Compressive Membrane Action in Reinforced Concrete Beams

by Nima Vessali

A thesis submitted for the fulfilment of the requirements for the degree of **Doctor of Philosophy**

School of Civil and Environmental Engineering Faculty of Engineering and Information Technology University of Technology Sydney

2015

TO MY WIFE, IRENE

AND

MY DAUGHTER, ARNICA

CERTIFICATE OF ORIGINAL AUTHORSHIP

I certify that the work in this thesis has not previously been submitted for a degree nor has it been submitted as part of requirements for a degree except as fully acknowledged within the text.

I also certify that the thesis has been written by me. Any help that I have received in my research work and the preparation of the thesis itself has been acknowledged. In addition, I certify that all information sources and literature used are indicated in the thesis.

Name of Student: Nima Vessali

Signature of Student:

Date: 12/10/2015

ACKNOWLEDGEMENT

The author wishes to express his deep gratitude and appreciation to his supervisors, Professor Bijan Samali and Dr Hamidreza Valipour-Goudarzi, for their invaluable guidance, encouragement and constant support during the course of this research. Financial support of this research project through an ARC Grant (Discover Project DP120103328) is gratefully acknowledged. Further, the author would like to thank University of Technology, Sydney (UTS) for financial support of this project through an Early Career Research Grant (ECRG). Also, the assistance and the support of the technical staff of the Structural Lab of University of Technology Sydney during the experimental part of the research is herein, appreciated.

I would like to thank my wife, Irene, whom without her patience and support the completion of this dissertation would not have been possible. I would also like to express my gratefulness to my parents and my brother for encouragement and support throughout my life.

List of Publications

The author acknowledges the publication of the below journal as well as conference papers during the candidature on the basis of the research project.

Refereed journal articles:

Valipour, H., FarhangVesali^{*}, N. and Foster, S. J. A Generic Model for Investigation of Arching Action in Reinforced Concrete Members. *Construction and Building Materials, Vol. 38, Jan 2013, 742-750.*

FarhangVesali^{*}, N., Valipour, H., Samali, B. and Foster, S. J. Development of Arching Action in Longitudinally-Restrained Reinforced Concrete Beams, *Construction and Building Materials, Vol. 47, Oct 2013, 7-19.*

Valipour, H, FarhangVesali^{*}, N, Reserve of Strength in Reinforced Concrete Frames: Analysis of Arching Action. *Australian Journal of Structural Engineering, Vol. 15, No.2, May 2014, 161-175.*

Valipour, H, Vessali^{*}, N, Foster, S. J. and Samali, B., Influence of Concrete Compressive Strength on the Arching Behaviour of Reinforced Concrete Beam Assemblages. *Advances in Structural Engineering, Vol. 18, No.8, July 2015, 1199-1214.*

Valipour, H, Vessali^{*}, N and Foster, S. J., Fibre-reinforced concrete beam assemblages subject to column loss. *Magazine of Concrete Research, Accepted and under publication*.

^{*} The author recently changed his surname from "Farhang Vesali" to "Vessali".

Refereed Papers in Published Conference Proceedings:

Vesali^{*}, N. F., Valipour, H., Samali, B. and Foster, S. J. (2012). Investigating the Arching Action in Reinforced Concrete Beams. 22nd Australasian Conference on the Mechanics of Structures and Materials, ACMSM 22, Sydney, NSW, Australia, 11-14 December 2012, 369-374.

FarhangVesali^{*}, N., Valipour, H. and Samali, B. (2012). Numerical Challenging of Capturing Membrane Action in Reinforced Concrete Beams and One-Way Slabs. *6th European Congress on Computational Methods in Applied Sciences and Engineering, ECCOMAS 2012; Vienna; Austria; 10-14 September 2012, 2020-2035.*

Vessali^{*}, N., Valipour, H., Samali, B. and Foster, S. J. (2014). Development of the Compressive Membrane Action in Partially-Restrained Reinforced Concrete Sub-Assemblages. 23rd Australasian Conference on the Mechanics of Structures and Materials, ACMSM 23, Byron Bay, NSW, Australia, 9-12 December 2014, to be published.

* The author recently changed his surname from "Farhang Vesali" to "Vessali".

Table of Contents

Certificate of Original Authorship	i
Acknowledgement	ii
List of Publications	iii
Table of Contents	V
List of Figures	ix
List of Tables	xxviii
Abstract	xxx
Nomenclature	xxxii
Chapter 1 Introduction	1
1.1. Overview	1
1.2. Outline of the Research	
1.3. Research Objectives	
1.4. Structure of Dissertation	
Chapter 2 Literature Review	6
2.1. Introduction	
2.2. Experimental Studies	
2.2.1. Two-way RC slabs	
2.2.2. One-way RC slabs and beams	
2.3. Analytical Studies	
2.3.1. Simplified methods	
2.3.2. Numerical Simulations	

2.4. Summary	96
2.4.1. Experimental Studies	96
2.4.2. Analytical Studies	96
2.4.3. Conclusion	98
Chapter 3 Framework of the Generic Model for Investigation of Arching	5
Action Reinforced Concrete 1D Elements	99
3.1. Introduction	99
3.2. Formulation of generic model	100
3.2.1. Strain-displacement compatibility equations	100
3.2.2. Equilibrium equations and constitutive law of material	101
3.3. Verification of the model	107
3.4. Conclusions and discussions	119
Chapter 4 Experimental Study on Development of Arching Action in	
Chapter 4 Experimental Study on Development of Arching Action in Longitudinally Restrained RC Beams with Low-Ductility Reinforcement.	120
Chapter 4 Experimental Study on Development of Arching Action inLongitudinally Restrained RC Beams with Low-Ductility Reinforcement .4.1. Introduction	120
 Chapter 4 Experimental Study on Development of Arching Action in Longitudinally Restrained RC Beams with Low-Ductility Reinforcement . 4.1. Introduction	120 120 121
 Chapter 4 Experimental Study on Development of Arching Action in Longitudinally Restrained RC Beams with Low-Ductility Reinforcement . 4.1. Introduction	120 120 121 122
 Chapter 4 Experimental Study on Development of Arching Action in Longitudinally Restrained RC Beams with Low-Ductility Reinforcement . 4.1. Introduction	120 120 121 122 123
 Chapter 4 Experimental Study on Development of Arching Action in Longitudinally Restrained RC Beams with Low-Ductility Reinforcement . 4.1. Introduction	120 120 121 122 123 127
 Chapter 4 Experimental Study on Development of Arching Action in Longitudinally Restrained RC Beams with Low-Ductility Reinforcement . 4.1. Introduction	120 120 121 122 123 127 132
 Chapter 4 Experimental Study on Development of Arching Action in Longitudinally Restrained RC Beams with Low-Ductility Reinforcement . 4.1. Introduction	120 120 121 122 123 127 132 132
 Chapter 4 Experimental Study on Development of Arching Action in Longitudinally Restrained RC Beams with Low-Ductility Reinforcement . 4.1. Introduction	120 120 121 122 123 127 132 132 134
 Chapter 4 Experimental Study on Development of Arching Action in Longitudinally Restrained RC Beams with Low-Ductility Reinforcement . 4.1. Introduction	120 120 121 122 123 127 132 132 134 135

4.4. Conclusions and Discussions	149
Chapter 5 Experimental Study on Development of Membrane Actions in	
Longitudinally Restrained RC Beams with Normal-ductility Reinforcement	.151
5.1. Introduction	151
5.2. Experimental Program	153
5.2.1. Geometry and reinforcing bar arrangement	153
5.2.2. Material Properties	156
5.2.3. Preparation of the specimens	159
5.2.4. Test setup	161
5.2.4.1. Boundary condition and loading setup	161
5.2.4.2. Instrumentation and data acquisition	161
5.2.5. Test Procedure	164
5.3. Test Results	164
5.4. Conclusions	190
Chapter 6 Non-Linear Finite Element Analysis of Longitudinally	
Restrained Reinforced Concrete Sub-Assemblages	193
6.1. Introduction	193
6.2. Continuum-based FE models	194
6.2.1. Element formulation	194
6.2.2. Constitutive law of materials	195
6.2.3. Element Type	205
6.2.4. Validation of 2D Continuum-based Finite Element Model	216
6.3. 1D Frame FE model including the effects of bar fracture	220
6.3.1. Introduction	220

6.3.2. Enhanced 1D Frame Finite Element	
6.3.3. Verification of Enhanced 1D Frame FE model	
6.4. Numerical study of the tested sub-assemblages	
6.4.1. Specimens with low-ductility reinforcement	
6.4.2. Specimens with normal-ductility reinforcement	
6.5. Conclusions	
Chapter 7 Conclusion	
7.1. Experimental Study	
7.2. Numerical Simulation	
7.3. Recommendations for Future Study	
References	271

List of Figures

Figure 2-1: Typical Load-Deflection curves of RC flexural members with and without	
support restraint against elongation.	7
Figure 2-2: Schematic outline of the idealized mode of failure in plastic analysis of two-	
Figure 2-2. Schematic outline of the idealized mode of failure in plastic analysis of two-	
way slabs under uniform distributed load (Johansen, 1943)	10
Figure 2-3: Experimentally observed mode of failure in two-way slabs under uniform	
distributed load at (a) the upper surface and (b) the soffit of the slab (Ockleston, 1955)	11
Figure 2.4. Outline of the slob testing rig (a) alon and (b) Sections A. A and D. D.	
Figure 2-4: Outline of the stab testing fig (a) plan and (b) Sections A-A and B-B	
(Powell, 1956, Park, 1964c)	12
Figure 2-5: Edge support details (a) fully fixed edge, (b) simply supported edge (Park,	
1964c)	14
Figure 2-6: Load-deflection curve of type 2 slabs (Park, 1964c).	15
Figure 2-7: The effect of sustained loading and partial stiffness of supports (Park,	
10(4 D 1 10(4))	16
1964c, Park, 1964b).	10
Figure 2-8: Details of loading and supports for slabs tested by Park (1965)	18
Figure 2-9: Details of configuration loading and supports of the model floor tested by	
rigure 2 7. Details of configuration, foating and supports of the model floor tested by	
Park (1971)	19
Figure 2-10: Applied pressure vs. mid-span deflection for (a) 76 mm thick slabs and (b)	
121 mm thick slabs (Kennan, 1960)	22
121 mm unce states (ectimali, 1707).	23

Figure 2-11: Applied pressure vs. mid-span deflection slabs with span-to-depth ratio of
20 for (a) Type I and (b) Type III slabs (Brotchie and Holley, 1971)
Figure 2-12: Applied pressure vs. mid-span deflection slabs with span-to-depth ratio of
10 for (a) Type I and (b) Type III slabs (Brotchie and Holley, 1971)25
Figure 2-13: Applied pressure vs. mid-span deflection of slabs with span-to-depth ratio
of 5 for type I (Brotchie and Holley, 1971)
Figure 2-14: General details of the slab-beam model units (a) Plan view (b) Section A-A
for slab connected to the top of the beam and (c) Section A-A for slab connected to the
centreline of the beam (Datta and Ramesh, 1975)27
Figure 2-15: Details of beams and corner connection (a) Slab at the centre of the beam
(b) Slab at the top of the beam (c) Corner connection (Datta and Ramesh, 1975)28
Figure 2-16: Load-deflection curves of slab-beam panels (Datta and Ramesh, 1975)
Figure 2-17: Load vs. mid-span normalised relative deflection for (a) slabs 1-3, (b) slabs
4-7 and (c) slabs 8-11(Christiansen and Fredriksen, 1983)
Figure 2-18: In situ concrete slab test results (Christiansen and Fredriksen, 1983)
Figure 2-19: The nine possible cases of two-way rectangular slabs supported on all
edges (Al-Hassani et al., 2009)
Figure 2-20: Experimental load expressed in terms of ultimate load predicted by
Johanson's yield line theory versus deflection of orthotropic rectangular slabs (a) S1 (b)
S2 and (c) S3 (Al-Hassani et al., 2009)

Figure 2-21: Experimental load expressed in terms of ultimate load predicted by	
Johanson's yield line theory versus deflection of orthotropic rectangular slabs (a) S4 (b)	
S5 (c) S6 (Al-Hassani et al., 2009).	36
Figure 2-22: Experimental load expressed in terms of ultimate load predicted by	
Figure 2-22. Experimental load expressed in terms of utilinate load predicted by	
Johanson's yield line theory versus deflection of orthotropic rectangular slabs (a) S7 (b)	
S8 (c) S9 (Al-Hassani et al., 2009).	37
Figure 2-23: (a) Elevation and (b) plan view of the specimens and test setup (Regan,	
1975).	39
Figure 2-24: Catenary tests of precast floor strips (a) compressive membrane phase (b)	
catenary action established (c) onset of tearing out of bottom bars (d) failure (Regan,	
1975).	40
Figure 2-25: Results of catenary tests of precast floor strips (Regan, 1975).	41
Figure 2-26: Applied pressure vs. mid-span deflection for (a) slab No. 2 and (b) slab	
No. 5 (Woodson, 1985)	41
Figure 2-27: Applied pressure vs. mid-span deflection for (a) slab No. 11 and (b) slab	
No. 13 (Woodson and Garner 1985)	42
10. 15 (Woodson and Gamer, 1905)	72
Figure 2-28: Applied pressure vs. mid-span deflection for (a) slab No. 16 and (b) slab	
No. 18 (Woodson and Garner, 1985).	43
Figure 2-29: Load-deflection curves for (a) slabs with span-to-thickness ratio of 10.4	
and steel percentage of 0.74% and (b) slabs with span-to-thickness ratio of 14.8 and	
steel percentage of 1.14% (Guice, 1986, Guice and Rhomberg, 1988)	45

Figure 2-30: Sample configuration used in the tests (Lahlouh and Waldron, 1992)	46
Figure 2-31: Measured load versus mid-span deflections for the specimens tested by	
Lahlouh and Waldron (1992).	47
Figure 2-32: Rationale behind the adopted testing setup (a) frame and (b) sub-	
assemblage (Beeby and Fathibitaraf, 2001).	48
Figure 2-33: Comparison of bending moment (in the columns) obtained from	
experiment and elastic analysis with no membrane effects (shaded areas indicate the	
calculated bending moments) (Beeby and Fathibitaraf, 2001).	49
Figure 2-34: Outline of the slab strips tested by Taylor et al. (2001a).	49
Figure 2-35: Test results of slab strips (a) load vs. deflection and (b) failure load vs.	
concrete compressive strength (Taylor et al., 2001a).	50
Figure 2-36: Test setup for longitudinally restrained beams tested by Ruddle et al.	
(2002)	51
Figure 2-37: Load vs. deflection of restrained and unrestrained T-shape beams (Ruddle	
et al., 2002)	52
Figure 2-38: Geometry and details of the sub-assembly tested by Sasani and	
Kropelnicki (2008)	52
Figure 2-39: Load – mid span deflection of the sub-assembly (Sasani and Kropelnicki,	
2008)	53
Figure 2-40: Vertical load and horizontal reaction versus mid-span deflection of the	
beams with (a) discontinuous and (b) continuous reinforcement (Orton, 2007).	54

Figure 2-41: Middle column load vs. unloading displacement (Yi et al., 2008)	56
Figure 2-42: (a) Plan and (b) elevation view of the RC beam assemblages tested by Su	
et al. (2009)	57
Figure 2-43: Effect of reinforcement ratio with a (a) symmetrical and (b) unsymmetrical	
arrangement on vertical load and horizontal reaction of the RC sub-assemblies tested by	
Su et al. (2009).	58
Figure 2-44: Effect of span-to-depth ratio with (a) symmetrical and (b) unsymmetrical	
reinforcement on vertical load and horizontal reaction of the RC sub-assemblies tested	
by Su et al. (2009).	59
Figure 2-45: Effect of loading rate on vertical load and horizontal reaction of the RC	
sub-assemblies tested by Su et al. (2009).	60
Figure 2-46: Reinforcement detailing of the RC sub-assemblages; (a) gravity load-	
resisting frame, (b) seismic load-resisting frame (Choi and Kim, 2011)	61
Figure 2-47: Outline of the (a) test setup for the beam-column sub-assemblages (b)	
supporting structure of the specimens (Choi and Kim, 2011).	62
Figure 2-48: Load-displacement relationships of the sub-assemblages (Choi and Kim,	
2011).	63
Figure 2-49: Detailing and boundary conditions of the specimens tested by Yu and Tan	
(2012)	64

Figure 2-50: Effect of the bottom reinforcement ratio (BRR) at the middle joints on the	
structural behaviour of the sub-assemblages: (a) load-deflection relationship; (b)	
horizontal reaction force-deflection relationship (Yu and Tan, 2012)	65
Figure 2-51: Effect of the top reinforcement ratio (TRR) at the middle joints on the	
structural behaviour of the sub-assemblages: (a) load-deflection relationship; (b)	
horizontal reaction force-deflection relationship (Yu and Tan, 2012)	66
Figure 2-52: Effect of span-to-depth ratio on the structural behaviour of the sub-	
assemblages: (a) load-deflection relationship; (b) horizontal reaction force-deflection	
relationship (Yu and Tan, 2012).	67
Figure 2-53: Typical theoretical and experimental load-deflection curves for a slab	
restrained along its edges (Wood, 1961)	71
Figure 2-54: Idealised rectangular slab (Park, 1964c).	72
Figure 2-55: Theoretical and experimental load-deflection curves of a simply supported	
slab (Wood, 1961)	74
Figure 2-56: Idealised geometry of deformation of half span of laterally-restrained strip	
(a) Wall in deflected position (b) Geometry at support (McDowell et al., 1956)	82
Figure 2-57: Variation of arching action bending moment with respect to mid-span	
deflection (McDowell et al., 1956, Rankin and Long, 1997).	86
Figure 2-58: Idealised behaviour of laterally restrained RC slab strips (Rankin and	
Long, 1997)	86

Figure 3-1: Outline of the (a) strain distribution over the section depth (b) generic	
compound element (without rigid body modes).	101
Figure 3-2: Equilibrium in the simply supported configuration and free body diagram of	
Ax, after deformation (system without rigid body modes).	103
Figure 3-3: Outline of the adopted stress-strain relationship for (a) concrete (b) steel	
bars	103
Figure 3-4: Outline of the (a) tested one-way slabs and idealised generic model (b)	
typical cross-section of the tested slabs (Taylor and Mullin, 2006b, Taylor et al., 2001b,	
Guice et al., 1986).	108
Figure 3-5: Outline of the geometry, cross-section and reinforcing details for the beam	
tested by Bazan (2008)	111
Figure 3-6: Load versus mid-span deflection for sample No. 11 from Guice et al. (1986)	
experiments.	113
Figure 3-7: Load versus mid-span deflection for sample S7 from Taylor et al. (2001b)	
experiments.	113
Figure 3-8: Load versus deflection of centre stub for the beam assemblage tested by	
Bazan (2008)	114
Figure 3-9: Outline of the idealised boundary conditions within (a) developed generic	
model and continuum-based FE model (b) before and (c) after loading/cracking	114
Figure 3-10: Outline of the geometry, cross-section and reinforcing details for the	
subassembly H-200 tested by Lahlouh and Waldron (1992).	117

Figure 3-11: Load versus mid-span deflection for subassembly H-200 from Lahlouh and
Waldron (1992) experiments
Figure 4-1: Outline of the floor plan
Figure 4-2 Outline of the geometry, cross-section and reinforcing details for the beam
assemblages with and without top add bars over the end supports and centre stub122
Figure 4-3: Rate of increase of concrete compressive strength with time124
Figure 4-4: Uniaxial stress-strain diagram for concrete (300 by 150 mm diameter
cylinder) under compression
Figure 4-5: Uniaxial stress-strain diagram for N10 longitudinal steel rebar under
tension
Figure 4-6: Fracture pattern in the N10 bars (a) necking in the bar and (b) fractured
section
Figure 4-7: Variation of the apparent strain and the gauge factor for 5 mm steel strain
gauges
Figure 4-8: Variation of the apparent strain and the gauge factor for 60 mm concrete
strain gauges
Figure 4-9: Formwork parts (a) supporting and intermediate blocks and (b) channels128
Figure 4-10: (a) Assembled formwork and (b) cross-section of the formwork
arrangement
Figure 4-11: Procedure and apparatus used for bending bars (a) initial and (b) final state129

Figure 4-12: The reinforcing cage placed on the bar chair.	.130
Figure 4-13: Slump test	.130
Figure 4-14: Concrete pouring using pump and a long hose.	.131
Figure 4-15: Vibration process using the portable concrete vibrator	.132
Figure 4-16: Experimental set up for the reinforced concrete beam assemblage	.133
Figure 4-17: Schematic outline of the location of (a) steel and (b) concrete strain gauges.	.134
Figure 4-18: Installation of steel strain gauges (a) gauge soldering, (b) cable soldering and (c) sealing.	.135
Figure 4-19: Detailed view of the 60 mm concrete strain gauge with 1m lead wire	.135
Figure 4-20: The inclinometer mounted on the end supporting block	.135
Figure 4-21: Outline of the cracks developed at sections adjacent to the centre stub (a) initiation and development stage (b) ultimate stage after rupture of the tensile bars	.138
Figure 4-22: Load versus vertical displacement of centre stub for assemblages without add bar (specimens 1 to 3).	.139
Figure 4-23: Load versus vertical displacement of centre stub for assemblages with add bar (specimens 4 to 6) from test	.139
Figure 4-24: Load versus rotation of end supporting blocks for assemblages without add bar (specimens 1 to 3).	.140

Figure 4-25: Load versus rotation of end supporting blocks for assemblages with add	
bars (specimens 4 to 6)	.140
Figure 4-26: Load versus strain in tensile steel bars at different locations for specimen	
No. 1 (without add bar).	.141
Figure 4-27: Load versus strain in tensile steel bars at different locations for specimen	
No. 2 (without add bar).	.141
Figure 4-28: Load versus strain in tensile steel bars at different locations for specimen	
No. 3 (without add bar).	.142
Figure 4-29: Load versus strain in tensile steel bars at different locations for specimen	
No. 4 (with add bar).	.142
Figure 4-30: Load versus strain in tensile steel bars at different locations for specimen	
No. 5 (with add bar).	.143
Figure 4-31: Load versus strain in tensile steel bars at different locations for specimen	
No. 6 (with add bar).	.143
Figure 4-32: Load versus strain along tensile bars anchored in the end supporting blocks	
for strain gauge-1.	.144
Figure 4-33: Load versus strain along tensile bars anchored in the end supporting blocks	
for strain gauge-2.	.144
Figure 4-34: Load versus compressive strain in concrete at different locations for	
specimen No. 1 (without add bar).	.145

Figure 4-35: Load versus compressive strain in concrete at different locations for	
specimen No. 2 (without add bar).	145
Figure 4-36: Load versus compressive strain in concrete at different locations for	
specimen No. 3 (without add bar).	146
Figure 4-37: Load versus compressive strain in concrete at different locations for	
specimen No. 4 (with add bar).	146
Figure 4-38: Load versus compressive strain in concrete at different locations for	
specimen No. 5 (with add bar).	147
Figure 4-39: Load versus compressive strain in concrete at different locations for	1.47
specimen No. 6 (with add bar).	147
Figure 5-1: Outline of the floor plan and orientation of columns	154
Figure 5-2: Outline of the geometry, cross-section and reinforcing details for the beam	
assemblages with and without top add bars over the end supports and centre stub	154
Figure 5-3: Uniaxial stress-strain diagram for concrete (300 by 150 mm diameter	157
cymder) under compression.	137
Figure 5-4: Uniaxial stress-strain diagram for N10 longitudinal steel rebar under tension	157
Figure 5-5: The shapes of the Dramix® steel fibres (Bekaert, 2012)	158
Figure 5-6: Uniaxial stress versus elongation of Dramix® 3D, 4D & 5D fibres (Bekaert,	
2012)	158
Figure 5-7: Uniaxial stress-strain diagram for SFRC with 0.5% 5D steel fibres	160

Figure 5-8: Formwork of beam assemblages and end supporting blocks	160
Figure 5-9: Experimental set up for the reinforced concrete beam assemblage	162
Figure 5-10: Schematic outline of the location of (a) steel and (b) concrete strain	
gauges	163
Figure 5-11: LVDT Instrumented for the measurement of the support movement	163
Figure 5-12: Collapse of the beam assemblage due to rupture of steel bars at mid- and	
end-span	165
Figure 5-13: Development of cracks, concrete crushing and bar rupture at sections	
adjacent to (a) centre stub and (b) end block support for beam assemblage No. 4	165
Figure 5-14: Load versus vertical displacement of centre stub for assemblages with 60	
MPa concrete grade with (a) 180 mm and (b) 80 mm stirrup spacing	166
Figure 5-15: Load versus vertical displacement of centre stub for assemblages with 40	
MPa concrete grades with (a) 180 mm and (b) 80 mm stirrup spacing.	167
Figure 5-16: Load versus vertical displacement of centre stub for assemblages with 20	
MPa concrete grades with (a) conventional stirrups and (b) steel fibre reinforcement	
(SFRC/no stirrups).	168
Figure 5-17: Experimental peak load versus compressive strength of concrete	169
Figure 5-18: Load versus end block rotation for assemblages with 60 MPa concrete	
grade (a) with 180 mm stirrups interval (b) with 80 mm stirrups spacing	170

righte 5-17. Load versus end block rotation for assemblages with 40 will a concrete
grade with (a) 180 mm and (b) 80 mm stirrup spacing171
Figure 5-20: Load versus end block rotation for assemblages with 20 MPa concrete
grade with (a) conventional stirrups and (b) steel fibre reinforcement (SFRC/no
stirrups)
Figure 5-21: Load versus end block translation (axial/along beam axis) for assemblages
with 60 MPa concrete grades with (a) 180 mm and (b) 80 mm stirrup spacing
Figure 5-22: Load versus end block translation (axial/along beam axis) for assemblages
with 40 MPa concrete grades with (a) 180 mm and (b) 80 mm stirrup spacing174
Figure 5-23: Load versus end block translation (axial/along beam axis) for assemblages
with 20 MPa concrete grades with (a) conventional stirrups and (b) steel fibre
reinforcement (SFRC/no stirrups) 175
Figure 5-24: (a) The peak load of catenary action for RC and SFRC assemblages (Nos.
Figure 5-24: (a) The peak load of catenary action for RC and SFRC assemblages (Nos. 9 to 12) obtained from test data (b) crushing of concrete in the sections adjacent to end
 Figure 5-24: (a) The peak load of catenary action for RC and SFRC assemblages (Nos. 9 to 12) obtained from test data (b) crushing of concrete in the sections adjacent to end blocks (c) concrete cover cracking & spalling adjacent to centre stub after bar rupture177
 Figure 5-24: (a) The peak load of catenary action for RC and SFRC assemblages (Nos. 9 to 12) obtained from test data (b) crushing of concrete in the sections adjacent to end blocks (c) concrete cover cracking & spalling adjacent to centre stub after bar rupture177 Figure 5-25: Load versus strain in tensile steel bars at different locations for specimens
 Figure 5-24: (a) The peak load of catenary action for RC and SFRC assemblages (Nos. 9 to 12) obtained from test data (b) crushing of concrete in the sections adjacent to end blocks (c) concrete cover cracking & spalling adjacent to centre stub after bar rupture
 Figure 5-24: (a) The peak load of catenary action for RC and SFRC assemblages (Nos. 9 to 12) obtained from test data (b) crushing of concrete in the sections adjacent to end blocks (c) concrete cover cracking & spalling adjacent to centre stub after bar rupture 177 Figure 5-25: Load versus strain in tensile steel bars at different locations for specimens (a) No. 1 and (b) No. 2
 Figure 5-24: (a) The peak load of catenary action for RC and SFRC assemblages (Nos. 9 to 12) obtained from test data (b) crushing of concrete in the sections adjacent to end blocks (c) concrete cover cracking & spalling adjacent to centre stub after bar rupture
Figure 5-24: (a) The peak load of catenary action for RC and SFRC assemblages (Nos. 9 to 12) obtained from test data (b) crushing of concrete in the sections adjacent to end blocks (c) concrete cover cracking & spalling adjacent to centre stub after bar rupture 177 Figure 5-25: Load versus strain in tensile steel bars at different locations for specimens (a) No. 1 and (b) No. 2

Figure 5-28: Load versus strain in tensile steel bars at different locations for specimens	
(a) No. 7 and (b) No. 8.	181
Figure 5-29: Load versus strain in tensile steel bars at different locations for specimens	
(a) No. 9 and (b) No. 10.	182
Figure 5-30: Load versus strain in tensile steel bars at different locations for specimens	
(a) No. 11 and (b) No. 12.	183
Figure 5-31: Load versus compressive strain in concrete at different locations for	
specimens (a) No. 1 and (b) No. 2.	184
Figure 5-32: Load versus compressive strain in concrete at different locations for	
specimens (a) No. 3 and (b) No. 4.	185
Figure 5-33: Load versus compressive strain in concrete at different locations for	
specimens (a) No. 5 and (b) No. 6.	186
Figure 5-34: Load versus compressive strain in concrete at different locations for	
specimens (a) No. 7 and (b) No. 8.	187
Figure 5-35: Load versus compressive strain in concrete at different locations for	
specimens (a) No. 9 and (b) No. 10.	188
Figure 5-36: Load versus compressive strain in concrete at different locations for	
specimens (a) No. 11 and (b) No. 12.	189
Figure 6-1: The uniaxial stress-strain law for concrete (Cervenka et al., 2005)	197
Figure 6-2: Exponential crack-opening law (Hordijk, 1991)	199

Figure 6-3: Linear crack-opening law	199
Figure 6-4: Linear softening based on local strain	199
Figure 6-5: Steel fibre reinforced concrete (SFRC) based on fracture energy.	199
Figure 6-6: Steel fibre reinforced concrete (SFRC) based on strain.	200
Figure 6-7: Softening displacement law in compression.	201
Figure 6-8: Smeared crack concept (a) fixed-crack and (b) rotated crack model	203
Figure 6-9: Definition of crack/crush bands.	203
Figure 6-10: Bond-slip law adopted in CEB-FIP model code 1990.	204
Figure 6-11: Coordinate systems of the six-node triangular element	206
Figure 6-12: Adopted procedure for element formation (a) composition of two	
triangular elements and (b) the resulted quadrilateral element.	207
Figure 6-13: Sub-division of the quadrilateral element.	211
Figure 6-14: Geometry of CCIsoTruss elements.	212
Figure 6-15: Outline of the H-shaped sub-assemblage tested by Lahlouh and Waldron	
(1992)	218
Figure 6-16: The outline of the finite element mesh used for modelling the H-shaped	
sub-assemblage tested by Lahlouh and Waldron (1992).	219
Figure 6-17: Load versus mid-span deflection response of the H-shape sub-assemblage	
tested by Lahlouh and Waldron (1992)	219

Figure 6-18: Adopted (a) bending moment-rotation relationship for nodal springs	
capturing strain penetration and (b) procedure for calculating the stiffness of springs	223
Figure 6-19: Outline of the adopted stress-strain model for (a) concrete (b) reinforcing	226
Steel.	220
Figure 6-20: Flowchart for calculating the adjusted ultimate strain of embedded steel	
bars according to Lee et al. (2011) crack analysis method.	227
Figure 6-21: Outline of the geometry, cross-section and reinforcing details for the beam assemblage tested by Bazan (2008)	229
	>
Figure 6-22: Load – mid span deflection of the RC beam assemblage tested by Bazan	
(2008)	229
Figure 6-23: Rotations over 190 mm of the beam length measured from the faces of (a)	
the centre stub and (b) end support versus mid-span deflection for the RC beam sub-	
assemblage tested by Bazan (2008).	230
Figure 6-24: Strain in tensile steel bars versus mid-span deflection at a section in the	
vicinity of (a) end RC block (b) centre stub (Bazan, 2008, Sasani et al., 2011)	231
Figure 6-25: Outline of the geometry, cross-section and reinforcing details for the frame	
tested by Stinger (2011).	232
Figure 6-26: Load versus vertical displacement at top of removed column in the frame	
tested by Stinger (2011).	234
Figure 6-27: Outline of the generic model adopted in the numerical study	237

Figure 6-28: Outline of the iterative procedure adopted for calibrating the stiffness of	
rotational springs which represent the end supports/bollards.	238
Figure 6-29: Load versus vertical displacement of centre stub captured by the modified	
1D FE model for sub-assemblages reinforced with low-ductility steel bars (a) without	
add bar (Nos. 1 to 3) and (b) with add bars (Nos. 4 to 6).	240
Figure 6-30: Load versus vertical displacement of centre stub captured by the enhanced	
1D FE model with (W/) and without (W/O) strain penetration effect included for sub-	
assemblages reinforced with low-ductility steel bars (a) without adds bar (Nos. 1 to 3)	
and (b) with add bars (Nos. 4 to 6)	241
Figure 6-31: Outline of the FE mesh with different end supports (a) according to test	
setup (Model I) (b) transnationally-fixed and rotational boundary condition according to	
the test setup (Model II) and (c) fully-fixed end supports (Model III).	246
Figure 6-32: Load versus vertical displacement of centre stub predicted by FE models I	
to III for specimen No. 1 reinforced with normal-ductility steel bars.	247
Figure 6-33: Load versus vertical displacement of centre stub predicted by FE models I	
to III for specimen No. 2 reinforced with normal-ductility steel bars.	247
Figure 6-34: Load versus vertical displacement of centre stub predicted by FE models I	
to III for specimen No. 5 reinforced with normal-ductility steel bars.	248
Figure 6-35: Load versus vertical displacement of centre stub predicted by FE models I	
to III for specimen No. 6 reinforced with normal-ductility steel bars.	248
Figure 6-36: Load versus end block translation (axial/along beam axis) predicted by the	
FE model-I for specimen No. 1 reinforced with normal-ductility steel bars	249

Figure 6-37: Load versus end block translation (axial/along beam axis) predicted by the	
FE model-I for specimen No. 2 reinforced with normal-ductility steel bars.	.250
Figure 6-38: I oad versus end block translation (axial/along beam axis) predicted by the	
righte 0-56. Load versus end block translation (axial/along beam axis) predicted by the	
FE model-I for specimen No. 5 reinforced with normal-ductility steel bars.	.250
Figure 6-39: Load versus end block translation (axial/along beam axis) predicted by the	
FE model-I for specimen No. 6 reinforced with normal-ductility steel bars.	.251
Figure 6-40: Load versus strain in tensile steel bars at different locations predicted by	
FE model-I for specimen No. 2 reinforced with normal-ductility steel bars.	.251
Figure 6.41: Load versus vertical displacement of centre stub predicted by FE model L	
Figure 0-41. Load versus vertical displacement of centre stud predicted by FE model-1	
for specimens (a) Nos. 9 and 10 and (b) Nos. 11 and 12 reinforced with normal-ductility	
steel bars	.252
Figure 6-42: Load versus end block translation predicted by the FE model-I for	
specimens (a) Nos. 9 and 10 and (b) Nos. 11 and 12 reinforced with normal-ductility	
steel bars	.253
Figure 6-43: Load versus strain in tensile steel bars at sections adjacent to centre stub	
and and sympositing blocks and disted by the EE model I for superimons (a) No. 10 and (b)	
and end supporting blocks predicted by the FE model-1 for specimens (a) No. 10 and (b)	
No. 12 reinforced with normal-ductility steel bars.	.254
Figure 6-44: Load versus vertical displacement of centre stub for sub-assemblage No. 9	
(with normal-ductility steel bars) assuming different uniform elongation for top and	
bottom steel bars.	.255

Figure 6-45: Load versus vertical displacement of centre stub for sub-assemblage No.	
10 (with normal-ductility steel bars) assuming different uniform elongation for top and	
bottom steel bars.	256
Figure 6-46: Load versus vertical displacement of centre stub captured by the enhanced	
1D FE model for sub assemblages (a) No. 1 & (b) No. 2 (reinforced with normal	
TD TE model for sub-assemblages (a) No. 1 & (b) No. 2 (remitteed with normal-	0.50
ductility steel bars).	259
Figure 6-47: Load versus vertical displacement of centre stub captured by the enhanced	
1D FE model for sub-assemblages (a) No. 3 & (b) No. 4 (reinforced with normal-	
ductility steel bars).	259
Figure 6-48: Load versus vertical displacement of centre stub captured by the enhanced	
1D FE model for sub-assemblages (a) No 5 & (b) No 6 (reinforced with normal-	
ductility steel hars)	260
	200
Figure 6-49: Load versus vertical displacement of centre stub captured by the enhanced	
1D FE model for sub-assemblages (a) No. 7 and (b) No. 8 (reinforced with normal-	
ductility steel bars).	260
Figure 6-50: Load versus vertical displacement of centre stub captured by the enhanced	
1D FE model for sub-assemblages (a) No. 9 & (b) No. 10 (reinforced with normal-	
ductility steel bars).	261
Figure 6-51: Load versus vertical displacement of centre stub captured by the enhanced	
1D FE model for sub-assemblages (a) No. 11 & (b) No. 12 (reinforced with normal-	
ductility steel bars).	261

xxvii

List of Tables

Table 3-1: Geometrical properties and characteristic of tested samples (Taylor and
Mullin, 2006b, Taylor et al., 2001b, Guice et al., 1986, Bazan, 2008)109
Table 3-2: Adopted material properties and calculated ultimate loading capacity of
samples (Taylor and Mullin, 2006b, Taylor et al., 2001b, Guice et al., 1986, Bazan,
2008)
Table 3-3: Effect of localisation limiters on the predicted loading capacity of the slabs
tested by Taylor et al. (Taylor et al., 2001b)
Table 3-4: Material properties for sub-assembly H-200 tested by Lahlouh and Waldron
(Lahlouh and Waldron, 1992)118
Table 4-1: Details of the longitudinal reinforcement, spacing of stirrups, concrete cover
on top and bottom reinforcement and adjusted ultimate strain of embedded steel bars123
Table 4-2: Strain Gauges Specifications. 126
Table 4-3: Comparison between the peak loads of the beam assemblages from tests and
simula plastia analysia
simple plastic analysis
Table 5-1: Concrete compressive strength and details of the longitudinal reinforcement
and concrete cover on ton and bottom reinforcement 155
Table 6-1: Interpolation functions of CCIsoTruss elements. 212
Table 6-2: Sample Gauss integration points for CCIsoTruss elements with 2 nodes
Table (2) Samula Causa internation as int for COL T 1 (12) 1 (12)
rable o-5. Sample Gauss integration point for CCIsoTruss elements with 5 nodes

Table 6-4: Adopted material properties for the frame tested by Stinger (2011).	233
Table 6-5: Details of specimens with low ductility reinforcement	236
Table 6-6: The adjusted ultimate strain of embedded steel bars	236
Table 6-7: Rotational stiffness of end supports and peak loading capacity of the	
specimens.	238
Table 6-9: Peak load capacity and corresponding horizontal movements of the	
specimens obtained from test data and finite element models	249
Table 6-10: Sensitivity of peak load with respect to the FE mesh size for the beam sub-	
assemblage No.1 (reinforced with normal-ductility steel bars).	257
Table 6-11: Sensitivity of the peak load with respect to the strain \Box c0 for the beam sub-	
assemblage No. 1 (reinforced with normal-ductility steel bars).	257
Table 6-12: Sensitivity of peak load with respect to the FE mesh size for the beam sub-	
assemblage No. 2 (reinforced with normal-ductility steel bars).	257
Table 6-13: Sensitivity of the peak load with respect to the strain \Box c0 for the beam sub-	
assemblage No. 2 (reinforced with normal-ductility steel bars).	257
Table 6-14: The adjusted ultimate strain of embedded steel bars, for twelve sub-	
assemblages reinforced with normal-ductility reinforcement	258
Table 6-15: The arching action peak load and its corresponding displacement captured	
by enhanced 1D frame and 2D continuum-based FE models for sub-assemblages with	_
normal-ductility steel bars	262

Abstract

Research studies have demonstrated that membrane action is primarily a compressive load carrying mechanism that can significantly improves the load-bearing capacity of reinforced concrete beams during extreme loading scenarios such as column loss. However, the behaviour of reinforced concrete (RC) beam assemblages under membrane action has not been thoroughly explored and therefore, the development of the compressive (arching) and tensile (catenary) membrane actions in RC beams should be investigated further by experimental and analytical studies.

Membrane action is affected by various parameters such as compressive strength of the concrete, reinforcement ratio and transverse reinforcement of the beam. However; previously conducted researches indicate that compressive membrane (arching) action is not considerably influenced by reinforcement ratio which was shown to be the critical parameter in development of the tensile membrane (catenary) action. Also, both translational and rotational stiffness of end supports have significant influence on development of membrane action. Development of membrane action in RC members is typically associated with geometrical as well as material nonlinearities (including concrete cracking and crushing, reinforcing bar yielding and fracture) and due to these strong nonlinearities, most of the existing implicit finite element (FE) models and simplified analytical methods fail to adequately capture the compressive and tensile membrane behaviour of RC elements.

The main focus of this research project is to experimentally and numerically investigate development of membrane action in RC beam assemblages. In the experimental program, influence of various parameters including concrete compressive strength,

reinforcement bar arrangement and ratio and boundary conditions on the membrane response of RC beam assemblages following a column loss scenario are investigated. Furthermore, two different classes of nonlinear FE models, i.e. a 1D discrete frame and a continuum-based FE models are developed and data obtained from the experimental program are employed to verify and validate the developed FE models. Using a simplified approach, the influence of steel bar rupture is incorporated into the formulation of an existing flexibility-based frame element and it is shown that the proposed strategy has the ability to adequately model the rupture of steel bars and its implications at global level.

Nomenclature

а	Portion of half depth measured from the centreline in contact with the
	support
<i>a^{<i>i</i>}</i>	Parameter in strain-displacement sub-matrices in quadrilateral
	elements
A_i	Areas of the triangles formed by the internal point and two out of three
	corners of the triangular element
A	Areas of quadrilateral elements, parameter defined in the element
	stiffness sub-matrices
A_s	Area of tensile reinforcement
A _c	Area of tensile chord of concrete
b	Section width
b_i	Parameter in strain-displacement sub-matrices in quadrilateral
	elements
$\overline{\mathbf{b}} \left[x, w(x) \right]$	Force interpolation function
$\mathbf{b}[x, w(x), \theta(x)]$	Interpolation matrix
B , $\frac{t+\Delta t}{t}B_{L0}$	Strain-displacement transformation matrices
${}^{t+\Delta t}_{t}B^{(i-1)}_{{}_{L1}},{}^{t+\Delta t}_{t}B^{(n-1)}_{{}_{NL}}$	-1)
С	Constant calculated from the normalising condition
C_1	Concrete cover on top reinforcement, constant in the exponential
	crack-opening law
<i>C</i> ₂	Concrete cover on bottom reinforcement, constant in the exponential
	crack-opening law

xxxii

<i>C</i> ₃	Strain corresponding to zero stress in linear softening based on local
	strain law
С	Parameter defined in the element stiffness sub-matrices in quadrilateral
	elements
d	Effective depth of a reinforced concrete section, half depth of the wall
d'	Distance of the centroid of top bars measured from the extreme top
	fibre of the section
d_{b}	Diameter of the reinforcing bars
d_{ij}	Coefficient of the matrix of the material stiffness
$\mathbf{d}(x)$	Generalised strain vector of section
D	Matrix of material stiffness in quadrilateral elements
$\overline{\mathbf{D}}(x)$	Internal force vector of the section
$\overline{\mathbf{D}}^*(x)$	Internal force vector of the section due to the member load
$\overline{\mathbf{D}}_p(x)$	Residual plastic force vector at section x of the element
e	Strain vectors in quadrilateral elements
$\mathbf{e}_x, \mathbf{e}_y, \mathbf{g}$	normal and shear strain vectors in quadrilateral elements
E_0	Initial modulus of elasticity for concrete
E _c	Elastic secant modulus of the loading curve of concrete, initial
	modulus of elasticity of concrete
E _{ci}	Secant modulus of elasticity along <i>i</i> direction
E_c^s	Secant modulus of concrete in the equivalent uniaxial stress state
E_c^t	Tangent modulus of concrete
E _e	Elastic secant modulus of the unloading curve of concrete
E_{\min}^{t}	Tangent modulus of concrete in the vicinity of compressive strength

xxxiii

E_s	Modulus of elasticity of steel reinforcing bar
E _{sh}	Secondary hardening modulus of elasticity of steel reinforcing bar
f	Generalised force of the nodal springs
f_{cm}	Average compressive strength of concrete
f_{cp}	Compressive strength of unconfined concrete
f_c^{eq} , f_t^{eq}	Equivalent uniaxial compressive and tensile peak loads for the biaxial
	stress state
$f_{ct,peak}$	Peak average tensile stress of concrete after yielding of reinforcement
$f_{ct,peak, ho_{\min}}$	$f_{ct,peak}$ with ρ_{min}
f_{scr}	Tensile stress of steel reinforcement at crack
$f_{scr,0.1}$	Stress of steel reinforcement at crack when average tensile strain of
	reinforced concrete is 0.1
$f_{\mathit{scr},\varepsilon_{\mathit{t,peak}}}$	Stress of steel reinforcement at crack when the average tensile strain of
	reinforced concrete is $\mathcal{E}_{t,peak}$
$f_{t,peak}$	Peak tensile stress of concrete
f_t	Tensile strength of concrete
f_y	Yield stress of steel reinforcing bar
f_u	Ultimate stress of steel reinforcing bar
f_c'	Characteristic strength of concrete
$\mathbf{f}_{s}(x)$	Flexibility matrix at section x of the element
f_1 , f_2	Tensile strength of concrete in Steel fibre reinforced concrete based on
	fracture energy
F	Flexibility matrix of the simply supported configuration (without rigid

xxxiv

body modes), simulated gravity load from upper stories

$\mathbf{F}(\boldsymbol{\zeta}_i)$	Quadrilateral interpolation function in quadrilateral elements
\mathbf{F}_{sp}	Flexibility matrix of the nodal springs
$\mathbf{F}_{\partial}^{\mathrm{T}}$	Matrix of partial derivatives of the interpolation function in
	quadrilateral elements
G_{f}	Fracture energy needed to create a unit area of stress-free crack
h	Section height
h_i	Interpolation function for truss element
Н	Parameter defined in the element stiffness sub-matrices in quadrilateral
	elements
k	Ratio of initial modulus of elasticity to the elastic secant modulus of
	concrete, Secant modulus of the unloading curve of the nodal springs,
	parameter defining the shape of the stress-strain curve
<i>k</i> ₁	Translational stiffness of the nodal spring at end 1 of the element
<i>k</i> ₂	Translational stiffness of the nodal spring at end 2 of the element
k _i	Initial stiffness of the springs
k _r	Translational stiffness of the nodal spring of the element
k_{T_1}	Axial stiffness of nodal spring at end 1 of the element
k_{T2}	Axial stiffness of nodal spring at end 2 of the element
$k_{ heta_1}$	Rotational stiffness of the nodal spring at end 1 of the element
$k_{ heta 2}$	Rotational stiffness of the nodal spring at end 2 of the element
$k_{ heta}$	Rotational stiffness of the nodal spring of the element
$^{i}k_{ heta(b)}$	Rotational stiffness of the support at i th iteration
$k_{ heta(b-L)}$	Rotational spring at left support due to the bollard stiffness

XXXV

$k_{ heta(b-R)}$	Rotational spring at right support due to the bollard stiffness
$k_{ heta(s-L)}$	Rotational spring at left support due to strain penetration
$k_{ heta(s-R)}$	Rotational spring at right support due to strain penetration
$\mathbf{k}_{s}(x)$	Secant stiffness matrix at section x of the element
K	Stiffness matrix of the simply supported generic beam with nodal
	springs, stiffness matrix of the element in quadrilateral elements
$\mathbf{K}_{uu}, \mathbf{K}_{uv},$	Stiffness sub-matrices of the element in quadrilateral elements
\mathbf{K}_{vv}	
$\mathbf{K}_{_{ee}},\mathbf{K}_{_{ei}},$	Stiffness sub-matrices of the 5-node quadrilateral elements
\mathbf{K}_{ie} , \mathbf{K}_{ii}	
l	Member length after deformation, length of the truss element
l_0	Member length before deformation
l_{01}, l_{02}	Position of curtailment
l _n	Clear span of RC beams/slabs
^t l	Length of the truss element at the reference time <i>t</i>
$^{t+\Delta t}l^{(i)}$	Length of the truss element at the time $t + \Delta t$ and i th iteration
$\frac{\partial^{t} l}{\partial r}$	Differential of the length of the truss element at the reference time t
$\frac{\partial^{t+\Delta t} l^{(i)}}{\partial r}$	Differential of the length of the truss element at the time $t+\Delta t$ and i th
	iteration
L	Span of RC beams/slabs, half length of rigidly restrained wall
L_1	Length of RC slabs along the shorter span
L_2	Length of RC slabs along the longer span
L_d	Crack/crush band size in concrete
	xxxvi

L_r	Half span of equivalent rigidly restrained wall
$M_{[L]}$	Bending moment at left support
$M_{[R]}$	Bending moment at right support
^{i}M	Bending moment of support at i th iteration
M(x)	Internal bending moment of support
Ν	Resisting force of failing column
N(x)	Internal axial force of the section
0	Null matrix
Р	Vertical concentrated load
P(u)	Arching action force generated in the compressive blocks of the wall
q	Generalised displacement of the nodal springs
q	Nodal displacement vector in the system with rigid body modes
q_1	Nodal displacement along x axis at end A of the element in the system
	with rigid body modes
q_2	Nodal displacement along y axis at end A of the element in the system
	with rigid body modes
q_3	Nodal rotation about z axis at end A of the element in the system with
	rigid body modes
q_4	Nodal displacement along x axis at end B of the element in the system
	with rigid body modes
q_5	Nodal displacement along y axis at end B of the element in the system
	with rigid body modes
q_{6}	Nodal rotation about z axis at end B of the element in the system with
	rigid body modes

xxxvii

q_e	Elastic component of the generalised displacement of nodal springs
<i>q</i> _p	Plastic component of the generalised displacement of the nodal springs
q_{p1}	Generalised plastic translation of nodal spring at end 1 of the element
q_{p2}	Generalised plastic translation of the nodal spring at end 2 of the
	element
$q_{ heta p1}$	Generalised plastic rotation of the nodal spring at end 1 of the element
$q_{\theta p2}$	Generalised plastic rotation of the nodal spring at end 2 of the element
$\overline{\mathbf{q}}$	Generalised nodal deformation vector of the compound element
\overline{q}_1	Horizontal displacement component of the generalised nodal
	deformation at end A of the compound element
\overline{q}_2	Rotation component of the generalised nodal deformation at end A of
	the compound element
\overline{q}_3	Rotation component of the generalised nodal deformation at end B of
	the compound element
$\overline{\mathbf{q}}_{p}$	Generalised plastic deformation vector excluding the nodal springs
$\overline{\mathbf{q}}_{p_r}$	Generalised plastic deformation vector of the nodal springs
$\overline{\mathbf{q}}^*$	Nodal generalised deformation vector due to member loads
$\overline{\mathbf{q}}'$	Generalised deformation vector excluding the nodal springs without
	rigid body mode
\overline{q}_1'	Generalised horizontal displacement at end A of the element excluding
	the displacement of the nodal spring
\overline{q}_1''	Generalised horizontal displacement at end B of the element excluding
	the displacement of the nodal spring
$\overline{q}_{2}^{\prime}$	Generalised rotation at end A of the element excluding the
xxxviii	

displacement of the nodal spring

$\overline{q}_{3}^{"}$	Generalised rotation at end B of the element excluding the
	displacement of the nodal spring
Q	Nodal force vector in the system with rigid body modes, parameter
	defined in the element stiffness sub-matrices
Q_1	Nodal force along x axis at end A of the element in the system with
	rigid body modes
Q_2	Nodal force along y axis at end A of the element in the system with
	rigid body modes
Q_3	Nodal moment about z axis at end A of the element in the system
	with rigid body modes
Q_4	Nodal force along x axis at end B of the element in the system with
	rigid body modes
Q_5	Nodal force along y axis at end B of the element in the system with
	rigid body modes
Q_6	Nodal moment about z axis at end B of the element in the system
	with rigid body modes
$\overline{\mathbf{Q}}$	Nodal force vector
$\overline{\mathcal{Q}}_1$	Horizontal force at end A
$\overline{\mathcal{Q}}_2$	Bending moment at end A
$\overline{\mathcal{Q}}_3$	Bending moment at end B
Q*	Nodal generalised force vector due to member loads
r	Distance between source point and averaging point, coordinate along
	the length of the truss element

xxxix

r(u)	Moment arm of the arching force
R	Interaction radius, geometric and material property parameter for
	arching, vector of resisting nodal forces
S	Stirrup spacing, stress vectors in quadrilateral elements
s_1, s_2, s_3	Bar slip in bond-slip law adopted by CEB-FIP model code
S	Area of the sub-triangle in quadrilateral elements
S_y	Rebar slip at member interface under yield stress
${}^{t+\Delta t}_{t} \underline{S}^{(i-1)},$	Stress matrices based on the 2 nd Piola-Kirchhoff formulation
${t+\Delta t \atop t} S^{(i-1)}_{\scriptscriptstyle 11}$	
t	Element thickness, time
Т	Force transformation matrix
\mathbf{T}^{*}	Displacement transformation matrix
$t+\Delta t \atop t S^{(i)}_{ij}$	Stress tensors at i^{th} iteration
и	Normalised deflection at the centre of the wall
u , v	Nodal displacement vectors in 2D space with six components
	in quadrilateral elements
$\mathbf{u}(\zeta_i), \mathbf{v}(\zeta_i)$	Displacement components at any internal point in terms of triangular
	coordinates in quadrilateral elements
<i>u</i> _i	Horizontal components of nodal displacement in quadrilateral
	elements
$u^{k(i)}{}_{j}$	Translation of node k on the truss element along j axis at i^{th} iteration
${}_{t}u_{i,j}^{(i)}$	Change in translation along i direction at time t with respect to
	direction j
${}^{t+\Delta t}_{t}u_{k,j}^{(i-1)}$	Change in translation along <i>i</i> direction at time interval Δt with respect

xl

to direction j

U, V	Strain-displacement sub-matrices in quadrilateral elements
<i>v</i> _i	Vertical components of nodal displacement in quadrilateral elements
V	Volume of the element in quadrilateral elements
V(x)	Section internal shear force
${}^{t}V$, ${}^{t+\Delta t}V$	Volume of the structure at times <i>t</i> and $t + \Delta t$
W	Vertical concentrated load, deflection at the centre of the wall, crack
	width derived from the strain according to the crack band theory
W _c	Crack width at the complete release of stress
Wd	Crushing displacement of concrete
w(x)	Vertical deflection of the element at section x
W ₀	Mid-span deflection of RC beams/slabs
$x_{i,j}y_i$	Cartesian coordinates of node <i>i</i> in a sub-triangle
$t^{t}x_{i}$	Coordinate of an arbitrary point along <i>i</i> axis on the truss element at
	reference time <i>t</i>
${}^{t}x{}^{j}{}_{i}$	Coordinate of a nodal point on the truss element at reference time t
$^{t+\Delta t}x^{(i)}{}_{j}$	Coordinate of a nodal point on the truss element at time $t+\Delta t$ and i^{th}
	iteration
$^{t}\mathbf{\underline{X}}$	Vector of the coordinates of an arbitrary point on the truss element at
	reference time <i>t</i>
${}^{t+\Delta t}\underline{X}^{(i)}$	Vector of the coordinates of an arbitrary point on the truss element at
	time $t + \Delta t$ and i^{th} iteration.
${}^{t+\Delta t}_{t}X^{(i)}_{1,1}$	Element deformation gradient
У	Distance of an arbitrary fibre from the neutral axis, coordinate
	measured along the wall thickness

xli

α	Parameter controlling the local bond-slip relationship, the fraction of
	half depth in contact with the support
αd	Length of the contact area (α is a pure number)
$\alpha(r)$	Gauss distribution function
Δ	Mid-span deflection of RC beams/slabs
δ	Mid-span deflection of RC beams/slabs, shortening of material in
	contact with support at distance y
$\delta_{\scriptscriptstyle 0}$	Maximum shortening of material at extreme fibre
ε	Concrete strain
$\overline{\mathcal{E}}$	Concrete non-local strain
$\mathcal{E}_c, \mathcal{E}_{c0}$	Plastic strain of concrete
${\cal E}_{cr}$	Cracking strain of concrete
E _{cu}	Ultimate strain of concrete
\mathcal{E}_d	Limit compressive strain of concrete
ε^{eq}	Equivalent uniaxial strain
E _{ex}	Elastic component of the total axial strain at fibre located at distance
	y from the neutral axis
$_{t}oldsymbol{\mathcal{E}}_{ij}^{(i)}$	Increment of Green Lagrange strain at time $t + \Delta t$ and i^{th} iteration to
	configuration at time <i>t</i>
${t+\Delta t \atop t} {\cal E}^{(i)}_{ij}$	Strain tensors at i^{th} iteration, Green Lagrange strain at time $t + \Delta t$ and
	i^{th} iteration to configuration at time t
\mathcal{E}_p	Plastic strain of steel reinforcing bar
\mathcal{E}_{px}	Plastic component of the total axial strain at fibre located at distance y
	from the neutral axis

xlii

${\mathcal E}_r$	Section increment of axial strain
\mathcal{E}_{sh}	Hardening strain of concrete
$\mathcal{E}_{t,peak}$	Average tensile strain of reinforced concrete at $f_{t,peak}$
\mathcal{E}_{u}	Ultimate strain of steel reinforcing bar
$\mathcal{E}_{u,a}$	Adjusted ultimate strain of embedded steel bars
\mathcal{E}_{x}	Total axial strain at fibre located at distance y from the neutral axis,
	normal strain components along x axis in quadrilateral elements
\mathcal{E}_{xi}	Horizontal component of nodal normal strain vector along x axis in
	quadrilateral elements
\mathcal{E}_{y}	Yield strain of steel reinforcing bar, normal strain components along y
	axis in quadrilateral elements
${\cal E}_{yi}$	Horizontal component of nodal normal strain vector along x axis in
	quadrilateral elements
γ	Shear (engineering) strain in quadrilateral elements
γ_i	Component of nodal shear (engineering) strain vector in quadrilateral
	elements
К	Section curvature of the element about z axis
θ	Angle of rotation of half wall considered as a rigid body
$\theta(x)$	Rotation of the element at section x
$ heta_{[L]}$	Rotation at the left support
θ_r	Rigid body rotation of the member
$ heta_{[R]}$	Rotation at the right support
θ_{u}	Rotation corresponding to ultimate flexural capacity of the section
θ_y	Rotation corresponding to nominal flexural capacity of the section
	xliii

ρ	Reinforcing ratio for the bottom bars
ho'	Reinforcing ratio for the top bars
$ ho_{ m min}$	Minimum reinforcement ratio
$ ho_s$	Reinforcement ratio
σ	Normal stress at the crack
σ_c^{eq}	Effective stress state of concrete
σ_{c}	The stress corresponding to the equivalent uniaxial strain
σ_{ci}	The stress corresponding to the equivalent uniaxial strain along <i>i</i>
	direction
σ_{x}	Stress at section x of the element
$ au_b$	Bond stress between concrete and reinforcing bar
$ au_{f}$	Bond stress between concrete and reinforcing bar at failure
$\tau_{\rm max}$	Maximum bond stress between concrete and reinforcing bar
ω	Damage index for nodal spring
$\omega(\bar{\varepsilon})$	Concrete damage parameter as the function of concrete non-local
	strain
ω_{T_1}	Axial damage index for nodal spring at end 1 of the element
ω_{T2}	Axial damage index of nodal spring at end 2 of the element
$\mathcal{O}_{ heta_1}$	Rotational damage index of nodal spring at end 1 of the element
$\omega_{_{ heta2}}$	Rotational damage index of nodal spring at end 2 of the element
ξ	Position vector of the source and averaging points
ζ_i	Triangular (natural) coordinates in quadrilateral elements

xliv