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Abstract 

Research studies have demonstrated that membrane action is primarily a compressive 

load carrying mechanism that can significantly improves the load-bearing capacity of 

reinforced concrete beams during extreme loading scenarios such as column loss. 

However, the behaviour of reinforced concrete (RC) beam assemblages under 

membrane action has not been thoroughly explored and therefore, the development of 

the compressive (arching) and tensile (catenary) membrane actions in RC beams should 

be investigated further by experimental and analytical studies.  

Membrane action is affected by various parameters such as compressive strength of the 

concrete, reinforcement ratio and transverse reinforcement of the beam. However; 

previously conducted researches indicate that compressive membrane (arching) action is 

not considerably influenced by reinforcement ratio which was shown to be the critical 

parameter in development of the tensile membrane (catenary) action. Also, both 

translational and rotational stiffness of end supports have significant influence on 

development of membrane action. Development of membrane action in RC members is 

typically associated with geometrical as well as material nonlinearities (including 

concrete cracking and crushing, reinforcing bar yielding and fracture) and due to these 

strong nonlinearities, most of the existing implicit finite element (FE) models and 

simplified analytical methods fail to adequately capture the compressive and tensile 

membrane behaviour of RC elements. 

The main focus of this research project is to experimentally and numerically investigate 

development of membrane action in RC beam assemblages. In the experimental 

program, influence of various parameters including concrete compressive strength, 



xxxi

reinforcement bar arrangement and ratio and boundary conditions on the membrane 

response of RC beam assemblages following a column loss scenario are investigated. 

Furthermore, two different classes of nonlinear FE models, i.e. a 1D discrete frame and 

a continuum-based FE models are developed and data obtained from the experimental 

program are employed to verify and validate the developed FE models. Using a 

simplified approach, the influence of steel bar rupture is incorporated into the 

formulation of an existing flexibility-based frame element and it is shown that the 

proposed strategy has the ability to adequately model the rupture of steel bars and its 

implications at global level. 
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Nomenclature 

a                         Portion of half depth measured from the centreline in contact with the 

                            support 

ia                        Parameter in strain-displacement sub-matrices in quadrilateral 

                           elements  

iA                         Areas of the triangles formed by the internal point and two out of three  

                           corners of the triangular element  

A                         Areas of quadrilateral elements, parameter defined in the element  

                           stiffness sub-matrices 

sA                       Area of tensile reinforcement 

cA                       Area of tensile chord of concrete

b                        Section width 

ib                        Parameter in strain-displacement sub-matrices in quadrilateral 

                           elements 

)(, xwxb          Force interpolation function 

)(),(, xxwxb   Interpolation matrix 

B , 0L
tt
t B          Strain-displacement transformation matrices 

)1(
1

itt
t L
B , )1(ntt

t NL
B

c                         Constant calculated from the normalising condition 

1c                        Concrete cover on top reinforcement, constant in the exponential  

                           crack-opening law

2c                        Concrete cover on bottom reinforcement, constant in the exponential  

                           crack-opening law 
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3c Strain corresponding to zero stress in linear softening based on local  

                           strain law 

C                          Parameter defined in the element stiffness sub-matrices in quadrilateral  

                           elements  

d                        Effective depth of a reinforced concrete section, half depth of the wall

d                       Distance of the centroid of top bars measured from the extreme top  

                           fibre of the section 

bd Diameter of the reinforcing bars 

dij                                   Coefficient of the matrix of the material stiffness 

)(xd                  Generalised strain vector of section 

 D Matrix of material stiffness in quadrilateral elements 

)(xD                   Internal force vector of the section 

)(* xD                 Internal force vector of the section due to the member load 

)(xpD                 Residual plastic force vector at section x of the element 

e Strain vectors in quadrilateral elements 

xe , ye , g normal and shear strain vectors in quadrilateral elements  

0E                        Initial modulus of elasticity for concrete 

cE                        Elastic secant modulus of the loading curve of concrete, initial         

                            modulus of elasticity of concrete 

ciE                    Secant modulus of elasticity along i direction 

s
cE                        Secant modulus of concrete in the equivalent uniaxial stress state 

t
cE                      Tangent modulus of concrete 

eE                       Elastic secant modulus of the unloading curve of concrete 

tEmin                   Tangent modulus of concrete in the vicinity of compressive strength 
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sE                       Modulus of elasticity of steel reinforcing bar 

shE                      Secondary hardening modulus of elasticity of steel reinforcing bar 

f                        Generalised force of the nodal springs 

cmf                      Average compressive strength of concrete 

cpf                       Compressive strength of unconfined concrete 

eq
cf , eq

tf            Equivalent uniaxial compressive and tensile peak loads for the biaxial  

                            stress state 

peakctf ,                  Peak average tensile stress of concrete after yielding of reinforcement 

min,, peakctf peakctf ,  with min

scrf                      Tensile stress of steel reinforcement at crack 

1.0,scrf                   Stress of steel reinforcement at crack when average tensile strain of 

                            reinforced concrete is 0.1 

peaktscrf
,,                Stress of steel reinforcement at crack when the average tensile strain of  

                            reinforced concrete is peakt ,

peaktf ,                   Peak tensile stress of concrete 

tf                        Tensile strength of concrete 

yf                        Yield stress of steel reinforcing bar 

uf                        Ultimate stress of steel reinforcing bar 

cf                       Characteristic strength of concrete 

)(xsf                   Flexibility matrix at section x of the element 

1f  , 2f                 Tensile strength of concrete in Steel fibre reinforced concrete based on  

                            fracture energy

F                         Flexibility matrix of the simply supported configuration (without rigid  
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                            body modes), simulated gravity load from upper stories 

iF                    Quadrilateral interpolation function in quadrilateral elements  

spF                   Flexibility matrix of the nodal springs 

TF                        Matrix of partial derivatives of the interpolation function in  

                           quadrilateral elements 

Gf                                   Fracture energy needed to create a unit area of stress-free crack 

h                         Section height 

ih                         Interpolation function for truss element 

H                          Parameter defined in the element stiffness sub-matrices in quadrilateral  

                            elements 

k                         Ratio of initial modulus of elasticity to the elastic secant modulus of 

                            concrete, Secant modulus of the unloading curve of the nodal springs,  

                            parameter defining the shape of the stress-strain curve 

1k                         Translational stiffness of the nodal spring at end 1 of the element 

2k                        Translational stiffness of the nodal spring at end 2 of the element 

ik                            Initial stiffness of the springs 

rk                         Translational stiffness of the nodal spring of the element 

1Tk                        Axial stiffness of nodal spring at end 1 of the element 

2Tk                       Axial stiffness of nodal spring at end 2 of the element 

1k                        Rotational stiffness of the nodal spring at end 1 of the element 

2k                       Rotational stiffness of the nodal spring at end 2 of the element 

k                        Rotational stiffness of the nodal spring of the element 

b
ik                    Rotational stiffness of the support at ith iteration 

Lbk                  Rotational spring at left support due to the bollard stiffness  
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Rbk                  Rotational spring at right support due to the bollard stiffness  

Lsk                  Rotational spring at left support due to strain penetration  

Rsk                  Rotational spring at right support due to strain penetration  

)(xsk                   Secant stiffness matrix at section x of the element 

K                       Stiffness matrix of the simply supported generic beam with nodal  

                           springs, stiffness matrix of the element in quadrilateral elements  

uuK , uvK , Stiffness sub-matrices of the element in quadrilateral elements  

vvK

eeK , eiK , Stiffness sub-matrices of the 5-node quadrilateral elements

ieK  , iiK

l                        Member length after deformation, length of the truss element  

0l                        Member length before deformation 

0201, ll                  Position of curtailment 

nl                        Clear span of RC beams/slabs 

lt                        Length of the truss element at the reference time t

)(itt l                  Length of the truss element at the time t+Dt and ith iteration 

r
lt

                   Differential of the length of the truss element at the reference time t

r
l itt )(

              Differential of the length of the truss element at the time t+Dt and ith

                            iteration               

L                         Span of RC beams/slabs, half length of rigidly restrained wall 

1L                         Length of RC slabs along the shorter span 

2L                        Length of RC slabs along the longer span 

Ld                                   Crack/crush band size in concrete 
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rL                        Half span of equivalent rigidly restrained wall 

LM                     Bending moment at left support 

RM                     Bending moment at right support 

Mi                       Bending moment of support at ith iteration 

)(xM                   Internal bending moment of support 

N                         Resisting force of failing column 

)(xN                    Internal axial force of the section 

O Null matrix 

P                         Vertical concentrated load 

)(uP                     Arching action force generated in the compressive blocks of the wall 

q                         Generalised displacement of the nodal springs 

q                          Nodal displacement vector in the system with rigid body modes 

1q                         Nodal displacement along x axis at end A of the element in the system  

                            with rigid body modes 

2q                        Nodal displacement along y axis at end A of the element in the system 

                            with rigid body modes 

3q                        Nodal rotation about z axis at end A of the element in the system with  

                            rigid body modes  

4q                        Nodal displacement along x axis at end B of the element in the system  

                            with rigid body modes  

5q                        Nodal displacement along y axis at end B of the element in the system  

                            with rigid body modes  

6q                        Nodal rotation about z axis at end B of the element in the system with  

                            rigid body modes  
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eq                         Elastic component of the generalised displacement of nodal springs 

pq                        Plastic component of the generalised displacement of the nodal springs 

1pq                       Generalised plastic translation of nodal spring at end 1 of the element 

2pq                      Generalised plastic translation of the nodal spring at end 2 of the  

                            element 

1pq                      Generalised plastic rotation of the nodal spring at end 1 of the element 

2pq                     Generalised plastic rotation of the nodal spring at end 2 of the element 

q                        Generalised nodal deformation vector of the compound element 

1q                        Horizontal displacement component of the generalised nodal  

                           deformation at end A of the compound element 

2q                       Rotation component of the generalised nodal deformation at end A of  

                           the compound element 

3q                       Rotation component of the generalised nodal deformation at end B of  

                           the compound element 

pq                      Generalised plastic deformation vector excluding the nodal springs 

rpq                      Generalised plastic deformation vector of the nodal springs 

*q                      Nodal generalised deformation vector due to member loads 

q                        Generalised deformation vector excluding the nodal springs without 

                            rigid body mode    

1q                        Generalised horizontal displacement at end A of the element excluding  

                            the displacement of  the nodal spring  

1q                        Generalised horizontal displacement at end B of the element excluding  

                            the displacement of  the nodal spring                                                              

2q                       Generalised rotation at end A of the element excluding the  
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                           displacement of the nodal spring 

3q                      Generalised rotation at end B of the element excluding the  

                           displacement of the nodal spring 

Q                        Nodal force vector in the system with rigid body modes, parameter  

  defined in the element stiffness sub-matrices 

1Q                       Nodal force along x axis at end A of the element in the system with  

                           rigid body modes 

2Q                       Nodal force along y axis at end A of the element in the system with  

                           rigid body modes 

3Q                       Nodal moment about z axis at end A of the element in the system  

                           with rigid body modes 

4Q                       Nodal force along x axis at end B of the element in the system with  

                           rigid body modes 

5Q                       Nodal force along y axis at end B of the element in the system with  

                           rigid body modes 

6Q                       Nodal moment about z axis at end B of the element in the system  

                           with rigid body modes                                    

Q                        Nodal force vector 

1Q            Horizontal force at end A  

2Q                       Bending moment at end A 

3Q                       Bending moment at end B 

*Q                       Nodal generalised force vector due to member loads 

r                         Distance between source point and averaging point, coordinate along  

                           the length of the truss element 
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ur                    Moment arm of the arching force 

R                        Interaction radius, geometric and material property parameter for  

                            arching, vector of resisting nodal forces 

s                          Stirrup spacing, stress vectors in quadrilateral elements 

1s , 2s , 3s             Bar slip in bond-slip law adopted by CEB-FIP model code 

 S                        Area of the sub-triangle in quadrilateral elements 

yS                         Rebar slip at member interface under yield stress 

)1(itt
t S ,            Stress matrices based on the 2nd Piola-Kirchhoff formulation 

)1(
11
itt

t S

t                          Element thickness, time 

T                       Force transformation matrix 

*T                       Displacement transformation matrix 

)(i
ij

tt
t S               Stress tensors at ith iteration 

u                         Normalised deflection at the centre of the wall 

u , v                   Nodal displacement vectors in 2D space with six components  

                            in quadrilateral elements 

iu , iv Displacement components at any internal point in terms of triangular  

                              coordinates in quadrilateral elements 

iu                         Horizontal components of nodal displacement in quadrilateral  

                            elements 

j
iku )( Translation of node k on the truss element along j axis at ith iteration 

)(
,

i
jit u                     Change in translation along i direction at time t with respect to  

                           direction j 

)1(
,

i
jk

tt
t u              Change in translation along i direction at time interval t with respect    
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                           to  direction j

U, V Strain-displacement sub-matrices in quadrilateral elements 

iv                       Vertical components of nodal displacement in quadrilateral elements  

V Volume of the element in quadrilateral elements 

)(xV                   Section internal shear force 

Vt , Vtt           Volume of the structure at times t and t + t

w                        Vertical concentrated load, deflection at the centre of the wall, crack  

                           width derived from the strain according to the crack band theory 

cw                       Crack width at the complete release of stress 

wd                                  Crushing displacement of concrete 

)(xw                   Vertical deflection of the element at section x 

0w                       Mid-span deflection of RC beams/slabs 

xi,, yi                    Cartesian coordinates of node i in a sub-triangle 

i
t x                         Coordinate of an arbitrary point along i axis on the truss element at  

                            reference time t

i
jt x                        Coordinate of a nodal point on the truss element at reference time t

j
itt x )( Coordinate of a nodal point on the truss element at time t+ t and ith

                               iteration

Xt                        Vector of the coordinates of an arbitrary point on the truss element at  

                            reference time t

)(itt X Vector of the coordinates of an arbitrary point on the truss element at  

                             time t+ t and ith iteration. 

)(
1,1
itt

t X                  Element deformation gradient 

y                          Distance of an arbitrary fibre from the neutral axis, coordinate  

                            measured along the wall thickness  



xlii

                        Parameter controlling the local bond-slip relationship, the fraction of  

                            half depth in contact with the support

d                       Length of the contact area ( is a pure number)

)(r                      Gauss distribution function

                        Mid-span deflection of RC beams/slabs 

                        Mid-span deflection of RC beams/slabs, shortening of material in  

                            contact with support at distance y

0                         Maximum shortening of material at extreme fibre 

                         Concrete strain 

                        Concrete non-local strain 

0, cc                  Plastic strain of concrete 

cr                       Cracking strain of concrete 

cu                       Ultimate strain of concrete 

d                                     Limit compressive strain of concrete 

eq                       Equivalent uniaxial strain 

ex                       Elastic component of the total axial strain at fibre located at distance  

y  from the neutral axis 

)(i
ijt                     Increment of Green Lagrange strain at time tt and ith iteration to 

                            configuration at time t

)(i
ij

tt
t                Strain tensors at ith iteration, Green Lagrange strain at time tt and

ith iteration to configuration at time t

p                        Plastic strain of steel reinforcing bar 

px                      Plastic component of the total axial strain at fibre located at distance y

                            from the neutral axis 
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r                         Section increment of axial strain 

sh                        Hardening strain of concrete 

peakt ,                    Average tensile strain of reinforced concrete at peaktf ,

u  Ultimate strain of steel reinforcing bar 

au ,                           Adjusted ultimate strain of embedded steel bars 

x                         Total axial strain at fibre located at distance y  from the neutral axis, 

                               normal strain components along x axis in quadrilateral elements 

xi                        Horizontal component of nodal normal strain vector along x axis in

                            quadrilateral elements 

y                         Yield strain of steel reinforcing bar, normal strain components along y 

axis in quadrilateral elements 

yi                         Horizontal component of nodal normal strain vector along x axis in

                             quadrilateral elements 

                            Shear (engineering) strain in quadrilateral elements 

i                          Component of nodal shear (engineering) strain vector in quadrilateral

                             elements 

Section curvature of the element about z axis 

                         Angle of rotation of half wall considered as a rigid body 

)(x                     Rotation of the element at section x 

L                      Rotation at the left support 

r                       Rigid body rotation of the member 

R                     Rotation at the right support 

u                           Rotation corresponding to ultimate flexural capacity of the section

y                           Rotation corresponding to nominal flexural capacity of the section



xliv

                         Reinforcing ratio for the bottom bars 

                        Reinforcing ratio for the top bars 

min                      Minimum reinforcement ratio 

s                        Reinforcement ratio 

                    Normal stress at the crack 

eq
c                      Effective stress state of concrete 

c                     The stress corresponding to the equivalent uniaxial strain 

ci                    The stress corresponding to the equivalent uniaxial strain along i

                            direction 

x                      Stress at section x of the element 

b                         Bond stress between concrete and reinforcing bar 

f                        Bond stress between concrete and reinforcing bar at failure 

max                    Maximum bond stress between concrete and reinforcing bar 

                          Damage index for nodal spring 

)(                   Concrete damage parameter as the function of concrete non-local  

                            strain 

1T                      Axial damage index for nodal spring at end 1 of the element 

2T                     Axial damage index of nodal spring at end 2 of the element 

1
                     Rotational damage index of nodal spring at end 1 of the element 

2                     Rotational damage index of nodal spring at end 2 of the element 

                        Position vector of the source and averaging points 

i                          Triangular (natural) coordinates in quadrilateral elements  
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