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“You must be shapeless, formless, like water. When you pour water in a cup, it becomes

the cup. When you pour water in a bottle, it becomes the bottle. When you pour water

in a teapot, it becomes the teapot. Water can drip and it can crash. Become like water

my friend.”

Bruce Lee



Abstract

In this thesis, we develop several new simulation-based algorithms for solving some im-

portant classes of optimal stochastic control problems. In particular, these methods

are aimed at providing good approximate solutions to problems that involve a high-

dimensional underlying processes. These algorithms are of the primal-dual kind and

therefore provide a gauge of the distance to optimality of the given approximate solu-

tions to the optimal one. These methods will be used in the pricing of the multiple-

exercise option. In Chapter 1, we conduct a review of the literature that is relevant to

the pricing of the multiple-exercise option and the primal and dual methods that we will

be developing in this thesis.

In the next two chapters of the thesis, we focus on regression-based dual methods for

optimal multiple stopping problems in probability theory. In particular, we concentrate

on finding upper bounds on the price of the multiple-exercise option as it sits within this

framework. In Chapter 2, we derive an additive dual for the multiple-exercise options

using financial arguments, and see that this approach leads to the construction of an

algorithm that has greater computational efficiency than other methods in the litera-

ture. In Chapter 3, we derive the first known dual of the multiplicative kind for the

multiple-exercise option and devise a tractable algorithm to compute it.

In the penultimate chapter of the thesis, we focus on a new class of algorithms that

are based on what is known as convex switching system. These algorithms provide ap-

proximate solutions to the more general class of optimal stochastic switching problems.

In Chapter 4, techniques based on combinations of rigorous theory and heuristics argu-

ments are used to improve the efficiency and applicability of the method. We then devise

algorithms of the primal-dual kind to assess the accuracy of this approach. Chapter 5

concludes.
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Chapter 1

Introduction

When pricing financial derivatives, models that are based on a high-dimensional under-

lying stochastic process (or several processes) are chosen when there are many sources

of risk. Multiple sources of risk may arise when pricing derivatives on multiple assets

such as basket options or when trying to capture the dynamics of entire yield curves

or forward curves. Monte Carlo simulation is the method of choice when pricing with

such models due to its distinct advantage - which is that its convergence rate is typically

independent of the dimension of the process.

Unfortunately, simulation methods in the case of early-exercisable products are not

without their drawbacks, the principal one being that the optimal exercise strategy along

each simulated path is unknown. While the optimal strategy may be approximated to

some degree, any simulation using a suboptimal strategy leads to a lower bound on the

price. The severity of such a mispricing is often ameliorated by using a more advanced

simulation method to compute an upper bound on the price, giving the seller of the

option indicative bounds of where the true price should be.

The combination of these two methods is known as primal-dual simulation where the

primal method refers to that which gives us a lower bound and the dual refers to that

which yields an upper one. By coupling these two approximate solutions, primal-dual

simulation achieves a measure of the distance of these approximations to the optimal

solution.

The quality of approximated exercise strategies are in turn heavily reliant on how well

value functions are approximated at each of the time steps. In this thesis, we study

1



Chapter 1. Introduction 2

simulation methods based on two different ways of approximating value functions. The

first way is the well-known regression based-method where the value function is repre-

sented by a suitably parameterized set of basis functions. The second is based on what

is known as a convex switching system (CSS) which approximates value functions by a

linear combination of piecewise-linear convex functions.

The main application of the methods in this thesis will be the pricing of multiple-exercise

options. Therefore, in Section 1.1, we introduce multiple-exercise options and explain

their raison d’etre, which is primarily to hedge against volumetric risk - the uncertainty

in the desired quantity of the underlying to be bought or sold at a predetermined price.

In Section 1.2, we highlight the seminal works in the area of optimal multiple stopping

and give an intuitive explanation as to why multiple-exercise options sit within this

framework.

Connections between multiple stopping and primal-dual methods are drawn in Sections

1.3 and 1.4. In these sections, we provide a review of primal-dual methods for the

pricing of the Bermudan option. Advances in these methods and recent attempts to

extend them to the multiple-exercise case are discussed.

In Section 1.5, we turn our attention to CSS methods. We describe the philosophy

behind it and how it seeks to overcome the some of the shortcomings of regression-based

methods.

1.1 Multiple-exercise options

The multiple-exercise option is an early-exercisable derivative that gives the holder a

fixed number of rights to buy or sell the underlying at a predetermined price at any

time from its commencement up to and including its expiry. The American/Bermudan

option is a special case of the multiple-exercise option where the holder has only one

right.

Various methods such as trees, stochastic meshes and finite difference methods have been

proposed for computing prices for both kinds of options. However, Monte Carlo simu-

lation becomes the method of choice for computing prices for multiple-exercise options

when the dimension of the underlying process is high.
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While multiple-exercise options appear in interest rate markets, they are more predom-

inant in various commodity markets in particular oil, gas and electricity. A concise

summary of the different types of multiple-exercise options can be found in Carmona

and Ludkovski [2010]. We will describe one such contract that will be of relevance to

this thesis - the swing option but stress that the methods developed in this thesis are

flexible enough to price other options with multiple-exercise features.

Swing options are widely used energy markets and play an important role in risk man-

agement for energy providers. To see why, consider the simple example of an electric

company that requires gas on a daily basis and wishes to hedge against the uncertainty

of daily prices over a given period. They may enter into an agreement with an invest-

ment bank to buy 10,000 MMBtu (million British Thermal Units) per day at a fixed

price of $2.00/MMBtu to meet their average generating needs. However, suppose there

is a cold snap on one of the days resulting in an unexpected increase in demand for elec-

tricity and thus gas. The electric company therefore needs to somehow hedge against

the uncertainty of daily gas prices and the uncertainty of demand.

A swing option addresses both issues by giving the purchaser a periodic delivery of the

underlying over a fixed period of time at an initial contracted volume while also affording

the right to vary (or “swing”) this volume over the life of the contract subject to certain

restrictions. Such restrictions may include a minimum/maximum of the daily volume

purchased, a minimum/maximum of the total volume purchased and/or a limit to the

maximum number of times you can “swing” this contract. Another popular restriction

is the observance of a minimum waiting times between exercises which is also known as a

refraction period. Furthermore, we note the existence of contracts with added provisions

that allows for the holder to violate such restrictions at the cost of incurring penalties.

For the specification of a multi-year swing contract with a large number of different

provisions, we refer the reader to Chiarella et al. [2012].

1.2 Optimal multiple stopping

The relationship between the single-exercise case (the Bermudan option) and optimal

stopping has been the subject of numerous papers and is already well known in the

area of financial mathematics. Optimal stopping is a topic in probability theory whose
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treatment deserves more than what we can provide for in this thesis. We thus refer

the reader to the monograph Peskir and Shiryaev [2006]. The pricing multiple-exercise

options naturally finds itself under the optimal multiple stopping umbrella.

As the later chapters are mathematically rigorous and notation heavy, we shall attempt

to provide some intuition behind the classification of the multiple-exercise option as

an optimal multiple stopping problem. Central to this classification is the concept of

information which we will now explain. The probabilistic view of stochastic processes

is that any realisation of a process has already occurred but we as the observers are

denied knowledge of the path it has taken going forwards. However, time is a friend who

gradually reveals this path to us, giving us more information about the process. Finding

the set of times at which it is optimal in a probabilistic sense to exercise these rights is

an exercise of making the best decision given the information we have so far.

Let us define the difference between the value of an option with N − 1 rights and that

of an option with N rights as the marginal value of the N -th right. Note that in terms

of information, the marginal value will be known to us at any point in time as it is

an expectation of the discounted future payoff of an extra right. In probability theory,

a stopping time is a random variable whose value is interpreted as the time at which

a given stochastic process exhibits a certain behavior of interest. This “behavior of

interest” can only be determined by the information available to up until that point.

The stochastic process in question here is the value of the immediate payoff of a given

right and the “behavior of interest” is the time at which it exceeds its marginal value.

Modelling the optimal exercise time as a stopping time enforces the subtle point that

the decision to exercise at any given date has to be based only on information available

up until that point, and subsequently eliminates the possibility of choosing a “better”

time if one had the ability of clairvoyance! We conclude this discussion by stating that

the value of the multiple-exercise option is the expected value of the cumulative sum of

processes which are evaluated at the optimal set of stopping times.

Carmona and Touzi [2008] were the first to identify the connection between the pricing

of multiple-exercise options and the optimal multiple stopping paradigm in probability

theory. While their paper was motivated by the need to price such options, the existence

of a set of optimal stopping times under the assumption of continuity of the underlying

dynamics was proven. They study the option in the case of Geometric Brownian Motion



Chapter 1. Introduction 5

and by introducing appropriate Snell envelopes, show that the optimal multiple-stopping

problem can be reduced to a sequence of ordinary optimal stopping problems that can

be solved iteratively. The reduction of the multiple stopping problem to a series of single

stopping problems goes back to the seminal work of Haggstrom [1967].

Perhaps the most important contribution of their paper was that it sparked a renewed

interest in the area of optimal multiple stopping, which had until then received very

little attention by probability theorists. What followed was an extension of the work

of their to the more general case of linear diffusions in Carmona and Dayanik [2008].

Furthermore, Kobylanski et al. [2011] proved the existence result for optimal multiple

stopping times in the case where the underlying process is right continuous with left

limits. The development of dual approaches to optimal multiple stopping problems

soon followed and will be included in the discussion on dual simulation methods for

multiple-exercise options in Section 1.4.

1.3 Primal simulation methods

In terms of numerical solutions to the problem, the multiple-stopping framework nat-

urally extends itself to Monte-Carlo simulation in the following way - if we had a way

of approximating the optimal stopping times, then we can evaluate the aforementioned

expected cumulative sum by taking the average of sums of simulated stopped processes.

This is known as primal simulation.

Over the last two decades, we have witnessed an explosion in the literature on simula-

tion methods for single-exercise as well as multiple-exercise options. Primal simulation

methods include the popular regression-based least squares Monte Carlo (LSM) method

(Carriere [1996], Longstaff and Schwartz [2001], Tsitsiklis and Van Roy [2001]) and

the iterative exercise boundary method of Ibanez and Zapatero [2004]. These methods

have been successfully applied to the multiple-exercise case in Meinshausen and Ham-

bly [2004] and Ibanez [2004] respectively. Improved lower bounds for Bermudans can

be obtained using the practical policy iteration method of Kolodko and Schoenmakers

[2006] and is extended to the multiple-exercise case in Bender and Schoenmakers [2006].

Further improvements to regression-based methods and the policy iteration method can
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be found in Beveridge et al. [2013]. The following pseudo-algorithm provides a general

idea of how these methods work for the single-exercise case.

Pseudo-algorithm 1: Single-exercise primal simulation

1. Find an approximate exercise strategy.

2. Simulate a set of paths of the state variables, terminating each path once the

strategy indicates exercise and compute the discounted payoff there.

3. Average the discounted payoffs over all paths.

These methods differ in their implementation of this framework. We provide a quick

summary of the LSM method, which is by far the most popular and will be the method

of choice in this thesis.

The LSM method produces exercise strategies by a functional approximation of the

continuation value of the option at each step. The continuation value of the option

at a given time is the value of the option if exercise does not occur there. Suppose

{Xt}t=0,...,T = {X0, . . . , XT } is a d-dimensional discrete time Markov Chain that rep-

resents the state variables on the time interval 0, 1, . . . , T . At time t = 0, 1, . . . , T , let

Zt(Xt) denote the cash flow upon exercise and Ct(Xt) be the continuation value of the

option. The LSM method first requires us to make a judicious choice of basis functions

(ψt,r : Rd → Rd, r = 1, . . . , Rt) where the number of functions Rt may be allowed vary

with time. The approximate value of the option at time t obtained via a parameterized

set of basis functions is given as

ct(Xt) =

Rt∑
r=1

βt,rψt,r(Xt)

where βt,1, . . . , βt,Rt are the coefficients that need to be determined. The following pro-

cedure describes how one uses a sequence of regressions to compute these coefficients.

Pseudo-algorithm 2: Determining basis function coefficients for 1 right

1. Simulate a sufficiently large number of paths of {Xt}t=0,...,T .
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2. We start at the penultimate time step T − 1 and determine the paths that are

in-the-money. For each of these paths, we evaluate the cash flows occurring at T

and discount it to T − 1. This will give us the regressands. The regressor will be

the basis functions evaluated at T − 1 (i.e. ψT−1,1(XT−1), . . . , ψT−1,RT−1
(XT−1))

for each path. Perform a regression to find the coefficients βT−1,1, . . . , βT−1,RT−1
.

3. For each t from T − 2 to 1, the regressors are again the basis functions evalu-

ated at of the in-the-money paths. The regressands for each path are given by

finding Zt+k(Xt+k) where k = min{1, . . . , T − t : Zt+k(Xt+k) ≥ ct+k(Xt+k)} and

discounting it to time t. Each ct+k(Xt+k) can be computed since we have already

computed the necessary coefficients in the previous steps. Perform a regression to

find the coefficients βt,1, . . . , βt,Rt .

We have this seen that the LSM method obtains an exercise strategy at any time for

a given realisation of the state variable by comparing the approximated continuation

value and the immediate payoff from exercise.

The following pseudo-algorithm provides a general idea of how these methods work for

the multiple-exercise case for an option with N rights where N is a positive integer.

Pseudo-algorithm 3: Multiple-exercise primal simulation

1. Find an approximate exercise strategy for the first right.

2. For n = 2 To N : Use the approximate exercise strategy for the (n− 1)-st right to

approximate an exercise strategy for the (n)-th right.

3. Simulate a set of paths of the state variables.

4. On each path, find the sequence of times at which the exercise strategy for each

of the remaining right indicates exercise and sum the discounted payoffs at these

times.

5. Average the sums of discounted payoffs over all paths.

To compute exercise strategies and lower bounds throughout the next two chapters,

we shall use a straightforward extension of the LSM method to the multiple-exercise

case that is described in Section 3.1 of Schoenmakers [2012]. At times t = 0, . . . , T , let
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C
(n)
t (Xt) denote the continuation value of the multiple-exercise option with n remaining

rights and c
(n)
t (Xt) be its approximation using the set of basis functions

(ψ
(n)
t,r : Rd → Rd, r = 1, . . . , R

(n)
t ).

where

c
(n)
t (Xt) =

R
(n)
t∑
r=1

β
(n)
t,r ψ

(n)
t,r (Xt)

with coefficients (β
(n)
t,r )

t=1,...,R
(n)
t

.

The coefficients for the n-th right are found in the same way as we did for the single-

exercise case except that the regressands are now given by the payoff plus the continu-

ation value and the condition for exercise at a time t is given by Zt(Xt) + c
(n−1)
t (Xt) ≥

c
(n)
t (Xt).

Pseudo-algorithm 4: Determining basis function coefficients for n rights

1. Simulate a sufficiently large number of paths of X.

2. Determine the paths that are in-the-money at T − 1. For these paths, the regres-

sands are the cash flows ZT (XT ) occurring at T that are discounted to T − 1.

The regressants will be the basis functions evaluated at T − 1 along each path

(i.e. ψ
(n)
T−1,1(XT−1), . . . , ψ

(n)
T−1,RT−1

(XT−1)) and we perform a regression to find the

coefficients β
(n)
T−1,1, . . . , β

(n)
T−1,RT−1

.

3. For each t from T − 2 to 1, we find the regressands for all paths that are in-the-

money at t by finding Zt+k(Xt+k) + c
(n−1)
t+k (Xt+k) where k = min{1, . . . , T − t :

Zt+k(Xt+k) + c
(n−1)
t+k (Xt+k) ≥ c

(n)
t+k(Xt+k)} along each of these paths and discount-

ing it to t.

A key point to note is that Monte Carlo will only give us the theoretical value of the

option when exercise is optimal along each path. Since the exercise strategies have been

approximated, the primal method gives us a lower bound, hence the need to find an

upper bound on the price.
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1.4 Dual simulation methods

While the extension of primal simulation methods and their enhancements in the case

of the Bermudan option to the multiple-exercise case is fairly trivial, the same cannot

be said for dual methods.

The upper bound method for the Bermudan option involves a dual formulation of the

original optimal stopping problem in the martingale sense (see Davis and Karatzas

[1994]) and was proposed independently by Rogers [2002] and Haugh and Kogan [2004].

In theory, equality between the option’s price and its dual is achieved if the martingale

of the dual is the martingale part of the Doob-Meyer decomposition of the option’s price

process. In Joshi [2007], an interpretation of the problem is provided for whereby the

dual is characterised as the seller’s price, with the attainment of the optimal martingale

analogous to achieving a perfect hedge. The strategy to approximate such a hedge is

given by Andersen and Broadie [2004] in the form of an algorithm which constitutes a

key part of their primal-dual method. To construct a perfect hedge, one requires the

optimal exercise strategy, which is of course unattainable in practice. As the Anderson

and Broadie (AB) hedge is constructed using a suboptimal exercise strategy and leads to

hedging errors that are additive, this method is commonly known as the additive dual.

A competing upper bound method that utilises the multiplicative version of the Doob

decomposition was developed by Jamshidian [2004]. Joshi [2007] demonstrated that

by changing the hedging strategy, the “seller’s price” interpretation of upper bound

still holds. Furthermore, it was shown that an AB-style construction of the hedge for

Jamshidian’s upper bound still produces a high-biased estimate even in the presence

of sub-simulations. Under this method, hedging errors are multiplicative, and so this

method is aptly termed the multiplicative dual. While it is unclear which method gives a

“better” upper bound, the multiplicative method results in a simulated random variable

which has higher variance (see Chen and Glasserman [2007]).

In order to compute hedges, one needs to compute martingale increments. The martin-

gale increments in the AB algorithm are computed via sub-simulations where at each

step where the exercise strategy indicates exercise, one has to replace the continuation

value of the option with its Monte Carlo counterpart, thus making it computationally

expensive. Belomestny et al. [2009] avoided the use of sub-simulations by approximating
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martingale increments using a regression estimate of a discretized Clark−Ocone deriva-

tive but it has been noted by practitioners that the method requires considerable care in

its implementation as the coefficients are more unstable than the martingale itself (see

Andersen and Piterbarg [2010]). Joshi and Tang [2014] achieved sub-simulation-free

upper bounds for interest rate Bermudan options by first using regression to estimate

Deltas and then constructing the martingales by substituting the product with its Delta

hedge. Their method was found to give significantly tighter bounds (or smaller dual-

ity gaps) compared to the Belomestny et al. [2009] method. However, both methods

yielded duality gaps that were significantly worse than those given by the AB method.

For completeness, we also mention the multi-level dual approach of Belomestny et al.

[2013] where the martingale dual is constructed in the spirit of Giles [2008].

Meinshausen and Hambly [2004] extended the additive dual result to the multiple-

exercise case, where their method requires optimisation over a family of martingales and

stopping times. Schoenmakers [2012] derived an additive dual that only required opti-

misation over a family of martingales and not stopping times. His method is commonly

known as the “pure” martingale dual. Bender [2011] extended the work of Meinshausen

and Hambly [2004] to the more realistic case of the swing option which accommodates

volume constraints and in Bender et al. [2013], a further generalization of the additive

dual formulation of the multiple stopping problem was given which provided a more

flexible framework for capturing certain idiosyncratic features of swing options such as

refraction periods and volume constraints. It is important to mention that these formu-

lations sit within the more general framework of information relaxation duals proposed

by Brown et al. [2010] and this is discussed in Chandramouli and Haugh [2012].

An efficient implementation of Schoenmaker’s result can be found in Balder et al. [2013].

However, the method approximates the martingales using the same regression-based

technique of Belomestny et al. [2009] and so suffers from similar drawbacks. In Bender

et al. [2013], a recursive algorithm was provided for that avoided the use of such regres-

sion techniques. However, their method doesn’t capitalise on one of the most desirable

properties of the AB algorithm - which is the potential of avoiding having to perform

sub-simulations at every step when computing conditional expectations.

This desire to incorporate this key strength provides us with the motivation for Chapter

2. By using the hedging approach of Joshi [2007], we derive an additive dual that is
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expressed in terms of a single hedge. This approach not only provides a more intuitive

understanding of the problem but also allows us to devise an additive dual algorithm

whose efficiency rivals that of the one given in Balder et al. [2013] and yet avoids the

issues of the Belomestny et al. [2009] approach that was highlighted above. Numerical

results demonstrate that the method yields comparatively smaller duality gaps than

those in Meinshausen and Hambly [2004].

While there has been significant progress in the area of dual representations for multiple-

stopping problems in the recent years, none of these results have yet to incorporate a

dual of the multiplicative kind thus providing the motivation for Chapter 3.

In a recent paper, Joshi and Tang [2014] showed that the multiplicative method for the

Bermudan option can be made to be just as competitive as the additive one if a control

variate is used. In Chapter 3, we derive the multiplicative dual for the multiple-exercise

option in the form of an a.s. result. Unlike what is done in Chapter 2, the approach we

take in this chapter will not involve hedging arguments. From this, we then derive the

first known multiplicative upper bound that competes against the Schoenmakers’ result

in the same way the Joshi-Tang upper bound rivals the Rogers/Haugh-Kogan one. While

the result requires the path-wise maximisation of a rather convoluted objective function

over a set of random times, we shall see that one can decomposes the computation into

a series of optimisations over one random time, thus making it more tractable. Each

step of the algorithm requires us to approximate the optimal hedges and in doing so, we

naturally extend the AB algorithm to the multiplicative multiple-exercise case.

1.5 The convex switching system

Optimal stopping problems are a subset of the larger class of Markov decision problems.

Markov decision problems arise when a given problem involves a Markov decision pro-

cess - a process whose transition laws are influenced by an action taken by a decision

maker. Markov decision theory provides a mathematical framework for modeling deci-

sion making under uncertainty when decisions affect the transition law of the process.

The theoretical underpinnings of Markov decision theory are now well-understood. Math-

ematically rigorous treatments are available in the textbooks Bäuerle and Rieder [2011],
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Bertsekas [1995], Feinberg et al. [2002], Hernández-Lerma and Lasserre [1996] and Put-

erman [2009]. However, practical applications remain persistently challenging despite

the rich arsenal of theoretical tools available.

In this context, the area of approximate dynamic programming (ADP) grew from at-

tempts at providing practical and implementable heuristics to overcome the limitations

of standard stochastic programming techniques when faced with high dimensional state

spaces. At the same time, ADP also provides theoretical insights as to why these heuris-

tics perform well in practice.

In order to control a large system, a practical approach to overcome the high-dimensionality

of the state space is to achieve a finite discretization of it. Alternatively, one can rely on

an efficient approximation of functions on this space. In this spirit, function-based meth-

ods, a subclass of ADP methods, suggest to approximate value functions on the state

space. We have previously mentioned one such example of a function-based method -

the LSM method.

The issue of convergence of the LSM method in the context of an optimal stopping

problem was first addressed in Clément et al. [2002]. There, they proved that the

approximate solution converges to the true one given a sufficiently large dimension of

the basis function space and a sufficiently large number of Monte Carlo samples to

conduct the regression, which are commonly known as training paths. Their work was

later extended to the case of more general classes of stochastic control problems in

Belomestny et al. [2010].

These analysis served to highlight the two major shortfalls of the LSM method that

were already well-known to practitioners. The first is the difficulty in the selection

of an appropriate set of basis functions, especially for high-dimensional state spaces.

The second shortfall was in determining an adequate number of training paths given

that an insufficient number may lead to a non-converging oscillation of the numerical

solution as the number of simulation paths used in its computation increases. In fact,

Glasserman and Yu [2004] showed that the number of paths required for convergence

grows exponentially in the degree of the approximating polynomials in the comparatively

trivial case of Brownian motion.
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In order provide an alternative methods that does not suffer from these problems, the

convex switching system (CSS) Hinz [2014] was proposed. The fundamental idea behind

the method is to approximate any convex function by a suitable collection of its sub-

gradients at chosen points on a grid in the state space. By doing so, we move from the

problem of choosing an appropriate set of basis functions to the arguably easier problem

of specifying an appropriate grid.

Given such a grid, a collection of subgradients yields what is known as a sub-gradient

envelope of the function. A subgradient envelope is the maximum of the collection of

subgradients at each point in the state space. The subgradient envelope is convex and as

the density of the grid increases, we obtain a sequence of convex functions. A comparison

of Figure 1.1 with Figure 1.2 demonstrates the “tightening” of a function’s subgradient

envelope to itself for a single dimensional state space as we increase the density of the

grid from 2 points to 5 on the same interval.

Figure 1.1: A function f(x) and its subgradient envelope given grid points g1 and g2.

Ultimately, we observe the convergence of this sequence of subgradient envelopes to

the function on any bounded set in Rd for a sufficiently dense grid. In fact, a direct

application of Theorem 10.8 in Rockafellar [1997] proves that this convergence is in fact

uniform.

In Chapter 4, we provide a recap of how this idea is used to derive an ADP method

as done in Hinz [2014]. The algorithm in its raw form is computationally intensive



Chapter 1. Introduction 14

Figure 1.2: A function f(x) and its subgradient envelope given grid points g1 to g5.

and we devise several methods to improve its efficiency. Furthermore, we look at how

to overcome the restriction of convexity. Finally, we present a CSS-based primal-dual

simulation algorithm to assess the distance to optimality of the approximated solutions.



Chapter 2

The additive dual for the multiple

exercise option

This chapter is based on the work done in Chiarella et al. [2014] and Joshi and Yap

[2014]. An earlier version of the paper, Yap [2013], was presented at the 26th Annual

PhD Conference in Economics and Business. In this chapter, we derive an additive

dual for the multiple-exercise derivative and its associated algorithm. In Section 2.1,

we first construct a method to represent an exercise strategy for the multiple-exercise

option. We then show how to construct stopping times using this construct. Using these

stopping times, we express the value of an option as a multiple-stopping problem and

show how one may interpret this as the buyer’s price. In order to derive the dual of

the problem, we first introduce the notion of a hedge in the multiple-exercise framework

in Section 2.2. In Section 2.3, we derive, in the spirit of Joshi [2007], an additive

dual representation of the multiple-exercise option using hedging arguments from the

perspective of the seller of the option. The benefit of this approach is that the hedging

strategy manifests itself in the construction of a hedge to be used in the Monte Carlo

evaluation of the dual problem and by exploiting the properties of this hedge, we can

obtain an efficient algorithm. This algorithm is provided for in Section 2.4 and it can

be seen as the natural extension of the Andersen and Broadie (AB) algorithm Andersen

and Broadie [2004] to the multiple-exercise case. By studying in the number of sub-

simulations required, we show that our method requires less computational effort than

the one given by Bender et al. [2013]. A comparison of our numerical results to those

15
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computed using the Meinhausen and Hambly (MH) algorithm Meinshausen and Hambly

[2004] is given in Section 2.5. Section 2.6 concludes the chapter.

2.1 Preliminaries

We work on the discrete time interval T = {0, 1, ..., T} and the underlying process we

work with is a discrete time Markov chain that is defined on a filtered probability space

(Ω,F ,F,P) where F := {Ft : t ∈ T}. We choose an asset price deflator which we call

the bond numeraire and assume the existence of an equivalent measure Q under which

deflated prices are martingales. In this chapter, the representation of any payoff or price

will be given in deflated terms.

We consider the multiple-exercise option, V (N), that permits the holder to exercise

an integer-valued number of rights, N , where each exercise occurs sequentially on T.

This option will be denoted by V (N−n) after the n-th right has been exercised. Upon

exercising a right, the buyer receives a payoff of Zt where {Zt} is a non-negative F-

adapted stochastic process that satisfies

T∑
t=0

E
[
Zt
∣∣F0

]
<∞.

We assume that all rights must be exercised to ensure that all stopping times are finite

and to avoid having to discuss cases where not all rights are exercised before T . This is

not a restriction since a right exercised out of the money simply pays zero.

A natural starting point for our analysis is to first consider the case of the Bermudan

option where N = 1. The associated pricing problem at time t is well-known and is

given by

V
(1)
t = ess sup

τ(t)
E[Zτ(t)|Ft] (2.1)

where τ(t) is a stopping time taking values on {t, . . . , T}. The financial interpretation

of a stopping time is that it corresponds to the given exercise strategy for the option

and the pricing problem is to find the optimal exercise strategy τ∗(t) such that

V
(1)
t = E[Zτ∗(t)|Ft].
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Andersen and Broadie [2004] observe that it is necessary to find exercise strategies not

just for products starting at time 0 but also for freshly created products at each exercise

time. They therefore found it convenient to define exercise indicators which indicate

whether a product that has not been previously exercised should be exercised at a given

time, t. Thus they define an adapted indicator process {lt}t=0,...,T where lt equals 1 if

exercise should occur at t and zero otherwise. To force exercise at time T, we take

lT = 1. Stopping times are then implied by

τt = inf{s ∈ {t, . . . , T} : lt = 1} (2.2)

where τt denotes the first instance at time t or later at which an option that is alive

at time t should be exercised according to the given strategy. Such a construction of

stopping times yields a lower bound V̂
(1)
t on the price where

V̂
(1)
t := E[Zτ(t)|Ft] ≤ V

(1)
t

and where equality holds if and only if τ(t) = τ∗(t).

We need a similar construction for multi-exercisable options. One solution is simply

to define a two-dimensional set l(k, t) set of indicators with l(k, t) = 1 if and only if

an option with k rights remaining should be exercised at time t. However, it is fairly

straightforward to see that since payoffs are non-negative, it is always optimal to exercise

an option with k rights if it is optimal to exercise one with r rights for some r < k. It is

therefore more convenient to make a definition in terms of the least number of rights that

indicates exercise where N will mean that no contracts should be exercised and 0 will

specify that exercise should occur regardless of how many are left. For the remainder of

this chapter, we will use n to represent any integer from 0 to N − 1.

Definition 2.1. We define a sequence of random variables κ := {κt}t=0,...,T to be an

exercise function for a multi-exercisable option with N rights if

(i) κt is a non-negative and integer-valued for t ∈ T,

(ii) κt is Ft-measurable for t ∈ T,

(iii) κt ≥ N − t− 1 for t < N − 2 and

(iv) κT−j < j.
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We let K denote the set of all such sequences.

Property (iii) specifies the natural condition that the n-th exercise can only occur after

time n. Property (iv) enforces exercise by the last possible time so that an option can

never have more rights than exercise dates remaining. Clearly, this sequence implies

exercise indicators for an option with k rights remaining via

l(k, t) = 1{k>κt},

and thus also implies a stopping time strategy for it as above. In fact, we get a 3-

dimensional family of stopping times. The dimensions are the start time of the product,

t, the number of rights, k, the product has at t and the right, i, we are considering

the strategy for. We will consider i to be indexed according to the original number of

rights N with the lowest-indexed right exercised first. So if k = N − n, the first right

to be exercised will be i = N − n+ 1. We shall now state this formally in the following

definition.

Definition 2.2. For a given exercise function κ, a stopping vector τκ,N−n,t is a collection

of stopping times (τκ,N−n,tn+1 , . . . , τκ,N−n,tN ) such that

τκ,N−n,tn+1 = min{s ∈ {max(t, n), . . . , T −N + n+ 1} : N − n > κs} (2.3)

and

τκ,N−n,tn+i = min{s ∈ {t, . . . , T −N + n+ i} : s > τκ,N−n,tn+i−1 , N − n− i+ 1 > κs}, (2.4)

for i = 2, . . . , N − n.

The following properties of implied stopping times are immediate.

Proposition 2.3. For any stopping function κ, for every n = 0, . . . , N−1 and for every

t ≥ n,

τκ,N−n,tN−n+1 = 1{N−n>κt}t+ 1{N−n≤κt}τ
κ,N−n,t+1
N−n+1 .

Furthermore, we have that if N − n > κt then for i > N − n, we have

τκ,N−n,ti+1 = τκ,N−n−1,ti .
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The quadruple-labelled stopping time notation can become a little cumbersome. When

we are working in the context of fixed exercise function, κ, we will drop it from notation.

We will also drop N −n when the value of n is clear and write τn+i(t) instead. However,

it is important to realize that, in general,

τκ,N−n,tn+2 6= τκ,N−n−1,tn+2

and the distinction is important. Here we have the difference between the second stop-

ping time with N − n rights remaining and the first one with N − n− 1 left.

We restate the result of Carmona and Touzi [2008] in our language:

Theorem 2.4. The price of the multiple-exercise option is

V
(N−n)
t = ess sup

κ
E

[
N∑

i=n+1

Z
τκ,N−n,t
i

∣∣∣∣∣Ft
]
, (2.5)

where the essential supremum is taken over all exercise functions.

Note that the set of admissible strategies is more restrictive than that in Carmona and

Touzi [2008], however, this is not a problem since the optimal strategy still lies in the

set we consider.

The value may also be expressed as

V
(N−n)
t = max

(
C

(N−n)
t , Zt + C

(N−n−1)
t

)
(2.6)

where C
(N−n)
t is the continuation value of V (N−n) that is the value of a forward starting

multiple-exercise option C(N−n) at time t. We can apply the Carmona–Touzi result and

we have

C
(N−n)
t = ess sup

κ
E

[
N∑

i=n+1

Z
τκ,N−n,t+1
i

∣∣∣∣∣Ft
]

(2.7)

where the first exercise time of C(N−n) occurs at t+ 1 if we are at t.

Fixing N,n, κ, it is immediate that the stopping times have the following properties for

i > n, similar to the single exercisable case:

Proposition 2.5.

(i) max(t, i− 1) ≤ τi(t) ≤ T −N + i a.s.,
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(ii) τi(t) 6= t⇒ τi(t) = τi(t+ 1) for t < T −N + i and

(iii) τi−1(t) < τi(t), for i < N.

Let the optimal stopping vector be τ∗,N−n,t = (τ∗n+1(t), . . . , τ
∗
N (t)). We have, via the

Bellman principle, that

τ∗n+1(t) = min{s ∈ {t, . . . , T −N + n+ 1} : Zs + C(N−n−1)
s ≥ C(N−n)

s }

and for i = n+ 2, ..., N − 1,

τ∗i (t) = min{s ∈ {τi−1(t), . . . , T −N + i} : Zs + C(N−i)
s ≥ C(N−i+1)

s }.

We will now show that τ∗,N−n,t is associated to an optimal exercise function, κ∗. First,

note that for any two positive integers n1 and n2 where n1 < n2 ≤ N , it is always optimal

to exercise V (n2) whenever it is optimal to exercise V (n1). Therefore, the optimal exercise

times for V (n1) will be a subset of that of V (n2). With this, we prove the following.

Proposition 2.6. There exists a κ∗ such that for all n = 0, . . . , N − 1 and at every

t = n, . . . , T − N + n, any stopping vector τκ,N−n,t constructed via (3.1) and (2.4) is

optimal.

Proof. Take the optimal exercise strategies for each number of rights. These define

exercise indicator functions

l∗(k, t) = 1 if and only if τ∗,k,tk = t.

If we sum these over k we get a function f(t) such that options with N,N − 1, . . . , N −

f(t) + 1 should be exercised. Let

κ(t) = N − f(t),

and we are done.

If one has a multi-exercisable derivative and an exercise function, κ, one can define an

associated triggerable derivative by requiring that the exercise strategy implied by κ

is used. In what follows, we will assume the existence of the products V̂ κ,(N−n) and
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Ĉκ,(N−n) whose triggering are defined by the stopping times (3.1) and (2.4) that have

been constructed using such a κ. The product V̂ κ,(N−n) can be triggered now while

Ĉκ,(N−n) can only be triggered at the next time step. Their respective values at time

t, V̂
κ,(N−n)
t and Ĉ

κ,(N−n)
t , are given by their expectations in the Q measure. Since κ is

not optimal their prices bound the prices of the options constructed using the optimal

strategy from below

V̂
κ,(N−n)
t := E

[
N∑

i=n+1

Zτκi (t)

∣∣∣∣∣Ft
]
≤ V (N−n)

t (2.8)

and

Ĉ
κ,(N−n)
t := E

[
N∑

i=n+1

Zτκi (t+1)

∣∣∣∣∣Ft
]
≤ C(N−n)

t . (2.9)

In the next section, these products will be used to derive an upper bound for V
(N)
0 .

It is important to stress at this point that our objective in this chapter is to realize an

upper bound for the optimal stopping price in the chosen measure Q. If the market

is incomplete, the optimal stopping price and the upper bound will inevitably vary

according to the choice of measure. In addition, the upper bound is derived via the use

of a hedging martingale whose price process depends on the choice of measure. The

construction of this hedge assumes the ability to buy and sell derivatives with a given

pay-off and exercise strategy at the price implied by this previously fixed measure. Let

us emphasize that we are not proposing nor requiring that the hedges would exist in a

real market. Instead, this is a mathematical device that simplifies our derivations and

renders them more intuitive.

We define the price processes of these contracts to be their expectation prices under the

Q-measure. Augmenting a market by allowing the ability to trade contracts at their

expectation prices will not introduce arbitrage since all instruments have martingale

prices processes, and it will also not change the expectation price of our original contract.

In particular, we allow the trading of V̂ κ,(N−n) and Ĉκ,(N−n) for n = 0, . . . , N−1 for any

exercise function κ. Thus any upper bound derived in the measure Q for this augmented

market is also an upper bound for our original market in that measure.

In order to describe the pricing problem and its dual under the buyer/seller paradigm

with greater clarity, we will denote the buyer and the seller as male and female respec-

tively. One can interpret the optimal stopping time price as the buyer’s price for the
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option V (N−n) where the τ∗i (t)′s, for i = n + 1, . . . , N − 1 are the times at which he

exercises. The dual can be interpreted as the seller’s price where she constructs and

maintains a hedge that is optimal in the sense that her hedging portfolio will always

dominate the buyer’s, regardless of how he exercises. An optimal hedge yields equality

between the two prices.

The inherent difficulty in solving the dual problem from a computational perspective lies

in the construction of such a hedge. Andersen and Broadie [2004] showed how one could

construct the optimal hedge for a Bermudan option if the optimal exercise strategy was

known, and how a “good” hedge could still be obtained using a suboptimal strategy.

For a suboptimal hedge, the seller’s price will be greater than that of the buyer’s, thus

yielding an upper bound. In the next section, we show how to construct similar hedges

for the multi-exercisable option. In particular, we show that a hedge constructed using

the optimal exercise strategy will be optimal in the sense that it yields equality between

the buyer’s and the seller’s prices.

2.2 The construction of hedging martingales for multiple-

exercise options

We shall first define the notion of a hedge in the multi-exercise setting. In the next

section, we shall see that any such hedge will yield an upper bound on the price of the

multi-exercisable product. We then describe a hedging strategy that is conditional on

an exercise strategy. We see in Section 3.4 that for an optimal exercise strategy, one

can construct the necessary hedges used to derive the additive dual formulation of the

problem from a hedging perspective.

The hedge that we will construct will possess two properties. First, it will be dependent

on the exercise times of the buyer. We shall see later that it is ideal (but not necessary)

for the seller to have as part of her portfolio a position in a product with the same

number of exercise rights (or triggers) remaining as the product being hedged. Therefore,

reactivity of the hedge to the buyer’s exercise times becomes necessary. Secondly, the

hedge will also satisfy the self-financing property throughout its life.

Now consider the option V (N) at time 0 and suppose that the buyer does not follow the

optimal exercise strategy but an arbitrary one that is represented by the stopping times
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0 ≤ τ1 < · · · < τN ≤ T . The seller will construct her hedge at time 0, and the hedge

will be a function of the buyer’s exercise times. Let us now describe the mathematical

notation for a hedge. At the outset the seller’s hedge is denoted by Ĥ(N) as she is

hedging against an option with N rights. After n rights have been exercised, this hedge

will be denoted by

Ĥ(N−n),τ1,...,τn .

The value of such a hedge at a time t ∈ T is given by Ĥ
(N−n),τ1,...,τn
t .

Definition 2.7. A hedging strategy is a sequence of self-financing portfolios

Ĥ(N), Ĥ(N−1),τ1 , ..., Ĥ(0),τ1,...,τN

such that at each of the remaining exercise times at which the buyer exercises τi, i =

1, . . . , N , the hedge Ĥ(N−i+1),τ1,...,τi−1 is dissolved and reconstituted as a new hedge

Ĥ(N−i),τ1,...,τi while maintaining the self-financing property

Ĥ
(N−i+1),τ1,...,τi−1
τi = Ĥ(N−i),τ1,...,τi

τi .

Furthermore, taking τ0 := 0, we also have that

E

[
Ĥ

(N−i+1),τ1,...,τi−1
τi − Ĥ(N−i+1),τ1,...,τi−1

τi−1

∣∣∣∣∣Fτi−1

]
= 0, i = 1, . . . , N − 1.

For the remainder of the chapter, all hedges will be associated with a given hedging

strategy that defined as above and we will denote the set of all such hedges by H. In

Section 3.4, it will be shown that an arbitrary hedging strategy yields an upper bound

on the price.

Now consider a sequence of functions {fi}i=1,..,N such that after each ti, i = 1, . . . , N ,

the seller’s hedge

Ĥ(N−i),τ1,...,τi−1 consists of fi(Ĥ
(N−i+1),τ1,...,τi−1 , Zτi) units of Ĉκ,(N−i)

and a position in numeraire bonds. By defining the functions {fi}i=k+1,..,N to be such

that the hedging portfolio always contains one unit of the triggerable product where
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the remaining number of triggers is the same as the remaining number of rights of the

product being hedged, we obtain the following hedging strategy.

Definition 2.8. The seller is said to follow a κ-additive hedging strategy if her

initial hedge consists of one unit of V̂ κ,(N) and she adheres to the following trading rules

for each of the k-th rights where k = 1, ..., N at each subsequent time:

• If V̂ κ,(k) is not triggered and the buyer does not exercise, then seller should not

change her portfolio.

• If V̂ κ,(k) is triggered and the buyer exercises to receive a cash payoff and Ĉκ,(k−1).

The seller then reinvests the cash payoff in numeraire bonds.

• If V̂ κ,(k) is not triggered and the buyer exercises, the seller should sell V̂ κ,(k), buy

one unit of Ĉκ,(k−1) and invest the net proceeds in numeraire bonds.

• If V̂ κ,(k) is triggered and the buyer does not exercise, the seller should sell Ĉκ,(k−1),

buy Ĉκ,(k) and invest the net proceeds in numeraire bonds.

Because the seller invests any payoff from exercise (or from the product being triggered)

in numeraire bonds, we shall assume that the buyer does the same. Note that this does

not constitute an restriction on investor preferences, and that we are merely assuming

this to construct one type of upper bound. We acknowledge that the buyer may just as

easily choose to use the payoff to buy more of the option. In this instance, we would

have to change the seller’s hedging strategy, and it would lead to the derivation of a

different upper bound. We will leave the variation in the buyer’s reinvestment strategy

to future work.

Now if κ = κ∗, then the κ∗-additive hedging strategy will always yield perfect hedges.

To see this, we first observe that the seller will only trade products that are triggered at

points of optimal exercise. Since the trigger is optimal and the payoff is greater than the

marginal value of one right at optimal points of exercise, the seller’s hedging portfolio

will grow whenever the buyer does not exercise at points that are optimal. Therefore

such a hedge will always dominate the buyer’s portfolio. We shall call hedges that are

associated with the κ∗-additive hedging strategy additively optimal and they will be

represented by the same notation as arbitrary hedges but with the accent removed (e.g.

H(N−n),t1,...,tn).
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2.3 The additive dual for multiple exercise

We define the gains from trade, A
(N−n),t1,...,tn
t to be the discounted value of the accu-

mulated investment in numeraire bonds generated by any additive trading strategy that

the seller adopts after the buyer has exercised the first n rights at t1, ...tn. Recall from

the κ-additive hedging strategy that the seller’s hedge is always a combination of one

unit of the option and a position in numeraire bonds. The position in numeraire bonds

comprises of both the accumulated payoffs and the gains from trade.

The additive dual is given by the following theorem.

Theorem 2.9. Given the set of additively optimal hedges, the additive dual of the

multiple-exercise option is given as

V
(N)
0 = H

(N)
0 + max

0≤t1<...<tN≤T

(
N∑
i=1

Zti −H
(0),t1,...,tN
tN

)
a.s. (2.10)

Proof. By definition, an optimal hedge is constructed by the seller following the κ∗-

additive hedging strategy. Upon the first exercise time of the buyer, τ1, the discounted

value of the seller’s hedge is given as

H(N−1),τ1
τ1 = Zτ1 + C(N−1)

τ1 +A(N−1),τ1
τ1 (2.11)

and after the n-th exercise at τn we have

H(N−n),τ1,...,τn
τn =

n∑
i=1

Zτi + C(N−n)
τn +A(N−n),τ1,...,τn

τn . (2.12)

Therefore, at the final exercise date, we have that

H(0),τ1,...,τN
τN

=
N∑
i=1

Zτi +A(0),τ1,...,τN
τN

. (2.13)

By following the κ∗-additive hedging strategy, any increments in the gains from trade

will be positive whenever the buyer exercises at sub-optimal points and zero at other

times (again we state that one can verify this by considering all four possible scenarios

in Definition 2.8 using κ∗). Therefore,

A(0),τ1,...,τN
τN

≥ 0.
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We have thus constructed a hedge that will dominate the buyer’s portfolio which is of

value
∑N

i=1 Zτi regardless of how the buyer exercises. Therefore we have that H
(N)
0 =

V
(N)
0 and the path-wise result

max
0≤t1<...<tN≤T

(
N∑
i=1

Zti −H
(0),t1,...,tN
tN

)
= 0 a.s. (2.14)

where equation (2.14) encapsulates the situation where the buyer exercises at the set of

time such that the gains of trade will be zero. If we restrict ourselves to using hedges of

zero initial value, we then have that

H
(N)
0 = max

0≤t1<...<tN≤T

(
N∑
i=1

Zti − (H
(0),t1,...,tN
tN

−H(N)
0 )

)
a.s.

and since V
(N)
0 = H0, we obtain (2.10).

In order to construct an additively optimal hedge, we need to trade products whose

triggers are dependent on the optimal exercise strategy. For any other strategy, a sub-

optimal hedge is obtained. This results in an upper bound on the price of the option.

Theorem 2.10. For an arbitrary set of hedges {Ĥ(N−n)}, n = 1, ..., N − 1, we obtain

the following upper bound on the price of the multiple-exercise option

V
(N)
0 ≤ Ĥ(N)

0 + E

[
max

0≤t1<...<tN≤T

(
N∑
i=1

Zti − Ĥ
(0),t1,...tN
tN

)∣∣∣∣∣F0

]
. (2.15)

Proof. We have from (2.5) that

V
(N)
0 = ess sup

0≤τ1<···<τN≤T
E

[
N∑
i=1

Zτi

∣∣∣∣∣F0

]
. (2.16)

Recall from Definition 2.7 that H(N) is a martingale between 0 and stopping time τ1

and the hedges H(N−k) are martingales between any two stopping times τk and τk+1.

Therefore

0 = ess sup
0≤τ1<···<τN≤T

E

[
N∑
i=1

E

(
Ĥ

(N−i),τ1,...,τi−1
τi−1 − Ĥ(N−i),τ1,...,τi−1

τi

∣∣∣∣∣Fτi−1

)∣∣∣∣∣F0

]

= ess sup
0≤τ1<···<τN≤T

E

[
N∑
i=1

Ĥ
(N−i),τ1,...,τi−1
τi−1 − Ĥ(N−i),τ1,...,τi−1

τi

∣∣∣∣∣F0

]
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where the second equality holds true by the Tower property.

Combining equations (2.16) and (2.17),

V
(N)
0 = ess sup

0≤τ1<···<τN≤T
E

[
N∑
i=1

(
Zτi + Ĥ

(N−i),τ1,...,τi−1
τi−1 − Ĥ(N−i),τ1,...,τi−1

τi

)∣∣∣∣∣F0

]

= ess sup
0≤τ1<···<τN≤T

E

[
N∑
i=1

Zτi − Ĥ
(1),τ1,...τN−1
τN + (Ĥ

(1),τ1,...τN−1
τN−1 − Ĥ(2),τ1,...τN−2

τN−1 )

+ · · ·+ (Ĥ
(N−1),t1
t1

− Ĥ(N)
t1

) + Ĥ
(N)
0

∣∣∣∣∣F0

]

= Ĥ
(N)
0 + ess sup

0≤τ1<···<τN≤T
E

[
N∑
i=1

Zτi − Ĥ(0),τ1,...τN
τN

∣∣∣∣∣F0

]

≤ Ĥ
(N)
0 + E

[
max

0≤t1<...<tN≤T

(
N∑
i=1

Zti − Ĥ
(0),t1,...tN
tN

)∣∣∣∣∣F0

]
.

We have that the terms in the small brackets after the second equality sum to zero

because we recall from Definition 2.7 that the hedges must satisfy the self-financing

property at the times at which the buyer exercises

Ĥ
(N−i+1),τ1,...,τi−1
τi = Ĥ(N−i),τ1,...,τi

τi , i = 1, . . . , N.

2.4 The collapsing tree method for the additive dual

For the remainder of this chapter we shall adopt a fixed exercise strategy κ. The seller

will adopt the κ-additive hedging strategy correspondingly. Since κ is fixed, we shall

drop it from the terms V̂ κ,(·) and Ĉκ,(·). Therefore, V̂ (·) and Ĉ(·) will be used to denote

the products that seller hedges with.

The expectation in (2.15) is evaluated via Monte Carlo simulation where each path

requires the computation of the path-wise maximum of an objective function over the

set of all possible exercise times. In other words, we need to compute

max
0≤t1<...<tN≤T

(
N∑
i=1

Zti − Ĥ
(0),t1,...,tN
tN

)
= − min

0≤t1<···<tN≤T
A

(0),t1,...,tN
tN

(2.17)
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along each path. The equality comes from the fact that Ĥ
(0),t1,...,tN
tN

=
∑N

i=1 Zti +

A
(0),t1,...,tN
tN

. If we proceed naively, we would be computing T+1!
N !(T+1−N)! combinations

of gains from trades per path and this yields a factorial time order of computational

complexity.

In this section, we provide an algorithm which we call the collapsing tree method that

reduces the complexity of this computation. We show that by only keeping track of the

worst-performing hedges for all possible number of remaining rights at each time step,

we can dramatically reduce the number of hedges that needs to be computed.

Let us first introduce some further notation that will be used from this point onwards.

We will take n to be any integer from 1 to N for the remainder of this section. We will

use the indicator function 1{τn(t)=t} to denote whether the strategy indicates exercise of

the n-th right at time t and use 1{τn(t)6=t} to denote when it does not. We shall let

A
(n)
t = min

0≤t1<···<tN−n<t
A

(n),t1,...,tN−n
t

denote the lowest gains from trade for n remaining rights at time t given all possible

combinations of exercise times chosen by the buyer prior to t. The lowest gains from

trade characterizes the worst-performing hedge for the same number of remaining rights

and its value at t will be denoted by H
(n)
t .

In (2.17), we try to finding the worst-performing hedge/lowest gains from trade given

that all rights have been exhausted across all possible sets of exercise times. The key to

the collapsing tree method involves the exploitation of the fact that the worst-performing

hedge given n remaining rights at a given time step t could only have evolved from t− 1

in a maximum of two ways - either from the worst-performing hedge given n remaining

rights or from the worst-performing hedge given n+ 1 remaining rights.

First, note that the gains from trade at the last exercise time of the buyer tN can be

written as the gains from trade up to that time plus any gains arising from the product

not being triggered there

A
(0),t1,...,tN
tN

= A
(1),t1,...,tN−1

tN
+ 1{τN (tN )6=tN}

(
V̂

(1)
tN
− ZtN

)
.
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H
(3)
0 H

(3)
1

H
(2)
1

H
(3)
2

H
(2)
2

H
(1)
2

H
(2)
3

H
(1)
3 H

(1)
4

Figure 2.1: A tree of hedges for 3 exercise rights and 5 exercise dates

Therefore, we have that

min
0≤t1<···<tN≤T

A
(0),t1,...,tN
tN

= min
tN∈(N−1,...,T )

min
0≤t1<···<tN

A
(0),t1,...,tN
tN

= min
tN∈(N−1,...,T )

[
A

(1)
tN

+ 1{τN (tN )6=tN}
(
V̂

(1)
tN
− ZtN

)]
.

(2.18)

To compute the minimum of A
(0),t1,...,tN
tN

over all t1, . . . , tN , we then

(i) fix the value tN ,

(ii) compute A
(1)
tN

for the fixed tN ,

(iii) use (2.18) to compute min0≤t1<···<tN≤T A
(0),t1,...,tN
tN

for the fixed tN , and

(iv) compute min0≤t1<···<tN≤T A
(0),t1,...,tN
tN

over all tN ’s.

However, we still need a way of finding each A
(1)
tN

’s and this is where the collapsing tree

approach comes in.

We shall start explaining the collapsing tree using a concrete example and generalize

from there. The following example will be used to demonstrate how the computations

are done and the efficiency of this method compared to the naive approach in a simple

case of an option with N = 3 rights and 5 dates (T = 4). Consider the following

worst-performing hedges as shown in Figure 2.1.

To compute the dual along the path, we need to compute

max
0≤t1<t2<t3≤4

(Zt1 + Zt2 + Zt3 − Ĥ
(t1,t2,t3)
t3

) = − min
0≤t1<t2<t3≤4

A
(0),t1,t2,t3
t3

. (2.19)
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At t = 0, there are no other hedges so the worst-performing hedge is Ĥ
(3)
0 = H

(3)
0 . In the

following table, we list the different hedges of the seller given the different possible exer-

cise strategies of the buyer thus far. At this time there are only two possible scenarios.

Buyer’s strategy Hedge Payoff Option Gains from trade

t1 = 0 Ĥ
(2),0
1 Z0 V

(2)
1 A

(2),0
1 = 1{τ1(0)6=0}(V

(3)
0 − C(2)

0 − Z0)

t1 6= 0 Ĥ
(3)
1 0 V

(3)
1 A

(3)
1 = 1{τ1(0)=0}(Z0 + C

(2)
0 − C

(3)
0 )

Table 2.1: Hedges at t = 1 for different exercise strategies of the buyer at t = 0

The worst-performing hedges H
(3)
1 and H

(2)
1 are thus given by Ĥ

(3)
1 and Ĥ

(2),0
1 respec-

tively.

Going from t = 1 to t = 2, we then have four scenarios:

Buyer’s strategy Hedge Payoff Option Gains from trade

t1 = 1 Ĥ
(2),1
2 Z1 V̂

(2)
2 A

(2),1
2 = A

(2),1
1

+1{τ1(1)6=1}(V̂
(3)
1 − Z1 − Ĉ(2)

1 )

t1 6= 1 Ĥ
(3)
2 0 V̂

(3)
2 A

(3)
2 = A

(3)
1

+1{τ2(1)=1}(Z1 + Ĉ
(2)
1 − Ĉ

(3)
1 )

t1 = 0, t2 6= 1 Ĥ
(2),0
2 Z0 V

(2)
2 A

(2),0
2 = A

(2),0
1

+1{τ2(1)=1}(Z1 + Ĉ
(1)
1 − Ĉ

(2)
1 )

t1 = 0, t2 = 1 Ĥ
(1),0,1
2 Z0 + Z1 V̂

(1)
2 A

(1),0,1
2 = A

(2),0
1

+1{τ2(1)6=1}(V̂
(2)
1 − Z1 − Ĉ(1)

1 )

Table 2.2: Hedges at t = 2 for different exercise strategies of the buyer up to t = 1

We can see that H
(3)
2 and H

(1)
2 are trivially equal to Ĥ

(3)
2 and Ĥ

(1),0,1
2 respectively.

However, H
(2)
2 could have evolved from either H

(3)
1 or H

(2)
1 and so to find H

(2)
2 , we need

to compute A
(2)
2 , the minimum of A

(2),0
2 and A

(2),1
2 .

To find A
(0),0,1,2
2 we have to see if the buyer’s exercise strategies agree with the products

trigger at step 2

A
(0),0,1,2
2 = A

(1),0,1
2 + 1{τ3(2)=2}

(
V̂

(1)
2 − Z2

)
.
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We will use the computation of the minimum of A
(0),t1,t2,t3
t3

when t3 is fixed at 3 to

highlight the computational gains of the method. A naive approach would have required

us to take the minimum of A
(0),t1,t2,t3
t3

for (t1, t2) = (0, 1), (0, 2) and (1, 2). However, A
(1)
3

is readily found by taking a minimum of two variables where

A
(1)
3 = min

[
A

(1)
2 + 1{τ3(2)=2}(Z2 − Ĉ(1)

2 ),A
(2)
2 + 1{τN−n+2(t−1)6=t−1}(V̂

(2)
2 − Z2 − Ĉ(1)

2 )
]
.

We thus see that computational savings is of a polynomial order, which is important for

large numbers of rights and higher values of tN .

In general, A(n) may be computed along a given trajectory as follows. Suppose that at

the previous time t− 1 the buyer does not exercise an option with n remaining rights

and the seller was holding hedge H
(n)
t−1. Then at time t, the gains from trade will be

A
(n)
t−1 + 1{τN−n+1(t−1)=t−1}(Zt−1 + Ĉ

(n−1)
t−1 − Ĉ(n)

t−1). (2.20)

Alternatively, let us assume at t− 1 that the buyer had exercised the option with n+ 1

remaining rights and the seller was holding H
(n+1)
t−1 . In this case, our gains from trade at

t is

A
(n+1)
t−1 + 1{τN−n+2(t−1)6=t−1}(V̂

(n+1)
t−1 − Ĉ(n)

t−1 − Zt−1). (2.21)

The lowest gains from trade will therefore be the lesser of (2.20) and (2.21). The

following tree of hedges (Figure 2.2) tracks all the worst-performing hedges for each

number of remaining exercise rights at each time.

The gains from trade will always be computed as

A
(n)
t = min

[
A

(n)
t−1 + 1{τN−n+1(t−1)=t−1}(Zt−1 + Ĉ

(n−1)
t−1 − Ĉ(n)

t−1),

A
(n+1)
t−1 + 1{τN−n+2(t−1)6=t−1}(V̂

(n+1)
t−1 − Ĉ(n)

t−1 − Zt−1)
]

(2.22)

except in three cases. The first case is where we are still hedging an option with maximum

rights. Therefore,

A
(N)
t = A

(N)
t−1 + 1{τ1(t−1)=t−1}(Zt−1 + Ĉ

(N−1)
t−1 − Ĉ(N)

t−1 ). (2.23)
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Figure 2.2: A tree of hedges for N exercise rights and T + 1 exercise dates

The second case is where t is the earliest time that one can exercise the nth right. Under

this case,

A
(n)
t = A

(n+1)
t−1 + 1{τN−n+2(t−1)6=t−1}(Zt−1 + Ĉ

(n)
t−1 − Ĉ

(n+1)
t−1 ). (2.24)

The last case is where exercise had been forced at the previous time step, 1{τn(t−1)=t−1} =

1 and so

A
(n)
t = min

[
A

(n)
t−1 + 1{τN−n+1(t−1)=t−1}(Zt−1 + Ĉ

(n−1)
t−1 − Ĉ(n)

t−1),A
(n+1)
t−1

]
. (2.25)

2.4.1 Computational efficiency

In this sub-section we compare our method to that of Bender et al. [2013] and show the

potential computational savings achieved by avoiding the computation of sub-simulations.

We note that their method is more general as it encompasses multiple-exercise per pe-

riod and different refraction periods for swing options. In order to provide a like-for-like
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comparison with our method, let us recap their method in terms our our notation for

just the single-exercise per period and unit refraction period case.

The following algorithm is applied to each path of the (outer) simulation.

• For each n from 1 to N , we initialize each θnT−n+1 as

θnT−n+1 :=
n∑
i=1

ZT−i+1.

• For each t from T to 0, we compute each θnt for n = 1 to N recursively via

θnt = max

[
θnt+1 + Ĉ

(n)
t+1 − V̂

(n)
t+1, Zi + θn−1t+1 + Ĉ

(n−1)
t+1 − V̂ (n−1)

t+1

]
.

The upper bound is then found by taking the average of θN0 over all paths. Thus we see

that unless the number of remaining rights is equal to the number of remaining exercise

times (i.e. n = T−t), 4 sub-simulations are required for each number of remaining rights

at each step. Now comparing their algorithm to ours, we observe from 2.22 that at each

step and for each number of remaining rights, it is possible that no sub-simulations are

required if

1{τN−n+1(t−1)6=t−1} and 1{τN−n+2(t−1)=t−1}.

However, note that in this case, at least two sub-simulations are required to compute

A
(n+1)
t and A

(n−1)
t . Conversely, if all four sub-simulations need to be computed, then

each of A
(n+1)
t and A

(n−1)
t would require at most two sub-simulations. This means that

the number of sub-simulations required is effectively halved for our method as compared

to Bender et al. [2013].

2.5 Numerical results

We demonstrate our results by comparing our bounds on the price of a swing option

with those given in Section 4.2 of Meinshausen and Hambly [2004]. The underlying

asset S follows an exponential AR(1) process and we compute its dynamics using the

following discretisation

logSt = (1− k)(logSt−1 − µ) + µ+ σWt. (2.26)
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The swing option is of maturity T , is exercisable daily and pays off Zt = (St−K)+ upon

exercising a right. The parameters used were S0 = 1, K = 0, k = 0.9, µ = 0, σ = 0.5,

and T = 1000. Interest rates are ignored. 1000 paths were used for the calibration

and the evaluation of the lower bound and 20 simulations (with 50 sub-simulations)

were used for the upper bound. The least-squares Monte Carlo method as described in

Meinshausen and Hambly [2004] was used to find the low biased estimates and the basis

function used in the regression was a polynomial of degree one. Our results are given in

Table 2.3.

The simulations were performed in C++ using the Visual Studios Express 2012 Inte-

grated Development Environment. We used an Intel Core i5-4200U 1.6Ghz processor

and all runs were performed using a single thread. Computation time for the upper

bound for an option with 2 rights was about 60 seconds while that of an option with

100 rights was about 5 hours. While this might seem long at first glance, we recall that

the number of steps is about 1000 with approximately of 2 sub-simulations required for

each right at each step, thus giving us about 200,000 sub-simulations!

It is observed that for a lower number of rights (N < 10), there is not much difference

between our method and the MH method. However, the duality gaps as measured

by the 99% confidence intervals produced by our method become significantly tighter

as the number of rights increases. However, the MH method seems to yield smaller

variances compared to ours as the number of rights increase too. This seems to suggest

a trade-off between smaller duality gaps and certainty in the result in terms of standard

deviation when deciding between the two methods. Furthermore, this decision is further

complicated as the trade-off is intertwined with the number of rights.

2.6 Conclusion and future research

In this chapter we provide a new representation of the additive dual of the multiple-

exercise option. In order to do so, we first introduced a new mechanism, the exercise

function, which allows us to construct exercise strategies in the sense that the exercise

strategy for a product with more exercise rights will always indicate exercise whenever

the exercise strategy for a product with less exercise rights does.
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We then define the notion of a hedge in the multiple-exercise framework. In particular,

we describe a hedging strategy that allows us to perfectly hedge against the buyer of an

option. This then allowed us to derive a new representation of the additive dual of the

multiple-exercise option where the representation is in terms of a single hedge instead

of a family of martingales.

While this approach provided an intuitive understanding of the additive dual of the mul-

tiple stopping problem from a financial perspective, the main benefit of this approach

was a computational one. In particular, we showed that by monitoring the worst per-

forming hedges, we were able to devise an efficient algorithm known as the collapsing

tree approach to compute an upper bound for the multiple-exercise option.

Furthermore, we have shown that by identifying points in time where exercise is sub-

optimal, computational time can be saved while still obtaining an upper bound. Nu-

merical results indicate that the method yields smaller duality gaps than ones computed

using the MH method.

As we have been able to achieve an almost sure result, we have reason to believe that this

approach is essentially an implementation of the “pure” martingale dual of Schoenmakers

[2012]. However, we have not reconciled our approach to his result and we leave it for

future work.

In Section 2.2, we noted that while we assumed that the buyer of the option invests any

payoff in numeraire bonds, the buyer of the option could also choose to reinvest in the

option itself, or even a combination of both. We would then need to change the hedging

strategy, and this would ultimately lead to different upper bounds.

We conclude this chapter by stating that computationally, both our method and the

MH method still require “good” approximations to the optimal stopping times (or an

optimal exercise strategy). However, as it is not clear why our method fares better, we

feel that a further analysis into how the two methods compare is warranted.
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Table 2.3: Numerical results for Swing Option

Meinshausen-Hambly
Rights Lower Bound Upper Bound Lower 99% Upper 99% Lower Bound Upper Bound Lower 99% Upper 99%

1 4.792 4.801 4.773 4.820 4.777 4.790 4.773 4.794
2 9.099 9.141 9.048 9.192 9.024 9.085 9.016 9.091
3 12.973 13.045 12.904 13.114 12.970 13.094 12.959 13.100
4 16.810 16.878 16.765 16.923 16.786 16.899 16.773 16.906
5 20.506 20.579 20.452 20.633 20.455 20.573 20.439 20.580
10 37.370 37.485 37.300 37.555 37.334 37.531 37.305 37.540
15 52.626 52.801 52.537 52.891 52.713 52.999 52.670 53.009
20 67.123 67.204 67.097 67.230 67.105 67.513 67.050 67.525
30 93.963 94.114 93.908 94.170 93.742 94.507 93.662 94.519
40 118.619 118.810 118.548 118.882 118.457 119.611 118.353 119.625
50 141.854 142.072 141.797 142.129 141.832 143.345 141.703 143.360
60 164.433 164.714 164.352 164.795 164.112 166.020 163.960 166.037
70 185.845 186.166 185.777 186.235 185.511 187.711 185.335 187.729
80 206.669 207.042 206.602 207.109 206.045 208.682 205.844 208.702
90 226.045 226.542 225.931 226.656 225.900 228.965 225.676 228.985
100 245.529 246.052 245.451 246.130 245.157 248.630 244.910 248.651



Chapter 3

The multiplicative dual for the

multiple exercise option

In this chapter, we derive the multiplicative dual for the multiple-exercise derivative and

its associated algorithm. This derivation presents a different approach to the one used

to derive additive dual in Chapter 2. In particular, financial arguments are avoided. In

order to derive the multiplicative dual, we require a new representation of a martingale

in the multiple-exercise framework and this is provided for in Section 3.2. In Section

3.3, we restate the key results in the literature for the multiplicative dual in the case

of the Bermudan option in terms of our martingales. In Section 3.4, we derive the

multiplicative dual for the multiple-exercise option and its associated upper bound. The

algorithm to compute the multiplicative upper bound is given in Section 3.5 and the

issue of the bias arising from the sub-simulations in the algorithm is naturally addressed.

Section 3.6 concludes.

3.1 Preliminaries

The fundamental difficulty in solving the dual problem for the Bermudan option from

a computational perspective lies in how to approximate martingales. Andersen and

Broadie [2004] showed how one could construct the optimal martingale if the optimal

exercise strategy was known, and how a “good” martingale could still be obtained using

a suboptimal strategy. In order to derive the multiplicative dual for the multiple-exercise

37
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option, we require a new representation of the martingale in the multiple-exercise setting.

This is done in the next section.

Similar to what was done in Andersen and Broadie [2004], we will first need to ap-

proximate an exercise strategy in order to compute martingales in the multiple-exericse

framework. Such as strategy will be encapsulated by a given κ. The construction of

the most desirable martingale will require knowledge of V (N−n) and C(N−n). However,

since we do not have them, we will use the approximations V̂ κ,(N−n) and Ĉκ,(N−n) in

their place. V̂ κ,(N−n) and Ĉκ,(N−n) are multi-exercisable derivatives whose exercise are

defined by the stopping times and (2.4) that have been constructed with a given κ. We

shall refer to them as triggerables where the product is triggered when κ indicates exer-

cise. The product V̂ κ,(N−n) can be triggered now while Ĉκ,(N−n) can only be triggered

at the next time step. Their respective values at time t, V̂
κ,(N−n)
t and Ĉ

κ,(N−n)
t , are

given by their expectations in the Q measure. Note that we do not assume the exis-

tence of triggerable products in the market. We only use them as a numerical tool when

performing computations. Since κ is not optimal their prices bound the prices of the

options constructed using the optimal strategy from below

V̂
κ,(N−n)
t := E

[
N∑

i=n+1

Zτκi (t)

∣∣∣∣∣Ft
]
≤ V (N−n)

t (3.1)

and

Ĉ
κ,(N−n)
t := E

[
N∑

i=n+1

Zτκi (t+1)

∣∣∣∣∣Ft
]
≤ C(N−n)

t . (3.2)

3.2 Martingales in the multiple-exercise setting

Similar to the additive dual result for the multi-exercise option, the almost sure rep-

resentation of the multiplicative dual will be in terms of a set of martingales. In this

section, we will begin to construct such a set by first considering the multiplicative Doob

decompositions of V (N) and all C(N−n)’s on a truncated time interval s, . . . , T where s

is an arbitrary time in T.

Recall from Jamshidian [2004] that if Zt is positive, then V (1) is a supermartingale that

admits a multiplicative Doob decomposition

V
(1)
t = H

(1)
s,t B

(1)
s,t , t = s, . . . , T
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where H
(1)
s,t is the value of a martingale H

(1)
s at a time t such that H

(1)
s,s = 1 and B

(1)
s

is a non-increasing predictable process such that B
(1)
s,s = V

(1)
s . Rescaling, we will take

H
(1)
s,s = V

(1)
s and B

(1)
s,s = 1.

Since V (N) is a supermartingale, the same decomposition holds and we now define an

associated martingale.

Definition 3.1. We say that the martingale H
(N)
s is an (s, 0)-martingale if there exists

a predictable non-increasing process B
(N)
s whose value at t is denote by B

(N)
s,t such that

B
(N)
s,s = 1 and

(ii)

V
(N)
t = H

(N)
s,t B

(N)
s,t , t = s, . . . , T.

For n > 0, the martingale will be associated with the multiplicative decomposition of

C(N−n).

Definition 3.2. Let n be an integer with 1 ≤ n ≤ N − 1, we say that the martin-

gale H
(N−n)
s is an (s, n)-martingale if there exists a predictable non-increasing process

B
(N−n)
s , whose value at t will be denoted by B

(N−n)
s,t , such that B

(N−n)
s,s = B

(N−n)
s+1,s+1 = 1

and

C(N−n)
s = H(N−n)

s,s B(N−n)
s,s , (3.3)

V
(N−n)
t = H

(N−n)
s,t B

(N−n)
s+1,t , t = s+ 1, . . . , T. (3.4)

We shall see in Section 3.4 that an almost sure representation of the multiplicative dual

can be expressed in terms of a set of (s, n)-martingales. Given an arbitrary set of times

0 = t0 < t1 < · · · < tN−1 < T , we shall also represent an arbitrary set of martingales by

Ĥ
(N)
0 , Ĥ

(N−1)
t1

, . . . , Ĥ
(1)
tN−1

where the value of each Ĥ
(N−n)
tn at time t ≥ tn is given by Ĥ

(N−n)
tn,t . The set of all

uniformly integrable martingales that are of positive value will be given by H . In what

follows, it will be convenient to let Ĥ
(N−n)
tn,tn = Ĉ

κ,(N−n)
tn (or Ĥ

(N−n)
tn,tn = V̂

κ,(N)
0 if n = 0)

for some κ.
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3.3 The multiplicative dual for single exercise

We begin by stating Jamshidian’s result for the case of the Bermudan option in terms

of our notation.

Theorem 3.3. Let N = 1. For non-zero payoffs we have that

V (N) = inf
Ĥ

(N)
0 ∈H

E

[
max
0≤t≤T

Zt

Ĥ
(N)
0,t

Ĥ
(1)
0,T

∣∣∣∣∣F0

]
(3.5)

where the infimum is attained if Ĥ
(N)
0 = H

(N)
0 .

Chen and Glasserman [2007] showed that while the Monte Carlo estimate of the additive

dual has zero variance given an optimal martingale, this is not the case for the multi-

plicative dual due to the variance of H
(1)
0,T . Joshi and Tang [2014] showed that one can

recover a zero-variance result by using the terminal value of the martingale as a control

variate. The zero-variance result is an almost sure statement. We restate their result in

terms of our notation.

Theorem 3.4. Let N = 1. For non-zero payoffs we have that

V
(N)
0 = inf

Ĥ
(N)
0 ∈H

E

[
Ĥ

(N)
0,0 + max

0≤t≤T

(
Zt

Ĥ
(N)
0,t

)
Ĥ

(1)
0,T − Ĥ

(N)
0,T

∣∣∣∣∣F0

]
(3.6)

= H
(N)
0,0 + max

0≤t≤T

(
Zt

H
(N)
0,t

)
H

(N)
0,T −H

(N)
0,T a.s. (3.7)

In Joshi [2007], it was shown that one can construct an approximation Ĥ
(1)
0 to the

optimal martingales H
(1)
0 using a multiplicative version of the Andersen-Broadie algo-

rithm and the triggerable products Cκ,(1) and V κ,(1). This is done by first finding an

approximation to the optimal exercise strategy which is encapsulated by some κ and

then constructing the martingales via the following recursion:

Initialisation

Ĥ
(1)
0,0 = B

(1)
0,0V

κ,(1)
0 where B

(1)
0,0 = 1
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Recursion

Ĥ
(1)
0,t = B

(1)
0,t V

κ,(1)
t where

B
(1)
0,t = B

(1)
0,t−1

[
1 + 1{τ1(t−1)=t−1}

(
Zt−1

C
κ,(1)
t−1

− 1

)]
, t = 1, . . . , T.

3.4 The multiplicative dual for multiple exercise

To extend the Joshi-Tang result to the case where N > 1, we first make the rather

obvious observation that V (N) can be thought of as a product which can be exercised

once with a payoff at t equal to Zt + C
(N−1)
t . This payoff has the same value as X

(N)
t

units of C
(N−1)
t where

X
(N)
t :=

Zt

C
(N−1)
t

+ 1.

In general, by exercising an option with n < N remaining rights, one receives a payoff

of value equal to

X
(n)
t :=

Zt

C
(n−1)
t

+ 1

units of the forward-starting option C(n−1). For the remainder of the chapter, the X
(·)
t ’s

will be referred to as multiples. We thus obtain the following representation for the

multiple-exercise option with N rights

V
(N)
0 = inf

Ĥ
(N)
0 ∈H

E

[
H

(N)
0,0 + max

0≤t1≤T−N+1

(
X

(N)
t1

C
(N−1)
t1

H
(N)
0,t1

)
H

(N)
0,T−N+1 −H

(N)
0,T−N+1

∣∣∣∣∣F0

]
(3.8)

= H
(N)
0,0 + max

0≤t1≤T−N+1

(
X

(N)
t1

C
(N−1)
t1

H
(N)
0,t1

)
H

(N)
0,T−N+1 −H

(N)
0,T−N+1 a.s. (3.9)

The second subscript T − N + 1 on the martingale H
(N)
0,T−N+1 indicates the last time

V (N) can be exercised.
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By starting at a time tn rather than 0, we observe that the Joshi-Tang result also holds

for forward starting options

C
(N−n)
tn = inf

Ĥ
(N−n)
tn

∈H
E

[
Ĥ

(N−n)
tn,tn + max

tn<tn+1≤T−N−n+1

(
X

(N−n)
tn+1

C
(N−n−1)
tn+1

Ĥ
(N−n)
tn,tn+1

)
Ĥ

(N−n)
tn,T−N+n+1

−Ĥ(N−n)
tn,T−N+n+1

∣∣∣∣∣Ftn
]

(3.10)

= H
(N−n)
tn,tn + max

tn<tn+1≤T−N−n+1

(
X

(N−n)
tn+1

C
(N−n−1)
tn+1

H
(N−n)
tn,tn+1

)
H

(N−n)
tn,T−N+n+1

−H(N−n)
tn,T−N+n+1 a.s. (3.11)

We are now in a position to state and prove our main results.

Theorem 3.5. Let X
(1)
tN

= ZtN . For positive payoffs, we have that

V
(N)
0 = max

0≤t1<...<tN≤T

[
N−1∑
j=0

(
H

(N−j)
tj ,tj

−H(N−j)
tj ,T−N+j+1

) j−1∏
i=0

H
(N−i)
ti,T−N+i+1

H
(N−i)
ti,ti+1

X
(N−i)
ti+1

+
N−1∏
i=0

H
(N−i)
ti,T−N+i+1

H
(N−i)
ti,ti+1

X
(N−i)
ti+1

]
a.s. (3.12)

Proof. Let gn = H
(N−n)
tn,tn −H(N−n)

tn,T−N+n+1 and

hn :=
H

(N−n)
tn,T−N+n+1

H
(N−n)
tn,tn+1

X
(N−n)
tn+1

for n = 0, ..., N − 1. We have from (3.9) that

V
(N)
0 = max

t1

(
H

(N)
0,0 −H

(N)
0,T−N+1 +

X
(N)
t1

C
(N−1)
t1

H
(N)
0,t1

H
(N)
0,T−N+1

)
= max

t1
(g0 + h0C

(N−1)
t1

) a.s. (3.13)

and from (3.11) that

C
(N−1)
t1

= max
t2>t1

(
H

(N−1)
t1,t1

−H(N−1)
t1,T−N+2 +

X
(N−1)
t2

C
(N−2)
t2

H
(N)
t1,t2

H
(N−1)
t1,T−N+2

)
a.s.

= max
t2>t1

(g1 + h1C
(N−2)
t2

) a.s. (3.14)



Chapter 3. The multiplicative dual for the multiple exercise option 43

Since X
(1)
tN

= ZtN , we have by (3.7) that

C
(1)
tN−1

= max
tN>tN−1

(
H

(1)
tN−1,tN−1

−H(1)
tN−1,T

+
X

(1)
tN

H
(1)
tN−1,tN

H
(1)
tN−1,T

)
a.s.

= max
tN>tN−1

(gN−1 + hN−1) a.s. (3.15)

Using these, we can write (3.9) as

V
(N)
0 = max

t1
[g0 + h0 max

t2>t1
(g1 + h1C

(N−1)
t2

)]

= max
t1<t2

(g0 + h0g1 + h0h1C
(N−1)
t2

)

= max
t1<t2<...<tN

(g0 + h0g1 + h0h1g2 + ...+

N−2∏
i=0

hiC
(1)
tN−1

)

= max
t1<t2<...<tN

(g0 + h0g1 + h0h1g2 + ...+
N−2∏
i=0

higN−1 +
N−1∏
i=0

hi)

= max
0≤t1<...<tN≤T

(N−1∑
j=0

gj

j−1∏
i=0

hi +

N−1∏
i=0

hi

)
a.s.

We recover (3.12) by substituting the relevant terms.

As the result is an a.s. one, an optimal martingale would give us a zero-variance outcome

in the Monte-Carlo simulation of V
(N)
0 . For arbitrary martingales, we obtain an upper

bound on the price. The upper bound is encapsulated in the following result.

Corollary 3.6. If payoffs are positive, we have that

V
(N)
0 = inf

Ĥ
(N)
0 ,...,Ĥ

(1)
tN−1

∈H
E

{
max

0≤t1<...<tN≤T

[
N−1∑
j=0

(
Ĥ

(N−j)
tj ,tj

− Ĥ(N−j)
tj ,T−N+j+1

)

×
j−1∏
i=0

Ĥ
(N−i)
ti,T−N+i+1

Ĥ
(N−i)
ti,ti+1

X
(N−i)
ti+1

+
N−1∏
i=0

Ĥ
(N−i)
ti,T−N+i+1

Ĥ
(N−i)
ti,ti+1

X
(N−i)
ti+1

]∣∣∣∣∣F0

}
(3.16)

where the infimum is obtained when the martingales are optimal.

The perceptive reader may question whether this result is useful from a computational

perspective since each multiple X
(N−n)
t is defined in terms of some optimal stopping price

C
(N−n−1)
t . However, we shall show in Section 3.5 that by redefining it using Ĉ

κ,(N−n−1)
t ,

we still obtain an upper bound.
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Proof. Consider an arbitrary set of martingales {Ĥ(N−n)
tn }, n = 1, ..., N − 1. We have by

(3.8) and (3.10) that

V
(N)
0 ≤ E

[
Ĥ

(N)
0,0 + max

0≤t1≤T−N+1

(
X

(N)
t1

C
(N−1)
t1

Ĥ
(N)
0,t1

)
Ĥ

(N)
0,T−N+1 − Ĥ

(N)
0,T−N+1

∣∣∣∣∣F0

]
(3.17)

and

C
(N−n)
tn ≤ E

[
Ĥ

(N−n)
tn,tn + max

tn<tn+1≤T−N−n+1

(
X

(N−n)
tn+1

C
(N−n−1)
tn+1

Ĥ
(N−n)
tn,tn+1

)
Ĥ

(N−n)
tn,T−N+n+1

−Ĥ(N−n)
tn,T−N+n+1

∣∣∣∣∣Ftn
]
. (3.18)

Let ĝn and ĥn be defined to be the same as gn and hn except with arbitrary martingales.

We therefore have

V
(N)
0 ≤ E

[
max
t1

(ĝ0 + ĥ0C
(N−1)
t1

)
∣∣F0

]
(3.19)

and that for each n = 1, ..., N − 1,

C
(N−n)
tn ≤ E

[
max

tn+1>tn
(ĝn + ĥnC

(N−n−1)
tn+1

)
∣∣Ftn]. (3.20)

Substituting (3.20) for n = 1 into (3.19) yields

V
(N)
0 ≤ E

{
max
t1

(ĝ0 + ĥ0E
[

max
t2>t1

(ĝ1 + ĥ1C
(N−2)
t2

)
∣∣Ft1)

]∣∣F0

}
≤ E

{
E
[

max
t1

(ĝ0 + ĥ0 max
t2>t1

(ĝ1 + ĥ1C
(N−2)
t2

)
∣∣Ft1]∣∣F0

}
= E

{
max
t1<t2

(ĝ0 + ĥ0(ĝ1 + ĥ1C
(N−2)
t2

)
∣∣F0

}
where the second inequality is an application of Jensen’s inequality and the equality

results from the Tower law. By repeating the previous steps for n = 2, ..., N , we get

V
(N)
0 ≤ E

[
max

0≤t1<...<tN≤T

(N−1∑
j=0

ĝj

j−1∏
i=0

ĥi +

N−1∏
i=0

ĥi

)∣∣∣∣∣F0

]
. (3.21)
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By replacing ĝ’s and ĥ’s with their relevant terms, we obtain

V
(N)
0 ≤ E

{
max

0≤t1<...<tN≤T

[
N−1∑
j=0

(
Ĥ

(N−j)
tj ,tj

− Ĥ(N−j)
tj ,T−N+j+1

) j−1∏
i=0

Ĥ
(N−i)
ti,T−N+i+1

Ĥ
(N−i)
ti,ti+1

X
(N−i)
ti+1

+
N−1∏
i=0

Ĥ
(N−i)
ti,T−N+i+1

Ĥ
(N−i)
ti,ti+1

X
(N−i)
ti+1

]∣∣∣∣∣F0

}
.

Since the set of optimal martingales yields equality, we can combine this result with the

previous theorem to get (3.16).

3.5 An algorithm for the iterative construction of the mul-

tiplicative dual

In this section, we show how one attains a good approximation to the RHS of (3.16) via

simulation. Several important issues are addressed in the process. For the remainder of

this section, we will assume that one already has a working exercise strategy that can

be represented by some κ. In order to reduce notational requirements, we shall drop the

κ in Ĉκ,(·) and V̂ κ,(·) and take it to be that these products are priced using this strategy.

Firstly, recall that we needed to find a reasonable approximation for X(N−n) when

computing (3.16). We thus propose the use of the approximate multiple

X̂
(N−n)
t :=

Zt

Ĉ
(N−n−1)
t

+ 1

and see that it yields a valid upper bound since

Ĉ
(N−n−1)
t ≤ C(N−n−1)

t ⇒ X̂
(N−n)
t ≥ X(N−n)

t .

Secondly, suppose that the martingales Ĥ
(·)
·,· and approximate multiples X̂

(·)
· have been

computed. A method of computing the path-wise maximum

ϑ̂
(N)
0 := max

0≤t1<...<tN≤T

[
N−1∑
j=0

(
Ĥ

(N−j)
tj ,tj

− Ĥ(N−j)
tj ,T−N+j+1

) j−1∏
i=0

Ĥ
(N−i)
ti,T−N+i+1

Ĥ
(N−i)
ti,ti+1

X̂
(N−i)
ti+1

+
N−1∏
i=0

Ĥ
(N−i)
ti,T−N+i+1

Ĥ
(N−i)
ti,ti+1

X̂
(N−i)
ti+1

]
(3.22)
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along every path is then required. In subsection 3.5.1, we show how one can decom-

pose the computation of (3.22), which is an optimisation over N random times, into a

sequence of optimisations over one random time. As part of the process, we also show

how each martingale is computed.

Thirdly, we will observe that any martingales and approximate multiple will be a func-

tions of some Ĉ
(·)
· . Since we have to estimate Ĉ

(·)
· via Monte Carlo (MC), it then becomes

unclear whether one still obtains a high-biased estimate for ϑ̂
(N)
0 in the presence of all

the MC errors. This issue is addressed in the final two subsections. In subsection

3.5.2, we start by considering how one should approximate each multiple in each step

of the aforementioned sequence of optimisations. However, the effect of the MC errors

of its aforementioned approximation is not fully addressed until the final subsection

3.5.3 where we will show that we are able to obtain a valid upper bound even when

approximating the martingales and the multiples by their MC counterparts.

3.5.1 Finding the path-wise maximum

The computation of the martingales is just a straightforward extension of the recursion

in Section 3.3. At initialisation, the martingale consists of one unit of the triggerable

product and so

Ĥ
(N−n)
tn,tn = Ĉ

(N−n)
tn 1{n6=0} + V̂

(N)
tn 1{n=0}. (3.23)

We let B
(N−n)
tn,t denote the number of options in the martingale. At initialisation,

B
(N−n)
tn,tn = 1 and in the case of forward-starting options, we also have that B

(N−n)
tn,tn+1 = 1

for n ≥ 1. In particular, we have that B
(N−n)
tn,t is incremented at each t = tn + 1, ..., T −

N + n+ 1 according to

B
(N−n)
tn,t = B

(N−n)
tn,t−1

[
1 + 1{τn+1(t−1)=t−1}

(
Zt−1 + Ĉ

(N−n−1)
t−1

Ĉ
(N−n)
t−1

− 1

)]
. (3.24)

The value of the martingale Ĥ
(N−n)
tn at the next time tn+1, requires the further compu-

tation

Ĥ
(N−n)
tn,tn+1

= B
(N−n)
tn,tn+1

[(
Ztn+1 + Ĉ

(N−n−1)
tn+1

)
1{τn+1(tn+1)=tn+1} + Ĉ

(N−n)
tn+1

1{τn+1(tn+1)6=tn+1}

]
.

(3.25)
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Clearly, we have to make do with an approximation to each of the martingales as MC

approximations for each Ĉ
(N−n)
t and Ĉ

(N−n−1)
t are used in place of their true values.

However, let us assume for now that we can compute the true value of the martingales

rather than their approximations. Assuming that we can also compute the true value

for each multiple, ϑ̂
(N)
0 can then be computed via the following procedure:

Initialisation For each tN = N − 1, ..., T , find

ϑ̂
(0)
tN

= ZtN . (3.26)

Step 1 For each tN−1 = N, ..., T − 1, calculate

ϑ̂
(1)
tN−1

= Ĥ
(1)
tN−1,tN−1

+ max
tN−1<tN≤T

(
ϑ̂
(0)
tN

Ĥ
(1)
tN−1,tN

)
Ĥ

(1)
tN−1,T

− Ĥ(1)
tN−1,T

. (3.27)

Step N − n for n = N − 2, ..., 1 For each tn = n, ..., T −N + n, calculate

ϑ̂
(N−n)
tn = Ĥ

(N−n)
tn,tn + max

tn<tn+1≤T−N+n+1

(
X̂

(N−n)
tn+1

ϑ̂
(N−n−1)
tn+1

Ĥ
(N−n)
tn,tn+1

)
Ĥ

(N−n)
tn,T−N+n+1

−Ĥ(N−n)
tN−n,T−N+n+1. (3.28)

Step N Finally, compute

ϑ̂
(N)
0 = Ĥ

(N)
0,0 + max

0≤t1≤T−N+1

(
X̂

(N)
t1

ϑ̂
(N−1)
t1

Ĥ
(N)
0,t1

)
Ĥ

(N)
0,T−N+1 − Ĥ

(N)
0,T−N+1.

We now move on to address the issues arising from the use of the approximations instead

of the true values.

3.5.2 Approximating the multiples

In the previous subsection, we saw how one can decompose the maximisation of the

given objective function over N random times into a sequence of optimisations over one

random time. However, we need to ensure that each step of the procedure still yields

an estimate that is biased-high when approximations for the martingales and multiples

are used.
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We see that Step 1 is part of the procedure for computing the dual for the Bermudan

option and we know from Joshi [2007] that this will give us a high-biased estimate for

ϑ̂
(1)
tN−1

, even in the presence of MC errors.

Next, at Step N −n of the algorithm for each n = N − 2, ..., 1, in order to compute each

path-wise maximum ϑ̂
(N−n)
tn , we first need to compute

max
tn<tn+1≤T−N−n+1

X̂
(N−n)
tn+1

ϑ̂
(N−n−1)
tn+1

Ĥ
(N−n)
tn,tn+1

(3.29)

along each path.

We now consider the computational treatment of the multiples in view of the MC errors

arising from its approximation. Rather than simulating X̂
(N−n)
tn+1

and Ĥ
(N−n)
tn,tn+1

individu-

ally, we can take advantage of cancelling terms by rewriting their ratio as

X̂
(N−n)
tn+1

Ĥ
(N−n)
tn,tn+1

=
(Ztn+1 + Ĉ

(N−n−1)
tn+1

)/Ĉ
(N−n−1)
tn+1

B
(N−n)
tn,tn+1

[(
Ztn+1 + Ĉ

(N−n−1)
tn+1

)
1{τn+1(tn+1)=tn+1} + Ĉ

(N−n)
tn+1

1{τn+1(tn+1)6=tn+1}

]

=
1

B
(N−n)
tn,tn+1

[
1

Ĉ
(N−n−1)
tn+1

1{τn+1(tn+1)=tn+1}

+
1

Ĉ
(N−n)
tn+1

(
Ztn+1

Ĉ
(N−n−1)
tn+1

+ 1

)
1{τn+1(tn+1)6=tn+1}

]
. (3.30)

We will see below that this form for X̂
(N−n)
tn+1

/Ĥ
(N−n)
tn,tn+1

is crucial to obtaining a high-biased

estimate for ϑ̂
(N−n)
tn .

3.5.3 Ensuring upwards bias in the presence of sub-simulation errors

Andersen and Broadie [2004] showed that using sub-simulations to compute the martin-

gales for the additive dual still resulted in a high-biased estimate. Furthermore, Joshi

[2007] showed that this approach worked when computing the martingales for the mul-

tiplicative dual for the Bermudan option. Our final proposition will show that we still

get a valid upper bound for (3.16) if sub-simulations are used to compute the required

variables. Its proof requires the following lemma.
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Lemma 3.7. Let ω denote an outer simulation path where ω ∈ Ω. Consider a collection

of non-zero functions {gi} that is used to construct a quotient g = ĝ/ǧ where ĝ :=
∏j
i=1 gi

and ǧ :=
∏k
j+1 gi. Let g̃i = gi + εi where each εi is a random variable with mean 0 and

where all εi’s are conditionally independent given ω. If G is the filtration generated by

ω, we then have that E(g̃|G) ≥ g.

Proof. We have that E(g̃i/gi|G) = 1 and by Jensen’s inequality, E(gi/g̃i|G) ≥ 1. There-

fore
j∏
i=1

E
( g̃i
gi

∣∣∣G) k∏
i=j+1

E
(gi
g̃i

∣∣∣G) ≥ 1

which rearranges to give us E(g̃|G) ≥ g.

Proposition 3.8. Let ω denote an outer simulation path where ω ∈ Ω and let Gt

be the information generated by ω and all sub-simulations prior to time t for t ∈ T.

For each i = 0, ..., N − 1, let X̃
(N−i)
ti+1

denote the simulated multiples and let H̃
(N−i)
ti,ti+1

and H̃
(N−i)
ti,T−N+n+1 denote the simulated values of the arbitrary martingales Ĥ

(N−i)
ti,ti+1

and

Ĥ
(N−i)
ti,T−N+n+1 respectively. For each trajectory of the underlying, we have that

E

{
max

0≤t1<...<tN≤T

[
N−1∑
j=0

(
H̃

(N−j)
tj ,tj

− H̃(N−j)
tj ,T−N+j+1

) j−1∏
i=0

H̃
(N−i)
ti,T−N+i+1

H̃
(N−i)
ti,ti+1

X̃
(N−i)
ti+1

+
N−1∏
i=0

H̃
(N−i)
ti,T−N+i+1

H̃
(N−i)
ti,ti+1

X̃
(N−i)
ti+1

]∣∣∣∣∣G0
}

≥ max
0≤t1<...<tN≤T

[
N−1∑
j=0

(
Ĥ

(N−j)
tj ,tj

− Ĥ(N−j)
tj ,T−N+j+1

) j−1∏
i=0

Ĥ
(N−i)
ti,T−N+i+1

Ĥ
(N−i)
ti,ti+1

X̂
(N−i)
ti+1

+
N−1∏
i=0

Ĥ
(N−i)
ti,T−N+i+1

Ĥ
(N−i)
ti,ti+1

X̂
(N−i)
ti+1

]
. (3.31)

Remark 3.9. We require conditional independence between each pair

H̃
(N−i)
ti,ti+1

and H̃
(N−i)
ti,T−N+n+1.

Therefore, they must be evaluated using separate simulations.

Proof. Let C̃
(N−n)
t denote the simulated approximation of Ĉ

(N−n)
t with error ε

(N−n)
t of

mean 0. From this we compute the martingales and the multiples. The maximum on
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the RHS of (3.31) is attained at the collection of random times t∗1, ..., t
∗
N . Now

E

[
N−1∑
j=0

(
H̃

(N−j)
t∗j ,t

∗
j
−H̃(N−j)

t∗j ,T−N+j+1

) j−1∏
i=0

H̃
(N−i)
t∗i ,T−N+i+1

H̃
(N−i)
t∗i ,t

∗
i+1

X̃
(N−i)
t∗i+1

+
N−1∏
i=0

H̃
(N−i)
t∗i ,T−N+i+1

H̃
(N−i)
t∗i ,t

∗
i+1

X̃
(N−i)
t∗i+1

]∣∣∣∣∣G0
]
,

bounds the expectation in (3.31) from below and can be re-written as

E

(
H̃

(N)
0,0 − H̃

(N)
0,T−N+1 +

H̃
(N)
0,T−N+1

H̃
(N)
0,t∗1

X̃
(N)
t∗1

ϑ̃
(N−1)
t∗1

∣∣∣∣∣G0
)

where

ϑ̃
(N−1)
t∗1

:= E

(
H̃

(N−1)
t∗1,t

∗
1
− H̃(N−1)

t∗1,T−N+2 +
H̃

(N)
t∗1,T−N+2

H̃
(N)
t∗1,t

∗
2

X̃
(N−1)
t∗2

ϑ̃
(N−2)
t∗2

∣∣∣∣∣Gt∗1
)
,

for n = 2, ..., N − 2,

ϑ̃
(N−n)
t∗n

:= E

(
H̃

(N−n)
t∗n,t

∗
n
− H̃(N−n)

t∗n,T−N+n+1 +
H̃

(N−n)
t∗1,T−N+n+1

H̃
(N−n)
t∗n,t

∗
n+1

X̃
(N−n)
t∗n+1

ϑ̃
(N−n−1)
t∗n+1

∣∣∣∣∣Gt∗n
)

and

ϑ̃
(1)
t∗N−1

= E

(
H̃

(1)
t∗N−1,t

∗
N−1
− H̃(1)

t∗N−1,T
+
H̃

(1)
t∗N−1,T

H̃
(1)
t∗N−1,t

∗
N

Zt∗N

∣∣∣∣∣Gt∗N−1

)
.

One immediately identifies this decomposition as our algorithm where the maximums

have been achieved at t∗1, ..., t
∗
N with

ϑ̂
(N−n)
t∗n

= Ĥ
(N−n)
t∗n,t

∗
n

+

(
X̂

(N−n)
t∗n+1

ϑ̂
(N−n−1)
t∗n+1

Ĥ
(N−n)
t∗n,t

∗
n+1

)
Ĥ

(N−n)
t∗n,T−N+n+1 − Ĥ

(N−n)
t∗N−n,T−N+n+1.

Thus for (3.31) to hold, we require that ϑ̃
(N−n)
t∗n

≥ ϑ̂(N−n)t∗n
which is in turn satisfied if

E(H̃
(N−n)
t∗n,t

∗
n
|Gt∗n) ≥ Ĥ

(N−n)
t∗n,t

∗
n
, (3.32)

E(H̃
(N−n)
t∗n,T−N+n+1|Gt∗n) ≥ Ĥ

(N−n)
t∗n,T−N+n+1 (3.33)

and E

(
X̃

(N−n)
t∗n+1

H̃
(N−n)
t∗n,t

∗
n+1

∣∣∣∣∣Gt∗n
)
≥

X̂
(N−n)
t∗n+1

Ĥ
(N−n)
t∗n,t

∗
n+1

(3.34)
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We proceed by induction, taking ϑ̃
(N−n−1)
t∗n+1

≥ ϑ̂
(N−n−1)
t∗n+1

as our induction hypothesis.

(3.32) is trivially true. Since

E

(
H̃

(N−n)
t∗n,T−N+n+1

Ĥ
(N−n)
t∗n,T−N+n+1

∣∣∣∣∣Gt∗n
)

= E

(
ZT−N+n+1 + C̃

(N−n−1)
T−N+n+1

ZT−N+n+1 + Ĉ
(N−n−1)
T−N+n+1

T−N+n∏
i=t∗n

Zi + C̃
(N−n−1)
i

Zi + Ĉ
(N−n−1)
i

Ĉ
(N−n)
i

C̃
(N−n)
i

1{τn+1(i)=i}

∣∣∣∣∣Gt∗n
)
,

(3.33) is satisfied by Lemma 3.7. Furthermore, by considering (3.30), we see that

E

(
X̃

(N−n)
t∗n+1

H̃
(N−n)
t∗n,t

∗
n+1

/
X̂

(N−n)
t∗n+1

Ĥ
(N−n)
t∗n,t

∗
n+1

∣∣∣∣∣Gt∗n
)

= E

( t∗n+1∏
i=t∗n

Zi + Ĉ
(N−n−1)
i

Zi + C̃
(N−n−1)
i

C̃
(N−n)
i

Ĉ
(N−n)
i

1{τn+1(i)=i}

∣∣∣∣∣Gt∗n
)

×

[
1{τn+1(t∗n+1)=t

∗
n+1}E

(
Ĉ

(N−n−1)
t∗n+1

C̃
(N−n−1)
t∗n+1

∣∣∣∣∣Gt∗n
)

+1{τn+1(t∗n+1)6=t∗n+1}E

(
Ĉ

(N−n)
t∗n+1

C̃
(N−n)
t∗n+1

∣∣∣∣∣Gt∗n
)
E

( Zt∗n+1

C̃
(N−n−1)

t∗n+1

+ 1

Zt∗n+1

Ĉ
(N−n−1)

t∗n+1

+ 1

∣∣∣∣∣Gt∗n
)]

.

Since

E


Zt∗n+1

C̃
(N−n−1)

t∗n+1

+ 1

Zt∗n+1

Ĉ
(N−n−1)

t∗n+1

+ 1

∣∣∣∣∣Gt∗n
 ≥ 1,

(3.34) is also satisfied by Lemma 3.7.

3.6 Conclusion

In this chapter, the notion of a martingale in the the multiple-exercise framework was

provided for. Using these martingales, we generalised the result of Joshi and Tang

[2014] to the multiple exercise case to derive the first known multiplicative dual for the

multiple-stopping problem. An algorithm that can be seen as the natural extension of the

Andersen-Broadie algorithm to the multiplicative multiple-exercise case was developed
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and it was shown that we still obtained an upper bound on the price even in the presence

of Monte Carlo errors.

In order to produce meaningful numerical results, one requires an implementation of

the algorithm on parallelized architecture due to the large number of sub-simulations

required. In particular, we believe the implementation is best done in Nvidia‘s propri-

etary language CUDA which allows us to harness the parallel computational power of

the graphics processing unit (GPU). The details of the implementation deserves an entire

chapter in itself due to the intricacies of the memory management involved. This is be-

yond the scope of this thesis and will constitute future research.



Chapter 4

Algorithms for optimal control of

stochastic switching systems

In this chapter we look at the more general framework of solving Markov decision prob-

lems with linear state dynamics. After introducing this framework in Section 4.1, Sec-

tion 4.2 presents the notion of a convex switching system and discusses solutions to this

stochastic problem class. In Section 4.3, we review and analyze the numerical scheme of

Hinz [2014] that provides fast and stable solutions to convex switching problems. Sec-

tion 4.4 represents a first step to relaxing the requirement of convexity. A remarkable

generalization is achieved Section 4.5 where a method has been devised that allows us to

by-pass any convexity requirement while yielding significant improvements in computa-

tion time. Another major contribution of the chapter is presented in Section 4.6, where

we suggest an adaptation of the approach Rogers [2007] to obtain recursive schemes for

upper bound estimates of an approximate solution. Section 4.7 provides two numerical

examples. We conclude this chapter with Section 4.8.

4.1 Markov decision theory

We begin by reviewing the classical framework of finite-horizon Markov decision theory,

where we closely follow Chapter 2 of Bäuerle and Rieder [2011] and tailor it to suit our

purposes. Consider a system on the finite time horizon 0, . . . , T whose state varies in a

measurable space (E, E) and is affected by elements from a set A of possible actions. For

53
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each a ∈ A, we assume that Ka
t (x, dx′) is a stochastic transition kernel on (E, E). Con-

sider a fixed sequence (Xt)
T
t=0 of random variables which can be thought of as coordinate

projections acting on the product E{0,...,T} of copies of (E, E). A mapping πt : E 7→ A

which describes the action that the controller of the system takes at time t is called a

decision rule. A sequence of decision rules π = (πt)
T−1
t=0 is called a policy. For each initial

point x0 ∈ E and each policy π = (πt)
T−1
t=0 , there exists a probability measure Px0,π for

which Px0,π(X0 = x0) = 1 and where

Px0,π(Xt+1 ∈ B |X0, . . . , Xt) = K
πt(Xt)
t (Xt, B) (4.1)

holds for each measurable B ∈ E and t = 0, . . . , T − 1. That is, given that system is

in state Xt at time t, the action a = πt(Xt) is used to pick the transition probability

K
a=πt(Xt)
t (Xt, ·) which assigns the random evolution of the state from Xt to Xt+1 with

the distribution K
πt(Xt)
t (Xt, · ). For the sake of notational convenience, we use Kat to

denote the one-step transition operator associated with the transition kernel Ka
t when

the action a ∈ A is chosen. In other words, for each action a ∈ A the operator Kat acts

on functions ϕ by

(Katϕ)(x) =

∫
E
ϕ(x′)Ka

t (x, dx′) x ∈ E, (4.2)

whenever the above integrals are well-defined.

At each time t, we are given the t-step reward function rt : E × A 7→ R, where rt(x, a)

represents the reward for applying an action a ∈ A when the state of the system is x ∈ E

at time t. At the end of the time horizon, at time T , it is assumed that no action can

be taken. Here, if the system is in a state x, a scrap value rT (x), which is described by

a pre-specified scrap function rT : E → R, is collected. Given an initial point x0, our

goal is to maximize the expected finite-horizon total reward, in other words to find the

argument π∗ = (π∗t )
T−1
t=0 such that

π∗ = argmaxπ∈AEx0,π
(
T−1∑
t=0

rt(Xt, πt(Xt)) + rT (XT )

)
, (4.3)

where A is the set of all policies, and Ex,π denotes the expectation over the controlled

Markov chain defined by (4.1). The maximization (4.3) is well-defined under diverse

additional assumptions (see Bäuerle and Rieder [2011], p. 199).
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The calculation of the optimal policy is addressed in the following setting. We introduce

for t = 0, . . . , T − 1 the Bellman operator

Ttv(x) = sup
a∈A

(rt(x, a) +Kat v(x)) , x ∈ E (4.4)

which acts on each measurable function v : E → R where the integrals Kat v for all a ∈ A

exist. Further, consider the Bellman recursion

vT = rT , vt = Ttvt+1 for t = T − 1, . . . , 0. (4.5)

Under appropriate assumptions, there exists a recursive solution (v∗t )
T
t=0 to the Bellman

recursion, which gives the so-called value functions and determines an optimal policy π∗

via

π∗t (x) = argmaxa∈A
(
rt(x, a) +Kat v∗t+1(x)

)
, x ∈ E

for all t = 0, . . . , T − 1.

4.2 Convex switching systems

For the remainder of this work, we concentrate on Markov decision problems which sat-

isfy specific additional assumptions under which the solutions to the Bellman recursion

exist. This enables us to focus on finding numerical approximations.

Consider a Markov decision model whose state evolution consists of one discrete and one

continuous component. To be more specific, we assume that the state space E = P ×Rd

is the product of a finite space P and the Euclidean space Rd. We suppose that the first

component p ∈ P is deterministically driven by a finite set A of actions in terms of a

function

α : P ×A→ A, (p, a)→ α(p, a),

where α(p, a) ∈ P is the new value of the discrete component of the state if its previous

discrete component value was p and the action a ∈ A was taken by the controller. Fur-

thermore, we assume that the continuous state component evolves as an uncontrolled
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Markov process (Zt)
T
t=0 on Rd whose evolution is driven by random linear transforma-

tions

Zt+1 = Wt+1Zt

with pre-specified independent and integrable disturbance matrices (Wt)
T
t=1. Finally, let

us assume that the reward functions

rt(p, z, a), t = 0, . . . , T − 1, p ∈ P, a ∈ A

and scrap functions

rT (p, z), p ∈ P

are convex and globally Lipschitz continuous in the continuous component of the state

space z ∈ Rd. In this setting, the transition operators are given by

Kat v(p, z) = E(v(α(p, a),Wt+1z)), t = 0, . . . , T − 1, a ∈ A (4.6)

and the Bellman operators are

Ttv(p, z) = sup
a∈A

(
rt(p, z, a) + E(v(α(p, a),Wt+1z))

)
(4.7)

for all p ∈ P , z ∈ Rd and t = 0, . . . , T − 1. Markov decision problems satisfying these

assumptions are referred to as convex switching systems in what follows.

4.3 Algorithmic solutions

For such systems, the backward induction described by (4.5) solves our control problem.

However, by inspecting the Bellman operator

Ttv(p, z) = max
a∈A

(
rt(p, z, a) + E(v(α(p, a),Wt+1z))

)
, (4.8)

we see that solving the Bellman recursion results in a number of problems, the most

pressing of which is that one requires a point-wise solution for each z ∈ Rd. In Hinz

[2014], a method was presented that targeted a solution in a “functional” form. We now

provide a detailed account and justification of their approach.
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First, by approximating the expectation in the Bellman operator in (4.8) by finite sum-

mation, we obtain the modified Bellman operator T nt that acts on a given value function

according to

T nt v(p, z) = max
a∈A

(
rt(p, z, a) +

n∑
k=1

νt+1(k)v(α(p, a),Wt+1(k)z)

)
(4.9)

where (Wt+1(k))nk=1 represents appropriate realizations of disturbances with the corre-

sponding probability weights (νt+1(k))nk=1. By replacing the true Bellman operator (4.8)

in the backward induction of (4.5) by its modified counterpart that is given by (4.9), we

obtain the modified induction

vnT = rT , vt = T nt vnt+1 for t = T − 1, . . . , 0. (4.10)

Although the integration is now replaced by a finite sum, determining (vnt )Tt=0 is still

algorithmically intractable as the calculation must be performed at each point z ∈ Rd.

At this point, we turn to the important observation that since the scrap and reward

functions, rt(p, z, a), t = 0, . . . , T − 1 and rT (p, z), used in (4.9) and (4.10) are convex

in the continuous component, then the resulting value functions (vnt )Tt=0 must also be

convex in the same component.

We now suggest an approximation of these functions (vnt )Tt=0 in terms of maxima over a

finite selection of their sub-gradients. Before we can begin to explain the advantage of

such a piecewise linear approximation, we need to first establish a few concepts.

First, let us refer to a countable subset G ⊂ Rd as a grid. For a grid G, the sub-gradient

envelope SGf of a convex function f is defined to be the maximum of sub-gradients ∇gf

of f at each grid point g ∈ G and so

SGf = ∨g∈G∇gf.

Given a family {(Wt(k))Tt=1 : k = 1, . . . , n} of trajectories of disturbances that increases

with n ∈ N and a family of grids (Gm)m∈N whose tightness increases with m ∈ N, we

define for each n,m ∈ N the double modified Bellman operators T m,nt for t = 0, . . . , T −1

(T m,nt v)(p, ·) = SGm max
a∈A

(
rt(p, ·, a) +

n∑
k=1

νt+1(k)v(α(p, a),Wt+1(k)·)

)
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Using these operators, the double modified value functions (vm,nt )Tt=0 are obtained from

the backward induction which starts with

vm,nT (p, ·) = SGmrT (p, ·), p ∈ P (4.11)

and recursively determines functions

vm,nt = T m,nt vm,nt+1 , t = T − 1, . . . 0. (4.12)

Obviously, this approach involves two approximation parameters n ∈ N and m ∈

N, which correspond to the sampled disturbances (Wt+1(k))nk=1 with their weights

(νt+1(n))nk=1 ⊂ Rd+ and the grid tightening (Gm)m∈N. Under appropriate assumptions,

this scheme enjoys excellent convergence properties (see Hinz [2014]). However, we shall

now focus solely on its algorithmic aspect.

Since the double-modified backward induction (4.11) and (4.12) returns value functions

(vm,nt )Tt=0 which are piecewise linear and convex (in the continuous component), we now

address an appropriate representation of such functions in terms of matrices in order to

re-write the backward induction algorithm (4.11) and (4.12) in a compact matrix form.

A matrix with d columns is called a matrix representative of a piecewise linear convex

function l : Rd → R if it holds that l(z) = max(Lz) for all z ∈ Rd. We shall use the

expression l ∼ L if a piecewise linear convex function l possesses a matrix representative

L. It turns out that the formation of a sub-gradient envelope can be directly described in

terms of matrix representatives. Namely, if l possesses a matrix representative L then its

sub-gradient envelope SG on the grid G = {g1, . . . , gm} possess a matrix representative

ΥG[L] where the row-re-arrangement operator ΥG is defined by

ΥG[L]i,· = Largmax(Lgi),· for all i = 1, . . . ,m.

In other words, when ΥG is applied to a matrix L with d columns, the result ΥG[L] of

the row-rearrangement yields an m× d matrix whose i-th row is the row of L at which

the maximum in Lgi at the i-th grid point is attained. As mentioned above, the relation

between the sub-gradient envelope of a function and its matrix representative is thus
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given in terms of the row-rearrangement operator ΥG:

l ∼ L =⇒ SGl ∼ ΥG[L].

A similar relation holds for the summation of piecewise linear and convex functions,

followed by sub-gradient envelope. Namely, it corresponds to a straight summation of

their matrix representatives, after row-rearrangement:

l ∼ L, f ∼ F =⇒ SG(f + l) ∼ ΥG[L] + ΥG[F ].

Similarly, maximization of piecewise linear and convex functions, followed by sub-gradient

envelope is realized on matrix level by binding by rows of matrix representatives, followed

by the row-rearrangement:

l ∼ L, f ∼ F =⇒ SG(l ∨ f) ∼ ΥG[L t F ].

Here, the binding-by-row operation LtF performs a row concatenation of the two ma-

trices L and F . Let us also introduce an equivalent but algorithmically more convenient

procedure of maximization on the level of matrix representatives for later use. Given a

grid G = {g1, . . . , gm} ⊂ Rd and m× d matrices F (a), a ∈ A, we introduce

F :=
⊔
a∈A

F (a)

to denote a m× d matrix F whose i-th row

Fi, = Fi,(a(i)), i = 1, . . . ,m

equals to the i-th row of the matrix F (a(i)) where the maximum at the i-th grid point

gi is reached, i.e.

a(i) = argmax{Fi,(a) · gi : i = 1, . . . ,m}.

This maximization is used to obtain a sub-gradient envelope of the maximum over

a family fa, a ∈ A of piecewise linear and convex functions in terms of the matrix

representatives of their sub-gradient envelopes:

SGfa ∼ F (a), a ∈ A ⇒ SG(
∨
a∈A

fa) ∼
⊔
a∈A

F (a).
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Finally, we emphasize that determining the sub-gradient envelope of the composition of

a function with a linear mapping corresponds to a simple matrix product followed by a

row-rearrangement. In other words, for each d× d-matrix W , it holds that

l ∼ L =⇒ SG(l(W ·)) ∼ ΥG[LW ].

Observe that the rows of the matrix F representing a sub-gradient envelope SGf of a

convex piecewise linear function f can always be arranged such that F = ΥG(F ) holds.

We say that a the sub-gradient representative F is in the normal form if it holds that

F = ΥG(F ).

Since the double-modified backward induction involves maximization, summations and

compositions with linear mappings applied to piecewise linear convex functions, it can

be rewritten in terms of matrix operations. Let us present the resulting algorithm:

Pre-calculations: Given a grid Gm = {g1, . . . , gm}, implement the row-rearrangement

operator Υ = ΥGm and the row maximization operator ta∈A. Determine a distribution

sampling (Wt(k))nk=1 of each disturbance Wt with the corresponding weights (νt(k))nk=1

for t = 1, . . . , T . Given reward functions (rt)
T−1
t=0 and scrap value rT , determine the

normal form of the matrix representatives of their sub-gradient envelopes

SGmrt(p, ·, a) ∼ Rt(p, a), SGmrT (p, ·) ∼ RT (p)

for t = 0, . . . , T − 1, p ∈ P and a ∈ A. Introduce matrix representatives Vt(p) for

t = 0, . . . , T , p ∈ P of each value function by

vn,mt (p, ·) ∼ Vt(p) for t = 0, . . . , T , p ∈ P

which are obtained via the following matrix of the backward induction:

Initialization: Start with the matrices

VT (p) = RT (p), for all p ∈ P .

Recursion: For t = T − 1, . . . , 0 calculate for p ∈ P

Vt(p) = ta∈A
(
Rt(p, a) +

n∑
k=1

νt+1(k)Υ[Vt+1(α(p, a)) ·Wt+1(k)]
)

(4.13)
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4.4 Non-convex extension

In this section, we demonstrate that for non-convex of reward and scrap functions the

above algorithm can be adapted, if the functions are representable as a difference of two

convex functions. More precisely, assume that for all t = 0, . . . , T − 1, and p ∈ P , a ∈ A

it holds that

rt(p, ·, a) = r̆t(p, ·, a)− r̂t(p, ·, a), (4.14)

and

rT (p, ·) = r̆T (p, ·)− r̂T (p, ·) (4.15)

with convex functions r̆t(p, ·, a), r̂t(p, ·, a), r̆T (p, ·) and r̂T (p, ·) for p ∈ P . Given such

represention, the idea is to decompose the backward induction into parallel procedures

that operate on convex functions. Suppose that at the step t, the value function vt+1

can be represented as a difference vt+1 = v̆t+1 − v̂t+1 of convex functions v̆t+1(p, ·) and

v̂t+1(p, ·) for p ∈ P . With this, we have

Ttv(p, z) = sup
a∈A

(rt(p, z, a) +Kat vt+1(p, z))

= sup
a∈A

(
[r̆t(p, z, a) +Kat v̆t+1(p, z)]− [r̂t(p, z, a) +Kat v̂t+1(p, z)]

)
showing that before maximization in a ∈ A, the result is obtained as difference of two

convex functions. However, a direct application of convex function maximization (i.e.

the use of the row maximization operator t) is not compatible with this decomposition.

Therefore, we require a way to express the maximum over differences of convex functions

as difference of two convex functions. The following simple observation helps here.

Consider for each a ∈ A the difference f̆a − f̂a of two convex functions f̆a and f̂a and

let f̂ :=
∑

a∈A f̂a. Then for each a ∈ A the functions f̆a − f̂a + f̂ and f̂ are convex and

yield the desired decomposition

max
a∈A

(f̆a − f̂a) = max
a∈A

(f̆a − f̂a + f̂)− f̂ . (4.16)

Having this approach in mind, we propose the following algorithm:
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Pre-calculation: Decompose the reward (rt)
T−1
t=0 and scrap rT functions into a dif-

ference of convex functions as in (4.14) and (4.15) with their (normal form) matrix

representatives

SGm r̆t(p, ·, a) ∼ R̆t(p, a), SGm r̂t(p, ·, a) ∼ R̂t(p, a),

SGm r̆T (p, ·) ∼ R̆T (p), SGm r̂T (p, ·) ∼ R̂T (p)
(4.17)

for all t = 0, . . . , T − 1, p ∈ P and a ∈ A. Introduce the approximate value functions

(vn,mt )Tt=0 which possess the decomposition

vn,mt = v̆n,mt − v̂n,mt (4.18)

where v̆n,mt (p, ·) and v̂n,mt (p, ·) are piecewise linear convex functions with matrix repre-

sentatives

v̆n,mt (p, ·) ∼ V̆t(p) and v̂n,mt (p, ·) ∼ V̂t(p) (4.19)

for t = 0, . . . , T , p ∈ P .

Initialization: Start with the matrices

V̆T (p) = R̆T (p) and V̂T (p) = R̂T (p), for all p ∈ P.

Recursion: For t = T − 1, . . . , 1, calculate

Ψ̆t(p, a) = R̆t(p, a) +
∑n

k=1 νt+1(k)Υ[V̆t+1(α(p, a)) ·Wt+1(k)]

Ψ̂t(p, a) = R̂t(p, a) +
∑n

k=1 νt+1(k)Υ[V̂t+1(α(p, a)) ·Wt+1(k)]
(4.20)

and determine

V̂t(p) =
∑

a∈A Ψ̂t(p, a)

V̆t(p) =
⊔
a∈A(Ψ̆t(p, a)− Ψ̂t(p, a) + V̂t(p)).

(4.21)

for all p ∈ P .

4.5 An efficient approximation

Although numerical experiments indicate stable and reliable results, it seems that the

computational performance suffers from the fact that most of the calculation time is
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being spent on matrix rearrangements required by the operator Υ. We see from (4.13)

that in order to calculate

n∑
k=1

νt+1(k)Υ[Vt+1(α(p, a)) ·Wt+1(k)] (4.22)

at each step of the recursion, row-rearrangement must be performed n times, once for

each disturbance matrix multiplication. This task becomes increasingly demanding for

larger values of the disturbance sampling sizes n, particularly in high dimensions. Before

we proceed, let us omit the time index t+1 in (4.22) to ease notation. We then focus on

the two major sources of computational effort in evaluation of this expression, namely

the rearrangement Υ[VW (k)] of

large matrices V ·W (k)
(4.23)

and

the summation of matrices Υ[V ·W (k)] over

a large index range k = 1, . . . , n.
(4.24)

The remainder of this section will be divided into two parts. In Section 4.5.1, we present

a method that approximates (4.22), and addresses both problems simultaneously. The

improvement in computational effort makes it feasible to obtain approximate solutions

for large grids and distribution samples sizes. Furthermore, we will see that unlike

(4.22), this approximation does not require V = Vt+1 to be convex. In Section 4.5.2,

we derive a suitable first order approximation that provides a efficient way of evaluating

functions without having to decompose them into convex components. By combining

this approximation with the method in Section 4.5.1, we obtain an efficient algorithm

where we are no longer encumbered by the requirement of convexity.

4.5.1 Estimating the conditional expectation

The crucial point is that one can approximate the procedure in (4.23) by replacing the

row-rearrangement operation with an appropriate matrix multiplication. More precisely,

for k = 1, . . . , n we

construct a matrix Y (k) such that

Y (k)VW (k) approximates Υ[VW (k)].
(4.25)
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Before we justify the approximation (4.25), let first us see how it can be used to ad-

dress the computational problem associated with (4.24). Given (4.25), we now have the

following approximation to (4.22)

n∑
k=1

ν(k)Υ[VW (k)] ≈
n∑
k=1

ν(k)Y (k)VW (k) (4.26)

and this in turn requires an efficient calculation of sums of matrices. In practical exam-

ples, the distribution sample size n and the grid size m (row number of V ) will typically

be orders of magnitude of the dimension d of the disturbance matrices W (k). For in-

stance, to achieve an acceptable level of numerical convergence in typical applications,

the sample size n and the grid size m must be chosen in the range of several thousands,

whereas the state size dimension d is typically of several dozens. This insight shows that

a significant reduction in computational effort can be achieved by an additive decompo-

sition of the disturbance realizations. Assume that disturbance matrix W is represented

as the linear combination

W = W̄ +
J∑
j=1

εjE(j) (4.27)

with non-random matrices W̄ and (E(j))Jj=1, and random coefficients (εj)
J
j=1. With this

decomposition, each realization W (k) of the disturbance matrix W is obtained as

W (k) = W̄ +
J∑
j=1

εj(k)E(j), k = 1, . . . , n. (4.28)

Utilizing this, we obtain the following interchange of summations on the right-hand side

of (4.26):

n∑
k=1

ν(k)Y (k)VW (k) =

(
n∑
k=1

ν(k)Y (k)

)
V W̄ +

J∑
j=1

(
n∑
k=1

ν(k)εj(k)Y (k)

)
V E(j).

If one pre-computes the following matrices

D0 =
n∑
k=1

ν(k)Y (k), Dj =
n∑
k=1

ν(k)εj(k)Y (k), j = 1, . . . , J, (4.29)

we then obtain a significant simplification to (4.26)

n∑
k=1

ν(k)Y (k)VW (k) = D0V W̄ +

J∑
j=1

DjV E(j) (4.30)
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which only involves a low number of matrix summations and multiplications. We shall

denote this efficient calculation of the conditional expectation by E where

E(V ) := D0V W̄ +

J∑
j=1

DjV E(j). (4.31)

We now address the justification of the approximation in (4.25). Suppose that the

grid {g1, . . . , gm} is represented by the matrix G where each row i contains row vector,

representing the grid point gi. Thus G will consist of m rows with Gi,· = gi for i =

1, . . . ,m. Now let L̃ = Υ[L] be the result the application of Υ to a matrix L. The matrix

L̃ is then characterized by the following requirements:

L̃ = Υ[L] consists of m rows which are obtained

from the rows of L by a arrangement,
(4.32)

such that

L̃i,· ·G>i,· ≥ Lj,· ·G>i,· for all i, j = 1, . . . ,m. (4.33)

According to requirement (4.32), we therefore assume that

Υ[VW (k)] consists of m rows which are obtained

from the rows of VW (k) by row-rearrangement.
(4.34)

Since any row rearrangement can be achieved by a left-multiplication with appropriate

matrix, there will always exist a permutation matrix YV (k) such that

YV (k)VW (k) = Υ[VW (k)]. (4.35)

Computing each YV (k) requires great effort since it is not only dependent on W (k), but

also on each V . We suggest determining a reasonable surrogate Y (k) for YV (k) which

depends only on W (k) and not on V . Since YV (k) must satisfy (4.35), we observe with

(4.33) in mind that

(YV (k)V )i,· · (W (k)G)>i,· ≥ Vj,· · (W (k)G)>i,· for i, j = 1, . . . ,m. (4.36)
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Now, for each i = 1, . . . ,m consider the row (W (k)G)i,· and determine the closest row

Ghk(i),· in the original grid matrix by

hk(i) = argmin{j = 1, . . . ,m : ‖(W (k)G)i,· −Gj,·‖}, i = 1, . . . ,m. (4.37)

With this proximity function hk : {1, . . . ,m} → {1, . . . ,m}, we may consider, in place

of the relation (4.36), the condition

(Y (k)V )i,· ·G>hk(i),· ≥ Vj,· ·G
>
hk(i),· for all i, j = 1, . . . ,m (4.38)

with an appropriate permutation matrix Y (k). While (4.38) is clearly not equivalent to

(4.36), it does provide a reasonable approximation when the grid is sufficiently dense.

Now define Y (k) to be such that

Y (k)i,j =

 1, if j = hk(i)

0, otherwise
(4.39)

and observe that with this permutation matrix Y (k), the following assertion

Vhk(i),· ·G
>
hk(i),· ≥ Vj,· ·G

>
hk(i),· for all i, j = 1, . . . ,m

holds if V is in the normal form Υ[V ] = V . That is, the required approximation (4.25)

is determined by (4.39).

The pre-calculations involved in the approximation of (4.22) (i.e. computingD0, . . . , DJ)

are computationally demanding. Thus, a gain in computation performance can only be

realized if disturbances (Wt)
T
t=1 are identically distributed whereby the pre-calculations

need only be done once. In this case, the ideas presented in this section will be encap-

sulated in the following algorithm.

Pre-calculations: Determine a sampling (W (k))nk=1 from the target distribution. For

each disturbance W (k), find the corresponding permutation matrix Y (k) as in (4.39)

using the proximity function (4.37). Use these matrices and the components of the de-

composition described in (4.28) of each W (k) to compute the matrices (4.29).
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Continuation: Execute the algorithm (4.17) – (4.21) but replace (4.20) with

Ψ̆t(p, a) = R̆t(p, a) + E [V̆t+1(α(p, a))] and

Ψ̂t(p, a) = R̂t(p, a) + E [V̂t+1(α(p, a))].

by substituting the conditional expectations with its efficient counterpart (4.31).

4.5.2 A direct approach

So far, we have worked with parallel procedures on convex functions. However, an

important point to note is that in no part of the efficient conditional expectation proce-

dure was the convexity of the target function required. With this in mind, we shall now

present a further simplification to this algorithm based on a first-order approximation.

Previously, we considered the convex decomposition f = f̂ − f̆ of a non-convex func-

tion function f where the two convex piecewise linear functions f̂ and f̆ with respective

matrix representatives F̂ and F̆ . The value f(z) at point z is then calculated as

f(z) = max(F̂ z)−max(F̆ z).

However, if only the matrix difference F̂ − F̆ is known then it is possible to use a

first-order approximation

f(z) ≈ (F̂ − F̆ )(h(z)).

where h is the so-called host function of the underlying grid G

h(z) = argmin{‖z − g‖ : g ∈ G}

which returns to each argument z ∈ Rd the so-called host - the point on the grid with the

smallest distance to z. The first-order approximation uses the difference F̂ − F̆ directly

and unlike convex decomposition, does not require a separate calculation of convex and

concave parts. If one decides to use this first-order approximation to access the func-

tions, then there is no need to trace convex and concave part separately. This gives a

significant simplification and results in the following direct algorithm:
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Pre-calculations: Determine the operator E as in (4.31), under the assumptions re-

quired therefore. Determine for p ∈ P , a ∈ A and t = 0, . . . , T − 1 the matrices

Rt(p, a) = R̂t(p, a)− R̆t(p, a), RT (p) = R̂T (p)− R̆T (p), (4.40)

which are obtained as in (4.17). Introduce the approximate value functions, their convex

decomposition and representatives as in (4.18) and (4.19). The matrices

Vt(p) = V̆t(p)− V̂t(p) for t = 0, . . . , T , p ∈ P

are obtained via the following scheme:

Initialization:Start with the matrices

VT (p) = R̆T (p)− R̂T (p), for all p ∈ P

Recursion: For t = T − 1, . . . , 1 calculate for p ∈ P

Vt(p) =
⊔
a∈A

(Rt(p, a) + E(Vt+1(p, a))) . (4.41)

Remark: Unlike in the convex decomposition case (4.17) – (4.21), the direct algorithm

(4.40) – (4.41) merely returns the difference Vt(p) = V̆t(p) − V̂t(p). That is, the access

to the approximate value functions is provided via

vm,nt (p, z) ≈ Vt(p) · h(z),

using the host function z 7→ h(z) = argmin{‖z − g‖ : g ∈ Gm} of the grid Gm. In

particular, we suggest an approximation of the optimal policy πm,n = (πm,nt )T−1t=0 as

πm,nt (p, z) = argmaxa∈A ((Rt(p, a) + E(Vt+1(p, a))) · h(z)) , (4.42)

for t = 0, . . . , T − 1, z ∈ Rd, p ∈ P . To obtain an efficient implementation of a host

function h, a tree-like structure on the grid can be used which may be established using

hierarchical clustering methods.
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4.6 Solution diagnostics

In Section 4.5.1, we derived a heuristic method to obtain an efficient approximation

to the conditional expectation in the Bellman recursion. In Section 4.5.2, we saw that

by combining this with a first order approximation, we were then able to obtain the

approximation (4.42) for a given grid to the optimal policy in (4.3). In order to address

the distance to optimality of this approximate solution, we first need to outline an

appropriate measure for this distance.

Suppose we are given an arbitrary policy π = (πt)
T−1
t=0 . For such a policy one can define

an associated set of policy values (vπt (p, z))Tt=0 that follow the recursion

vπT (p, z) = rT (p, z) (4.43)

vπt (p, z) = rt(p, z, πt(p, z)) + E(vπt+1(α(p, πt(p, z)),Wt+1z)), (4.44)

for t = T − 1, . . . , 0. Let us consider a switching system which starts in a given initial

position pπ0 = p0 ∈ P and state Z0 = z0 ∈ Rd. At any time t, the actions and new

positions are determined recursively, following policy π = (πt)
T−1
t=0 as

aπt := πt(p
π
t , Zt), pπt+1 := α(pπt , a

π
t ), t = 0, . . . , T − 1.

These values define a policy run Vπ0 (pπ0 , z0) where

Vπ0 (pπ0 , Z0) =
T−1∑
s=0

rt(p
π
s , Zs, a

π
s ) + rT (pπT , ZT )

According to the definition, vπ0 (p0, z0) is the expected value of the policy run

vπ0 (p0, z0) = E(Vπ0 (p0, z0)) p ∈ P, z ∈ Rd.

In practice, one can use Monte Carlo to estimate this value since given a sequence

(ωk)k∈N independent random draws,

vπ0 (p0, z0) = E(Vπ0 (p0, z0)) = lim
k→∞

1

K

K∑
k=1

Vπ0 (p0, z0)(ωk), (4.45)

holds true due to the strong law of large numbers.
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Such a Monte Carlo procedure may be useful in estimating the performance of a given

policy π. However, it does not clarify how far the value vπ0 (p0, z0) is from the value

vπ
∗

0 (p0, z0) associated with the optimal policy π∗.

In the reminder of the section, we suggest a sound solution to this question in terms of

a diagnostic method. Given a starting point (p0, z0), we explain how the gap

[vπ0 (p0, z0), v
π∗
0 (p0, z0)] (4.46)

between a given strategy π and the optimal strategy π∗ can be assessed. Our method-

ology is based on a finite sample {ω1, . . . , ωK} of trajectory realizations and utilizes to

a build-in variance reduction technique to derive tight confidence bounds for upper and

lower estimates of the interval (4.46).

Let us focus on the upper bound first. Consider a sequence ϕ = (ϕt)
T
t=1 of random

mappings

ϕt : P × Rd ×A× Ω→ R, (p, z, a, ω) 7→ ϕt(p, z, a)(ω), (4.47)

which for t = 1, . . . , T satisfy

E(ϕt(p, z, a)) = 0, p ∈ P, z ∈ Rd, a ∈ A, (4.48)

and such that the σ-algebras

σ(ϕt(p, z, a),Wt; a ∈ A, z ∈ Rd), t = 1, . . . , T, (4.49)

are independent. Given these mappings ϕ = (ϕt)
T
t=1, we now introduce the random

functions (v̄ϕt )Tt=0

v̄ϕt : P × Rd × Ω→ R, t = 0, . . . , T

which are recursively defined for t = T, . . . , 1 via

v̄ϕT (p, z) = rT (p, z) (4.50)

v̄ϕt (p, z) = max
a∈A

(
rt(p, z, a) + ϕt+1(p, z, a) + v̄ϕt+1(α(p, a),Wt+1z)

)
. (4.51)

Using (v̄ϕt )Tt=0, the following theorem holds:
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Theorem 4.1. (i)For each policy π = (πt)
T−1
t=0 , it holds that the policy values (vπt )Tt=0

are dominated from above

vπt (p, z) ≤ E(v̄ϕt (p, z)), for all t = 0, . . . , T , p ∈ P , z ∈ Rd. (4.52)

(ii) Given the policy values (vπ
∗

t )Tt=0 associated with the optimal policy π∗ = (π∗t )
T−1
t=0 , let

(ϕ∗t )
T
t=1 be defined by

ϕ∗t+1(p, z, a) = E(vπ
∗

t+1(α(p, a),Wt+1z))− vπ
∗

t+1(α(p, a),Wt+1z) (4.53)

for all p ∈ P , z ∈ Rd, a ∈ A and t = 0, . . . , T − 1. It then holds that the mappings

(ϕ∗t )
T
t=1 satisfy (4.47) – (4.49) and that (4.52) holds with equality

vπ
∗

t (p, z) = v̄ϕ
∗

t (p, z), for all t = 0, . . . , T , p ∈ P , z ∈ Rd. (4.54)

Proof. (i) The value (vπt )Tt=0 of the policy π = (πt)
T−1
t=0 satisfies the recursion (4.44).

Using this recursion and (4.48) we obtain

vπt (p, z) = E(rt(p, z, πt(p, z)) + ϕt+1(p, z, πt(p, z)))

+E(vπt+1(α(p, πt(p, z)),Wt+1z)). (4.55)

Now, let us prove the assertion (4.52) by induction. For t = T , the inequality (4.52)

holds with equality because of the initialization

vπT = rT = v̄ϕT (4.56)

in (4.43) and (4.50). Given the induction assumption

vπt+1(p, z) ≤ E(v̄ϕt+1(p, z)), for all p ∈ P , z ∈ Rd,

we use (4.49) to conclude that

vπt+1(α(p, πt(p, z)),Wt+1z) ≤ E(v̄ϕt+1(α(p, πt(p, z)),Wt+1z) |Wt+1)
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holds for all p ∈ P , z ∈ Rd. Using this, we obtain in (4.55) an estimate

vπt (p, z) ≤ E (rt(p, z, πt(p, z)) + ϕt+1(p, z, πt(p, z)))

+E
(
E(v̄ϕt+1(α(p, πt(p, z)),Wt+1z) |Wt+1)

)
from which the assertion follows

vπt (p, z) ≤ E
(
rt(p, z, πt(p, z)) + ϕt+1(p, z, πt(p, z)) + v̄ϕt+1(α(p, πt(p, z)),Wt+1z)

)
≤ E

(
max
a∈A

[
rt(p, z, a) + ϕt+1(p, z, a) + v̄ϕt+1(α(p, a),Wt+1z)

])
≤ E (v̄ϕt (p, z)) ,

where the last step results from the recursion (4.51).

(ii) Now suppose that π∗ is an optimal policy and define ϕ∗ = (ϕ∗t )
T
t=1 as in (4.53), which

satisfies the assumption (4.48). Furthermore, the independence (4.49) holds since for

t = 0, . . . , T − 1 the random component in ϕ∗t+1(p, z, a) is

vπ
∗

t+1(α(p, a),Wt+1z)

which is in turn a function of Wt+1. Let us now verify the assertion (4.54). By induction

which is started as in (4.50) we can assume that vπ
∗

t+1 = v̄ϕ
∗

t+1 holds. Using this, we

conclude for all p ∈ P , z ∈ Rd and a ∈ A the assertion

rt(p, z, a) + ϕ∗t+1(p, z, a) + v̄ϕ
∗

t+1(α(p, a),Wt+1z)

= rt(p, z, a) + ϕ∗t+1(p, z, a) + vπ
∗

t+1(α(p, a),Wt+1z). (4.57)

On the other hand, using (4.53), we infer that for all p ∈ P , z ∈ Rd and a ∈ A it holds

that

rt(p, z, a) + ϕ∗t+1(p, z, a) + vπ
∗

t+1(α(p, a),Wt+1z)

= rt(p, z, a) + E(vπ
∗

t+1(α(p, a),Wt+1z)) (4.58)

−vπ∗
t+1(α(p, a),Wt+1z) + vπ

∗
t+1(α(p, a),Wt+1z)

= rt(p, z, a) + E(vπ
∗

t+1(α(p, a),Wt+1z)) (4.59)
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Now, in the recursion (4.51) we replace (4.57) by (4.59) to obtain the desired result

(4.54)

v̄ϕ
∗

t (p, z) = max
a∈A

(
rt(p, z, a) + ϕ∗t+1(p, z, a) + v̄ϕ

∗

t+1(α(p, a),Wt+1z)
)

= max
a∈A

(
rt(p, z, a) + E(vπ

∗
t+1(α(p, a),Wt+1z))

)
= vπ

∗
t (p, z), p ∈ P, z ∈ Rd, a ∈ A.

Let us elaborate on a practical application of this technique. Suppose that we attempt

to assess the distance to optimality of an approximate policy π̃, obtained by a numerical

procedures described previously. According to (i) of the Theorem 4.1, an arbitrary

(ϕt)
T
t=1 satisfying (4.48) and (4.49) yields an upper bound

vπ̃0 (p, z) ≤ vπ∗
0 (p, z) ≤ E(v̄ϕ0 (p, z)) p ∈ P, z ∈ Rd, (4.60)

Note that the expectation E(v̄ϕ0 (p, z)) will be estimated via Monte Carlo. Thus, we

obtain the following estimation procedure:

Upper bound estimation:

1) Given a switching system, implement (ϕt)
T
t=1 which fulfills (4.47), (4.48) and (4.49).

2) Chose a number K ∈ N of Monte Carlo trials and obtain for k = 1, . . . ,K inde-

pendent realizations (Wt(ωk))
T
t=1 of disturbances.

3) Starting at zk0 := z0 ∈ Rd, define for k = 1, . . . ,K the trajectories (zkt )Tt=0 recur-

sively

zkt+1 = Wt+1(ωk)z
k
t , t = 0, . . . , T − 1

and determine realizations

ϕt+1(p, z
k
t , a)(ωk), t = 0, . . . , T − 1, k = 1, . . . ,K.

4) For each k = 1, . . . ,K initialize the recursion at t = T as

v̄ϕT (p, zkT ) = rT (p, zkT ) for all p ∈ P
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and continue for t = T − 1, . . . , 0 by

v̄ϕt (p, zkt ) = max
a∈A

(
rt(p, z

k
t , a) + ϕt+1(p, z

k
t , a)(ωk) + v̄ϕt+1(α(p, a), zkt+1)

)
.

Store the value as v̄ϕ0 (p, zk0 ) for k = 1, . . . ,K.

5) Determine the sample mean 1
K

∑K
k=1 v̄

ϕ
0 (p, zk0 ) and its upper confidence bound to

estimate vπ
∗

0 (p, z0) from above.

To obtain a tight upper bound, (ϕt)
T
t=1 must be chosen accordingly. Thereby, the as-

sertion (ii) of Theorem 4.1 suggests an appropriate choice. Namely, in the hypothetical

case that the optimal policy value functions (vπ∗t )Tt=0 are known, the (ϕ∗t )
T
t=1 is obtained

via (4.53) will give an exact and non-random upper bound. In practice, this situation

is not feasible, since an optimal strategy π∗ is not known. Instead, we suggest using an

approximate value function (ϕ̃t)
T
t=0, returned by one of the algorithms described in this

work. That is, following (4.53), a reasonable candidate for t = 0, . . . , T − 1 could be

given as

ϕt+1(p, z, a) = E(ṽt+1(α(p, a),Wt+1z))− ṽt+1(α(p, a),Wt+1z). (4.61)

However, note that this choice involves an exact calculation of expectation

E(ṽt+1(α(p, a),Wt+1z)),

which is not possible in practice. For this reason, we suggest a modification. We re-

introduce the ϕt+1 in (4.61), with the expectation now replaced by an arithmetic mean

over a number I of independent copies (W
(i)
t+1)

I
i=1 of Wt+1. That is, given independent

random variables Wt+1 and W
(i)
t+1 for i = 1, . . . , I and t = 0, . . . , T − 1 such that the

distribution of W
(i)
t+1 equals to that of Wt+1, we define for all t = 0, . . . , T − 1, a ∈ A,

p ∈ P , and z ∈ Rd

ϕt+1(p, z, a) =
1

I

I∑
i=1

ṽt+1(α(p, a),W
(i)
t+1z)− ṽt+1(α(p, a),Wt+1z). (4.62)

With this definition, (ϕt)
T
t=1 satisfies conditions (4.48) and (4.49), and we thus obtain a

valid and computable upper bound.
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Let us turn now to the estimation of the lower boundary of the interval (4.46). Given

a strategy π = (πt)
T−1
t=0 , the value vπ0 (p0, z0) can in principle be approached as in (4.45)

from test runs of the strategy in a series of independent back-testing experiments. How-

ever, it turns out that a slight adaptation of the upper bound technique provides far

better results, due to a built-in variance reduction technique. Similar to part (ii) of the

previous theorem, which indicates that the variance of the Monte Carlo trials reduces if

approximate solution is close to the optimal one, we establish a recursive procedure with

a control variate built-in. The idea is simple: Given a nearly-optimal policy π = (πt)
T−1
t=0

we alter the recursion (4.50), (4.51) replacing the maximization by an exact choice of

the action according to the policy π = (πt)
T−1
t=0 .

Given a sequence ϕ = (ϕt)
T
t=1 satisfying (4.48) and (4.49) we introduce the random

functions (vπ,ϕt )Tt=0

vπ,ϕt : P × Rd × Ω→ R, t = 0, . . . , T

which are recursively defined for t = T, . . . , 1 via

vπ,ϕT (p, z) = rT (p, z) (4.63)

vπ,ϕt (p, z) = rt(p, z, πt(p, z)) + ϕt+1(p, z, πt(p, z))

+vπ,ϕt+1(α(p, πt(p, z)),Wt+1z). (4.64)

The following theorem holds for (vπ,ϕt )Tt=0.

Theorem 4.2. (i) Given ϕ = (ϕt)
T
t=1 as in (4.47) satisfying (4.49) and a policy π =

(πt)
T−1
t=0 , introduce (vπ,ϕt )Tt=0 by (4.63) and (4.64). It holds that

vπt (p, z) = E(vπ,ϕt (p, z)), for all t = 0, . . . , T , p ∈ P , z ∈ Rd. (4.65)

(ii) Given the value (vπ
∗

t )Tt=0 of the optimal policy π∗ = (π∗t )
T−1
t=0 , define (ϕ∗t )

T
t=1 by

ϕ∗t+1(p, z, a) = E(vπ
∗

t+1(α(p, a),Wt+1z))− vπ
∗

t+1(α(p, a),Wt+1z) (4.66)

for all p ∈ P , z ∈ Rd, a ∈ A and t = 0, . . . , T − 1. Then the mappings (ϕ∗t )
T
t=1 satisfy

(4.47) – (4.49) such that (4.65) holds with equality:

vπ
∗

t (p, z) = vπ
∗,ϕ∗

t (p, z), for all t = 0, . . . , T , p ∈ P , z ∈ Rd. (4.67)
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Proof. (i) The value (vπt )Tt=0 of the policy π = (πt)
T−1
t=0 satisfies the recursion (4.44).

Using this recursion and (4.48) we obtain

vπt (p, z) = E(rt(p, z, πt(p, z)) + ϕt+1(p, z, πt(p, z)))

+E(vπt+1(α(p, πt(p, z)),Wt+1z). (4.68)

Now, let us prove the assertion (4.65) by induction. For t = T the inequality (4.65)

holds with equality because of the initialization

vπT = rT = vπ,ϕT (4.69)

in (4.43) and (4.63). Given the induction assumption

vπt+1(p, z) = E(vπ,ϕt+1(p, z)), for all p ∈ P , z ∈ Rd,

we use (4.49) to conclude that

vπt+1(α(p, πt(p, z)),Wt+1z) = E(vπ,ϕt+1(α(p, πt(p, z))) |Wt+1)

holds for all p ∈ P , z ∈ Rd. Using this, we obtain in (4.68) the equality

vπt (p, z) = E (rt(p, z, πt(p, z)) + ϕt+1(p, z, πt(p, z)))

+E
(
E(vπ,ϕt+1(α(p, πt(p, z))) |Wt+1)

)
= E

(
rt(p, z, πt(p, z)) + ϕt+1(p, z, πt(p, z)) + vπ,ϕt+1(α(p, πt(p, z)))

)
.

By using the recursion (4.64), the assertion (4.65) follows.

(ii) Let us now verify the assertion (4.67). By induction which is started as in (4.63) we

can assume that vπ
∗

t+1 = vπ
∗,ϕ∗

t+1 holds. Using this, we conclude for all p ∈ P , z ∈ Rd and

a ∈ A the assertion

rt(p, z, a) + ϕ∗t+1(p, z, a) + vπ
∗,ϕ∗

t+1 (α(p, a),Wt+1z)

= rt(p, z, a) + ϕ∗t+1(p, z, a) + vπ
∗

t+1(α(p, a),Wt+1z). (4.70)
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On the other hand, using (4.53), we infer that for all p ∈ P , z ∈ Rd and a ∈ A it holds

that

rt(p, z, a) + ϕ∗t+1(p, z, a) + vπ
∗

t+1(α(p, a),Wt+1z)

= rt(p, z, a) + E(vπ
∗

t+1(α(p, a),Wt+1z))

−vπ∗
t+1(α(p, a),Wt+1z) + vπ

∗
t+1(α(p, a),Wt+1z)

= rt(p, z, a) + E(vπ
∗

t+1(α(p, a),Wt+1z)). (4.71)

Now, in the recursion (4.64) we replace (4.70) by (4.71) to obtain the desired claim

(4.54):

vπ
∗,ϕ∗

t (p, z) = rt(p, z, π
∗
t (p, z)) + ϕ∗t+1(p, z, π

∗
t (p, z))

+vπ
∗,ϕ∗

t+1 (α(p, π∗t (p, z)),Wt+1z)

= rt(p, z, π
∗
t (p, z)) + E(vπ

∗
t+1(α(p, π∗t (p, z)),Wt+1z)

= vπ
∗

t (p, z), p ∈ P, z ∈ Rd, a ∈ A.

The practical implementation of the lower bound estimation is based on the same realiza-

tion of (ϕt)
T
t=1 as in (4.62), using independent copies of disturbances. Let us summarize

this procedure as follows:

Lower bound estimation:

1) Given approximate value functions (ṽt)
T
t=0 and a corresponding strategy π̃ =

(π̃t)
T−1
t=0 , chose ϕ = (ϕt)

T−1
t=0 as in (4.62).

2) Given K ∈ N Monte Carlo trials, obtain for k = 1, . . . ,K independent realizations

(Wt(ωk))
T
t=1 of disturbances.

3) Starting at zk0 := z0 ∈ Rd, define for k = 1, . . . ,K trajectories (zkt )Tt=0 recursively

zkt+1 = Wt+1(ωk)z
k
t , t = 0, . . . , T − 1
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and determine realizations

ϕt+1(p, z
k
t , a)(ωk), t = 0, . . . , T − 1, k = 1, . . . ,K.

4) For each k = 1, . . . ,K initialize the recursion at t = T as

vπ̃,ϕT (p, zkT ) = rT (p, zkT ) for all p ∈ P

and continue for t = T − 1, . . . , 0 and for all p ∈ P by

vπ̃,ϕt (p, zkt ) = rt(p, z
k
t , π̃t(p, z

k
t )) + ϕt+1(p, z

k
t , π̃t(p, z

k
t ))(ωk)

+vπ̃,ϕt+1(α(p, π̃t(p, z
k
t )), zkt+1). (4.72)

Store the value as vπ̃,ϕ0 (p, zk0 ) for k = 1, . . . ,K, p ∈ P .

5) Calculate the sample mean 1
K

∑K
k=1 v

π̃,ϕ
0 (p, zk0 ) and use its lower confidence bounds

to estimate vπ
∗

0 (p, z0) for each p ∈ P from below.

4.7 Examples

In this section, we provide numerical results for the cases of the Bermudan option and

the swing option and compare it to those given in Longstaff and Schwartz [2001] and

Meinshausen and Hambly [2004] where numerical results were obtained using regression-

based methods.

We will now perform value function approximations using the method outlined in Sec-

tion 4.5 and the associated diagnostics established in Section 4.6 on two examples of

Markov decision problems - the optimal stopping problem and the optimal multiple

stopping problem. Such problems constitute two important subclasses of Markov deci-

sion problems (see Chapters 10 and 11 of Bäuerle and Rieder [2011]) and have studied

upper bound estimation using duality approaches them in the previous two chapters. To

illustrate our approach, we obtain in Section 4.7.1 bounds on the price of the Bermudan

put option and in Section 4.7.2, we use these methods to obtain bounds on the price of

the swing option.
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For both applications, we will consider the evolution of the discounted asset price (St)
T
t=0

in discrete time, with respect to a risk-neutral measure. The dynamics (St)
T
t=0 of the

discounted price depends on the asset type. For the Bermudan put, the discounted

price process (St)
T
t=0 is modelled as a martingale in the risk-neutral measure. For the

swing option, we suppose that the price process (St)
T
t=0 is modeled by the exponential of

an Ornstein-Uhlenbeck process to explain the mean-reverting price property naturally

expected for commodity prices.

The logarithm (Z̃t)
T
t=0 of the price forms the continuous component of our state dynam-

ics. In practice, a further transformation of the state space is usually required before

linear state dynamics can be achieved. In most cases, an augmentation with 1 via

Zt =

 Z̃t

1

 , t = 0, . . . , T.

is needed to represent the evolution of the continuous state component. In this repre-

sentation, the system state follows a multiplicative dynamic

Zt+1 = Wt+1Zt, t = 0, . . . , T − 1

with independent and identically distributed matrix-valued random variables (Wt)
T
t=1.

The entries of these disturbance matrices reflect the underlying process model.

The grid choice is a key ingredient in the algorithm. For multi-variate state processes, a

convenient way of grid construction is by simulation of appropriate trajectories. Thus,

we create a grid of a desired size by simulating and storing a sufficient number of paths

of (Zt)
kpT
t=0 of an appropriate length kpT ∈ N. In our examples, we have used a number

of steps that is twice of the time horizon (kp = 2). The distribution of disturbances is

approximated by a discrete distribution. For this, a sample of (W (k))nk=1 of independent

realizations was generated and stored. All required steps from Section 4.5 and the Monte

Carlo simulation for diagnostics refer to this discrete distribution approximation. For

bound computations, we use confidence intervals based on K simulated trajectories.

More precisely, we quote the intervals as[
µ− Φ−1(1− x

2
)
σ√
K
, µ+ Φ−1(1− x

2
)
σ√
K

]
(4.73)
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where 1− x denotes the confidence level and (µ, σ) and (µ, σ) denote the sample mean

and sample standard deviation of (vπ̃,ϕ0 (p, zk0 ))Kk=1 and (v̄ϕ0 (p, zk0 ))Kk=1 respectively.

4.7.1 The Bermudan put option

This option allows the holder to sell the underlying asset at a pre-specified strike price

on a discrete set of exercise dates up to and including the expiry date of the option. The

fair price of a Bermudian put is given by the supremum

sup
τ

E[(Ke−ρτ − Sτ )+]

where τ runs through all {0, . . . , T}-valued stopping times. First let us express this

control problem as a switching system. We use the position set P = {1, 2} to indicate

whether the option has been exercised (p = 1) or not (p = 2). The action set A = {1, 2}

represents the choice between exercising (a = 1) or not exercising (a = 2). The control

α of the discrete component of the state space

(α(p, a))2p,a=1 ∼

 α(1, 1) α(1, 2)

α(2, 1) α(2, 2)

 =

 1 1

1 2


ensures that p = 1 is absorbing. The continuous state space component follows

Z̃t+1 = Z̃t + γ + βεt+1, Z̃0 = ln(S0) (4.74)

where (ε)Tt=1 are independent standard normally distributed random variables. We set

the parameters as γ = −1
2σ

2∆ and β = σ
√

∆ where ∆ > 0 is the time duration (in

years) from time point t to t+ 1 and σ > 0 represents the volatility of the process that

is measured on yearly scale. Given this price process, the disturbances are given as

Wt+1 =

 1 γ + βεt+1

0 1

 , t = 0, ..., T − 1.

For the two-dimensional space R2 with the evolution of the continuous component as

above, let us now determine all reward and the scrap functions. Consider a realization

of the continuous component (z(1), z(2)) ∈ R2 at the current time t = 0, . . . T − 1, then,
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given a Bermudian put option, the action a ∈ {1, 2} leads to the reward

rt(p, (z
(1), z(2)), a) = (Ke−ρt − ez(1))+

(
p− α(p, a)

)
(4.75)

for all p ∈ P and a ∈ A. At final time T , we suppose that the put option is exercised

automatically, which gives the scrap value

rT (p, (z(1), z(2))) = (Ke−ρT − ez(1))+
(
p− α(p, 1)

)
(4.76)

for all p ∈ P . Note that the reward and scrap functions are not convex in the continuous

Table 4.1: Bermudan put option numerical results

confidence LSM LSM
S0 σ maturity interval mean se

36 0.2 1 [4.4763, 4.4768] 4.472 .0100
36 0.2 2 [4.8296, 4.8312] 4.821 .0120
36 0.4 1 [7.0989, 7.0992] 7.091 .0200
36 0.4 2 [8.4965, 8.4968] 8.488 .0240
38 0.2 1 [3.2481, 3.2489] 3.244 .0090
38 0.2 2 [3.7355, 3.7370] 3.735 .0110
38 0.4 1 [6.1451, 6.1452] 6.139 .0190
38 0.4 2 [7.6580, 7.6583] 7.669 .0220
40 0.2 1 [2.3119, 2.3129] 2.313 .0090
40 0.2 2 [2.8765, 2.8776] 2.879 .0100
40 0.4 1 [5.3093, 5.3094] 5.308 .0180
40 0.4 2 [6.9075, 6.9077] 6.921 .0220
42 0.2 1 [1.6150, 1.6158] 1.617 .0070
42 0.2 2 [2.2053, 2.2060] 2.206 .0100
42 0.4 1 [4.5797, 4.5798] 4.588 .0170
42 0.4 2 [6.2351, 6.2354] 6.243 .0210
44 0.2 1 [1.1081, 1.1087] 1.118 .0070
44 0.2 2 [1.6836, 1.6843] 1.675 .0090
44 0.4 1 [3.9449, 3.9450] 3.957 .0170
44 0.4 2 [5.6324, 5.6326] 5.622 .0210

These results were produced using a grid size of m = 1024 and disturbances of size
n = 4096. Diagnostics is based on K = 1024 sample paths and 99% confidence bounds
are calculated by setting x = 0.01 in (4.73). For comparison, the means and standard
errors obtained by least squares Monte Carlo are given in the last two columns LSM
mean and LSM se respectively, they are cited from Longstaff and Schwartz [2001],
where numbers were quoted with three decimal points.

component z = (z(1), z(2)). Hence we decompose them into the difference of two convex
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functions

rt(p, ·, a) = r̆t(p, ·, a)− r̂t(p, ·, a) (4.77)

rT (p, ·) = r̆T (p, ·)− r̂T (p, ·) (4.78)

given by

r̆t(p, (z
(1), z(2)), a) = (ez

(1) −Ke−ρt)+
(
p− α(p, a)

)
r̂t(p, (z

(1), z(2)), a) = (ez
(1) −Ke−ρt)

(
p− α(p, a)

)
r̆T (p, (z(1), z(2))) = (ez

(1) −Ke−ρT )+
(
p− α(p, 1)

)
r̂T (p, (z(1), z(2))) = (ez

(1) −Ke−ρT )
(
p− α(p, 1)

)
for all p ∈ P, a ∈ A and (z(1), z(2)) ∈ R2.

We compare our results with the low-biased estimates given in the literature for the

Bermudan put where the risk-free rate is 0.06 and the strike is set at 40. The results are

given in Table 4.1 for different combinations of initial prices, volatilities and maturities.

4.7.2 The swing option

We consider a specific case of the swing option, referred to as a unit-time refraction

period condition. This condition limits the holder to exercise one right at any time.

Given the discounted asset price (St)
T
t=0, the price of a swing option with N rights is

given by the supremum

sup
0≤τ1<···<τN≤T

E
[ N∑
k=1

(Sτk −Ke
−ρτk)+

]

over all stopping times τ1, . . . , τN with values in {0, . . . , T}. In order to represent this

control problem as a switching system, we use the position set P = {1, . . . , N + 1} to

represent the number of rights remaining. That is p ∈ P stands for the situation when

there are p− 1 rights remaining to be exercised. The action set A = {1, 2} is the same
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as in the case of the Bermudan Put with control matrix α given by

(α(p, a))p,a ∼


α(1, 1) α(1, 2)

α(2, 1) α(2, 2)

. . . . . .

α(N + 1, 1) α(N + 1, 2)

 =


1 1

1 2

. . . . . .

N N + 1

 .

Having modeled the discounted stock price process as an exponential mean-reverting

process with reversion parameter κ ∈ [0, 1[, long run mean µ > 0 and volatility σ > 0,

we obtain the logarithm of the discounted price process as

Z̃t+1 = (1− κ)(Z̃t − µ) + µ+ σεt+1, Z̃0 = ln(S0). (4.79)

with the disturbance matrix

Wt+1 =

 (1− κ) κµ+ σεt+1

0 1

 , t = 0, ..., T − 1.

The reward and scrap values are given by

rt(p, (z
(1), z(2)), a) = (ez

(1) −Ke−ρt)+
(
p− α(p, a)

)
t = 0, . . . , T − 1 (4.80)

and

rT (p, (z(1), z(2))) = (ez
(1) −Ke−ρT )+

(
p− α(p, 1)

)
(4.81)

respectively for all p ∈ P and a ∈ A.

In Table 4.2, we compare our results to those given in Meinshausen and Hambly [2004]

with bounds on the swing option price where the underlying process is assumed to follow

the dynamics (4.79) with parameters

ρ = 0, κ = 0.9, µ = 0, σ = 0.5, S0 = 1, K = 0 and T = 1000.
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Table 4.2: Swing option numerical results

CSS MH

Position confidence confidence
(Rights + 1) interval interval

2 [4.737, 4.761] [4.773, 4.794]
3 [9.005, 9.031] [9.016, 9.091]
4 [13.001, 13.026] [12.959, 13.100]
5 [16.805, 16.830] [16.773, 16.906]
6 [20.465, 20.491] [20.439, 20.580]
11 [37.339, 37.363] [37.305, 37.540]
16 [52.694, 52.718] [52.670, 53.009]
21 [67.070, 67.095] [67.050, 67.525]
31 [93.811, 93.835] [93.662, 94.519]
41 [118.639, 118.663] [118.353, 119.625]
51 [142.059, 142.084] [141.703, 143.360]
61 [164.368, 164.392] [163.960, 166.037]
71 [185.757, 185.781] [185.335, 187.729]
81 [206.362, 206.386] [205.844, 208.702]
91 [226.284, 226.308] [225.676, 228.985]
101 [245.601, 245.625] [244.910, 248.651]

Results were produced using a grid size of m = 1024 and disturbances of size n = 1024.
Diagnostics is based on K = 1024 sample paths and 99% confidence bounds are
calculated by setting x = 0.01. The columns under MH denote the results from
Meinshausen and Hambly [2004].

4.8 Conclusion

In this work we present a novel class of algorithms to solve stochastic switching prob-

lems whose processes follow linear state space dynamics. Our methodology is directly

applicable to high-dimensional problems and shows remarkable numerical efficiency and

excellent precision. More importantly, we adapt the primal-dual approach to estimate

the distance to optimality of approximate solutions using Monte Carlo techniques. With

this, we establish a sound and reliable diagnostics and quality assessment tool for a pos-

terior justification of the numerical approximation. The authors believe that such com-

bination of efficient numerical schemes with a subsequent diagnostic check can be very

useful in practical applications. This approach may help in development and justifica-

tion of further approximate methods. In this context, natural extensions of the present

scheme (say, from linear to piecewise linear dynamics) can be examined in detail. We

address this promising direction in further research.



Chapter 5

Conclusion

In this thesis, we devised new computational methods for some specific classes of optimal

stochastic control problems based on high-dimensional underlying processes. The second

and third chapter of this thesis was dedicated to solving the multiple-stopping problem

by considering its dual formulation while the fourth chapter was dedicated to solving the

more general class of optimal switching problems. This thesis was significantly motivated

by the need to price the multiple-exercisable derivative, a mathematical problem which

can be formulated under either framework. We devised primal-dual algorithms that

allowed us to construct bounds on its price of such a derivative. With these bounds,

traders of such derivatives can have confidence that their computed prices do not deviate

too far from the theoretical ones.

We introduced the multiple-exercise option in Chapter 1. The seminal papers in the

area of optimal multiple stopping were briefly reviewed and we provided an intuitive

explanation as to why multiple-exercise options sit within this framework. We then

reviewed some of primal-dual methods for solving optimal stopping problems and recent

extensions of theses methods to the multiple stopping case. These methods require the

use of regression-based approximations to the optimal policy and we explained some of

the shortcomings of this approach. To address some of these problems, we introduced

an alternative method - the convex switching system which would form the basis for the

penultimate chapter of the thesis.

In Chapter 2, we derived an additive dual for the multiple-exercise derivative and an

efficient algorithm to compute it. In order to do so, we first expressed the value of

85



Chapter 5. Conclusion 86

an option as a multiple-stopping problem and show how one may interpret this as the

buyer’s price. As part of the formulation of the primal problem, we provided a new way

to construct stopping times in the multiple-exercise framework. This gave us a way of

expressing exercise strategies that were consistent across options with different numbers

of rights. In order to derive the additive dual, we adopted a hedging argument approach

similar to that of Joshi [2007] where the dual is associated with seller’s price of the

option. This approach required us to introduce the notion of a hedge in the multiple-

exercise framework. We showed that by exploiting the properties of this hedge, we can

obtain an efficient algorithm to compute the dual. In doing so, we naturally extended

the Andersen and Broadie algorithm to the multiple-exercise case. A comparison of the

numerical results to those computed using another known method was provided for. It

was shown that this method yielded smaller duality gaps for larger numbers of exercise

rights.

The multiplicative dual for the multiple-exercise option and its accompanying algorithm

is derived in Chapter 3. The main result Theorem 3.5 is a generalisation of the multi-

plicative dual result for the single-exercise case given in Joshi and Tang [2014] to the

multiple-exercise case. It also represents the first known multiplicative dual represen-

tation of the multiple stopping problem. An algorithm that can be seen as the natural

extension of the AB algorithm to the multiplicative multiple-exercise case was developed

and it was shown that a valid upper bound was still obtained even in the presence of

Monte Carlo errors.

In the penultimate chapter, we moved from optimal multiple-stopping problems to the

more general framework of stochastic switching problems. We reviewed the convex

switching system approach that was first proposed in Hinz [2014] as a viable alternative

to regression-based methods to solving problems of this kind. This approach involves

the approximation of convex value functions using their sub-gradient envelopes which

are computed recursively in accordance with the Bellman equations. Unfortunately, the

original procedure only works for value functions that are convex and so convexity of all

scrap and reward functions is required.

In Chapter 4, we took a first step to overcoming this restriction by providing a parallel

procedure that allowed us to compute value functions in the special case where a non-

convex function can be decomposed into the difference of two convex ones. A remarkable
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generalization was then achieved where a method, which we term the direct approach, was

devised that allowed us to bypass any convexity requirement while yielding significant

improvements in computation time. In order to gauge its accuracy, we proposed a

diagnostic method that measures the accuracy of the direct approach by first embedding

it in a primal-dual Monte Carlo method which is then used to construct confidence

intervals. The confidence intervals would then be a measure of the distance to optimality

of an approximated value functions computed using the direct approach. We then showed

how to compute bounds on the prices of Bermudan puts and swing options using this

method and compared them to other results found in the literature.

With this, we conclude the summary of this thesis. Possible future research directions

based the contributions in this thesis have been highlighted at the end of each of the

individual chapters. We hope future researchers in the area will find it to be as interesting

as we have.
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