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Abstract

Research studies have demonstrated that membrane action is primarily a compressive
load carrying mechanism that can significantly improves the load-bearing capacity of
reinforced concrete beams during extreme loading scenarios such as column loss.
However, the behaviour of reinforced concrete (RC) beam assemblages under
membrane action has not been thoroughly explored and therefore, the development of
the compressive (arching) and tensile (catenary) membrane actions in RC beams should

be investigated further by experimental and analytical studies.

Membrane action is affected by various parameters such as compressive strength of the
concrete, reinforcement ratio and transverse reinforcement of the beam. However;
previously conducted researches indicate that compressive membrane (arching) action is
not considerably influenced by reinforcement ratio which was shown to be the critical
parameter in development of the tensile membrane (catenary) action. Also, both
translational and rotational stiffness of end supports have significant influence on
development of membrane action. Development of membrane action in RC members is
typically associated with geometrical as well as material nonlinearities (including
concrete cracking and crushing, reinforcing bar yielding and fracture) and due to these
strong nonlinearities, most of the existing implicit finite element (FE) models and
simplified analytical methods fail to adequately capture the compressive and tensile

membrane behaviour of RC elements.

The main focus of this research project is to experimentally and numerically investigate
development of membrane action in RC beam assemblages. In the experimental

program, influence of various parameters including concrete compressive strength,

XXX



reinforcement bar arrangement and ratio and boundary conditions on the membrane
response of RC beam assemblages following a column loss scenario are investigated.
Furthermore, two different classes of nonlinecar FE models, i.e. a 1D discrete frame and
a continuum-based FE models are developed and data obtained from the experimental
program are employed to verify and validate the developed FE models. Using a
simplified approach, the influence of steel bar rupture is incorporated into the
formulation of an existing flexibility-based frame element and it is shown that the
proposed strategy has the ability to adequately model the rupture of steel bars and its

implications at global level.
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Nomenclature

a Portion of half depth measured from the centreline in contact with the
support

a, Parameter in strain-displacement sub-matrices in quadrilateral
elements

4, Areas of the triangles formed by the internal point and two out of three

corners of the triangular element

A Areas of quadrilateral elements, parameter defined in the element

stiffness sub-matrices

A Area of tensile reinforcement

A, Area of tensile chord of concrete

b Section width

b, Parameter in strain-displacement sub-matrices in quadrilateral
elements

b [x, w(x)] Force interpolation function

b[x, w(x), H(X)] Interpolation matrix

t+At . . . .
B, "B, Strain-displacement transformation matrices
+AL D=1 fyar (01
t BL] >t BJ\/L
c Constant calculated from the normalising condition
¢ Concrete cover on top reinforcement, constant in the exponential

crack-opening law
C, Concrete cover on bottom reinforcement, constant in the exponential

crack-opening law

Xxxii



d!

D'(x)

Strain corresponding to zero stress in linear softening based on local

strain law

Parameter defined in the element stiffness sub-matrices in quadrilateral

elements

Effective depth of a reinforced concrete section, half depth of the wall

Distance of the centroid of top bars measured from the extreme top

fibre of the section

Diameter of the reinforcing bars
Coefficient of the matrix of the material stiffness
Generalised strain vector of section

Matrix of material stiffness in quadrilateral elements
Internal force vector of the section

Internal force vector of the section due to the member load
Residual plastic force vector at section x of the element

Strain vectors in quadrilateral elements

normal and shear strain vectors in quadrilateral elements
Initial modulus of elasticity for concrete

Elastic secant modulus of the loading curve of concrete, initial

modulus of elasticity of concrete

Secant modulus of elasticity along i direction

Secant modulus of concrete in the equivalent uniaxial stress state
Tangent modulus of concrete

Elastic secant modulus of the unloading curve of concrete

Tangent modulus of concrete in the vicinity of compressive strength

xxxiii



f ceq > fteq

et peak
fct, peak, P
i
fm,o.l

f;‘,peak
1

fu
ﬂ!
f,(x)

Nis 1

Modulus of elasticity of steel reinforcing bar

Secondary hardening modulus of elasticity of steel reinforcing bar
Generalised force of the nodal springs

Average compressive strength of concrete

Compressive strength of unconfined concrete

Equivalent uniaxial compressive and tensile peak loads for the biaxial

stress state

Peak average tensile stress of concrete after yielding of reinforcement
St pear With P,

Tensile stress of steel reinforcement at crack

Stress of steel reinforcement at crack when average tensile strain of

reinforced concrete is 0.1

Stress of steel reinforcement at crack when the average tensile strain of

reinforced concrete is €, .,
Peak tensile stress of concrete

Tensile strength of concrete

Yield stress of steel reinforcing bar
Ultimate stress of steel reinforcing bar
Characteristic strength of concrete
Flexibility matrix at section x of the element

Tensile strength of concrete in Steel fibre reinforced concrete based on

fracture energy

Flexibility matrix of the simply supported configuration (without rigid

XXXiV



body modes), simulated gravity load from upper stories

Quadrilateral interpolation function in quadrilateral elements

Flexibility matrix of the nodal springs

Matrix of partial derivatives of the interpolation function in

quadrilateral elements
Fracture energy needed to create a unit area of stress-free crack
Section height

Interpolation function for truss element

Parameter defined in the element stiffness sub-matrices in quadrilateral
elements

Ratio of initial modulus of elasticity to the elastic secant modulus of

concrete, Secant modulus of the unloading curve of the nodal springs,

parameter defining the shape of the stress-strain curve

Translational stiffness of the nodal spring at end 1 of the element
Translational stiffness of the nodal spring at end 2 of the element
Initial stiffness of the springs

Translational stiffness of the nodal spring of the element

Axial stiffness of nodal spring at end 1 of the element

Axial stiffness of nodal spring at end 2 of the element

Rotational stiffness of the nodal spring at end 1 of the element
Rotational stiffness of the nodal spring at end 2 of the element
Rotational stiffness of the nodal spring of the element

Rotational stiffness of the support at i"™ iteration

Rotational spring at left support due to the bollard stiffness

XXXV



ka(b—R)
ko(s-1)
ko(s-r)

k(%)

AL (D)

o'l
or

at+Atl(i)
or

Rotational spring at right support due to the bollard stiffness
Rotational spring at left support due to strain penetration
Rotational spring at right support due to strain penetration

Secant stiffness matrix at section x of the element

Stiffness matrix of the simply supported generic beam with nodal
springs, stiffness matrix of the element in quadrilateral elements

Stiffness sub-matrices of the element in quadrilateral elements

Stiffness sub-matrices of the 5-node quadrilateral elements

Member length after deformation, length of the truss element
Member length before deformation

Position of curtailment

Clear span of RC beams/slabs

Length of the truss element at the reference time ¢

Length of the truss element at the time 7+ ¢ and i™ iteration
Differential of the length of the truss element at the reference time ¢

Differential of the length of the truss element at the time ¢+ ¢ and i

iteration

Span of RC beams/slabs, half length of rigidly restrained wall
Length of RC slabs along the shorter span
Length of RC slabs along the longer span

Crack/crush band size in concrete

XXXVi



q,

q,

q;

q,

qs

qs

Half span of equivalent rigidly restrained wall
Bending moment at left support

Bending moment at right support

Bending moment of support at i iteration
Internal bending moment of support
Resisting force of failing column

Internal axial force of the section

Null matrix
Vertical concentrated load

Arching action force generated in the compressive blocks of the wall
Generalised displacement of the nodal springs
Nodal displacement vector in the system with rigid body modes

Nodal displacement along x axis at end A of the element in the system
with rigid body modes

Nodal displacement along y axis at end A of the element in the system
with rigid body modes

Nodal rotation about z axis at end A of the element in the system with
rigid body modes

Nodal displacement along x axis at end B of the element in the system
with rigid body modes

Nodal displacement along y axis at end B of the element in the system
with rigid body modes

Nodal rotation about z axis at end B of the element in the system with

rigid body modes

XXXVii
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qp2
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q,

-

q,

—n

q,

-

q,

Elastic component of the generalised displacement of nodal springs
Plastic component of the generalised displacement of the nodal springs
Generalised plastic translation of nodal spring at end 1 of the element
Generalised plastic translation of the nodal spring at end 2 of the
element
Generalised plastic rotation of the nodal spring at end 1 of the element
Generalised plastic rotation of the nodal spring at end 2 of the element
Generalised nodal deformation vector of the compound element
Horizontal displacement component of the generalised nodal
deformation at end A of the compound element
Rotation component of the generalised nodal deformation at end A of
the compound element
Rotation component of the generalised nodal deformation at end B of

the compound element

Generalised plastic deformation vector excluding the nodal springs

Generalised plastic deformation vector of the nodal springs

Nodal generalised deformation vector due to member loads
Generalised deformation vector excluding the nodal springs without
rigid body mode

Generalised horizontal displacement at end A of the element excluding
the displacement of the nodal spring

Generalised horizontal displacement at end B of the element excluding
the displacement of the nodal spring

Generalised rotation at end A of the element excluding the

XXXViii
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o

0,

0s

0,

0;

displacement of the nodal spring

Generalised rotation at end B of the element excluding the
displacement of the nodal spring

Nodal force vector in the system with rigid body modes, parameter
defined in the element stiffness sub-matrices

Nodal force along x axis at end A of the element in the system with
rigid body modes

Nodal force along y axis at end A of the element in the system with
rigid body modes

Nodal moment about z axis at end A of the element in the system
with rigid body modes

Nodal force along x axis at end B of the element in the system with
rigid body modes

Nodal force along y axis at end B of the element in the system with
rigid body modes

Nodal moment about z axis at end B of the element in the system
with rigid body modes

Nodal force vector

Horizontal force at end A

Bending moment at end A

Bending moment at end B

Nodal generalised force vector due to member loads

Distance between source point and averaging point, coordinate along

the length of the truss element
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S

T
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T

t+At ]
+ tSl(JZ)

uk(i)j

t+At (i-1)
Ur,

Moment arm of the arching force

Interaction radius, geometric and material property parameter for
arching, vector of resisting nodal forces

Stirrup spacing, stress vectors in quadrilateral elements
Bar slip in bond-slip law adopted by CEB-FIP model code
Area of the sub-triangle in quadrilateral elements

Rebar slip at member interface under yield stress

Stress matrices based on the 2™ Piola-Kirchhoff formulation

Element thickness, time

Force transformation matrix

Displacement transformation matrix

Stress tensors at i iteration

Normalised deflection at the centre of the wall

Nodal displacement vectors in 2D space with six components

in quadrilateral elements

Displacement components at any internal point in terms of triangular
coordinates in quadrilateral elements
Horizontal components of nodal displacement in quadrilateral
elements
Translation of node & on the truss element along j axis at i™ iteration
Change in translation along i direction at time t with respect to
direction j

Change in translation along i direction at time interval Az with respect

x1



U,V

V.

1

14

V(x)

tV, l‘+AtV

w

A .
t+ tx(l)j

t+At )_((i)

t+At v (i)
tXl,l

Y

to direction j
Strain-displacement sub-matrices in quadrilateral elements
Vertical components of nodal displacement in quadrilateral elements

Volume of the element in quadrilateral elements

Section internal shear force

Volume of the structure at times ¢ and ¢ +At
Vertical concentrated load, deflection at the centre of the wall, crack
width derived from the strain according to the crack band theory

Crack width at the complete release of stress

Crushing displacement of concrete

Vertical deflection of the element at section x

Mid-span deflection of RC beams/slabs

Cartesian coordinates of node 7 in a sub-triangle

Coordinate of an arbitrary point along i axis on the truss element at
reference time ¢

Coordinate of a nodal point on the truss element at reference time ¢
Coordinate of a nodal point on the truss element at time ¢+A4¢ and "
iteration

Vector of the coordinates of an arbitrary point on the truss element at
reference time ¢

Vector of the coordinates of an arbitrary point on the truss element at
time #+A¢ and i™ iteration.

Element deformation gradient

Distance of an arbitrary fibre from the neutral axis, coordinate

measured along the wall thickness

xli



a Parameter controlling the local bond-slip relationship, the fraction of

half depth in contact with the support

ad Length of the contact area ( « is a pure number)

a(r) Gauss distribution function

A Mid-span deflection of RC beams/slabs

o Mid-span deflection of RC beams/slabs, shortening of material in

contact with support at distance y

0, Maximum shortening of material at extreme fibre

& Concrete strain

g Concrete non-local strain

E.,E Plastic strain of concrete

g, Cracking strain of concrete

& Ultimate strain of concrete

&4 Limit compressive strain of concrete

& Equivalent uniaxial strain

Eox Elastic component of the total axial strain at fibre located at distance

y from the neutral axis

(&) Increment of Green Lagrange strain at time ¢ + Az and i iteration to

configuration at time ¢

AL (D) Strain tensors at i iteration, Green Lagrange strain at time 7 + Af and

t&ij
i"™ iteration to configuration at time ¢
€, Plastic strain of steel reinforcing bar
€ px Plastic component of the total axial strain at fibre located at distance y

from the neutral axis
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yi

Vi

Section increment of axial strain
Hardening strain of concrete

Average tensile strain of reinforced concrete at f,

Ultimate strain of steel reinforcing bar

Adjusted ultimate strain of embedded steel bars

Total axial strain at fibre located at distance y from the neutral axis,

normal strain components along x axis in quadrilateral elements

Horizontal component of nodal normal strain vector along x axis in

quadrilateral elements

Yield strain of steel reinforcing bar, normal strain components along y

axis in quadrilateral elements

Horizontal component of nodal normal strain vector along x axis in

quadrilateral elements

Shear (engineering) strain in quadrilateral elements
Component of nodal shear (engineering) strain vector in quadrilateral

elements

Section curvature of the element about z axis
Angle of rotation of half wall considered as a rigid body
Rotation of the element at section x

Rotation at the left support
Rigid body rotation of the member
Rotation at the right support

Rotation corresponding to ultimate flexural capacity of the section

Rotation corresponding to nominal flexural capacity of the section

xliii



pmin

Ps

Reinforcing ratio for the bottom bars

Reinforcing ratio for the top bars

Minimum reinforcement ratio

Reinforcement ratio
Normal stress at the crack
Effective stress state of concrete
The stress corresponding to the equivalent uniaxial strain

The stress corresponding to the equivalent uniaxial strain along i

direction

Stress at section x of the element

Bond stress between concrete and reinforcing bar

Bond stress between concrete and reinforcing bar at failure
Maximum bond stress between concrete and reinforcing bar

Damage index for nodal spring

Concrete damage parameter as the function of concrete non-local

strain

Axial damage index for nodal spring at end 1 of the element

Axial damage index of nodal spring at end 2 of the element
Rotational damage index of nodal spring at end 1 of the element
Rotational damage index of nodal spring at end 2 of the element
Position vector of the source and averaging points

Triangular (natural) coordinates in quadrilateral elements
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