
“© 2015 IEEE. Personal use of this material is permitted. Permission from IEEE

must be obtained for all other uses, in any current or future media, including

reprinting/republishing this material for advertising or promotional purposes,

creating new collective works, for resale or redistribution to servers or lists, or

reuse of any copyrighted component of this work in other works.”

On Software-defined networking and the design of

SDN Controllers

Doan B. Hoang

iNEXT: Centre for Innovation in IT Services and Applications

University of Technology, Sydney

Sydney, Australia

Doan.Hoang@uts.edu.au

Minh Pham

iNEXT: Centre for Innovation in IT Services and Applications

University of Technology, Sydney

Sydney, Australia

Minh.Pham@student.uts.edu.au

Abstract— Software-Defined Networking (SDN) has emerged as a

networking paradigm that can remove the limitations of current

network infrastructures by separating the control plane from the

data forwarding plane. The implications include: the underlying

network state and decision making capability are centralized;

programmability is provided on the control plane; the operation

at the forwarding plane is simplified; and the underlying

network infrastructure is abstracted and presented to the

applications. This paper discusses and exposes the details of the

design of a common SDN controller based on our study of many

controllers. The emphasis is on interfaces as they are essential for

evolving the scope of SDN in supporting applications with

different network resources requirements. In particular, the

paper review and compare the design of the three controllers:

Beacon, OpenDaylight, and Open Networking Operation System.

Keywords— Software-Defined Networks; SDN Controller;

Northbound Interface; Southbound Interface; East/Westbound

Interface

I. INTRODUCTION

The Internet has scaled enormously over the last 45 years

partly due to its appropriate and universal level of abstraction

at the IP layer (network layer), supporting any type of

underlying physical networks and vast number of applications.

However, the Internet has reached a point where it is

extremely difficult to explore new architectures that are more

suitable for emerging applications. After various efforts in

finding alternative design, Software-Defined Networking

(SDN) [1] has emerged as a networking paradigm that can

remove the limitations of current network infrastructures. The

intent of SDN is to separate the data forwarding plane from

the control plane by centralizing the network state and the

decision making capability, such that:

1. The network device becomes much simpler as it does not

have to deal with complicated and distributed information

and decision making,

2. The controller can be implemented in software by any

vendors/providers provided it can communicate with

network devices through the communication channel,

3. Programmability. The controller understands the needs of

the applications through its north bound interface and

resources available of the underlying network

infrastructure through its south bound interface [2].

4. Openness. It is important to have all the application

program interfaces open to gain a maximum benefits from

the new paradigm in terms of applications, service

providers, controller providers, network providers
A few recent papers have surveyed specific architectural

aspects of SDN [3], [4]. However, none of them focuses on the
implication and evolution of SDN or on the SDN controllers,
their internal architecture and the trends in their future
development. In this paper the generic SDN architecture is
described in section II, SDN controller architecture in section
III, and their structure and core components are examined in
section IV. Section V concludes the paper with a discussion.

II. SDN ARCHITECTURE

The Open Networking Foundation, ONF [5] defines a high-

level architecture for SDN with three main layers:

A. Infrastructure Layer or data plane

It consists mainly of SDN devices (both physical and virtual)

that perform packet switching and forwarding. Specifically an

SDN device is composed of an application program interface

API (the south bound interface) for communication with the

controller, an abstraction layer that abstract the device as flow

tables, and a packet-processing component decides where the

packets will go based on the matching of their header fields.

B. Control Layer or control plane

It consists of a set of controllers that interact with
applications and devices through three application
programming interfaces: the SDN controllers control, through
a southbound API, all the SDN devices that make up the
network infrastructure, they provide an abstract view of the
entire network to the applications through a northbound API
and the controllers interact with one another through their
east/west bound APIs to provide a consistent view of the entire
network infrastructure.

C. Application Layer

It consists of the end-user applications that utilize the SDN

communications and network services [6] such as network

security, quality of service, traffic engineering, access control

management, and load balancing as a service and other

network function virtualization services [7]. The applications

ultimately affect the flows on the SDN devices by

communicating their requirements through the northbound

API.

III. SDN CONTROLLER

To an SDN device, the controller is like a device driver
software that initiates and configures the device to some
specific operational settings by reading from and writing to the
device’s memory. To the underlying network, the controller is
a piece of software that manages and shares all the resources of
the underlying network infrastructure among applications.

Figure 1 depicts main components of an SDN controller

including its core functional modules, its interfaces and a set of

common application modules.

Figure 1: SDN Core components

A. Core Component Functions

The core network services include the components as

described in the following [3], [8]:

1) Controller and Switch Management Unit

The controller is modeled as a container with all switches

connecting to it. The controller registers to switch listeners

and to message listeners to be notified about changes in

switches and arrival of messages. The switch is modeled with

its input and output message stream and its state.

2) Packet Processing Unit

Packet processing is the design element that processes packet

headers and its payloads in the network based on the network

protocol; each packet is modeled with its source addresses,

destination addresses, its message type, and its payload.

3) Device Manager

Device Manager manages devices in the network; each device

is modeled with a data link layer address, network addresses,

the switch and switch port that it connects to.

4) Topology Manager

The topology manager identifies topology changes in the

network. The topology manager maintains an up-to-date

topology of the network and sends the topology updates to

applications.

5) Routing

Depending on the protocol the routing manager implements

the routes between the source and destination addresses

provided.

6) OpenFlow Implementation

OpenFlow module exists in every controller to provide

functions related OpenFlow messages, actions, table entry,

and flow rules, matching of flow rules, message queues and

statistics.

7) Service Abstraction Layer and Plug-ins

The service abstraction layer and plug-ins are used to add new

device protocols to the controller.

8) Management Interface

Management Interfaces are usually provided as web interfaces

to access the controller. These interfaces provide a quick and

visible way to access functions that the controller provides.

IV. EXISTING SDN CONTROLLER IMPLEMENTATION

Available on the market today both open source SDN

controllers and commercial SDN controllers. The selection of

the SDN controllers is based on the history of SDN

development, from the time controller proof of concept is

required; to the popular controllers in today network

community. These controllers are Beacon, OpenDaylight and

ONOS.

A. Beacon Controller

BEACON was created in 2010 at Stanford University as

research project; it is a java-based open source controller.

Beacon is designed with three main objectives: performance,

ease of applications development, and runtime configuration.

Beacon is built on popular frameworks OSGi, Spring

framework and Spring web. Beacon includes OpenFlowj,

which is the implementation of the OpenFlow 1.0

specification. Beacon uses the observer pattern to listen to

changes in the switches, message arrival and network devices.

Beacon uses multithreaded to improve performance,

especially when reading messages from switches and writing

messages to them [8].

B. OpenDaylight (ODL) Controller

OpenDaylight controller is written in Java and it is an open

source project. The ODL project was inspired by the Beacon

controller in using OSGi to add more plug-ins. ODL is built as

a distributed controller to support the High Availability (HA)

with the cluster architecture: all controllers in the same cluster

will act as one controller [9]. ODL uses the Service

Abstraction Layer (SAL) to add additional device protocols.

Besides OpenFlow ODL supports other protocols NETCONF,

RESTCONF, Yang, BGP [9]. The NBI is provided as REST

API, REST-CONF and Java API. Security is added to its

Lithium release in June 2015. ODL has been used in different

projects/products such as it is extended and used in Software-

Defined Environment (SDE) product at IBM [10].

C. Open Network System (ONOS)

ONOS controller is an open source Java controller designed or

telecommunication service provider networks. The expected

performance is set very high such as 500k-1M path setups/sec

or 500M-1T ops/sec. The service core layer is constructed by

sub components: device, host, links, graph, and event. ONOS

distributed core layer handles the synchronization between

controllers via replication. Core model objects are protocol-

agnostic and are used as network and state representation.

ONOS represents networks as directed graphs. Users can

NORTHBOUND API

SOUTHBOUND API

Application

Device

Controller
Packet

Processing
Device

Manager
Topology
Manager

Routing
Processing

SAL
Management

Interface
OS

components

Controller
(different
domain)

Device Device Device

Application Application

West
bound

API

East
bound

API

Controller
(different
domain)

access ONOS controller via command line interface (CLI),

web GUI views, and REST API [11]. Its NBI support two

formats: prescribe or fine-grained, in which users dictate what

the need exactly and intent-based, in which users only specify

the requirement and NBI is responsible for building the

functions.

D. Other Controllers

There are other SDN controllers that are widely used in the

academia and industry [3]:

 NOX is the first openflow controller created by the

University of Berkeley; it is written in C++. There are

two NOX versions: the original and the multi-threaded
 POX is the Python version of NOX.

 Floodlight is created by Big Switch Network for switches

manufactured by the company, and it is based on Beacon

controller.

 Ryu is originated from NTT in Japan. It is built based on

components with the main purpose to make it easy to

build network applications based on it.

 OpenContrail is open source controller, it is written in

C++ with a REST NBI, and it offers integration plug-ins

for cloud services: Amazon, Openstack, and Cloudstack.

 DISCO is a distributed controller, it is written in Java, and

it has REST NBI and it is fault tolerance.

 ElastiCon is a distributed controller, it is written in Java,

it has RESTful NBI and it offers consistent update nodes.

TABLE 1. CONTROLLERS’ ATTRIBUTE COMPARISON

Attributes

Beacon OpenDaylight ONOS

Objective

Performance,

Ease of

applications
development,

Runtime

configuration

Modular,

Pluggable,

Flexible
controller

SDN OS for

network

providers.
Modular,

Scalability,

High availability,
Performance,

Architecture Centralized

OGSI-based

Distributed,

Cluster-based

Distributed,

Three tiers

Core Network

Services

Core network
services

Controller
platform

Core services and
Distributed core layer

Southbound

API/protocols

OpenFlowj,

Device
manager

OpenFlow,

ovsdb, netconf,
pcep,snmp,bgp

OpenFlow,

NETCONF, PCEP

Northbound API Ad-hoc API REST API Application

Intents

East/Westbound

API

Not yet
provided

Not yet
provided

Not yet provided

Service

Abstraction

Layer / Plug-ins

OSGI plug-ins Support

additional

protocols

Southbound API

Management

Interfaces

Web UI Java Java

Programming

Language

Java Java Java

V. DISCUSSION AND CONCLUSIONS

Software-defined networking has grown beyond its initial

intention of managing network devices. It is more about

supporting applications, allowing them to program its

requirements on to the underlying network infrastructure

through the control plane. The controller is capable of

providing mechanisms (hypervisors) for virtualizing network

resources, especially the intent-based approach [12] and

allocating virtual networks to relevant applications or tenants.

Northbound interface(s) is (are) being developed, taking into

account disparage application requirements. Logically

centralized control is still crucial for device simplification and

management automation. The East/Westbound APIs are being

defined to provide interoperability between different

controllers, or synchronize the state of network devices in a

federated underlying network. The southbound interface is

extended to support other APIs, plug-in protocols, and

services other than OpenFlow for complete management of

network devices, such as Domain name service (DNS),

Dynamic host configuration protocol (DHCP), OVSDB,

NETCONF. The challenge is adopt a SDN controller that

facilitates application innovation and opens up wider markets

for vendors and service providers.

As SDN gains more and more adoption, the requirements for

SDN controllers are to close the gaps so SDN controllers can

fulfill their roles in production systems of large datacenter

networks and WAN networks: high availability and security.

To satisfy the new requirements new controllers and releases

of existing controllers are being built with these objectives:

scalability, high availability, and security.

REFERENCES

[1] N. Mckeown, "How SDN will shape networking",

https://www.youtube.com/watch?v=c9-K5_qYgA, accessed 30

Aug 2015
[2] ONF, "Software-Defined Networking: The new norm for

networks" ,

https://www.opennetworking.org/images/stories/downloads/sdn-
resources/white-papers/wp-sdn-newnorm.pdf, accessed 30 Aug

2015

[3] Kreutz, D., Ramos, F.M.V., Esteves Verissimo, P., Esteve
Rothenberg, C., Azodolmolky, S., and Uhlig, S., ‘Software-

Defined Networking: A Comprehensive Survey’, Proceedings of

the IEEE, 2015, 103, (1), pp. 14-76
[4] Jarraya, Y., Madi, T., and Debbabi, M.: ‘A Survey and a Layered

Taxonomy of Software-Defined Networking’, Communications

Surveys & Tutorials, IEEE, 2014, 16, (4), pp. 1955-1980
[5] ONF Solution Brief: ‘SDN security considerations in the data

center’, 2013

[6] Big Switch Networks, "The Open SDN Architecturre",
http://www.bigswitch.com/sites/default/files/sdn_overview.pdf,

accessed 30 Aug 2015
[7] P. Goransson, C. Black, Software-Defined Networks: A

Comprehensive Approach, Morgan Kaufmann, 2014

[8] Erickson, D., ‘The beacon openflow controller’. Proc. Proceedings
of the second ACM SIGCOMM workshop on Hot topics in

software defined networking, Hong Kong, China2013

[9] Extreme Networks Inc: ‘OpenDayLight Technical Study’

[10] Racherla, S., Cain, D., Irwin, S., Ljungstrom,P., Patil, P., Tarenzio,

A.,: Implementing IBM Software Defined Network for Virtual

Environments IBM.com, September 2014
[11] ONOS, "Architeture Guide",

https://wiki.onosproject.org/display/ONOS/Architecture+Guide,

accessed 30 Aug 2015
[12] Cohen, R., Barabash, K., Rochwerger, B., Schour, L., Crisan, D.,

Birke, R., Minkenberg, C., Gusat, M., Recio, R., and Jain, V.: ‘An

intent-based approach for network virtualization’, pp. 42-50

