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“You must be shapeless, formless, like water. When you pour water in a cup, it becomes
the cup. When you pour water in a bottle, it becomes the bottle. When you pour water

in a teapot, it becomes the teapot. Water can drip and it can crash. Become like water

my friend.”

Bruce Lee



Abstract

In this thesis, we develop several new simulation-based algorithms for solving some im-
portant classes of optimal stochastic control problems. In particular, these methods
are aimed at providing good approximate solutions to problems that involve a high-
dimensional underlying processes. These algorithms are of the primal-dual kind and
therefore provide a gauge of the distance to optimality of the given approximate solu-
tions to the optimal one. These methods will be used in the pricing of the multiple-
exercise option. In Chapter 1, we conduct a review of the literature that is relevant to
the pricing of the multiple-exercise option and the primal and dual methods that we will

be developing in this thesis.

In the next two chapters of the thesis, we focus on regression-based dual methods for
optimal multiple stopping problems in probability theory. In particular, we concentrate
on finding upper bounds on the price of the multiple-exercise option as it sits within this
framework. In Chapter 2, we derive an additive dual for the multiple-exercise options
using financial arguments, and see that this approach leads to the construction of an
algorithm that has greater computational efficiency than other methods in the litera-
ture. In Chapter 3, we derive the first known dual of the multiplicative kind for the

multiple-exercise option and devise a tractable algorithm to compute it.

In the penultimate chapter of the thesis, we focus on a new class of algorithms that
are based on what is known as convex switching system. These algorithms provide ap-
proximate solutions to the more general class of optimal stochastic switching problems.
In Chapter 4, techniques based on combinations of rigorous theory and heuristics argu-
ments are used to improve the efficiency and applicability of the method. We then devise
algorithms of the primal-dual kind to assess the accuracy of this approach. Chapter 5

concludes.
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