graph x -axis and xperson on the y-axis. The light line represents the required
head-to-shoulder angles β to achieve θ = 0 at the particular offsets. White space indicates

where the methods did not operate.

Data Fusion Configuration Comparison

Next, an evaluation of the two different data fusion configurations was under-

taken to determine which is most suitable to achieve such HYE. A semi-controlled

HRI experiment was carried out to achieve this, with constraints minimised as

much as possible. Firstly, the core sensing system from our social robotic platform

RobotAssist was disembodied in order achieve the necessary experimental setup,

however we ensured the height and angle of the experimental sensing system was

consistent with the setup had it been on the robot.

There were a total of 26 male participants aged between 22–45 in the exper-

iment, which was carried out in the Centre for Autonomous Systems (CAS) at

the University of Technology, Sydney, in two parts:

• Part A on Day 0, to evaluate operation and accuracy of the framework

configurations over the interaction zone, with 25 participants (1 known

from training and 24 novel participants).

• Part B on Day 15, to test the framework configurations’ repeatability and

robustness to interpersonal variations over time, with 19 repeat participants
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Figure 5.14: Raw error results of the HYE methods from the training data, with head to
shoulder angle β on the graph x -axis and xperson on the y-axis, where raw error is the

difference between the methods’ readings and the calculated ground truth head angle relative
to the sensor as depicted in Figure 5.17. The light line represents the required

head-to-shoulder angles β to achieve θ = 0 at the particular offsets. White space indicates
where the methods did not operate.

from Part A (but none known to the GP) and 1 novel participant (also

unknown to the GP).

No other selection criterion was employed other than asking the participants

if they were willing to participate and were likely to be present at CAS on both

experiment days.

The setting of the experiment, which was designed to be distinct from the

training dataset acquisition setup in order to evaluate robustness to different data

collection methods, is depicted in Figure 5.15a and its setup in Figure 5.15b.

This was intentionally designed into the experiment as, in the real-world, it is

not reasonable to expect training data from the people such frameworks will be

operating with, in the exact scenarios in which the operation will take place.

As can be seen, three Microsoft Kinect sensors, each separated by a distance

of 0.5m, were setup within a 1.7m wide walkway between cubicles within CAS.

As illustrated in Figure 5.15b, participants were instructed to walk between two

pieces of tape on the floor directly in line with Sensor 1, the first (‘Start’) ∼3m

from the sensors and the second (‘Finish’) ∼1m away.
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Three sensors were utilised in order to simplify the experimental procedure.

Rather than putting the sensor in one position and requiring the participant to

walk at ∼0m, ∼0.5m and ∼1m offsets in three separate runs (as during training

data acquisition), the participant walked in one line and the ‘robot’ (i.e. sensor)

was put at the three offsets simultaneously. However, the data can be used as

three independent measurements, rather than requiring the participant to repeat

each test three times. Similarly to the training data acquisition method, this

procedure ensures data is captured from participants over the entirety of the

interaction zone as the data from the yperson ≈0.5m and yperson ≈1m offsets is

likely to be symmetrical and thus also represent yperson ≈ −0.5m and yperson ≈
−1m offsets.

The participants were told that a gaze estimation system was being evaluated,

and to take approximately ∼3–5s to traverse the distance. Similarly to the system

training procedure detailed in Training Dataset for GP Model, at the beginning

of each run the participant was directed to orient their head towards their choice

of one of 7 signs posted on the wall, which was ∼6m behind the sensors. The

signs corresponded to different head-to-shoulder orientations β = −30◦ : 10◦ :

30◦ when the participant was positioned 1m directly in front the ∼0m offset

sensor. This range of head orientations towards the sensor was selected due to

the primary goal of detecting mutual attention, and β was computed from the

head position and sign location as the distance was being traversed. Each person

repeated the experiment between 3–5 times, choosing a different wall sign during

each run. No further instructions were given. Data was collected from each

participant beginning from when they were positioned at the ‘Start’ location and

their head was oriented towards their chosen wall sign, and terminated when they

had reached the ‘Finish’ position.

In the following subsections the data analysis methods and results of the two

experiments are discussed.

Part A - Interaction Zone Operation and Accuracy

Part A of the experiment was carried out with 25 male participants (1 known

from train and 24 novel) over a period of 3 hours, during which ∼7,500 data

points were captured. One participant was known to the framework, having

been used during training; however the experimental environment and procedure

were significantly different from that of training data acquisition: the experiment

was carried out in a corridor, a more dynamic and realistic environment, and
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(b) Experiment setup.

Figure 5.15: Experiment setting and setup.

participants were walking freely rather than seated and rigidly restricted. To get

an indication of the ability of the framework to accommodate both known and

unknown people while also generally evaluating the framework, the remaining 24

participants were unknown.

The participants’ paths were not heavily constrained; as can be seen from

Figure 5.22a, which shows the paths traversed over the course the experiment,

the participants were not uniformly positioned at yperson = 0m, yperson = 0.5m

and yperson = 1m offsets from the sensors. Instead their offsets averaged ȳ0m offset
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= 0.04m, ȳ0.5m offset = 0.45m, and ȳ1m offset = 0.93m respectively. While these

varying participant paths are a source of error, they also have the benefit of in-

creasing the external validity of the experiment.

Results Analysis

Graphs of the methods’ accuracy at varying head yaws relative to the person’s

shoulders and different positions of the person in the interaction zone were pro-

duced. These graphs were constructed similarly to those in Section 5.2.3, with the

exception that pixel colour now represents the methods’ errors (the difference be-

tween the methods’ readings and the calculated ground truth head angle relative

to the sensor), rather than raw reading, to clarify their accuracy. Participants’

true paths were used to calculate accuracy during graph production.

In order to capture the sensitivity of the methods to mutual gaze, their mean

accuracy along the length of the interaction zone was calculated for when the head

was theoretically oriented directly towards the sensor as in mutual gaze (θ = 0),

and towards the vicinity of the sensor (the ranges −10◦<θ<0◦ and 0◦<θ<10◦),

indicating a person may be more open to interaction and/or more likely to witness

robot-issued interaction initiation cues. These accuracy results, and the zones on

which their calculations are based, are shown on the graphs. The lines represent

the required head-to-shoulder angles β to achieve θ = −10◦, θ = 0, and θ = 10◦

if the participant had walked at exactly the mean offset for each trial duration.

Firstly, to evaluate the characteristics of the fine and coarse feature HYE

methods in the more realistic environment, their accuracy with the Part A ex-

periment data was calculated. These results are shown in Figure 5.16, which

depicts the methods’ raw errors; that is, the difference between the mean of the

methods’ observations and the ground truth. In order to clarify this, this error

is conceptually depicted in Figure 5.17. The figure shows an observation from

one of the methods, with its mean and error range. The error is the difference

between the mean of the method’s observation and the ground truth.

Though Figure 5.16 illustrates that there is significant noise and generally

higher inaccuracy than in the training data of Figure 5.14, it can be seen from the

patterns that the FPYE and FPYE’ methods operate as predicted: FPYE is most

sensitive to head orientations towards the sensor (i.e. around the −10◦<θ<10◦ re-

gion), while FPYE’ gives a general indication of head yaw when head orientations

are to the side of the sensor.
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Figure 5.16: Experiment Part A individual HYE method raw error results, where raw error is
the difference between the methods’ readings and the calculated ground truth head angle
relative to the sensor, as depicted in Figure 5.17. Head to shoulder angle β is on the graph

x -axis and xperson on the y-axis. The lines represent the required head-to-shoulder angles β to
achieve θ = −10◦, θ = 0, and θ = 10◦ if the participant had walked at exactly the mean offset

for the duration of each trial. White space indicates where the methods did not operate.

Figure 5.17: Conceptual depiction of the individual HYE methods’ raw errors.
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The near-interaction zone operation space of the Fanelli et al. method shown

in Figure 5.16 corresponds to both the operation space prediction (illustrated

in Figure 2.12), and the pattern witnessed with the training data (shown in

Figure 5.13 and Figure 5.14). Surprisingly, however, the sensitivity of the Fanelli

et al. method to mutual gaze in the near-interaction zone (especially between x ≈
1–1.5m), which was observed in the training data, is not as evident in the Part A

results. The decreased usefulness of the fine feature method in the more dynamic,

real-world data has implications for the fusion, as discussed below. Despite this,

however, the benefits of fusing these methods can be seen.
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Figure 5.18: Experiment Part A fusion error results, with head to shoulder angle β on the
graph x -axis and xperson on the y-axis, where raw error is the difference between the methods’

readings and the calculated ground truth head angle relative to the sensor, as depicted in
Figure 5.19. The lines represent the required head-to-shoulder angles β to achieve θ = −10◦, θ
= 0, and θ = 10◦ if the participant had walked at exactly the mean offset for the duration of

each trial. White space indicates where the fusion did not operate.

The results from the Bayesian and GP fusion framework configurations are

shown in Figure 5.18. The error in this figure is then the difference between the

fusion result and the ground truth. However, it is derived differently than the

error of Figure 5.16: the data fusion statistically derives a result from the overlap

between the standard deviations of the individual methods’ observations. This

concept is depicted in Figure 5.19, and it is this eFusion which is represented in

Figure 5.18. From this, it can be seen that the fusion exploits the complementary

nature of each of the individual methods’ observations. As such, while the obser-

vations can have larger errors, the fusion result can have a smaller error than any

of the individual methods. This complementary nature is not readably apparent

in the raw errors shown in Figure 5.16. As a result, the fusion output will not

necessarily resemble the pattern in the individual methods’ results.
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Data such as error standard deviations have been intentionally omitted from

the presented results, as the focus of such data is intended to make comparisons,

and would put focus on whether the developed framework and configurations

improve on state of the art methods such as Fanelli et al. Instead, the focus of

this work is on evaluating whether techniques can be developed to complement

and overcome the limitations of such state of the art methods; hence the presented

results are intended to evaluate whether the intended outcome of HRI-suitable

interaction zone HYE has been achieved.

As such, Figure 5.18 demonstrates that fusion is a viable method of achieving

HRI-suitable HYE throughout the interaction zone. As summarised in Table 5.2,

the configurations have generally comparable results, with mean accuracies of

±4.1◦ and ±3.7◦, respectively, when participants are looking directly at the sen-

sor. Similarly, in the −10◦<θ<10◦ area at ∼0m offset, their mean accuracies are

±4.5◦ and ±4.0◦, respectively. Additionally, the uncertainty bounds (variance)

produced by the framework show that the fused estimates θB Fusion and θGP Fusion

are consistent. This demonstrates the ability of fusion methods to detect mutual

gaze at larger, far-interaction zone distances.

Figure 5.19: Conceptual depiction of the fusion errors.

The configurations also give similar results at the other offsets along the θ = 0◦

line and in the −10◦<θ<0◦ and 0◦<θ<10◦ areas, as shown in Table 5.2. Given

these results are gathered from a number of people unknown to the system,

who are also in motion, this demonstrates fusion methods’ suitability for the

unstructured and dynamic HRI space.
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Table 5.2: Experiment Part A mean accuracies of the HYE methods along the θ = 0◦ line and
within the −10◦<θ<10◦ area at different offsets.

Fanelli et al. FPYE FPYE' Bayesian fusion GP fusion

θ = 0° ±3.8° ±10° ±9.1° ±4.3° ±4.1°

−10° < θ < 10° ±4.3° ±14° ±9.3° ±4.8° ±4.2°

−10° < θ < 0 ° ±10° ±16° ±18° ±5.0° ±5.0°

θ = 0° ±13° ±13° ±21° ±5.4° ±6.1°

0° < θ <10° ±14° ±12° ±22° ±6.3° ±7.6°

−10° < θ < 0 ° − ±19° ±26° ±4.5° ±5.2°

θ = 0° − ±15° ±30° ±4.3° ±6.3°

0° < θ <10° − ±16° ±32° ±4.5° ±7.9°
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However, there is a key difference between the Bayesian and GP fusion config-

uration results. The Bayesian fusion configuration preferentially ‘trusts’ the θFine

reading when it is operating, under the assumption that this reading will have

higher accuracy than the θGP reading. As a result, the unexpected characteristic

of the Fanelli et al. method readings in the near-interaction zone – specifically

its decreased sensitivity to mutual gaze – directly becomes a characteristic of the

Bayesian fusion output.

The GP fusion configuration, on the other hand, is able to mitigate this

Fanelli et al. method weakness through incorporating input entity relationship

into the fusion: though the sensitivity of the θFanelli reading to mutual gaze is

compromised, the FPYE method, while generally less sensitive, is still able to

give a reasonable indication of mutual gaze. This is accounted for by the GP

configuration, suggesting that such a configuration is more suitable to achieve

the goal of HRI-suitable, interaction zone HYE. Thus, θHYE-F = θGP Fusion.

In both cases, however, it can be seen from the graphs that noise exists in

the results data, for which there are a number of possible explanations. Firstly,

the variance in the participants’ paths could have led to the asymmetry of the

readings around the θ = 0◦ line. Additionally, despite the inclusion of the HSS

to reduce variance across individuals, it is reasonable to expect that the accuracy

of the HYE framework will still vary slightly between people. Future work will

be to reduce this framework inaccuracy; however, the results illustrate that in its
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current form the HYE framework achieves HRI-suitable accuracy throughout the

interaction zone by building on the strengths of the data it fuses, especially in

the GP fusion configuration.

Part B - Repeatability and Robustness to Interpersonal Variations

With the interaction zone operation and accuracy of the framework configu-

rations validated, Part B of the experiment was carried out on Day 15 in order to

evaluate their repeatability and robustness to interpersonal variations over time.

In Part B, there were 19 repeat participants from Part A and 1 novel participant

(though none of the participants were known to the GP, none having been used

in the training data). Approximately 5,000 data points were gathered over a pe-

riod of 4 hours. Again the participants’ paths, shown in Figure 5.22b, were not

heavily constrained and were similar to those traversed in Part A (Figure 5.22a),

with slightly different mean offsets of ȳ0m offset = 0.02m, ȳ0.5m offset = 0.43m, and

ȳ1m offset = 0.86m. Visual and qualitative representation of the results, shown in

Figure 5.20 and Figure 5.21, were developed in line with Part A.

Results Analysis

The repeatability of the framework’s configurations are comparable despite

the time separation, as can be appreciated through visual comparison of the Part

B (Day 15) accuracy graphs to those of Part A (Day 0) in Figure 5.16 and Fig-

ure 5.18. The numeric results, presented in Table 5.3, show that the differences of

the framework configurations’ accuracies on Day 0 and Day 15 of the experiment

were minimal. The small magnitude of these accuracy variations reinforces the

suitability of the framework – especially in a GP fusion configurations – for HRI

applications, and suggests that they could simply be a result of the variations in

the paths; the exact sources of these errors will be considered in future work.

These results demonstrate the framework’s repeatability and robustness to

interpersonal variations (for example changes in attire) over time.
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Figure 5.20: Experiment Part B individual HYE method raw error results, where raw error is
the difference between the methods’ readings and true head angle relative to the sensor, as
depicted in Figure 5.17. Head to shoulder angle β is on the graph x -axis and xperson on the

y-axis. The lines represent the required head-to-shoulder angles β to achieve θ = −10◦, θ = 0,
and θ = 10◦ if the participant had walked at exactly the mean offset for the duration of each

trial. White space indicates where the methods did not operate.
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Figure 5.21: Experiment Part B fusion error results, with head to shoulder angle β on the
graph x -axis and xperson on the y-axis, where raw error is the difference between the methods’

readings and the calculated ground truth head angle relative to the sensor, as depicted in
Figure 5.19. The lines represent the required head-to-shoulder angles β to achieve θ = −10◦, θ
= 0, and θ = 10◦ if the participant had walked at exactly the mean offset for the duration of

each trial. White space indicates where the fusion did not operate.

Table 5.3: Experiment Part B mean accuracies of the HYE methods along the θ = 0◦ line and
within the −10◦<θ<10◦ area at different offsets

Fanelli et al. FPYE FPYE' Bayesian fusion GP fusion

θ = 0° ±3.8° ±10° ±9.1° ±4.3° ±4.1°

−10° < θ < 10° ±4.3° ±14° ±9.3° ±4.8° ±4.2°

−10° < θ < 0 ° ±10° ±16° ±18° ±5.0° ±5.0°

θ = 0° ±13° ±13° ±21° ±5.4° ±6.1°

0° < θ <10° ±14° ±12° ±22° ±6.3° ±7.6°

−10° < θ < 0 ° − ±19° ±26° ±4.5° ±5.2°

θ = 0° − ±15° ±30° ±4.3° ±6.3°

0° < θ <10° − ±16° ±32° ±4.5° ±7.9°
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(b) Part B paths.

Figure 5.22: Participant paths during the two experiment parts. The black, dark grey and
light grey lines represent the paths of participants theoretically positioned at 0m, 0.5m and 1m
offsets, respectively. The true mean participant offsets are shown to the right of the graphs.
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5.3 Conclusions

With no generalisable pattern of gaze behaviour towards robots observed dur-

ing a real-world HRI study (RQ A.2: Read Value, published in [C2] of Ap-

pendix A), a head yaw estimation framework to detect gaze behaviour in situ

was presented. The framework leverages the strengths of multiple HYE methods,

including the novel Face Plane Yaw Estimation method, to achieve operation over

the entirety of a person’s interaction zone (∼1.2–3m in the x direction, ±∼1m

in the y direction) while maintaining an HRI-suitable, landmark level of accu-

racy. Specifically, a joint Gaussian process model is learnt of the Fanelli et al.

HYE method (which has impressive accuracy but does not operate over the entire

target interaction zone) and the Face Plane Yaw Estimation method, inherently

fusing them. The Face Plane Yaw Estimation method utilises the planar charac-

teristic of people’s faces, a feature which is distinguishable at greater distances

than other finer facial features, to estimate head pose; as a result, the method

both complements and extends of operation space of the Fanelli et al. method

within the interaction zone. By incorporating the complementary methods into

a single head pose estimate, the framework thus addresses the trade-off between

accuracy and physical operation space inherent in many existing HYE methods.

The results of a two-part quantitative and qualitative, internally valid study

showed the framework successfully operates over the entirety of the interaction

zone, and gives a mean accuracy of ±3.7◦ when participants are positioned be-

tween ∼1–3m from the sensor and directly in front of it, and ±6.3◦ when they

are offset by up to ∼1m left or right from the line of sight of the sensor. Addi-

tionally, the framework was shown to be repeatable and robust to interpersonal

variations in appearance over time through testing with participants novel to the

system, who were not included in the training dataset. These results provide sup-

port for RQ A.2: Read Feasibility that social robots are capable of detecting

and interpreting human-issued cues such as gaze during real-world HRI, and are

contained in [J2] of Appendix A, which is currently under review.

These results also provide further support for RQ: Methodology: the de-

veloped methodology was again drawn on to successfully operationalise the Read

branch of the Robot Centric paradigm during real-world HRI.

However, preliminary data suggests a number of limitations of the framework.

Firstly, hair is inconsistently detected in Kinect depth data due to its texture and

density. The noise and inconsistent head shape which results reduces the unifor-
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mity of head-to-shoulder signature readings, especially of long-haired subjects

and subjects looking downwards. This leads to variance in the GP model and

thus large errors in the framework head yaw estimate. A similar phenomenon

occurs when items such as hats are worn. To address this issue, a more flexible

method of correlating facial feature variance with individuals will be adapted into

the model.

Additionally, the behaviour of the HYE framework readings when a person

is looking in the opposite direction from the robot, i.e. head yaws around 180◦,

is also unknown, particularly given the Kinect’s inconsistency of hair detection.

This should be further investigated and its implications considered.

Finally, the findings of this work would benefit from increased external valid-

ity through integration and testing of the HYE framework on a robotic platform

during HRI, including its robustness to other rotational poses beyond head yaw

and the validity of the assumption that landmark gaze detection is typically

suitable for social HRI, particularly at far-interaction zone distances. Compu-

tationally efficient GP implementations could be used to enable this real-time,

online performance (as done in [121] with a multi-output GP, for example).

117



Chapter 6
Interactivity – Demonstrating the

Relationship Between Interactivity and

Effectiveness

With the Elicit and Read branches of the Robot Centric HRI paradigm ac-

tivated in isolation thus far, this chapter presents a study which extends this

work by increasing the interactivity level of the exemplar humanoid social robot.

Through doing so, the hypothesis from Chapter 3, that a robot’s interactivity is

correlated with its effectiveness at achieving its goal(s) (RQ B: Interactivity),

is addressed. While reinforcing and overcoming the shortcomings of previous RQ

A: Sociocontextual cues in HRI findings – such as lower external validity and

sample size – the results of the study presented here within demonstrate that both

the Read and Elicit branches of the Robot Centric HRI paradigm are valuable to

social robots: through presenting participants with a dichotomous choice situa-

tion and twice asking them to choose between the objects, it is shown that Elicit

strategy moderation is valuable to a robot in effectively achieving its goal(s), and

information valuable to moderate Elicit can be gained through in situ Read ing.
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6.1 Introduction

Up to this point, the Elicit and Read branches of the Robot-Centric HRI

paradigm have been operationalised and investigated in isolation with an ex-

emplar sociocontextual cue and robot, suggesting that the characteristics and

effects of sociocontextual cues in HRI do correspond to those of human-human

cues (RQ A: Sociocontextual cues in HRI). Firstly, Chapter 4 presented a

small-scale, internally valid empirical study to explore if humanoid robot-issued

JA cues would successfully activate the Elicit branch and whether people would

respond to such robot-issued JA cues in line with they way they respond to

human-issued cues. The results of this experiment suggested that JA activated

the branch: the JA cue was both recognisable when issued by the RobotAssist

platform (as per RQ A.1: Elicit Feasibility) and appeared to influence par-

ticipants’ decision-making behaviour (as per RQ A.1: Elicit Response). This

implied that exemplar JA is transferable to HRI.

Next, the Read branch was explored, as discussed in Chapter 5. This be-

gan with investigation into whether people will actually display HHI-predicted

gaze (and hence attentiveness) cues around robots, necessitating in situ gaze cue

detection for robots (as per RQ A.2: Read Value). A real-world interaction

study was conducted with the results suggesting that, similarly to HHI, there is

no generalisable gaze pattern between people. Under the assumption that in situ

gaze estimation would benefit HRI, existing systems for estimating head yaw,

an indicator of gaze, were reviewed. It was found that many current head yaw

estimation methods pursue accuracy at the expense of operation space, limiting

their suitability for the wider real-world HRI space. Therefore, a HYE framework

was developed to address this need for HYE which operates over the entirety of

the HRI space, while maintaining levels of accuracy necessary for HRI across the

entire space. Evaluation of the framework was then carried out, which demon-

strated that it had internal validity and was potentially suitable for in situ gaze

estimation applications (as per RQ A.2: Read Feasibility).

However, several shortcomings were identified in this previous Elicit and Read

work. Firstly, in order to generalise understanding of the effects of JA in HRI,

it was noted that the work of Chapter 4 would benefit from increased external

validity and sample size, as it is not reasonable to generalise the results of such

an experiment over the wider population due to the relatively controlled exper-

imental setup and limited number of participants. Additionally, the experiment
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focused on a narrow range of JA effects, only considering the ability of the cue to

influence participants towards the JA object (i.e. participants either ignore the

robot’s cue or are ‘positively influenced’ towards choosing the JA object). How-

ever, the possibility exists that JA could also have other effects, for example the

opposite effect of ‘reverse influencing’ participants who had initially selected the

JA object prior to the cue to change their mind to the other object instead. This

possibility is especially relevant in light of the gaze pattern findings of Chapter 5:

will robot-issued JA cues which are not directly witnessed have any influence on

interaction partners, or is it reasonable to assume that such cues will not have

any effect? That is, will one advantage of giving robots the ability to Read hu-

man gaze in situ be to enable them to intentionally issue cues, increasing the

effectiveness and predictability of their Elicit outcomes?

These questions lead to RQ B: Interactivity: will a robot’s effectiveness at

achieving its goal(s) be increased by adding to its ability to moderate its Elicit

strategy based on information gained through Read ing (i.e. increased interac-

tivity)? That is, are both the Read and Elicit branches of the Robot Centric

HRI paradigm valuable to social robots in effectively achieving their goal(s)?

This breaks down into two key questions which correspond to the two paradigm

branches: is moderating the Elicit strategy valuable to a robot in effectively

achieving its goal(s)? Can information valuable to moderate Elicit be gained

through in situ Read ing?

During experimental explorations presented thus far, the robot had no inter-

activity: the Elicit and Read branches of the Robot Centric HRI paradigm were

activated in isolation. There remained a need, then, to construct and execute

an experimental scenario which both: a) extended the prior Elicit investigation

in order to explore a wider range of JA effects (such as reverse influence) to

determine the value of Elicit strategy moderation, while also increasing exter-

nal validity, and b) investigated how people’s gaze behaviour impacts on the

effects and perceptions of robot-issued JA cues, in order to explore the value of

in situ gaze Read ing. In doing so, the following could be achieved: the findings of

RQ A: Sociocontextual cues in HRI could be reinforced by overcoming the

shortcomings identified in the previous experimental explorations; RQ B: Inter-

activity could be addressed, for the first time holistically operationalising the

paradigm; and, through again drawing on the methodology developed in Chap-

ter 3, its ability to enable successful operationalisation of the paradigm could be

further verified (as per RQ: Methodology).
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6.2 Exploration of the Value of the Elicit and

Read Branches

To achieve the target outcomes outlined above, an experimental scenario was

constructed and executed by drawing on the methodology presented in Chapter 3.

Unlike in previous experiments, in this instance the robot was given a higher

level of interactivity via the ‘Robot Centric HRI Paradigm Design’ stage of the

methodology (Section 3.2.3). However, in order to ensure that the value of the

individual Elicit and Read branches could still be isolated, this interactivity level

was intentionally limited. Specifically, there was only one cue in each of the

Read and Elicit cue sets: the robot was simply given the ability to Read person

presence, and issue Elicit cues when the person was situated in the interaction

zone (i.e. binary issuance).

During the study, participants were presented with a dichotomous choice sit-

uation and twice asked to choose between the objects. In the Control condition,

the robot remained stationary throughout the experiment. However, in the JA

condition, the robot issued a JA cue prior to the second request to choose.

The following sub-sections describe the hypotheses, participants, experimen-

tal design and procedure, and evaluation measures of the experiment, which is

contained in [J1] of Appendix A.

6.2.1 Hypotheses

Hypotheses and predictions were developed based on the understanding of

JA cues outlined in Chapter 2 and the previous work presented in Chapter 4 and

Chapter 5.

Firstly, as discussed in Chapter 2, JA cues have the potential to positively in-

fluence observers’ preferences by affecting their evaluation and affective appraisal

of JA objects. However, as discussed in Section 1.1.4, the Read branch of the

Robot Centric paradigm focuses on influence through sociocontextual cues be-

cause of their non-verbal nature, which makes their influence more surreptitious

and implicit, and thus less susceptible to negative human response [113]: it has

been demonstrated that humans often respond negatively to perceived robot-

issued commands or task dictation [154]. This suggests that, at least in the case

of HRI, there may be other potential outcomes of JA besides positive influence:
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a negative human response to a robot-issued command – which a robot-issued

JA cue could foreseeably be perceived as – could be suspicion and reverse influ-

ence. While the experiment detailed in Chapter 4 focused on a narrow range of

JA effects, only considering positive influence, this possibility is especially rele-

vant in light of the gaze pattern findings of Chapter 5: will robot-issued JA cues

which are not directly witnessed have any influence on interaction partners, or is

it reasonable to assume that such cues will not have any effect? That is, will one

advantage of giving robots the ability to Read human gaze in situ be to enable

them to intentionally issue cues, increasing the effectiveness and predictability of

their Elicit outcomes?

From the above, the following hypotheses were developed:

H1 – The robot’s presentation of a JA cue will have effects in line with JA cues

issued during HHI.

H2 – In situ HYE will be advantageous for HRI.

From these, it was predicted:

P1 – When the robot issues a JA cue, participants will be influenced towards

preferring the object towards which the cue is issued.

P2.1 – The influence of the robot’s JA cue on participants will be impacted by

whether the participant was directly looking (L) or not looking (!L) at the robot

when the cue was issued, necessitating in situ HYE.

P2.2 – The HYE framework will show potential suitability for in situ head pose,

and hence gaze, estimation in the target application.

6.2.2 Participants

There were 96 participants in the experiment (52 male and 44 female). Par-

ticipants were sourced from throughout UTS via a number of methods, including

flyers posted up around the university, notices in the university’s staff newsletter,

emails to university contacts, short presentations during lectures, and direct ap-

proach by experiment assistants throughout the university campus. In exchange

for participation in the short robot interaction experiment, participants were of-

fered a soft drink and small chocolate.

In order to increase the breadth of the participant demographic, and hence

the external validity of the experiment, the only pre-requisite to participation
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was that the person not be from UTS’ Faculty of Engineering & IT. This was to

exclude those familiar with autonomous systems in general and robotics in partic-

ular, giving a more accurate representation of the wider population. Participants

indicated their age range on a survey, and ages ranged from the lowest band (less

than 18), to the highest (50 or older). No particular demographic was evident,

and the participant group was deemed sufficiently representative of the general

population by the experimenters for exploration of the research questions.

6.2.3 Setting

The RobotAssist platform (Figure 2.6a) was again utilised during the exper-

iment. To minimise visual distractions for the participants, the experiment was

staged in a bare meeting room. The robot was positioned adjacent to two long

conference tables in one corner of the room, opposite to the corner from which

participants entered. This setting is illustrated in Figure 6.1a, which presents a

snapshot taken during the period of the experiment.

A decision-making scenario in which the effects of robot-issued JA cues could

be gauged was presented to participants. A small white box (∼ 80mm3) was

situated on each of the tables (Box 1 on the table to the robot’s right and Box 2 on

the robot’s left), creating a dichotomous choice situation. In order to prevent pre-

existing preference bias on the part of the participants, the boxes were identically

sized and 5 identical dots were printed on each of the boxes, similarly to dice.

However, to ensure the participants would inspect the boxes (as outlined below

in Section 6.2.5), the configuration of the dots was different between the two

boxes. Figure 6.1b shows a diagrammatic representation of the setting in which

the position of the participants relative to the robot and the boxes is shown.

In the JA condition, described below in Sect. 6.2.4, the robot issued a Joint

Attention cue towards Box 2, henceforth referred to as the JA Box (and Box 1 as

the !JA Box). The JA Box remained constant throughout all trials: as the focus

in this study was on several potential outcomes, detailed below in Sect. 6.2.5,

holding the JA Box constant removed the technical complexity of online detec-

tion of participants’ gaze, which would have been necessary to enable the robot

to counterbalance the conditions. As the head yaw estimation framework was

still under development and the goal here was to evaluate it, this would have

presented a significant challenge. Additionally, the chosen configuration enabled

simplification of data normalisation, if required, during analysis.
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(a) Experiment setting.

Box 1: !JA Box 

Box 2: 
JA Box 

~35° 
~35° 

(b) Experiment setup.

Figure 6.1: The experiment setting and setup.

6.2.4 Experimental Conditions

There were two conditions in the experiment:

JA - Prior to the request for the participant to choose a box, the robot

performed a JA cue towards the JA Box. The cue was performed as described in

Section 2.2.2.

Control - The robot did not perform a JA cue, remaining stationary for the

experiment duration.

All other acts were consistent throughout the trials.

6.2.5 Procedure

The experiment was a between-subjects design, and the procedure is illus-

trated in Figure 6.2. Prior to entering the experiment room, each participant

was asked to read brief instructions. These instructions thanked them for par-

ticipating in the study, and directed them to enter the room and move to the

circle marked on the floor, which was approximately 1.2m in front of the robot.

This circle was to ensure that: a) the participants would be visible to the person

detection system, which was running online using the data from the head Kinect

sensor; and b) the participants would be positioned such that it would be possible

for them to witness the JA cue, in the JA condition.
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The instructions further stated that once the participant was positioned in

the circle, the robot would begin a simple interaction and give instructions. Par-

ticipants were asked to remain in the circle for the duration of the experiment,

and told that if something went wrong the robot’s head lights would go red and

that the participant should inform the experimenter straight away.
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Figure 6.2: Flowchart of the experimental procedure.

When they were ready, the participant then entered the experiment room,

while the experimenter remained outside. The robot began with its head in a

neutral gaze orientation downwards 10◦ and to the side 30◦, looking away from
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the participant. Each trial commenced when the participant entered the experi-

ment room and was successfully Read by the person detection system. This was

designed to attempt to increase participants’ impression of robot autonomy and

intelligence, and encouraged natural interaction by reducing experimenter influ-

ence, ensuring the participants interacted solely with the robot. After a brief

delay to allow time for the participant to move to the circle, the robot re-oriented

its head towards the participant, looking directly at them. This movement was

designed to demonstrate to the participant that the robot was capable of mov-

ing its head, increasing their awareness of, and sensitivity to, that channel of

communication.

The experimental condition (Control or JA) was then randomly selected, after

which the experiment proceeded into the first of two stages.

Stage 1 – Box Familiarisation

Stage 1 was designed to familiarise participants with the boxes, their location

and their saliency to the experiment, as a small pre-experiment trial showed

participants had difficulty locating the boxes without explicit direction. The

stage was identical in both the Control and JA conditions. The robot began by

stating, “Thank you for coming. Look to your left at the white box on the table.

Make sure you know how many dots are on the box.” This was followed by a 2s

wait. At the conclusion of the wait period, the robot then said, “Okay, now look

to your right at the other box. Make sure you know how many dots are on the

box”, and another 2s wait began.

Stage 2 – Effects of Robot-Issued Joint Attention Cues

Stage 2 of the experiment then commenced, which was designed to facilitate

box preference formation and thereby enable evaluation of the effect, if any, of JA

on this preference. As outlined in Section 2.1.4, it is known that susceptibility to

choice influence can exist during decision making situations. In such situations,

JA cues can potentially influence choice, translating into an increased preference

for the JA object. Thus, a choice scenario was constructed for the participants.

First, the robot stated, “One of these boxes contains a prize. Don’t move

yet, but in your mind choose a box. I will give you three seconds to look and

choose.” Participants were explicitly instructed to remain in the circle as the pre-

126



experiment trial had shown that, contrary to the written instructions, participants

had a tendency to move towards the boxes to inspect them more closely.

There were two objectives of making a request for Choice 1. The first was

to increase the saliency of the boxes to the participant. Secondly, and more

importantly, the robot’s statement was designed to facilitate formation of an

initial preference. During data analysis post-experiment, Choice 1 served as a

baseline against which, for JA condition participants, the influence of the robot’s

JA cue could be explored.

After the 3s wait, in the JA condition the robot issued a JA cue to the JA Box,

while in the Control condition the robot remained stationary. In both conditions

the robot then stated, “You have a second chance to choose. Still don’t move, and

in your mind choose a box”, followed by another short wait. As it is known that

the particular words used during repeated questioning, and repeated questioning

itself, can affect preference (an overview can be found in [96]), this potential

study variable was controlled by fixing the linguistics. Participants in the Control

condition were also asked this question to ensure the effect on preference, if any,

of this repeated questioning could be controlled for. However, JA participants’

answers could be used to gauge the influence of the JA cue on their Choice 2, as

compared to Choice 1. The robot then instructed the participant, “Don’t forget

your choices. Please see the experimenter for further instructions.”

The above procedure created a number of choice permutations, enabling

deeper exploration of the effects of JA than was possible during the prior study

presented in Chapter 4. As illustrated in Figure 6.3, the potential outcomes,

based on participants’ Choice 1 and 2, are:

Positive influence - Participants who were influenced towards the JA Box, i.e.

their Choice 1 was the !JA Box and Choice 2 was the JA Box.

Reverse influence - Participants who were influenced away from the JA Box,

i.e. their Choice 1 was the JA Box and Choice 2 was the !JA Box.

Ignore - Participants whose Choice 1 was the !JA Box, and Choice 2 was also

the !JA Box.

Reinforce - Participants whose Choice 1 was the JA Box, and Choice 2 was

also the JA Box.
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It is important to note that in the Control condition, the reference to the

boxes as the ‘JA Box’ and ‘!JA Box’ pertains only to their physical location,

being right and left respectively, as no cue was issued in this condition.

In order to gather data about the choices, immediately following the interac-

tion participants were led to an adjacent corridor outside the experiment room,

where they completed a written survey which asked them to self-report their

Choice 1 and 2 (referred to as ‘Box 1’ and ‘Box 2’ on the survey). In order

to gauge whether the JA cue had an impact on participants’ perceptions, 12

questions measured on a 7-point Likert scale – with 7 evenly spaced points from

‘Strongly Disagree’ to ‘Strongly Agree’ – were also asked, including ratings of

features such as the intentions and intelligence of the robot, whether it had an

agenda and personality, made a positive impression, and whether the participant

perceived that it attempted to influence their choice.

!JA Box JA Box 

Reinforce Reverse 
influence 

JA Box 

Possible experimental outcomes  
of previous JA explorations 

Positive 
influence Ignore 

!JA Box JA Box 

!JA Box 

Positive 
influence Ignore

!JA Box JA Box 

!JA Box 

Participants’ 
Choice 2 

Participants’ 
Choice 1 

Current experiment 
outcomes 

Figure 6.3: Diagrammatic representation of the possible experiment outcomes.

6.2.6 Measurement

Whether or not a JA cue was performed by the robot was the only independent

variable. The dependent variables involved three measures, namely:

Participants’ choice – This refers to participants’ Choice 2 during Stage 2

of the experiment, as compared to their Choice 1. This measure was quantified

through participants’ self-reporting of their choices on the experiment survey.

Participants’ perceptions – This refers to participants’ perceptions about the

interaction and robot, and was quantified through participants’ self-reporting of

their perceptions on the written survey post-experiment.
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Usability of the HYE framework – This was a measure of the usability of the

HYE framework in the application space; specifically, its ability to predict head

pose. To explore this measure, the robot was configured to log all of the Kinect

depth data, which was generated between 0.5–5Hz. This data was run through

the HYE framework offline post-hoc to evaluate its usability.

6.2.7 Results

In total, 105 trials were conducted over a span of 2 days. Trials in which

participants moved out of the drawn circle or did not completely fill-in their

survey, or if there was a technical error with the robot during the trial, were

not considered in the results, leaving 96 (50 Control and 46 JA) trial surveys for

analysis. A total of ∼80 minutes of framework head pose estimates and RGB

and depth camera images of the trials were autonomously collected by the robot

during the experiment. On average, ∼1,160 RGB and ∼1,040 depth images were

logged per trial. The results of participants’ choices, their survey answers and

the HYE framework are detailed below.

Influence of the Joint Attention Cue on Choice

Participants’ choice data, as reported on their survey, was first normalised to

control for systematic effects. This was carried out through examination of the

Control condition participants, who were not issued a cue and hence served as a

baseline. Theoretically, 50% of the Control participants should have chosen each

of the two boxes both times they were instructed to choose. However, it was

found that an external bias existed towards the JA (right-hand) Box: ∼60% of

Control participants were in Group B, having selected the JA Box as their Choice

1. This is perhaps due to the general preference of right-handed people (who are

a majority within the wider population [6]) for the right side [174].

In order to explore prediction P2.1 , participants in the JA condition were

manually subdivided into those who were Looking or !Looking at the robot when

the JA cue was issued. A ROS script was written which automatically output

the RGB images captured of each participant in the 1.5s leading up to the time

at which the JA cue was issued. An experimenter reviewed these images and

identified whether the participants’ head was oriented towards the robot at any

point during the 1.5s; if so, they were classified as L (and vice versa).
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This method of subdividing was chosen based on the, at times, slow 0.5Hz

frame rate of the Kinect RGB camera, which was not fast enough to reliably

capture eye saccades to and/or from the robot, which can be in the order of

20–100ms [11]. However, it is known that the amplitude of head orientation,

an indicator of gaze, is in the order of ∼15◦ and ∼30◦ when the target is at

∼30◦ and ∼45◦, respectively, and that for head re-orientations of ∼25◦, the head

rotates at a mean velocity of ∼50◦/s [44]. In light of these gaze characteristics

and the RGB camera frame rate, examining head pose in a ∼1.5s window (which

gives an average of ∼3–4 image frames) gives a reasonable estimate of whether

participants were likely looking or not looking when the cue was issued.

(a) Positive influence for Control, JA-!L
and JA-L participants.

(b) Reverse influence for Control, JA-!L
and JA-L participants.

(c) Positive and reverse influence for
JA-!L and JA-L participants.

Figure 6.4: Results of the influence of the JA cue on choice.
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Figure 6.4a shows the normalised results of positive influence for Control,

JA-!L and JA-L participants. A series of 2 × 2 Fisher Exact Probability tests

were carried out to analyse the differences of distribution between these groups.

This revealed that a significantly higher percentage of JA-L participants were

positively influenced than Control participants, p < 0.01. Similarly, a significantly

higher percentage of JA-L participants were positively influenced than JA-!L

participants, p < 0.001. Finally, there was no significant difference (p = 0.17) in

the percentage of Control vs JA-!L participants who were positively influenced.

The normalised results of reverse influence are shown in Figure 6.4b. A num-

ber of 2 × 2 Fisher Exact Probability Tests revealed significant differences be-

tween all groupings: a significantly higher percentage of JA-L participants were

reverse influenced than Control participants, p < 0.01; a significantly higher per-

centage of JA-!L participants were reverse influenced than Control participants,

p < 0.0001, and; a significantly higher percentage of JA-!L participants were

reverse influenced than JA-L participants, p < 0.001.

Figure 6.4c illustrates the normalised results of positive and reverse influence

for JA-L and JA-!L participants. The percentage of JA-!L participants who

were reverse influenced was found to be significantly higher than those positively

influenced through a 2 × 2 Fisher Exact Probability Test, p < 0.001. For JA-L

participants, this grouping was not significant (p = 1.00). Another 2 × 2 Fisher

Exact Probability Test also revealed a significant difference between positive and

reverse influence in JA participants in general (the mean of JA-L and JA-!L

participants): a significantly higher percentage of JA participants were reverse

influenced than positively influenced, p < 0.01.

Survey of Participant Perceptions

From the 7-point Likert scale survey, a question of particular relevance was

whether participants perceived that “The robot attempted to influence your choice”.

A series of planned independent t-tests were carried out to analyse the results of

this question. Both JA participants in general (x̄=5.00, SD = 2.09), and JA-L

(x̄=5.41, SD = 2.03) and JA-!L participants (x̄=4.42, SD = 2.11) in particular,

felt significantly more that the robot was attempting to influence them, compared

to Control participants (x̄=3.24, SD = 1.66) (t[64] = 3.39, p < 0.01, t[52] = 3.57,

p < 0.001 and, t[47] = 1.69, p = 0.049, respectively). There was no significant

difference between JA-L and JA-!L participants (t[27] = 1.28, p = 0.11).
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Head Yaw Estimation Framework

The Kinect depth data captured during the experiment was run through the

HYE framework post-hoc, outputting estimates of participants’ head yaw in each

frame. In order to have an indication of the true direction of participants’ gaze,

data from Stage 1 of the experiment (Box Familiarisation) was examined. In this

stage, the robot directed participants to look at each of the boxes, sequentially,

for 2s each. The boxes were positioned ∼35◦ left and right from the direct line

between the participants and the robot. Under the assumption that participants

followed these instructions, their head yaw during these periods can be considered

a ‘ground truth’ against which the head yaw estimates can be compared.

However, during these directed look periods, it was manually observed that a

range of patterns of the relative contribution of the head and eyes to the horizontal

re-orientation of gaze existed amongst participants. Participants generally fell

into two main groups: 1) those who predominantly used their head (∼25–30◦)

to re-orient their gaze, and used their eyes for the remainder of the distance

(as illustrated in Figure 6.5a); and 2) those who predominantly directed their

eyes towards the boxes, and used their head for a minority (∼10◦–15◦) of the re-

orientation (shown in Figure 6.5b). These patterns are in line with literature on

gaze, which shows that the relative contribution of the head to gaze re-orientation

generally increases linearly from ∼60–80% for gaze shift amplitudes greater than

∼25◦ [44]. Additionally, as the boxes were positioned below both the participants’

and the robot’s head heights, similar patterns of head and eye contributions

existed with the vertical component of participants’ gaze, with many participants

predominantly moving their head.

The ability of the HYE framework to accurately estimate these head contribu-

tions showed unexpected limitations in such a real-world application. It was found

that the framework did not give usable results for participants who predominantly

used their head to orient their gaze downwards at the boxes; previous internal

evaluations of the framework had involved participants always maintaining a level

head yaw relative to the sensor. Upon investigation of this characteristic of the

framework, the source of the issue was found to be that the downward orientation

of people’s face planes compromised the reliability of one of the facial features

currently used in the estimate. The exact sources of these errors, and a solution,

will be considered in future work.
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Box 1:  
!JA Box 

Box 2: 
JA Box 

(a) Predominant head movement, with
minority eye contribution.

Box 1:  
!JA Box 

Box 2: 
JA Box 

(b) Predominant eye movement, with
minority head contribution.

Figure 6.5: Participants’ two predominant patterns of contribution of the head and eyes to
the horizontal re-orientation of gaze towards the boxes.

However, when participants who maintained level head yaw were considered,

the results of the framework were improved. Figure 6.6a shows an exemplar result

from a participant who predominantly used their head to horizontally re-orient

their gaze towards the boxes. From manual observation of the participant’s RGB

images, the ground truth of when the participant was looking at the robot and

at the boxes was approximated and is shown as dashed lines. The head pose

estimates from the framework are shown as solid lines, and the location of the

boxes is also indicated. Figure 6.6b shows, similarly, results from an exemplar

participant who predominantly used their eyes to re-orient their gaze.

These graphs illustrate the current characteristics of the framework. Firstly,

though the framework estimate does not follow participants’ head rotation to the

full extent when the rotation angle exceeds ∼15◦, the framework is able to give a

coarse estimate of when participants are not looking at the robot. However, the

framework is able to more reliably indicate when a person is looking at the robot.

6.2.8 Discussion

The empirical results presented in this paper provide support for both hy-

potheses, as well as both strengthening and deepening the findings of the previous

Elicit and Read explorations.

Firstly, support was found for hypothesis H1 , that the robot’s presentation

of a JA cue will have effects in line with JA cues issued during HHI. Specifically,

a significantly higher proportion of JA-L participants were positively influenced
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compared to Control participants (p < 0.01). This suggests, as per prediction

P1 , that the robot’s JA cue influenced the choice of JA participants who directly

witnessed the cue towards the JA Box. This is in line with the HHI literature-

predicted ability of JA cues to increase preference for JA objects during decision-

making situations, reinforcing the previous Elicit branch findings (Chapter 4).

However, the behaviour of JA-!L participants was notably different to that

of JA-L participants: a significantly lower percentage of JA-!L participants were

positively influenced than JA-L participants (p < 0.001). This supports predic-

tion P2.1 , that the influence of a robot’s JA cue will be impacted by whether

participants were L or !L when the cue was issued, suggesting that the ability

of a robot to moderate its Elicit strategy will be valuable to achieve its goal(s).

Furthermore, the result suggests that Read ing interaction partners’ gaze in situ

can provide the information necessary to achieve this moderation: issuing a cue

when a person is detected to be looking results in more effective communication,

improving compliance with the robot’s intentions.

Building upon this, surprising results were uncovered during investigation

of other effects of JA in HRI, specifically the outcome of reverse influence. For

example, among JA participants in general, the percentage of participants reverse

influenced was found to be significantly higher than those positively influenced

(p < 0.01). This suggests that, while positive influence and compliance are

potential outcomes of robot-issued JA cues, there is a greater trend towards

perhaps being ‘suspicious’ of the robot and its intentions. This is reinforced

by the finding that reverse influence on both JA-L and JA-!L participants was

significantly higher than for Control participants (p < 0.01 and p < 0.0001,

respectively); that is, JA condition participants who had initially selected the JA

Box tended to change their mind away from it towards the !JA Box, regardless

of whether they directly witnessed the cue or not.

The extent of reverse influence was also found to be impacted by participants’

looking behaviour, further verifying P2.1 . Participants who did not directly wit-

ness the JA cue showed a stronger trend towards suspicion than those who were

looking when the cue was issued: a significantly higher percentage of JA-!L partic-

ipants were reverse influenced than JA-L participants (p < 0.001). Furthermore,

there was no significant difference between the percentage of JA-L participants

who were positively and reverse influenced; that is, the magnitude of positive

or reverse influence was similar between participants who were looking at the

robot when the cue was issued, suggesting that a certain number of people will
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simply change their mind when they witness a cue. However, for those who were

not looking, the magnitude of reverse influence was significantly greater than the

magnitude of positive influence (p < 0.001).

The results of the survey of participants’ perceptions added interesting find-

ings to the above. As expected, the JA cue introduced a general suspicion of the

robot: JA, JA-L and JA-!L participants all felt significantly more than Control

participants that the robot attempted to influence them (t[64] = 3.39, p < 0.01,

t[52] = 3.57, p < 0.001 and, t[47] = 1.69, p = 0.049, respectively). Surprisingly,

however, JA-L and JA-!L participants’ self-report of their perception of an at-

tempt to influence was not significantly different (t[27] = 1.28, p = 0.11). This

is in contrast to the above behavioural finding that JA-!L participants showed

a stronger trend towards suspicion than JA-L participants (p < 0.001); that is,

despite their perceptions being similar (feeling similar levels of suspicion), JA-L

and JA-!L participants behaved differently: JA-L participants were more likely

to act in line with the robot’s cue than JA-!L participants.

Though JA-L and JA-!L participants’ perceptions were similar, the support

found for prediction P2.1 reinforces findings from the previous work (Chapter 5)

and suggests that giving robots greater levels of interactivity – in this case, the

ability to Read human gaze in situ and moderate their Elicit strategies – will be

advantageous to HRI (as per H2 ). Issuing a JA cue at the ‘right’ time (i.e. when

people were looking) was found to be effective at positively influencing people

towards the JA object. A cue issued errantly (when people were not looking),

on the other hand, had the opposite effect of influencing people away from the

JA object, an effect which was also larger in magnitude than the positive effect.

Thus, in situ HYE would be advantageous to gauge when people are looking at

the robot.

Results of the HYE framework demonstrated that it is potentially suitable for

this in situ HYE, as per prediction P2.2 . While the framework currently has

limitations in less-constrained HRI situations, selecting ideal data demonstrated

that its strength lies in detecting when people are looking at the robot. Given

people’s tendency towards suspicion of the robot, Read ing this mutual looking

behaviour is valuable: by timing the issuance of cues based on this knowledge,

robots can work to avoid arousing suspicion in interaction partners.
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(a) Predominant head movement, with minority eye contribution.

(b) Predominant eye movement, with minority head contribution.

Figure 6.6: Approximate ground truth and HYE framework estimates when participants
looked towards the JA and !JA Boxes with different relative contributions of head and eyes to

gaze re-orientation.
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6.3 Conclusions

The more semi-constrained, higher external validity social HRI study pre-

sented in this Chapter (and contained in [J1] of Appendix A) focused on fur-

thering the findings and overcoming the limitations of the previous explorations

of joint attention in HRI with a exemplar humanoid robot (Chapter 4 and Chap-

ter 5), as well as addressing RQ B: Interactivity. The preferences of 96 par-

ticipants in a dichotomous choice situation, in which a robot issued a JA cue,

were compared. The wider effects of the cue (such as the possibility of the cue

influencing people to prefer the JA object less), as well as they way people’s gaze

behaviour impacts on the effects and perceptions of such cues were explored.

It was found that while exemplar JA cues in HRI can have effects in line with

HHI JA cues (reinforcing the findings around RQ A: Sociocontextual cues in

HRI), people have a greater tendency towards suspicion of than compliance with

the robot, especially if they are not looking when the JA cue is issued. This is

a surprising and somewhat counter-intuitive result: intuition may suggest that if

the cue wasn’t observed it would not have any influence, when in fact the findings

show that if the cue wasn’t observed it has a significant effect in the direction

opposite to that desired/intended by the robot.

This has implications for the HRI community when designing JA cues in HRI,

particularly in cases where the robot is intentionally attempting to influence a

person towards a particular object: if it is suspected that the person has already

chosen the desired object, the robot goal(s) may be more successfully achieved if

it does not issue a cue. If the person has not already chosen the desired object,

on the other hand, a JA cue towards that object has the potential to positively

influence people, however only if the person directly witnesses the cue. It was

found that people are not generally cognisant of this difference in behaviour.

Thus, in situ gaze estimation would be advantageous to HRI, enabling a robot

to intentionally and effectively Elicit via JA cues.

These results suggest, as per RQ B: Interactivity, that both the Read and

Elicit branches of the Robot Centric HRI paradigm are valuable: moderating

the Elicit strategy is valuable to a robot in achieving its goal(s), and information

valuable to moderate Elicit can be gained through in situ Read ing. Thus, greater

levels of robot interactivity are likely to lead to the robot having greater ability

to effectively achieve its goal(s), where effectiveness is considered to be the ability

of the robot to target its influence to achieve a specific desired outcome.
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Furthermore, through again leveraging the developed methodology discussed

in Chapter 3, the its ability to enable successful operationalisation of the paradigm

during real-world HRI has been further shown (RQ: Methodology).

While the developed HYE framework showed potential suitability for address-

ing the need for in situ gaze estimation, discussed above, the framework currently

has limitations in real-world HRI situations, particularly when participants’ heads

are oriented downwards with respect to the robot. Future work should focus on

addressing this issue, as the unconstrained movement of people’s heads in real-

world interaction scenarios means this pitch must be considered.
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Chapter 7
Generalising the Methodology and

Reinforcing and Deepening Previous

Findings

With the research questions of this work having been explored and addressed

utilising an exemplar sociocontextual cue and social robot, this chapter presents

a study which demonstrates the generalisability of the work thus far. By again

leveraging the developed methodology (Chapter 3), the Robot Centric HRI paradigm

was operationalised in an online fashion during a real-world HRI study with a

sociocontextual cue and social robot distinct from the exemplar cue and robot.

Specifically, the relationship between a lower-HL, disembodied social robot’s in-

teractivity and the effectiveness of its influence on people in public spaces was

investigated. The two-part study was conducted in both a major Australian pub-

lic train station and a university where passersby encountered the robot, designed

with various levels of interactivity, which attempted to influence their passage.

The results of the study demonstrate that the findings of this work generalise

to other sociocontextual cues, social robots and application spaces, and that the

methodology can be drawn on to successfully operationalise the Robot Centric

paradigm during real-world HRI, as per RQ: Methodology.
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7.1 Introduction

Up until this point, the research questions posed in this thesis have been ver-

ified with an exemplar sociocontextual cue (joint attention gaze cues) and social

robot (higher-HL humanoid). Firstly, a methodology for operationalisation of

the Robot Centric HRI paradigm was developed (Chapter 3). By leveraging the

methodology to operationalise and investigate the components of the paradigm

during real-world HRI, including the Elicit and Read branches and the interac-

tivity of the robot, RQ: Methodology (regarding the methodology’s ability to

enable operationalisation of the paradigm) has been inherently addressed.

Further, through employing the methodology, it has been found that joint

attention gaze cues issued by a higher human-likeness humanoid robot are trans-

ferrable and valuable to HRI in both directions of communication between hu-

mans and robots: they are recognisable to people when issued by today’s robots

(Chapter 2, RQ A.1: Elicit Feasibility), who generally respond to them in

line with human-issued cues (Chapter 4, RQ A.1: Elicit Response). Enabling

robots to Read interaction partners’ sociocontextual gaze cues in situ has been

shown to be advantageous to HRI (Chapter 5, RQ A.2: Read Value). A novel

head yaw estimation framework which shows promise for this application was

thus devised (Chapter 5, RQ A.2: Read Feasibility).

Next, it has been demonstrated that a robot’s effectiveness at achieving its

goal(s) can be increased through greater levels of interactivity: information gained

through Read ing can be leveraged to moderate a robot’s Elicit strategy, enabling

intentional and effective Elicit ing. This is especially relevant given the at times

unexpected responses to robot-issued cues (Chapter 6, RQ B: Interactivity).

However, the question then becomes: will these findings from the exemplar

cue and robot presented in Chapters 4–6 generalise to other cues and social robots

in other application spaces? That is, does the methodology generalise?
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7.2 Moderating a Lower Human-Likeness Social

Robot’s Ability to Influence Through its

Interactivity

In order to address this question, the methodology presented in Chapter 3 was

again leveraged: the paradigm was operationalised in an online fashion during a

real-world HRI study with a sociocontextual cue and non-humanoid social robot

distinct from the joint attention cue and RobotAssist platform, respectively.

In this exploration, which was published in [C1] of Appendix A, the Elicit

and Read branches of the HRI paradigm were not individually explored, as they

were with the exemplar cue and robot. Instead, investigation began with the

relationship between interactivity and robot effectiveness: given findings from

literature and the experimental explorations presented thus far, a reasonably

solid body of evidence suggests that the Elicit and Read branches exist and can

be leveraged during HRI with social robots.

To demonstrate that the findings thus far generalise, the question becomes:

will increasing a different social robot’s interactivity through the Robot Centric

HRI paradigm result in an increase in the effectiveness of its ability to achieve its

goal(s) (as per RQ B: Interactivity), similarly to the exemplar instance?

7.2.1 Design of the Robot Centric HRI Paradigm

In order to explore the above question, the Robot Centric HRI paradigm was

designed to achieve two different levels of interactivity, as per the methodology

described in Chapter 3. These designs were realised in a disembodied robot

dissimilar from the RobotAssist platform. This robot was two-part: a sensing

and computational component, and an actuation component. The following sub-

sections describe the design of these parts, the interactivity of the robot, and the

Read and Elicit branches used in the study.

Interactivity Design

In both cases the Robot Centric HRI paradigm was designed with successive

activation of the Read -Elicit-Read branches. By moderating the cue sets in each
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of these branches, the interactivity of each of the designs was regulated, in line

with Figure 3.3.

In the paradigm design for Part 1 of the study (described below in Sec-

tion 7.2.2), there were two cues in the cue set for the first Read : both person

presence in the public proxemic zone (at which point initial robot setup can be

carried out, as the interaction has not commenced), and whether said person had

entered the interaction zone (cue issuance should be triggered). These zones are

depicted in Figure 2.1. Three cues were available for random selection for issuance

in the Elicit cue set: Static, Dynamic, and Responsive (detailed below in Section

7.2.1). The final Read had a one-cue set: participants’ change in movement.

The paradigm design for Part 2 of the study (Section 7.2.2) built on the Part

1 design with a key change: the addition of a Read of the person’s entry position

into the interaction zone (bringing the cue set size to three). Specifically, the

cues issued in Elicit could be moderated based on this behavioural information to

attempt to increase the likelihood of achieving its desired outcome, thus enabling

a greater level of interactivity. The final Read was again of the participants’

change in movement.

In order to realise these interactivity levels, it was then necessary to design

the Read and Elicit branches of the paradigm.

Read Branch Design

The base cue that was Read during this study was that of people’s presence-

location, which was then utilised to Read a number of different participant be-

haviours depending on the paradigm design.

In the study Part 1 design, Read was achieved via Wizard-of-Oz. In the Part

2 implementation, a previously developed person detection and tracking system

[64, 83] was implemented on ‘Boxxie’, where it had previously been evaluated by

the wider research group. Boxxie, the sensing and computational component of

the robot, is shown in Figure 7.2c, and was demonstrated to be capable of robust

people detection, tracking, and counting system in public spaces such as train

stations [83]. The system is a black perspex box with approximate dimensions of

400 × 400 × 100mm, which was mounted on an ∼2m high pole. Enclosed within

the box are a PrimeSense Carmine 1.08 3D sensor, a fit-PC3 computer, and

an OceanServer Power Module that utilises two OceanServer 14.4V Lithium-Ion

batteries. Boxxie is able to run standalone for ∼7 hours.
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Elicit Branch Design

One sociocontextual cue commonly used to influence positional movement in

public spaces is that of directional indicators, which are more congruent with

lower-HL social robots (as depicted in Figure 7.1). There are a number of char-

acteristics known to moderate the interpretability, and thus effectiveness of such

indicators in influencing behaviour, with greater effectiveness being achieved when

the indication is strong, unambiguous, and successfully attracts people’s attention

[129]. Two key characteristics are change (e.g. flashing) and colour [18, 167].

Figure 7.1: Directional indicators are likely to be more congruent with the lower-HL of Tillie,
making them likely to be interpretable by interacting humans.

Firstly, flashing lights have been shown to be more conspicuous than constant

lights [49, 165], as well as significantly increasing compliance with direction [117].

A frequency in the range of 2–5Hz results in greater noticeability [24, 136].

Colour and symbols can similarly affect the conspicuousness and meaning of

directional indicators. By drawing on populations’ colour stereotypes, colours’

established symbolic meanings can be exploited. In Western cultures, for ex-

ample, green and arrow symbols typically signal ‘go’, ‘good’ or safety, or direct

movement in a certain direction [24, 167].
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In order to issue cues with the above characteristics, a lower-HL influencing

device was designed and built (the actuation component of the robot). Figure 7.2

shows the influencing device devised for use in this study. The device consists

of an array of perspex screens, each with arrows etched into them. The levels of

interactivity designed for this device were:

Static – The device is shown in Static mode in Figure 7.2b. As can be seen,

the device shows no signs of activity. However, the arrows etched into perspex

screens are visible – the information appears fixed and unchangeable.

Dynamic – Figure 7.2c shows the device in Dynamic mode. Here, internal illu-

mination is used to give the effect that the green arrows are being projected onto

the screen – the information appears potentially changeable.

Responsive – A Responsive level of PI system was achieved through leveraging the

psychological and behavioural trigger of an event congruent with physical entry

into the interaction zone, which is known to evoke the perception of entering an

interaction (as outlined in Section 2.1.2 and detailed in [57]). Specifically, while

a person is in the public proxemic zone, the device remains in Dynamic mode.

Then the device issues a cue – flashing several times between the states shown in

Figure 7.2b and Figure 7.2c – upon the social trigger of interaction zone entry.

A flashing frequency of 4Hz was selected.

7.2.2 Empirical Explorations

In order to explore the core question of whether the findings and methodology

would generalise, and from the relationship between interactivity and influence

effectiveness explored in Chapter 6, the following was hypothesised:

H1 – It is feasible to influence people’s movement behaviour in public spaces

using the Robot Centric HRI paradigm.

H2 – Increasing a robot’s interactivity via the Robot Centric paradigm will result

in an increase in the effectiveness of its ability to influence; that is, its ability to

target its influence to achieve a specific desired outcome.
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(a) Boxxie – the platform for robust people
detection, tracking, and counting in public spaces.

(b) Influencing device –
Static.

(c) Influencing device –
Dynamic/Responsive.

Figure 7.2: The disembodied, two-part social robot utilised to generalise the findings of this
work.

From these it was predicted:

P1 – Passenger information systems utilising the Robot Centric HRI paradigm

(a level of interactivity) will have greater influence on participants than those

utilising the traditional HRI paradigm (no interactivity).

P2 – Read ing an additional behavioural cue (i.e. increasing the cue set size)

will yield insights valuable to moderate Elicit to increase the effectiveness of the

robot’s influence.

These were explored through a two-part study (total n = 273) carried out in

both a public train station (n = 84 + 105) and a university (n = 84). Details of

the study are presented below.
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Part 1 – Influence in a Public Space

In order to evaluate the effect of the previously described influence, a field

study with commuters at a major public train station was first conducted. As

commuters moved within the train station, one of three levels of information sys-

tems – Static, Dynamic, and Responsive PI systems – attempted to influence their

behaviour, and the subsequent effect was measured. The focus of this part of the

study was on addressing H1, however H2 was also preliminarily explored. The

following sub-sections describe the participants, experimental design and proce-

dure, and evaluation measures.

Participants

There were 189 participants randomly selected and directly measured from a

larger total number of passersby – 84 in Location 1 and a further 105 in Location

2. They were typical rail commuters. There was no remuneration for participa-

tion nor effort to recruit participants.

Setting

The influencing device shown in Figure 7.2a and Figure 7.2b was utilised, as

depicted in Figure 7.3. The experiment was staged in Perth Central Station –

a major public train station in Perth, Australia. Studies were conducted at two

locations within the station: Location 1 was a long public thoroughfare corridor

(shown in Figure 7.3a), and Location 2 was a blind corner subject to passenger

flow cross over (shown in Figure 7.3b). As can be seen from the figure, in both

situations the influencing device was placed at roughly the thoroughfare midpoint.

Experimental Conditions

The study was designed with three levels of information systems – Static, Dy-

namic, and Responsive – which were implemented as described in Section 7.2.1.

All other acts/cues were consistent throughout the trials.

Procedure

A Wizard-of-Oz study was constructed. The influencing device was cycled

through the three levels of information system, with four independent trials con-
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(a) Location 1.

(b) Location 2.

Figure 7.3: Setting for the Part 1 study.

ducted at Location 1 (total of 84 trials) and five each at Location 2 (total of 105

trials) at each level. Each trial commenced with the influencing device being re-

set, and a commuter passerby being randomly selected by the experimenters. In

the condition of Responsive the experimenters tracked the passerby and triggered

the influencing device’s cue as the passerby crossed into the interaction zone.

Measurement

Participants’ change in distance from their originally measured position, and

relative to a zero-axis which was parallel to the passage and ran through the

influencing device was used as the measure, as shown in Figure 7.4. Three re-

peated measures were taken for each participant: the first, at the Entry point of

the interaction zone relative to the influencing device; the second, at the Pass

point of the influencing device; and the third, at the Final measure point which

was the exit point of the influencing device’s interaction zone.
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Results

A total of 84 trials (28 trials for each of Static, Dynamic, and Responsive)

were conducted at Location 1 and a total of 105 trials (35 trials for each of

Static, Dynamic, and Responsive) were conducted at Location 2; three repeated

measures were taken in each trial. A relatively steady stream of commuters

flowed past during the trials, and approximately five commuters passed by per

one selected to facilitate a trial. The experimenters did not attempt to control the

number of participants or observers for the trials, and participants were randomly

selected.

(a) Location 1. (b) Location 2.

Figure 7.4: Influencing people towards the left.

Figure 7.4 shows the average of the three repeated measures for the Static, Dy-

namic, and Responsive conditions at Location 1 and 2. A mixed design ANOVA

was performed for each location. The within subject main effect for the three

measure points was significant in Location 1 and 2, F = 67.64, p < 0.001 and

F = 99.43, p < 0.001 respectively. The between subject main effect for the three

levels was also found to be significant in Location 1 and 2, F = 259.44, p < 0.001

and F = 49.60, p < 0.001 respectively. Pairwise comparisons were conducted

between the three levels. Significant differences were found between Static and

Dynamic (Location 1 – mean difference = 0.63m, p = 0.018, Location 2 – mean
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difference = 0.54m, p = 0.05), Static and Responsive (Location 1 – mean differ-

ence = 1.18m, p < 0.001, Location 2 – mean difference = 1.175m, p < 0.001),

and Dynamic and Responsive (Location 1 – mean difference = 0.55m, p = 0.039,

Location 2 – mean difference = 0.64m, p = 0.017). Pairwise comparisons also

revealed significant differences between the P and F measure points (Location 1

– mean difference = 0.56m, p < 0.001, Location 2 – mean difference = 0.94m,

p < 0.001), relative to measure point E.

Part 2 – Robot Interactivity and Influence Effectiveness

Part 2 of the study focused on more deeply exploring H2. A field study

was conducted with passersby in a university food court. As the passersby ap-

proached the influencing device, the information system presented as either Static

or Responsive, depending on the passerby’s initial behaviour, and attempted to

influence. The subsequent effect was measured. Part 1 findings were also repro-

duced, in order to verify that the result was still valid in the different setting. The

following sub-sections describe the participants, experimental design and proce-

dure, and evaluation measures.

Participants

There were 84 unsolicited participants in the experiment. Participants were

randomly selected passersby to the experiment location who were traveling to-

wards the influencing device, and no particular demographic was evident. There

was no remuneration for participation nor effort to recruit participants.

Setting

The experiment was staged in a long straight corridor with a blind corner in

the university food court. This setting is illustrated in Figure 7.5a, which presents

a snapshot taken during the period of the experiment. The influencing device was

positioned ∼2m in front of the corner and against the right hand wall, from the

point of view of the participants’ approach direction. Boxxie was located ∼8m

from the influencing device on the opposite wall of the corridor, with its field

of view (FOV) directed out towards the influencing device. Figure 7.5b shows a

diagrammatic representation of the setting in which the positions of Boxxie and

the influencing device are shown, along with Boxxie’s FOV.
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(a) Setting.

(b) Setup.

Figure 7.5: The Part 2 study setting and setup.

Unbeknownst to participants, there were two entry zones into the experiment,

which are also depicted in Figure 7.5b. Participants who entered on the left hand

side of the corridor were termed to be initially ‘Compliant’ (C) with the desired

influence behaviour. Participants on the right side of the corridor, on the other
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hand, were termed ‘Non-Compliant’ (NC). Participants who were moving down

the centre of the corridor between these two zones (−0.2m<yperson<0.2m) were

considered neither C nor NC and were excluded from the experiment.

Experimental Conditions

There were two conditions for the robot-issued cue – Responsive and Static.

These conditions were randomly counterbalanced with the C and NC participants:

in some trials the Static information system was presented to C participants and

the Responsive cue was presented to NC participants, whilst in other trials this

was reversed. All other acts were consistent throughout the trials.

Procedure

Each trial commenced with the random selection of a condition, and began

when a participant walking down the corridor was detected by Boxxie as having

entered the public proxemic zone and was Read as either C or NC, depending on

which entry zone they were located in, as shown in Figure 7.5b. Depending on

the condition, the influencing device was set to either Static or Responsive. The

participant’s position was subsequently tracked via Boxxie, and, in the Respon-

sive condition, the influencing device’s cue was triggered as they crossed into the

interaction zone.

Measurement

As in Part 1, the participants’ change in distance from their originally mea-

sured position, and relative to a zero-axis which was parallel to and in the centre

of the corridor, was again used as the measure. As the participants would have

had to move in the negative direction to cut the corner, and the positive direc-

tion was in line with the attempted influence direction, a less negative change in

distance equated to greater influence.

Two measures were taken for each participant: the first at the Entry point of

the interaction zone relative to the influencing device, and the second at the Final

detection point – at which they passed out of the range of the person detection

system – which was approximately 1m past the influencing device.
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Results

In total, 100 trials were conducted. Trials in which the participant was lost

by the person detection system before reaching the influencing device were not

considered in the results, leaving 84 trials for analysis. There were 56 C and 28

NC participants. A total of ∼2,700 person location readings were autonomously

logged during the experiment, with an average of ∼32 person location readings

logged per trial.

Figure 7.6 shows the average of the measure for C and NC participants in the

Static and Responsive conditions. A two way ANOVA revealed a significant main

effect between C and NC participants, F = 1, 614.91, p < 0.05, mean difference

= 0.21m, and a borderline significant main effect between Static and Responsive

conditions, F = 121.02, p = 0.058, mean difference = 0.058m. The interaction

effect was not significant.

Figure 7.6: Influence reducing the extent of people cutting the corner in Part 2 of the study.

7.2.3 Discussion

The empirical results provide support for both hypotheses. Firstly, support

was found for hypothesis H1, that people’s movement behaviour in public spaces

can be influenced using the Robot Centric HRI paradigm. Specifically, partic-

ipants in Part 1 of the study moved significantly in the direction of intended

influence as they travelled towards and past the influencing device in both Lo-

cation 1 (F = 67.64, p < 0.001) and Location 2 (F = 99.43, p < 0.001). There

was also significant movement between the P and F measure points (Location 1
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– mean difference = 0.56m, p < 0.001, Location 2 – mean difference = 0.94m,

p < 0.001) relative to measure point E, suggesting that there was an ongoing

influence effect.

Furthermore, the influence effectiveness was significantly different between

the three levels in Part 1 of the study (Static, Dynamic, and Responsive) in

both Location 1 (F = 259.44, p < 0.001) and Location 2 (F = 49.60, p <

0.001), with Dynamic significantly more effective than Static (Location 1 – mean

difference = 0.63m, p = 0.018, Location 2 – mean difference = 0.54m, p = 0.05),

and Responsive significantly more effective than Dynamic (Location 1 – mean

difference = 0.55m, p = 0.039, Location 2 – mean difference = 0.64m, p = 0.017).

This demonstrates, as per prediction P1, that passenger information systems

utilising the Robot Centric HRI paradigm (Responsive) will have greater influence

on participants than those utilising the traditional HRI paradigm (Static and

Dynamic). Furthermore, these results suggest that the influencing device’s use of

the Robot Centric HRI paradigm to enable a Responsive (i.e. more interactive)

PI system saw it most able to influence participants into complying with its

suggestions. This provides partial support for hypothesis H2, that increasing

levels of robot interactivity (from Static to Dynamic to Responsive) will result in

an increase in the effectiveness of its ability to influence.

Prediction P1 was further supported by the results from Part 2 of the ex-

periment, which reproduced the results from Part 1 in order to verify that the

findings were in line. Specifically, Responsive was found to result in borderline

significantly greater influence compared to Static (F = 121.02, p = 0.058, mean

difference = 0.058m). The borderline result is potentially due to the exclusion of

participants who were neither C nor NC (i.e. in the centre of the corridor).

The results from Part 2 provide support for prediction P2 that Read ing

an additional behavioural cue will yield insights useable to moderate Elicit to

increase the effectiveness of the robot’s influence (in Part 2 of the study, an

additional Read of the participant’s entry position into the interaction zone).

Specifically, a significant difference was found between the influence on C and

NC participants (F = 1, 614.91, p < 0.05), with NC participants influenced

an average of 0.21m more than C participants. This result further supports

hypothesis H2 , and has implications for the design of Elicit influence strategies.

For instance, consider the case where ‘too much’ influence may have a negative

repercussion. The robot, in that case, may refrain from presenting Elicit cues to

‘more influenceable’ people observed to be already near this threshold.
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7.3 Conclusion

This chapter focused on exploring whether the findings from the exemplar cue

and robot presented thus far would generalise to other cues and social robots in

other application spaces; that is, whether the methodology for Robot Centric HRI

paradigm operationalisation would generalise. In doing so, the previous findings

regarding the relationship between a robot’s interactivity and effectiveness at

achieving its goal(s) were reinforced and deepened. To achieve this, a study was

carried out utilising a sociocontextual cue and non-humanoid social robot distinct

from the exemplar joint attention cue and RobotAssist platform, respectively.

The study, which was published in [C1] of Appendix A and which leveraged

the methodology presented in Chapter 3, focused on quantitively investigating

whether increasing the distinct robot’s interactivity would result in a similar

increase in the effectiveness of its influence (i.e. its ability to target its influence

to achieve a specific desired outcome). A two-part study (total n = 273) was

conducted in both a major Australian public train station (n = 84 + 105) and

a university (n = 84). Passersby were exposed to a robot designed to influence

their passage, which had various levels of interactivity.

It was found that – similarly to the exemplar instance – an increase of the dis-

tinct robot’s interactivity lead to an increase in the robot’s ability to influence:

in this case, the passage deviation of passersby. As hypothesised, holistic im-

plementation of the Robot Centric paradigm enabled more nuanced, predictable

and systematic influence to be achieved and Responsive (i.e. more interactive)

information systems had greater effectiveness, yielding larger influence. Thus,

the methodology was drawn on to successfully operationalise the Robot Cen-

tric paradigm during real-world HRI, as per RQ: Methodology. These results

suggest that the findings thus far, and the methodology, do generalise.
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Chapter 8
Conclusions

Through literature and a series of both piecemeal and holistic experiments

(ntotal = 435 = 16 + 24 + 26 + 96 + 189 + 84), this thesis explored the

feasibility of developing a methodology for successful operationalisation of the

Robot Centric paradigm during real-world HRI. In investigating whether such

a methodology was achievable, several questions arose. Firstly, the question of

whether cues common in human-human interaction can be reliably implemented

and utilised during real-world HRI was addressed. It was demonstrated that an

exemplar higher human-likeness social robot’s presentation of an exemplar JA

cue to Elicit behavioural responses resulted in effects in line with human-human

cues. The advantages of in situ sociocontextual cue Read ing capabilities were also

demonstrated, and a head yaw estimation framework to detect gaze behaviour in

the HRI space was developed. The relationship between robot interactivity and

effectiveness at achieving its goal(s) was then shown in the exemplar instance,

and through subsequently reproducing this relationship with a sociocontextual

cue, social robot and application space distinct from the exemplar instance, the

developed methodology and findings were shown to be generalisable.

Through the methodology, the Robot Centric HRI paradigm can thus be

operationalised to give social robots the ability to leverage sociocontextual cues,

enabling them to more effectively achieve their goal(s) (such as instantiating

interactions, shaping interaction participant roles and/or resolving ambiguity)

[81] and meet the expectations of communicating in a socially sensitive manner

(as required by their growing interaction peer role).
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8.1 Specific Conclusions on Contributions

8.1.1 Methodology for operationalisation of the Robot

Centric paradigm during real-world HRI

A methodology for operationalisation of the Robot Centric paradigm during

real-world HRI was developed. The four main stages of the methodology – target

problem and robot goal(s) definition, application space definition, Robot Cen-

tric HRI paradigm design, and implementation design – enable the paradigm to

be successfully operationalised, in spite of the complex nature of both human

behaviour and the dynamics of interaction.

As a result of this methodology, the Robot Centric HRI paradigm can be

leveraged to position social robots as interaction peers able to utilise sociocon-

textual cues to derive and/or achieve their goal(s) with greater effectiveness (as

discussed below in Section 8.1.2). As a result, they are able to communicate in

a more socially sensitive manner and, more importantly, meet the requirements

of the new societal roles they are fulfilling through increased levels of agency and

the ability to lead interactions and resolve ambiguity in situations of näıvety [81].

8.1.2 Demonstration that sociocontextual cues can be

successfully leveraged during HRI via the Robot

Centric HRI paradigm

Literature and a series of experiments were drawn on to demonstrate that

sociocontextual cues are transferrable to HRI, and can be successfully leveraged

in both directions of communication between humans and robots via the Robot

Centric HRI paradigm, as detailed below and in [J1] , [J2] , [C2] , [C3] , and

[W1] listed in Appendix A.

Elicit – The Effects of Robot-Issued Cues During Real-World HRI

A social exploration of the characteristics and effects of exemplar sociocon-

textual JA cues during HRI with an exemplar humanoid social robot was carried

out. It was found that the robot’s presentation of a JA cue resulted in significant

effects on gaze-based measures of influence, specifically the development of gaze
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biases towards the objects in general, and the JA object and chosen object in

particular. These results suggest that participants responded to the robot-issued

JA cue in line with responses to human-issued cues, as detailed in psychology and

behavioural science literature on the characteristics and effects of JA in HHI. In

a subsequent study, this finding was shown to generalise to other sociocontextual

cues, social robots and application spaces distinct from the exemplar instance.

This study demonstrated that sociocontextual cues are transferrable to HRI,

and that social robots can successfully Elicit particular behavioural responses

from interaction partners, as necessitated by their interaction peer role.

Read – Robots Deciphering Human-Issued Cues

Through a study focusing on understanding people’s natural gaze behaviour

towards robots during real-world HRI, it was shown that no observable gener-

alisable pattern of gaze behaviour exists. To enable robots to intentionally and

effectively Elicit during interactions – issuing cues when a person is paying at-

tention, for example – it is therefore valuable for them to to have in situ cue

Read ing capabilities.

To address this need, a head yaw estimation framework to detect gaze be-

haviour in situ was developed. The framework leverages the strengths of multiple

HYE methods, including a novel method, to achieve operation in the HRI space

with HRI-suitable, landmark levels of accuracy: an internal validation gave a

mean accuracy of ±3.7◦ when participants are positioned between ∼1–3m from

the sensor and directly in front of it, and ±6.3◦ when they are offset by up to ∼1m

left or right from the line of sight of the sensor. Additionally, the framework was

shown to be repeatable and robust to interpersonal variations in appearance over

time. By incorporating the complementary methods into a single head pose esti-

mate, the framework thus addresses the trade-off between accuracy and physical

operation space inherent in many existing HYE methods.

8.1.3 Deepened understanding of the Robot Centric HRI

paradigm

Kirchner & Alempijevic [81] speculatively proposed the concept of interac-

tivity, i.e. a robot’s ability to moderate its Elicit strategy based on information

gained through Read ing. However, due to the piecemeal exploration of the Robot
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Centric HRI paradigm in their work, the paradigm was never implemented in such

a way as to explore interactivity and its relationship to a robot’s effectiveness at

achieving its goal(s). The work presented in this thesis investigates this relation-

ship, deepening the understanding of, and demonstrating that, the Robot Centric

HRI paradigm can be operationalised holistically during real-world HRI.

Specifically, a study was carried out which explored whether a robot’s effec-

tiveness at achieving its goal(s) would be increased by greater interactivity; that

is, whether both the Read and Elicit branches of the Robot Centric HRI paradigm

are valuable to social robots in effectively achieving their goal(s). Specifically, the

wider effects of robot-issued JA cues (such as the possibility of the cue influencing

people to prefer the JA object less), as well as how people’s gaze behaviour im-

pacts on the effects and perceptions of such cues, were examined. The preferences

of 96 participants in a dichotomous choice situation in which a robot issued a JA

cue were compared, which showed that while JA cues in HRI can have effects

in line with HHI JA cues, people have a greater tendency towards suspicion of,

rather than compliance with, the robot, especially if they are not looking when

the JA cue is issued.

These results have implications for the design of sociocontextual cues in HRI in

general, and JA cues in particular. Whether a robot is intentionally attempting to

Elicit via JA cues, or issuing such cues inadvertently during functional actions,

a JA cue towards that object has the potential to positively influence people

towards a particular object. However, this is only the case if the person directly

witnesses the cue; sociocontextual cues in HRI can also have unexpected wider

effects on surrounding humans.

This finding demonstrates the value of the Read and Elicit branches, and

hence the relationship between a robot’s level of interactivity and its effective-

ness: Elicit strategy moderation is valuable to a robot in effectively achieving its

goal(s), and information valuable to moderate Elicit can be gained through in

situ Read ing capabilities. These are further detailed in [J1] and [C1] listed in

Appendix A.

While the ability of the developed head yaw estimation framework to address

the identified need to Read human gaze during real-world HRI was found to be

limited, it showed potential in the intended application, and its shortcomings

should be addressed in future work.
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8.1.4 Demonstration of generalisability of the Robot

Centric HRI paradigm and the devised methodology

Following holistic verification of the Robot Centric HRI paradigm and devised

methodology with an exemplar sociocontextual cue and social robot, this work

was reinforced and demonstrated to generalise through the subsequent exploration

of the relationship between a lower-HL, disembodied social robot’s interactivity

and the effectiveness of its influence on people in public spaces. A two-part study

was conducted in both a major Australian public train station and a university,

where passersby encountered the robot, designed with various levels of inter-

activity, which attempted to influence their passage. It was shown that higher

interactivity led to greater effectiveness (as detailed in [C1] of Appendix A), and

thus that the devised methodology can be drawn on to successfully operationalise

the Robot Centric paradigm during real-world HRI, enabling robots to leverage

sociocontextual cues to achieve their goal(s).
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8.2 Future Research

Three main directions for future research were identified during this thesis.

Firstly, while the developed head yaw estimation framework showed potential

suitability for addressing the identified need for in situ gaze Read ing in the HRI

space, the framework currently has limitations in real-world HRI situations. This

is particularly the case when participants’ heads are oriented downwards with

respect to the robot: the unconstrained movement of people’s heads in real-

world interaction scenarios means this pitch must be considered. The prospect of

addressing this issue, and therefore enabling robots to leverage this information

in order to effectively moderate their Elicit strategy, is particularly appealing.

A second aspect for future work is further investigating the interactivity of

robots, particularly other sociocontextual cues the robot could Read to more

intelligently moderate its Elicit strategy. For example, it was shown in this work

that an understanding of when people’s gaze is directed at the robot can enable

the robot to communicate intentionally to people in the environment through

an understanding of when people’s attention is directed at the robot and when

it is not. The ability to Read other cues seems likely to add similarly valuable

information to enable more effective Elicit.

Finally, other interesting directions for future research would be to further

explore and understand the effects of other factors on a robot’s ability to influence,

including the congruency of a robot’s cue with its human-likeness (which in this

work were thus far matched fairly well) and people’s habituation to the robot.
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Appendix A
Publications and Other Outcomes

The work reported in this thesis has resulted in a number of peer reviewed

publications and awards, which are described in this section. The Directly Re-

lated Publications section lists the publications which are directly related to the

work presented in this thesis, while the Related section lists publications related,

in some significant manner, to the work described here within. The Awards

and Experience section describes the awards received for and experience gained

through the work discussed in this thesis.
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A.1 Directly Related Publications

Journal Articles

[J1] – S. Caraian and N. Kirchner. Effects of Robot-Issued Joint Attention

Cues in HRI. Journal of Human-Robot Interaction, 2014. Under review.

[J2] – S. Caraian, N. Kirchner, A. Alempijevic and T. Vidal-Calleja. Gaze

Estimation for Social Human-Robot Interaction. Special Issue of the ACM Trans-

actions on Interactive Intelligent Systems on ‘New Directions in Eye Gaze for

Interactive Intelligent Systems’, 2015. Under review.

Conference Papers

[C1] – S. Caraian, N. Kirchner and Peter Colborne-Veel. Moderating a

Robot’s Ability to Influence People Through its Level of Sociocontextual In-

teractiveness. In HRI ’15: Proceedings of the 10th ACM/IEEE Conference on

Human-Robot Interaction, pp. 1–7, 2015.

[C2] – S. Caraian and N. Kirchner. Head Pose Behavior in the Human-

Robot Interaction Space. In HRI ’14: Proceedings of the 9th ACM/IEEE Con-

ference on Human-Robot Interaction, pp. 132–133, 2014.

[C3] – S. Caraian and N. Kirchner. Influence of Robot-Issued Joint Atten-

tion Cues on Gaze and Preference. In HRI ’13: Proceedings of the 8th ACM/IEEE

Conference on Human-Robot Interaction, pp. 95–96, 2013.

Workshop Papers

[W1] – S. Caraian and N. Kirchner. Incidental Robot Gaze Behavior In-

advertently Influencing Choice. In HRI ’13: Proceedings of the 8th ACM/IEEE

Conference on Human-Robot Interaction, 2013.

A.2 Related Publications

Conference Papers

[RC1] – A. Alempijevic, S. Caraian, D. Egan-Wyer, G. Dissanayake, R.

Fitch, B. Hengst, D. Hordern, N. Kirchner, M. Koob, M. Pagnucco, C. Sammut
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and A. Virgona. RobotAssist – RoboCup@Home 2011 Team Description Paper.

In RoboCup@Home Competition, 2011.

[RC2] – S. Caraian and N. Kirchner. Robust Manipulability-Centric Object

Detection in Time-of-Flight Camera Point Clouds. In Proceedings of the 2010

Australasian Conference on Robotics and Automation, 2010.

[RC3] – N. Kirchner, A. Alempijevic, S. Caraian, R. Fitch, D. Hordern, G.

Hu, G. Paul, D. Richards, S. P.N. Singh and S. Webb. RobotAssist - a Platform

for Human Robot Interaction Research. In Proceedings of the 2010 Australasian

Conference on Robotics and Automation, 2010.

A.3 Awards and Recognition

[AR1] – Asia-Pacific Chair – HRI Pioneers Workshop, Bielefield, Ger-

many, 2014. Participated in planning of workshop and oversaw advertisement of

workshop in Asia-Pacific region.

[AR2] – Best Presentation Award (Mechatronics, Robotics, and

Health Technology) – Faculty of Engineering & IT Engineering Research Show-

case 2013. Awarded on basis of presentation content, style and confidence.

[AR3] – Best Presentation Award (Mechatronics, Robotics, and

Health Technology) – Faculty of Engineering & IT Engineering Research Show-

case 2012.

[AR4] – Collaborative HRI Research – ATR Intelligent Robotics and

Communication Laboratories, Kyoto, Japan, 2012. Experimental collaboration

in Human-Robot Interaction.

[AR5] – Visiting Student Researcher (Invited) – Stanford University,

CA, 2011. Three months in Mechanical Engineering Faculty.

[AR6] – Finalist in RoboCup@Home Competition – Istanbul, Turkey,

2011. Member of RobotAssist team. Placed overall 4th in the world in second

year of competition.

[AR7] – Participant in RoboCup@Home Competition – Singapore,

2010. Member of RobotAssist team. Earned a place in finals in first year of

competition.
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