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ABSTRACT 
 
 Effects of soil Plasticity Index (PI) on the seismic response of mid-rise buildings considering 

soil-structure interaction is investigated in this study. A 15-storey building resting on class E 

soil with different values of PI has been simulated utilising FLAC3D software. Fully 

nonlinear dynamic analysis under different earthquake recording including two near field and 

two far field earthquakes has been conducted and results in terms of the base shear, maximum 

lateral displacement and inter-storey drift are compared and discussed. Results indicate that as 

PI increases, the base shear of the structure resting on the soft soil, the maximum lateral 

displacement and inter-storey drift increase. It is concluded that practicing engineers should 

consider effects of soil plasticity on the seismic design of building frames constructed on soft 

soils accurately. 

 

Introduction 

 

During the recent decades, the importance of dynamic soil-structure interaction (SSI) has 

been well recognised in analysis of seismic response of superstructures. Several studies have 

shown that the superstructures are vulnerable to the effect of SSI, particularly when structures 

rest on soft soil deposits (e.g. Veletsos and Meek 1974; Hosseinzadeh and Nateghi 2004; 

Hokmabadi et al. 2014; Fatahi et al. 2014). When the soft soil deposit is subjected to strong 

seismic loading, significant soil damping is induced by soil modulus degradation and inertial 

interaction becomes predominant, causing excessive displacements near the ground surface. 

This behaviour of soft soil, which can be described in the forms of backbone curves, is 

nonlinear and hysteretic. The curves expressing shear modulus and damping ratio as a 

function of shear strain vary with soil characteristics, which significantly influence the 

structural response considering SSI. Moreover, Vucetic and Dobry (1991) concluded that 

plasticity of soils plays an important role in determining backbone curves in cohesive soils. 

Plasticity is an important characteristic of fine soils, which indicates the ability of a soil to 

deform irreversibly without cracking or crumbling. The plasticity of a soil can be described 

by Plasticity Index (PI) which indicates the range of water content where a soil exhibits 

plastic behaviour under stress. The lower and upper limits of the range of water content over 

which the soil behaves plastically are defined as Plastic Limit (PL) and Liquid Limit (LL), 

respectively, while the range of water content can be defined by Plasticity Index (PI) as 

follows:  
 
                   (1) 
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Dynamic Behaviour of Cohesive Soils 
 
Figure 1 shows the nonlinear stress-strain relationship of typical soils subjected to the cyclic 

loading. Two important characteristics of hysteresis loop, which are inclination and breath are 

used to describe the hysteresis response of soils. According to Kramer (1996), the inclination 

of the loop represents stiffness of the soil, which can be described at any point during the 

loading process by the tangent shear modulus     . It is clear that the tangent shear modulus 

varies throughout a cycle of loading, but its average value over the entire loop can be 

approximately represented by the slope of the line connecting the origin to the tip of the loop 

and the slope defines the secant shear modulus     . 
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where,    and    are the shear stress and shear strain amplitudes at the defined point, 

respectively. Therefore,      represents the inclination of the hysteresis loop. The breath of 

the hysteresis loop, which is related to the area within the loop, represents the absorbed 

energy, and damping ratio ξ can be defined as below: 
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where,    is the absorbed energy in one loop,    is the maximum strain energy created by 

the loop, and       is the area of the hysteresis loop which is equal to   . The parameters 

     and ξ are used to describe the cyclic behaviour of the soil in the equivalent linear 

analysis and often referred to as the soil equivalent linear parameters.  

 
Figure 1 (a) Hysteretic stress-strain relationship; (b) Backbone curve; and (c) Typical modulus 

reduction curve for soils (After Kramer, 1996) 

The secant shear modulus of the soil element changes with the cyclic shear strain amplitude, 

which is large at low strain amplitudes and decreases as the shear strain amplitude increases. 

As shown in Figure 1b, the locus of tips of the hysteresis loops of different cyclic shear strain 

amplitudes form the backbone curve which matches the monotonic loading curve for the 

same type of soil and the slope of the backbone curve at the origin represents the maximum 

value of the shear modulus,     . At greater shear strain amplitudes, the modulus ratio, 

        ⁄  drops to values less than one. Therefore, to precisely represent the behaviour of 

the soil under the cyclic loading, both      and modulus reduction curve are required.  
 
Vucetic and Dobry (1991) conducted a review on the available cyclic loading test results and 

concluded that the Plasticity Index (PI) is the main factor controlling the variations of the 

shear modulus reduction and damping ratio against the cyclic strain curve for a wide variety 

of cohesive soils. Solid lines in Figure 2a and 2b illustrate the ready-to-use charts provided by 

Vucetic and Dobry (1991) for modulus degradation and damping ratio, respectively. The aim 

of these two charts is to provide a design tool for practicing engineers since PI is readily 

available. As observed in Figure 2, when PI increases,         ⁄  increases while damping 

ratio decreases.  
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Figure 2 (a) Relation between G⁄Gmax versus cyclic shear strain for cohesive soils; (b) Relations 

between damping ratio versus cyclic shear strain for cohesive soils 

Numerical Modeling 
 
In this study, dynamic seismic soil-structure interaction analysis is conducted adopting direct 

method which evaluates the dynamic response in a single step, as it can perform fully 

nonlinear analysis. Furthermore, time domain analysis as recommended by Chu (2006) 

necessary to compute the nonlinear dynamic response is utilised. In order to have realistic 

fully nonlinear analysis, a three dimensional explicit finite difference based program 

FLAC3D (Fast Lagrangian Analysis of Continua) version 5.0 has been employed. In this 

program, behavior of different types of materials according to their prescribed constitutive 

models in response of applied loads and boundary conditions can be simulated. For a 

dynamic analysis, damping in the numerical simulation should be reproduced in magnitude 

and pattern related to the energy losses in the system when subjected to a dynamic loading. In 

soil and rock, natural damping is mainly hysteretic. Hysteretic damping algorithm is 

incorporated in FLAC3D dynamic analysis to simulate the realistic behavior of soils. 

Modulus degradation curves imply nonlinear stress-strain curves. In case of an ideal soil in 

which the stress depends only on the strain, an incremental constitutive relation from the 

degradation curve can be described by the strain-dependent normalised secant modulus (  ) 

as follows: 
 

   
 ̅

 
            (4) 

 
where,  ̅ is the normalised shear stress which can be obtained through local shear stress 

divided by the initial shear modulus and   is the shear strain. The normalised tangent modulus 

(  ) is then obtained as follows: 
 

   
  ̅

  
     

   

  
          (5) 

 
The incremental shear modulus in a nonlinear simulation is then given by     , where      is 

the given shear modulus obtained from Equation (2). The formulations described in 

Equations (4) and (5) are implemented in FLAC3D, by modifying the strain rate calculation 

so that the mean strain rate tensor (averaged over all subzones) is calculated before any calls 

are made to the constitutive model functions. At this stage, the hysteretic logic is invoked, 

returning a modulus multiplier, which is passed to any called constitutive model. The model 

then uses the multiplier    to adjust the apparent value of the tangent shear modulus of the 

full zone being processed. In this study, the tangent modulus model named SIG-III 

implemented in FLAC3D is employed to simulate hysteretic behavior in the soil deposit. The 
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mathematical formulation of the model is defined as: 
 

   
 

        
           

 
 
          (6) 

 
where,    is the secant modulus (      ),   is the cyclic shear strain, and a, b and    are the 

model parameters. By adopting different model parameters, this model is able to generate 

different backbone curve for different types of material in dynamic analysis. 
 
Earthquake ground motions 
 
In order to perform a comprehensive study on the seismic response of the structural models, 

two near field seismic accelerations which are Northridge, 1994 and Kobe, 1995 and two far 

field seismic accelerations which are El-Centro, 1940 and Hachinohe, 1968 shown in Figure 

3 are utilised in the time history analysis, which are selected by the International Association 

for Structural control and Monitoring for benchmark seismic studies (Karamodin and Kazemi 

2008) and Figure 4 illustrates the spectral accelerations for each of earthquake input. 
 

 
Figure 3 (a) Northridge Earthquake 1994; (b) Kobe Earthquake 1995; (c) El Centro Earthquake 1940; 

(d) Hachinohe Earthquake 1968 

 

Figure 4 Spectral accelerations of four input earthquake with 5% damping ratio 

Structural models and soil deposit 
 
Figure 5 shows the dimensions of the structure adopted in this study, whose natural period is 
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1.28 seconds. SAP2000 V14 has been utilised for the structural design purpose. All the 

structural sections of the model have been designed based on the inelastic method assuming 

elastic - perfectly-plastic behavior. According to AS/NZS1170.1-2002 (Permanent, imposed 

and other actions), permanent and imposed loads are determined and applied to the structure 

model. It should be noted that cracked sections for the reinforced concrete sections are taken 

into account by multiplying second moment of area of the uncracked sections (Ig) by cracked 

section coefficients (0.35Ig for beams, 0.70Ig for columns and 0.25Ig for slabs) according to 

ACI318-08 (2008). The model foundation is a square shallow reinforced concrete foundation 

which is 14 meters in length and width, and 1 meter in depth. The entire numerical model has 

been illustrated in Figure 5. Then four earthquakes have been applied at the base. Finally, the 

structural members are designed in accordance with AS3600-2009 (Australian Standard for 

Concrete Structures) in a way that performance levels of the designed models stay in life safe 

level by limiting the maximum inelastic inter-storey drift to 1.5%.  

 
Figure 5 (a) Fixed base model; (b) Flexible base model utilised in FLAC 3D simulation 

According to the classification of AS1170.4-2007 (Earthquake actions in Australia), a soft 

soil representing subsoil class E has been selected in this study. Figure 3b shows the 

characteristics of the soil and dimensions adopted in this study. Different sets of SIG-III 

model parameters a, b and x0 have been determined in order to regenerate backbone curves 

reported by Vucetic and Dobry (1991) to be used in the numerical simulation. Table 1 

summarises the determined values of the model parameters. 

Table 1 SIG-III model parameter for various Plasticity Indices 

 

The interface elements are applied between the superstructure and the soil deposit to simulate 

the real behaviour between the structure and the subsoil. The interface between the 

foundation and soil is represented by normal (kn) and shear (ks) springs between two planes 

contacting each other and is modelled using linear spring system, with the interface shear 

strength defined by the Mohr–Coulomb failure criterion. Obviously, the relative interface 

movement is controlled by interface stiffness values in the normal and tangential directions. 

Normal and shear spring stiffness values for interface elements of the soil-structure model are 

set to ten times the equivalent stiffness of the neighbouring zone based on the 

Column: 700x700 mm

Beam: 550x550 mm

Slab thickness: 250 mm

Column: 800x800 mm

Beam: 650x650 mm

Slab thickness: 250 mm

Column: 750x750 mm

Beam: 600x600 mm

Slab thickness: 250 mm

14m
60m

Quiet boundary 

coupled with free-

field boundary

Beam structure 

elements

Shear wave velocity Vs= 150m/s

Maximum shear modulus Gmax = 

33100 kPa

Poisson’s ratio n= 0.4

Soil density r= 1470 kg/m3

Interface 

elements

30m

(a) (b)

Plasticity Index(PI)) PI=0 PI=15 PI=30 PI=50 PI=100 PI=200

SIG-III model 

parameter

a 1.25 1.25 1.25 1.25 1.25 1.25

b -0.7 -0.7 -0.7 -0.7 -0.7 -0.7

x0 -1.75 -1.55 -1.2 -0.85 -0.5 -0.2



recommendation of Itasca FLAC3D manual (2014).  

        [
(  

 

 
 )

     
]         (7) 

 
where, K and G are bulk and shear modulus of the neighbouring zone, respectively, and 

      is the smallest width of an adjoining zone in the normal direction. Additionally, the 

interface elements have been applied in the way that the foundation can separate from the soil 

and gaping is allowed during the analysis. For side boundaries of the soil deposit, free field 

boundaries have been employed. Free-field boundaries have been simulated using a 

developed technique, involving one-dimensional free-field wave propagation in parallel with 

the main-grid analysis (Itasca, 2014). Thus, plane waves propagating upward undergo no 

distortion at the boundaries because the free-field grid supplies conditions identical to those 

in an infinite model. In addition, a rigid boundary as the bottom of the soil deposit has been 

adopted in this study. 
 

Results and discussions 
 
The results of dynamic analyses for 15 storey structural models in terms of the maximum 

base shear, lateral deflection and inter-storey drift under the influence of four earthquake 

records for fixed base condition and cases considering soil-structure-interaction with different 

Plasticity Indices are derived from FLAC3D history records and compared in Tables 2 - 3 

and Figure 6. 
 
According to Table 2, it is observed that the base shear of the structures modeled considering 

SSI is always less than the base shear of the corresponding fixed base cases. Comparing the 

base shear results, it is evident that as the PI of the subsoil increases from 0 to 200, the base 

shear increases. As observed in Figure 2, by increasing the soil plasticity, the stiffness of the 

subsoil increases, while damping ratio decreases. Thus less distortion of the soil occurs as PI 

increases and consequently more energy transfers through the soil into the system. Thus, the 

increase of PI evidently leads to increase in the base shear of the building resting on the soft 

soil deposit.  

 
Figure 6 Maximum lateral displacement (a) Northridge1994; (b) Kobe1995; (c) El-Centro1940; (d) 

Hachinohe1968 

0

5

10

15

0 500 1000 1500

St
or

ey
 le

ve
l

Lateral displacement (mm)

PI0

PI15

PI30

PI50

PI100

PI200

Fixed 0

5

10

15

0 200 400 600 800 1000

St
or

ey
 le

ve
l

Lateral displacement (mm)

PI0

PI15

PI30

PI50

PI100

PI200

Fixed

(b)

0

5

10

15

0 100 200 300 400

St
or

ey
 le

ve
l

Lateral displacement (mm)

PI0

PI15

PI30

PI50

PI100

PI200

Fixed

(c)

0

5

10

15

0 100 200 300 400

St
or

ey
 le

ve
l

Lateral displacement (mm)

PI0

PI15

PI30

PI50

PI100

PI200

Fixed

(d)

(a)



Table 2 Maximum base shear results obtained from different cases 

 

Table 3 Maximum Inter-storey drift reported for different cases 

 
 
Comparing the results in Figure 6 and Table 3 both taken when the maximum lateral 

displacement occurred at top floor, it becomes evident that when PI = 0 (e.g. low plasticity 

silt), the lowest maximum lateral displacement is observed (even lower than the 

corresponding value for the fixed base case), while for PI = 200 (e.g. high plasticity clay), the 

highest maximum lateral displacement is achieved. The displacement increases as PI 

increases (except Kobe case, where due to the change in the system period, the second mode 

could be activated with extreme strong base shear at a certain input frequency). Although the 

shear wave velocity (or Gmax) is constant, the performance of the soil deposits is significantly 

influenced by PI, due to the combined effects of shear modulus degradation and damping 

ratio. Moreover, as the damping reduces due to the increase in the values of PI, the magnitude 

of acceleration reaching the structure and dominant frequency increase, which is less than 

dominant frequency of input acceleration for all cases. Thus, it is reasoned to conclude that 

due to the decrease in damping, the response of structure increases, which eventually 

indicates the variation of the damping ratio induced by PI has a dominant effect on the system 

behaviour. In addition, considering the conservation of energy, in relatively stiff soil deposits 

experiencing less soil distortion and damping during earthquake, more energy may transfer 

into the structure resulting in increased foundation rocking and structural displacement. 

Generally, for soils with low Plasticity Index (e.g. low plasticity silt), the maximum lateral 

displacement and inter-storey drift of the structure built on the soft soil are less than the 

corresponding values for the fixed base structure. In contrast, when soil has high plasticity 

(e.g. high plasticity clay), the maximum displacements and inter-storey drifts have been 

amplified significantly, especially, for the near field earthquakes (Northridge and Kobe). In 

fact, for both near field earthquakes, the maximum recorded inter-storey drifts considering 

SSI are well more than 1.5% (life save level), which is extremely dangerous and safety 

threatening. 
 

Conclusions 
 
In this study, the influence of Plasticity Index (PI) variations (PI=0 200) on the seismic 

response of mid-rise buildings has been numerically investigated. A 3D numerical soil-

structure model has been developed and employed utilising FLAC3D adopting direct method 

of analysis. In order to capture soil nonlinearities, SIG-III model (Eqn. 6) has been used to 

simulate backbone curves of the shear modulus and the damping ratios versus the shear strain 

for soils with different Plasticity Indices.  Numerical results show that as the Plasticity Index 

of subsoil increases (G/Gmax increases and damping ratio decreases), the base shear, the 

maximum lateral displacement and the maximum inter-story drift increase. The amplification 

Earthquake
Base shear kN

PI=0 PI=15 PI=30 PI=50 PI=100 PI=200 Fixed base

Northridge 7068 12611 14952 25067 26855 27068 36653

Kobe 6966 9977 11765 14666 19607 23314 36127

El-Centro 5148 8470 9200 11089 12062 12103 14345

Hachinohe 4382 7267 10668 10640 11723 12474 13727

Earthquake
Maximum inter-storey drift (%)

PI=0 PI=15 PI=30 PI=50 PI=100 PI=200 Fixed base

Northridge 0.77 1.18 2.07 2.84 2.76 2.92 1.10

Kobe 0.65 1.20 1.84 2.00 1.83 1.84 1.42

El-Centro 0.48 0.60 0.76 0.84 0.91 0.92 0.48

Hachinohe 0.33 0.44 0.61 0.78 0.75 0.94 0.36



of the lateral displacement and internal drifts could potentially change the performance level 

from life safe to total collapse which is safety threatening. It can be concluded that soil-

structure interaction has considerable effects on the seismic response of mid-rise building 

frames resting on soft soil deposits and increase of the Plasticity Index could considerably 

amplify response of the structure. Thus, conventional design procedure excluding soil-

structure interaction and soil plasticity may not be adequate for the safe design of mid-rise 

buildings resting on soft soils. Furthermore, in order to obtain reliable results, the influence of 

Plasticity Index should be taken into account while conducting soil-structure interaction 

analysis. 
 

References 
 
ACI318-08 (2008). Building Code Requirements for Structural Concrete and Commentary. American Concrete 

Institute. 

AS/NZS1170.1. (2002). Structural Design Actions - Part 1: Permanent, Imposed and Other Actions, Standards 

Australia/Standards New Zealand, Sydney, Australia. 

AS1170.4 (2007). Structural Design Actions - Part 4: Earthquake Actions in Australia, Standards Australian, 

Sydney, Australia. 

AS3600 (2009). Concrete Structures, Standards Australia Limited, Sydney, Australia. 

Chu, D. (2006). Three-dimentional nonlinear dynamic analysis of soil-pile-structure interaction. PhD, 

Washington University. 

Fatahi, B. & Tabatabaiefar, S. 2014, 'Fully Nonlinear versus Equivalent Linear Computation Method for 

Seismic Analysis of Midrise Buildings on Soft Soils', International Journal of Geomechanics, vol. 14, no. 

4, pp. 1-15. DOI: 10.1061/(ASCE)GM.1943-5622.0000354  

Hokmabadi, A.S., Fatahi, B. & Samali, B. 2014, 'Assessment of soil-pile-structure interaction influencing 

seismic response of mid-rise buildings sitting on floating pile foundations', Computers and Geotechnics, 

vol. 55, pp. 172-186. 

Hokmabadi, A.S., Fatahi, B. & Samali, B. 2014, 'Physical modeling of seismic soil-pile-structure interaction for 

buildings on soft soils', International Journal of Geomechanics, vol. 15, no. 2, 04014046, DOI: 

10.1061/(ASCE)GM.1943-5622.0000396 

Hosseinzadeh, N.A. and Nateghi, F. (2004). “Shake table study of soil structure interaction effects on seismic 

response of single and adjacent buildings”, Proceedings of the13th World Conference on Earthquake 

Engineering, Vancouver, Canada, pp. 1918. 

ITASCA (2014). FLAC3D version 5.01 Fast Lagrangian Analysis of Continua in three dimentions, User's 

Manual. Minneapolis, Minnesota, USA: Itasca Consulting Group, Inc. 

Karamodin, A.K. and Kazemi, H.H. (2008). “Semi-active control of structures using neuro-predictive algorithm 

for MR dampers”, Structural Control and Health Monitoring, Vol. 17, No. 3, pp. 237–253. 

Kramer, S. L. (1996). Geotechnical earthquake engineering, Prentice Hall. 

Tabatabaiefar, H.R. & Fatahi, B. 2014, 'Idealisation of soil-structure system to determine inelastic seismic 

response of mid-rise building frames', SOIL DYNAMICS AND EARTHQUAKE ENGINEERING, vol. 66, 

pp. 339-351. 

Tabatabaiefar, S., Fatahi, B. & Samali, B. 2013, 'Lateral seismic response of building frames considering 

dynamic soil-structure interaction effects', Structural Engineering and Mechanics, vol. 45, no. 3, pp. 311-

321. 

Tabatabaiefar, S.H.R., Fatahi, B. & Samali, B. 2014, 'An empirical relationship to determine lateral seismic 

response of mid-rise building frames under influence of soil-structure interaction', Structural Design of 

Tall and Special Buildings, vol. 23, no. 7, pp. 526-548. 

Veletsos, A.S. and Meek, J.W. (1974). “Dynamic behaviour of building-foundation system”, Earthquake 

Engineering & Structural Dynamics, Vol. 3, No. 2, pp. 121–38. 

Vucetic, M. and Dobry, R. (1991). “Effects of soil plasticity on cyclic response”, Journal of Geotechnical 

Engineering, ASCE, Vol. 117, No. 1, pp. 89–107. 

http://www.uts.edu.au/staff/behzad.fatahi
http://www.uts.edu.au/staff/behzad.fatahi
http://www.uts.edu.au/staff/bijan.samali
http://www.uts.edu.au/staff/behzad.fatahi
http://www.uts.edu.au/staff/bijan.samali
http://www.uts.edu.au/staff/behzad.fatahi
http://www.uts.edu.au/staff/behzad.fatahi
http://www.uts.edu.au/staff/bijan.samali
http://www.uts.edu.au/staff/behzad.fatahi
http://www.uts.edu.au/staff/bijan.samali

