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Position Limit for the CSI 300 Stock Index Futures Market

Abstract. The aim of this study was to find the optimal position limit for the

Chinese Stock Index (CSI) 300 futures market. A low position limit helps to pre-

vent price manipulations in the spot market, and thus keeps the magnitude of

instantaneous price changes within the tolerance range of policy makers. How-

ever, setting a position limit that is too low may also have negative effects on

market quality. We propose an artificial limit-order market with heterogeneous

interacting agents to examine the impact of different levels of the position limit on

market quality, measured as liquidity, return volatility, efficiency of information

dissemination, and trading welfare. The simulation model is based on realistic

trading mechanisms, investor structure, and order submission behavior observed

in the CSI 300 futures market.

Our results show that on the basis of the liquidity status in September 2010,

raising the position limit from 100 to 300 could significantly improve market qual-

ity and at the same time keep the maximum absolute price change per 5 seconds

below the 2% tolerance level. However, the improvement becomes only marginal

if the position limit is further increased beyond 300. Therefore, we believe that

raising the position limit to a moderate level can enhance the functionality of

the CSI 300 futures market, which should benefit the development of the Chinese

financial system.

Keywords: Position limit, stock index futures, agent-based modeling, market qual-

ity.

JEL Classification: G14, C63, D44
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1. Introduction

The Chinese economy is growing rapidly and is now the second largest economy

in the world. However, the Chinese financial market remains underdeveloped and

requires further improvements in functionality for comparability with other inter-

national financial markets. The Chinese Stock Index (CSI) 300 futures market was

introduced on April 16, 2010 in an effort to improve the country’s financial system.

The CSI 300 futures market allows investors to take short positions on futures to

provide a hedge against risk arising from the Chinese stock market. Introduction of

the futures market was considered a milestone that would bring the Chinese financial

market into a new era.

However, during the first phase after its introduction, the CSI 300 futures mar-

ket has not performed well because many of the market participants are individual

investors who supplied little liquidity to the market. One possible reason is that

the position limit of the CSI 300 futures market was too conservative.1 To ensure

a safe launch and to prevent market manipulation, the initial position limit for the

CSI 300 futures market was set to 100 contracts, which might have been insuffi-

cient for institutional investors.2 The low position limit of 100 could potentially

inhibit institutional investors from taking optimal positions and providing sufficient

liquidity to the market, which would lead to a low trading volume and order depth.

Thus, investors suffer from the poor market quality. Therefore, policy makers face

a trade-off between improving the market quality (by increasing the position limit)

and preventing market manipulation (by keeping a low position limit). The question

that arises is: What is the optimal level for the position limit?

Here we propose an agent-based model to simulate changes in market quality

given different levels for the position limit. The market design and investor structure

used in our model are chosen to best mimic the CSI 300 futures market. We first

conduct an empirical study and find that a position limit of 371 should be sufficient

if policy makers want to prevent manipulation and keep the instantaneous price

change within a tolerance range of 2%. Then simulation results for the agent-based

model show that when the position limit is increased from 100 to 300, the market

quality improves significantly. However, increasing the position limit beyond 300

1A position limit is the maximum unilateral position of a certain contract allowed to be held by

members/customers. Security exchanges set position limits for two main reasons: (1) to prevent

market manipulation by large institutions; and (2) to prevent the risk of a minority investor group

holding a large unilateral position that might cause price fluctuations and defaults to spread into

the entire market.
2Suppose the CSI 300 is at 2,000; as the value of one index point is 300 CNY, one speculative

account can only conduct trades within the 60 million CNY limit, which is rather low compared

to the CSI 300 market capitalization, which is greater than 13,000 billion CNY.



4 POSITION LIMIT

leads to much less improvement in the market quality. Furthermore, our simulation

results show that increasing the position limit to 300 does not lead to absolute price

changes of more than 2%. Therefore, we find that a position limit of 300 is close

to being optimal for the CSI 300 futures market. The study also shows that agent-

based modeling can be very useful for policy makers who need to make decisions in

a complex environment (such as financial systems).

To provide some background information to understand why the position limit

for the CSI 300 futures market was initially set to such a conservative level of 100,

we first briefly review some of the important market events that occurred before the

introduction of the CSI 300 futures market. The most serious incidence of market

manipulation was the so-called “3.27” treasury futures incident, which occurred on

March 27, 1995. Before this incident, Wanguo Security (WS), the largest security

company in China at that time, held a long position of approximately 2 million

contracts in treasury futures, and Zhongjingkai Security (ZS) held a short position

of similar size. Both companies were highly leveraged, so a small price change could

send either company to bankruptcy. In the afternoon of March 27, 1995, the Chinese

Ministry of Finance decided to give a finance discount for treasuries, so the futures

price rapidly increased and WS experienced losses of more than 6 billion CNY,

which was five times the WS market value.3 However, WS manipulated the market

and sold huge orders to push the market price down; the last sell market order

had a quantity of 7.3 million.4 This extreme trading behavior forced the Chinese

treasuries futures market to close down and delayed the introduction of a stock index

futures market for 15 years. Thus, when the CSI 300 futures market was introduced,

regulators had serious concerns about market manipulation, which led to the low

position limit of 100.5

Other international stock index futures markets also use position limits. For

example, the position limit is 20,000 for the S&P 500 and 10,000 for the Nikkei

225. However, some stock index future markets have no position limit, such as the

Mini Dow stock index futures and the FTSE 100 stock index futures. Compared to

these markets, the position limit for the CSI 300 futures market is very conservative.

Intuitively, the optimal position limit should depend on market conditions. Some

studies argue that position limits are not necessary. Gastineau (1991) and Telser

(1993) argued that the position limits set by the SEC in the USA are not sufficient

to prevent manipulation. Grossman (1993) suggested that position limits in the

3WS did not go bankrupt because profits and losses were only realized when a position is closed.
4The value of this order was 146 billion CNY. There was no margin requirement to prevent WS

from opening such a huge short position.
5In fact, in the preintroductory phase (simulation trading phase), the position limit was set to

600, but it was then adjusted to 100 when the futures market was launched.
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futures markets simply move transactions from local to foreign markets, which does

not help to prevent market manipulation. However, several studies support the

idea that position limits place restrictions on market manipulation. Kyle (1984)

developed a theoretical model of a commodity futures market and showed that

position limits can reduce market manipulation. Kumar and Seppi (1992) conducted

a sensitive analysis of market manipulation with two-stage asymmetric information

in a cash-settled futures contract market. They found that market manipulation

has a significant impact on liquidity. Thus, some studies support the idea that a

position limit is helpful in preventing market manipulation; however, they do not

provide ways to identify the optimal position limit given current market conditions.

Dutt and Harris (2005) proposed a theoretical model for setting an optimal po-

sition limit in a cash-settled futures market. They argued that surveillance and

detection of market manipulation are difficult, and therefore regulators could set a

position limit low enough to maintain instantaneous price changes within a tolera-

ble range. The authors then examined prudent position limits among US financial

derivative markets. However, they did not study the influence of position limits on

market quality including liquidity, volatility, and pricing efficiency. To examine the

impact of position limits on these indicators of market quality, we need to model

the trading behavior of investors and examine the way in which a position limit

affects the strategies used by traders. It is difficult to model trading behavior in a

limit order market, which uses a continuous double auction trading mechanism and

allows traders to make both market and limit orders.

Theoretical models are often not analytically tractable, as pointed out by Goettler,

Parlour and Rajan (2009): “ A model that incorporates the relevant frictions of limit-

order markets (such as discrete prices, staggered trader arrivals, and asymmetric

information) does not readily admit a closed-form solution.” As a result, Goettler

et al. (2009) used numerical methods to solve for equilibrium. Nevertheless, they

needed to assume that order submission by uninformed traders is largely determined

by an exogenously private value and that traders cannot learn from historical market

data, which limits the applicability of their results to real markets.

An alternative approach is to use agent-based models. The advantages of agent-

based models have been pointed out by Dawid and Fagiolo (2008): “The ability

of ACE (agent-based computational economics) models to capture explicitly the

relationship between structured interaction of heterogeneous individuals and the

emerging patterns at the macroeconomic level, and to incorporate different types of

boundedly rational individual behavior ”. More importantly, in comparing agent-

based models with neoclassical models, they further point out that “Political decision

makers might be more willing to trust findings based on rather detailed simulation

models where they see a lot of the economic structure they are familiar with than
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in general insights obtained in rather abstract mathematical models ”. There has

been progress in applying agent-based models for policy design. For example, Xiong,

Wen, Zhang and Zhang (2011) analyzed the impact of different investor structures

on market volatility in an artificial stock index futures market and illustrated a

risk-diffusing mechanism in a cross-market structure. Moreover, Wei, Zhang, He

and Zhang (2014) constructed an artificial limit-order market model with a con-

tinuous double-auction trading mechanism and study the efficiency of information-

dissemination through the learning ability of the uninformed traders. Furthermore,

Wei, Zhang, Xiong and Zhao (2014) set up an artificial stock index futures market

based on the characteristics of the CSI 300 futures market and analyze how the

minimum tick size affect market quality.

One of the drawbacks of agent-based models is the large number of parameters

in the model and the lack of efficient methods for determining values for these

parameters. To overcome this problem, we combine empirical analysis into our

agent-based model in two steps. First, following Dutt and Harris (2005), we use

empirical data from the CSI 300 futures market to find prudent position limits for

different tolerance levels for instantaneous price changes. Then we use data on

investor types and order submission to determine parameter values for the agent-

based model and analyze the simulation results to examine whether increasing the

position limit helps to improve market quality for the CSI 300 futures market.

The remainder of the paper is organized as follows. Section 2 uses empirical data

from the CSI 300 futures market and follows Dutt and Harris (2005) to identify a

prudent position limit to keep instantaneous price changes within a given tolerance

range. Section 3 presents the agent-based computational model and describes the

market set-up and the order submission rules. Section 4 examines the impact of

increasing the position limits on the efficiency of information dissemination, price

volatility, and liquidity. Section 5 concludes.

2. Prudent position limits for the CSI 300 futures market

In practice, it is very difficult to detect market manipulation and to distinguish

manipulative from legitimate speculative activities. Dutt and Harris (2005) argued

that surveillance and prosecution are inadequate for controlling market manipu-

lation, and that setting a position limit is an alternative approach. They assumed

that if instantaneous price changes are not greater than the tolerance level set by the

regulator, then the regulator would not spend resources to distinguish manipulative

from speculative trades. Therefore, manipulators may well be active in the market.6

A prudent position limit can be generated from an analysis of the optimal behavior

of a manipulator. For a given tolerance level for instantaneous price changes, the

6They may even act like speculators.
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objective of a manipulator is to maximize his profit from trades. It is assumed that

price is a linear function of aggregate demand, and the prudent position limit is set

such that it would not be optimal for the manipulator if price changes are greater

than the tolerance level set by the regulator.7

Following Dutt and Harris (2005), we derive the prudent position limit θ∗ accord-

ing to

θ∗ =
Dk

500mε
∑300

i=1 ψiωi
, (1)

where D is the sum of the value-weighted capitalization for constituent stocks in

the initial period, k is the tolerable price change, m is the contract multiplier, ε

is an elasticity measuring market illiquidity, ψi is the capitalization-value weight

for the ith component stock, and ωi is the proportion of tradable shares of the ith

component stock. The derivation of the equation is described in Appendix A.

According to Equation 1, we calculate prudent position limits for the CSI 300

futures. Using data from the Guo Tai’an database,8 we find D = 4, 700, 862, 800

CNY in the base period (December 31, 2004) and
∑300

i=1 ψiωi = 0.009. The contract

multiplier is m = 300. The tolerable price change k is set to 1% for a low tolerance

level and 2% for a high tolerance level.9

Dutt and Harris (2005) evaluated ε from the transaction cost prediction models of

ITG and Goldman, which focus on US markets. Instead, we evaluate ε as the market

impact cost in the CSI 300 futures market according to the method of Almgren,

Thum, Hauptmann and Li (2005). We choose 1-month high-frequency transaction

data to estimate the market impact cost. The results are shown in Table 1. Data

for the main contract IF 1009 are from August 23 to September 15, 2010.10 There are

data for 18 trading days at 5-second time intervals, corresponding to 51,876 records

in 18 days and 2,882 records per day.11

7This method is useful for preventing the trade-based manipulation which generates strong

price impact. Kong and Wang (2014) also reported the order-based manipulation which does not

involve trade actions, but rather order actions in the Chinese financial markets. The order-based

manipulation is hard to control by the position limit and beyond the scope of this paper.
8Guo Tai’an is the biggest data provider for Chinese financial markets.
9Dutt and Harris (2005) set k to 3%. However, owing the more serious concerns regarding

manipulation in Chinese financial markets, we set the tolerable level for price changes to more

conservative levels.
10We exclude three days for 1-month data: August 20, the first day that IF 1009 became the main

contract and on which its volume changed a lot; September 17, the delivery day; and September

16, the day before delivery, because of a small trading volume.
11We also use the same period data including trading frequency, order profit, and order size to

analyze investor behaviors. Statistical analysis of these indicators provides a basis for setting the

parameters in our agent-based model, as described in the next section.
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Table 1 shows the value of ε for different quantiles. Our results are similar to

those of Dutt and Harris (2005). A larger ε means that the market is more illiquid.

We choose the 50% quantile as the normal state and the 90% quantile as the worst

state for market liquidity.

Quantile 10% 25% 50% 75% 90% 

  144.6 162.3 187.8 230.1 312.6 

 

Table 1. Illiquidity elasticity estimates by market impact cost.

Now we can calculate the prudent position limits according to Equation 1. The

results are reported in Table 2.

Illiquidity % 1%k   % 2%k   

187.8   185 371 

312.6   111 223 

 
Table 2. Prudent position limits for different tolerable price changes

and illiquidity.

Table 2 shows that if the tolerable level is 1% and the market is very illiquid

(ε = 312.6), the prudent position limit is 111, which is close to the initial position

limit of the CSI 300 futures market. However, if the Chinese regulators are willing

to tolerate a 2% instantaneous price change, under the normal liquidity state, the

prudent position limit can be as high as 371. The question is whether increasing the

position limit for the CSI futures market can significantly improve its market quality.

To address this question, we conducted a simulation analysis using an agent-based

model in a limit order market.

3. Agent-based computational model

This section first describes the architecture of our agent-based computational

model, including the tradable assets, market design, investor types, forecasting rules,

order size, and order submission rules. Then we calibrate the parameters to create an

artificial CSI 300 futures market (ACFM) and set different position limits suggested

by the results obtained in Section 2 to examine the impact on market quality.

3.1. Fundamental value. Pricing theory for stock index futures implies a lead–lag

relationship between futures and the underlying assets. Let vt be the fundamental

value of a stock index futures with initial value v0. In real markets, if the futures

price deviates from its fundamental value, arbitragers will take short positions to
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push the futures price back to its fundamental. Owing to the no-short-selling in

the Chinese underlying markets, investors can only do cash-and-carry arbitrage by

shorting futures and taking a long position on the underlying stocks when the fu-

tures price is above its fundamental value. Therefore, we choose the cash-and-carry

arbitrage ceiling for the CSI 300 futures market as the fundamental value. Cash-

and-carry requires the arbitrager to borrow at the market interest rate for a time

horizon that matches the maturity of the futures contract to take long positions on

the underlying stocks, and then take short positions on the futures. The cost of

cash-and-carry provides a ceiling for the futures price, which we call the fundamen-

tal price. A detailed derivation of the fundamental price is provided in Appendix B,

which incorporates the interest rate, transaction cost, market impact cost, dividend

of underlying stocks, margin ratio, and time to maturity as key determining factors

of the fundamental price. Owing to the transaction cost, the ceiling is always higher

than the theoretical futures price, which is erTSt. The difference between the ceiling

and the theoretical price decreases as the maturity date approaches. As mentioned

in Section 2, we use 5-second-interval data for the CSI 300 index from August 21 to

September 15, 2010, to calculate the fundamental value. We generate a time series

of fundamental values with 51,876 records, which we then use to run simulations in

the ACFM.

3.2. Market design. To mimic trading in the CSI 300 futures market, we use a

continuous double-auction trading mechanism that enables a trader to submit both

limit and market orders, which are listed and matched in an electronic order book.

The order book is emptied out at the end of every trading day (practice used in

the CSI 300 futures market). During one trading period (5 seconds), there can be

several or no transactions. The market price pt is the last transaction price at time

t. If there are no transactions at time t, then we assume pt = pt−1. The initial

market price is p0 = v0. The transaction cost µ is set to 0.015% per transaction and

the minimum tick size is set to 0.2 CNY. Furthermore, we initially set the position

limit to 100, which is the same as the initial position limit in the CSI 300 futures

market. Then we increase the position limit to higher levels to see whether the

market quality significantly improves.

3.3. Investor types and structure. We consider an asymmetric-information frame-

work for the agent-based model whereby a certain proportion of investors have pri-

vate information about the future fundamental value. For example, large institu-

tional investors might know more about the fundamental value because of better

information-gathering abilities. The trading strategies of informed and uninformed

traders have different characteristics. Menkhoff, Osler and Schmeling (2010) found

that informed traders trade more actively than uninformed traders. Wei, Zhang, He
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and Zhang (2014) found that informed traders have a higher trading rate and make

more profit than uninformed traders when information is short-lived.

Using high-frequency trading data for IF 1009 on September 6, 2011, we identify

seven different ranges for the investor trading frequency. Table 3 classifies investors

into four types according to their trading frequency, order profit, and transaction

quantity. The data show that investors with a trading frequency greater than 135

gained the most profit on the day. These investors traded every 2 minutes on average.

We call them informed traders and they accounted for 3.3% of the market traders.

The second group is intelligent traders, who had an average trading frequency of

80 per day and an order return rate close to zero. They traded on average every 5

minutes and account for 6.4% of the market. Traders with lower trading frequencies

had lower order profits. Simple traders make up 80.1% of the market, and their order

return is on average between −0.0389% and −0.0331%. The last group is liquidity

traders, who traded once on the day and accounted for 10.1% of the market. Their

orders made an average loss of −0.1009%. Therefore, it seems from the data that

informed traders tend to trade more frequently and make profits from traders with

lower trading frequencies, such as simple traders and liquidity traders. We recognize

that this is only one trading day, but a similar pattern exists for other trading days

in a similar time period.

Type Range of  f Population Proportion Average of  f  Order return rate 

Informed traders 
270f   194 

3.3% 
417 0.0447% 

135 270f   279 187 0.0317% 

Intelligent traders 54 135f   915 6.4% 80 -0.0002% 

Simple traders 

27 54f   1580 

80.1% 

37 -0.0331% 

9 54f   4140 15 -0.0351% 

2 9f   5673 4 -0.0389% 

Liquidity traders 1f   1428 10.1% 1 -0.1009% 

 

Table 3. Statistics for high-frequency data for IF 1009 on September

6, 2011. f is the trading frequency per day (270 minutes). The order

return rate of trader i is rio = (pio − pc)/pc for a sell order and rio =

(pc−pio)/pc for a buy order, where pio is the order transaction price and

pc is the closing price on September 6, 2011. This is an approximation

of investor profit since we cannot obtain data on actual investor profits

because of privacy protection issues.

The information lag time τ is set according to the lead–lag relationship between

stock index futures and the spot price. Sinolink Securities estimates that it is
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most likely that the CSI 300 futures price leads the spot price by approximately 2

minutes,12 which means that private information on the stock index futures market

is released to the spot market after 2 minutes, so we assume that uninformed traders

acquire the fundamental value with a lag of τ = 2 minutes.

The investor structure is based on statistical analysis of the CSI 300 futures

market. The number of investors who enter the market is approximately 14,200 per

day. However, because of limited computing power, we set the number of investors to

284, which is approximately 1/50 of the actual population. The number of informed,

intelligent, simple, and liquidity traders were adjusted accordingly to 10, 18, 228,

and 28, respectively.

We assume that investors arrive in the market according to a Poisson process

with intensity φi. The value of φi is set to 0.82, 0.45, 0.09, and 0.008 for informed,

intelligent, simple, and liquidity traders, respectively, according to statistics for the

CSI 300 futures market. Several traders could enter the market in the same time

period t, in which case we randomize their time priority according to a uniform

distribution. Therefore, the precise time at which a particular investor enters the

market is given by t′ in period t. When an investor enters the market, he cancels

any unexecuted limit order and submits a new buy/sell order of size |qit|; a buy (sell)

order would lead to a positive (negative) value for qit. As explained later, we use

the empirical probability distribution of the submitted order size to determine the

distribution of |qit|.

3.4. Investor forecasting rules for the fundamental value. We assume that

all investors believe that the futures price will converge to its fundamental value.

Therefore, investors make forecasts pit′ about the fundamental value. The forecasting

rules of informed traders, intelligent traders, simple traders, and liquidity traders

are given as follows.

(1) Informed traders almost know the fundamental value, but their forecast is con-

taminated by a random bias ξ that follows a truncated standard normal distribution

between −0.01 and 0.01. We assume that each time an informed trader makes a

forecast, there is a 10% chance that a forecasting bias will occur. The forecasting

rule is given by

pit′ = Ei
t′(vt) = vt(1 + ξ), ξ ∈ [−0.01, 0.01]. (2)

(2) An intelligent trader observes the t − τ -period fundamental value vt−τ when

he enters the market. He also make use of the average trading price p̄t,τ of the past

12Sinolink Securities Special Reports for Stock Index Futures, ‘Stock index futures lead stock

index for 2 minutes and it contains multidimensional opportunities’, 2010, China, in Chinese.
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τ periods and the bid-ask midpoint pmt′ , which are given by

p̄t,τ =
1

τ
[pt−1 + pt−2 + · · ·+ pt−τ ], pmt′ =

1

2
(at′ + bt′). (3)

The forecasting rule of an intelligent trader i is given by

pit′ = Ei
t′(vt) =

1

xit′ + yit′ + zit′
(xit′vt−τ + yit′ p̄t,τ + zit′p

m
t′ ), (4)

where x, y, and z are forecasting coefficients. Intelligent traders optimize the co-

efficients according to the genetic algorithm (GA). The values for x, y, and z are

bounded between 0.01 and 0.99. Appendix C provides details regarding the GA.

(3) The forecasting rule for simple traders is the same as that for intelligent traders

except the values of x, y, and z are selected randomly between 0.01 and 0.99.

(4) Liquidity traders do not make any forecasts; they randomly select whether to

submit either buy or sell market orders to meet their liquidity demand.

3.5. Order size under the position limit. The position limit has a significant

impact on the order size. It is obvious that traders cannot submit an order of size

greater than twice the position limit.13

There are two ways to determine the order size. One way is to use a CARA risk

preference utility to generate the demand of traders (2009), which has a theoret-

ical foundation but is difficult to implement. Furthermore, it is unlikely that the

order size in actual markets is close to the theoretically optimal demand because,

for example, high-frequency traders usually break their trades into smaller sizes to

minimize the market impact and have a zero net position at the end of each trading

day. In addition, liquidity traders need to implement their liquidity demand in one

transaction for special requirements.14

We model order size using the second approach. To generate a realistic order flow,

we estimate a probability density function (pdf) of order sizes based on empirical

data for investor order submissions.15. The pdf of |qit| is given by

f i(x) = αieβ
ix + γieδ

ix, (5)

where x ∈ (0,∞) and αi, βi, γi, and δi are the parameters for different trader types.

We assume that the order size for type i trader is i.i.d. for each period. The pdf

specified in Equation (5) seems to best capture the empirical data. The fitted values

for the parameters are presented in Table 4. According to the pdf f i(x), we generate

13We consider an extreme case, that is, when an investor has the maximum long position θ but

wants to hold the maximum short position θ, so the sell order size is 2θ.
14For example, some index tracking funds need to adjust their position limit immediately.
15The data include 5-second high-frequency market data and the account data in the CSI 300

futures market from August 23 to September 15, 2010.
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an order size |qit| for trader type i. Fitting maps of the pdfs for the four investor

types are presented in Appendix D.

Investor type 
i  i   

i  
i  

Informed traders 0.2152 -0.2130 0.0016 -0.0081 

Intelligent traders 0.8088 -0.7682 0.0511 -0.1107 

Simple traders 5.1980 -2.1570 0.1077 -0.3107 

Liquidity traders 9.1840 -2.4590 0.0916 -0.5296 

 
Table 4. Parameters for the probability density function for in-

vestor order size.

Note that the pdf f i(x) is not bounded above; therefore, without a position limit,

traders (especially informed traders) can submit large orders (either buy or sell)

that may lead to large price fluctuations. However, introduction of a position limit

θ truncates the distribution in the following way. Suppose that a trader enters the

market at time t and N of his previous submitted orders were executed, indexed by

n = 1, · · · , N , with sizes |qi∗n |. We define the current holding of futures contracts by

trader i as

Qi
t =

N∑
n=1

qi∗n . (6)

Since the net holding of trader i cannot exceed θ, when trader i submits an order of

size |qit| at time t, |Qi
t + qit| ≤ θ must hold, which is equivalent to

−θ −Qi
t ≤ qit ≤ θ −Qi

t.

Therefore, if trader i submits a buy (sell) order, f i(x) must be truncated at x ≤ θ−Qi
t

(x ≤ −θ −Qi
t).

3.6. Order submission rules. For order submission rules, we follow Gil-Bazo,

Moreno and Tapia (2007) and Wei, Zhang, He and Zhang (2014). If an investor’s

forecast pit′ of the fundamental value significantly differs from the actual fundamental

value vt, and the expected order profit is more than the transaction cost µ, then the

investor submits a market order, otherwise he submits a limit order. The bid–ask

spread is denoted by st′ = at′ − bt′ , and the limit order price is denoted by pl. The

submission rules are presented in Table 5.

3.7. Experiment design. The experiments are based on prior empirical analysis

outlined in Section 2. We set the position limit to 111, 181, 223, and 371 correspond-

ing to the four states based on market illiquidity and the tolerable price change of

the regulator. We examine the impact of increasing the position limit on volatility,

liquidity, and the efficiency of information dissemination. On the basis of the re-

sults, we provide some policy implications. Since it is conventional to round off the
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Scenario Order 

Case 1: There is at least one ask price and one bid price in the limited order book 

 

' '
i

t tp a µ> +  Market order to buy 

' ' ' ' ' ' '& | | | |i i i
t t t t t t ta p b a p p bµ µ+ ≥ ≥ − − ≤ −  Limit order to buy with '

i
l tp p µ= −  

' ' ' ' ' ' '& | | | |i i i
t t t t t t ta p b a p p bµ µ+ ≥ ≥ − − > −  Limit order to sell with '

i
l tp p µ= +  

' '
i

t tp b µ< −  Market order to sell 

Case 2: There are no bid prices 

' '
i

t tp a µ> +  Market order to buy 

' '
i

t tp a µ≤ +  Limit order to buy with '
i

l tp p µ= −  

Case 3: There are no ask prices 

' '
i

t tp b µ< −  Market order to sell 

' '
i

t tp b µ≥ −  Limit order to sell with '
i

l tp p µ= +  

Case 4: There are no ask or bid prices 

With probability 50% 

 
Limit order to buy with '

i
l tp p µ= −  

With probability 50% 

 
Limit order to sell with '

i
l tp p µ= +  

 
Table 5. Order submission rules.

position limits to the nearest hundred, we modify the position limits to 100, 200,

300, and 400, and denote the experiments as Exp. 1, Exp. 2, Exp. 3, and Exp. 4,

respectively. The position limit for Exp. 1 is the same as for the actual market, so

this is referred to as the benchmark case.

Each experimental group was run 30 times with different random seeds to meet

the statistical significance requirement. Each simulation was run for 51,876 periods

using the fundamental value of the CSI 300 futures market calculated from the given

data. The first 37,446 periods (13 days) were used for intelligent traders to learn

and optimize the forecasting rules. The results are for the remaining 14,430 periods

(5 days).

4. Market quality analysis

Analysis of the market quality is based on three indicators: market liquidity rep-

resented by transaction volume, order book depth and the bid-ask spread; pricing

efficiency represented by information dissemination and the forecasting accuracy of

uninformed traders; and market volatility represented by the standard deviation of
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the market price return (per period) and the maximum instantaneous price change.

The trading welfare for each trader type is measured by their average order profit.

We also report the simulated market price, order book, and trading volume in Ap-

pendix E. The results show that the model generates some of the stylized facts for

the CSI 300 futures market.

4.1. Liquidity. We first examine trading volume since a higher trading volume

would result in a larger commission for the exchange.

We use analysis of variance (ANOVA) to analyze sample differences among the

experiment groups. Figure 1 shows a sharp increase in trading volume of 15.23%

when the position limit θ increases from 100 to 200. There is a further increase

of 4.34% when θ increases from 200 to 300, and then no significant change when θ

increases from 300 to 400.

Next we examine the change in order depth at the best quotes. Figures 2(a) and

2(b) show that the order depth increases by more than 30% when the position limit

θ increases from 100 to 200, then by more than 10% when θ increases from 200 to

300, and finally by less than 5% when θ increases from 300 to 400.

Furthermore, Figure 3 indicates that the bid–ask spread becomes slightly wider

(albeit not statistically significant) when the position limit increases from 100 to

200, with no significant changes when the position limit is further increased.

Table 6 shows that the change in liquidity is mainly due to orders submitted

by informed traders. The results indicate that when the position limit increases,

informed traders submit more limit orders and market orders, and a greater propor-

tion of the limit orders are executed. In contrast, we do not see similar changes for

the other trader types. Furthermore, according to Table 6, when the position limit

increases, informed traders submit many more limit orders than market orders, so

they provide rather than consume liquidity, which is consistent with the increase

in order depth. In addition, a greater proportion of the limit orders submitted are

executed, which explains the increase in trading volume.

4.2. Information efficiency. We use the mean absolute error (MAE) between the

market price and the fundamental value proposed by Theissen (2000) to measure

the convergence of the market price to the fundamental value, which reflects the

market information efficiency. The MAE is defined as

MAE =
1

T

T∑
t=1

|pt − vt|. (7)
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Figure 1. ANOVA for the trading volume. The p-value is less than 1%.

2.5

3

3.5

4

4.5

5

1 2 3 4

(a) Depth at bid.
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(b) Depth at ask.

Figure 2. ANOVA for the depth at bid and ask. The p-value for

(a) and (b) is less than 1%.

Similarly, we define the mean absolute deviation (MAD) to measure the forecasting

errors of intelligent traders (who use GA learning) and simple traders.

MADi =
1

T

T∑
t=1

|pit − vt|. (8)

Figure 4 shows that MAE, MADGA, and MADS all decrease with the position

limit, implying that there is an improvement in information efficiency. Moreover,

the increase in information efficiency is statistically significant when the position

limit increases from 100 to 200, and from 200 to 300.
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Figure 3. ANOVA for the bid–ask spread. The p-value is less than 1%.

Exp. ILO IMO ILE GALO GAMO GALE SLO SMO SLE LMO

1 435,173 160,838 63,764 305,335 12,384 23,208 2,345,139 109,008 202,814 3,281

2 706,961 202,329 96,711 323,998 12,480 25,029 2,361,872 100,682 201,257 3,277

3 827,075 219,762 111,447 333,148 12,257 25,777 2,358,265 97,468 199,663 3,253

4 899,885 233,725 122,185 336,724 12,390 26,253 2,362,954 94,027 199,152 3,269

Table 6. ILO, GALO, and SLO denote the average number of limit

orders submitted by informed, intelligent, and simple traders, respectively.

Similarly, IMO, GAMO, SMO, and LMO denote the average number of

market orders submitted, and ILE, GALE, and SLE denote the average

number of submitted limit orders that are executed for the three trader

types.

This result is mainly driven by the fact that an increase in the position limit moti-

vates informed traders to trade more aggressively, which helps to release information

about the true fundamental value more quickly to intelligent traders.

4.3. Volatility. We use the standard deviation of the returns for transaction prices

to measure volatility. As shown in Figure 5, volatility increases with the position

limit θ, which is most significant when θ increases from 100 to 200, from approx-

imately 11.175 basis point (bp) to over 12.25 bp, which is a proportional increase

of 6.4%. There are no significant changes in volatility when θ is further increased

to 300 or 400. Intuitively, volatility increases because informed traders trade more

aggressively and submit a larger number of market orders, which actually improves

the dissemination of information about the fundamental value. Therefore, the in-

crease in volatility should not be interpreted as a deterioration in market quality;
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(a) MAE.
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1.66

1.68

1.7

1.72

1 2 3 4

(b) MADGA.
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(c) MADS .

Figure 4. ANOVA for information dissemination indicators.

MADGA and MADS are the MAD for intelligent and simple traders,

respectively. The p-value for (a), (b), and (c) is less than 1%.

instead, it shows that an increase in the position limit helps the observed prices to

better reflect information about the fundamental price, and thus improve market

efficiency.

An important concern from the point of view of the market regulator is whether

instantaneous price changes are below the tolerance level. According to the model

of Dutt and Harris (2005), the instantaneous price change is an increasing function

of the position limit set by the regulator, because it provides more incentives for

manipulative trades in the spot market. However, our simulation results show that

instantaneous price changes in the futures market never exceed 2%, regardless of
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Figure 5. ANOVA of the standard deviation of the market price

return. The p-value is less than 1%.

whether the position limit is set to 100, 200, 300, or 400. However, there are times

when the instantaneous price change exceeds the 1% tolerance level.

We calculated the average number of times that price changes were greater than

1% over 30 simulations. Figure 6 shows that the average number of times the

instantaneous price changes exceeds 1% does not change significantly as the position

limit increases. Intuitively, although an increase in the position limit allows informed

traders the possibility to submit large market orders, we see from Table 6 that

informed traders actually submit a greater number of limit orders than market

orders, which increases the order depth at the best bid and ask. Therefore, it seems

likely that the larger market orders submitted by some informed traders are absorbed

by larger limit orders submitted by the other informed traders.

4.4. Trading welfare. We finally consider order profits for the four trader types

under different position limits. The order profit for an executed order is measured

by rt = pt − vt for a sell order and rt = vt − pt for a buy order. We use rI ,

rGA, rS, rL to denote the average profit per order (order size not considered) for

informed, intelligent, simple, and liquidity traders, respectively. Similarly, RI , RGA,

RS, and RL denote the total profit for the four trader types taking order sizes into

consideration.

Table 7 shows that the per order profit decreases for both informed and intelligent

traders; however, the total profit increases for informed traders but decreases for

intelligent traders. Intuitively, when the position limit is increased, informed traders
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Figure 6. ANOVA for the average number of times that the abso-

lute price change for one period (5 seconds) exceeds 1%. The p-value

is less than 1%.

submit larger orders, which leaks private information to intelligent traders, who

use GA to try to extract the correct fundamental value from market information.

However, the learning of intelligent traders is contaminated by the orders submitted

by simple traders (liquidity traders are largely irrelevant because they only enter the

market once a day). Therefore, although the orders submitted by informed traders

becomes less profitable (per futures contract) as they submit larger orders, their

total profit increases. The additional profit gained largely come from intelligent

traders since the per order and total profits do not change significantly for simple

and liquidity traders. Therefore, an increase in the position limit can potentially

attract more informed traders (or institutional investors) to participate in the CSI

300 futures market to compete for additional profits.

Exp. rI rGA rS rL RI RGA RS RL

1 0.6572 0.5900 -0.5383 -0.2595 147,590 21,029 -167,766 -852

2 0.5660 0.4112 -0.6092 -0.2546 169,218 15,447 -183,830 -835

3 0.5352 0.3356 -0.6371 -0.2624 177,229 12,825 -189,200 -854

4 0.5172 0.2532 -0.6584 -0.2798 184,025 9,782 -192,892 -915
Table 7. Order profit for the four trader types. r is the order profit

per unit and R is the total order profit for each trader type.
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5. Conclusion and policy implications

We used an agent-based model with four investor types to examine the impact of

an increase in the position limit on market quality for the CSI 300 futures market.

Informed traders know the fundamental value, whereas intelligent traders attempt

to learn about the fundamental value from market information according to the GA.

Simple traders do not learn and simply try to guess the fundamental value from the

lagged fundamental value and past prices. Finally, liquidity traders randomly supply

and demand liquidity from the market. The four investor types are realistically

identified using trading frequency and order return data for the CSI 300 futures

market. Our model is designed to mimic all the important features of the actual

market. Most importantly, we use the empirical distribution of the size of orders

submitted to the CSI 300 futures market to determine the order size for each of the

four investor types.

We find that an increase in the position limit helps to improve market quality.

The simulation results show that when the position limit is increased from 100 to

300, the trading volume increases by more than 20% and the order depth increases

by 30% at the best quotes. Although the bid–ask spread increases slightly, the in-

crease is not statistically significant. Information dissemination improves as market

prices converge closer to the fundamental value. The standard deviation for market

price returns increases by 8.2 bp per period when the position limit is increased

from 100 to 300; however, we argue that this indicates that market prices better re-

flect information about the fundamental price rather than a deterioration in market

quality. When the position limit is further increased from 300 to 400, there are no

significant changes in market quality.

Of course, we recognize that investor characteristics such as trading frequency,

trading strategy, and the distribution of order sizes are likely to evolve and adapt

to increases in the position limit for the CSI 300 futures market. The assumption

that these elements remain the same may not be innocuous if the position limit

is increased by too much. Therefore, we recommend that regulators should first

increase the position limit from 100 to 300 and monitor the market to see whether

market quality indeed improves significantly as our model suggests. Then, after

enough data have been gathered, the agent-based model can be resimulated with

updated parameter values (estimated from newly observed market information) so

that regulators can make better informed decisions on whether to further increase

the position limit from 300 to a higher level.
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Appendix

A. Derivation of prudent position limits for the CSI 300 futures market.

Following Dutt and Harris (2005), we derive prudent position limits for the CSI

300 futures market. Assuming that the underlying component price is a linear

function16 with its true value and trading quantity as Equation A.1, where Pi is the

price associated with the ith underlying index component, Vi is its true value, and

Qi is the aggregate trading quantity of manipulators in the underlying market. λi
is a measure of the illiquidity of the underlying market.

Pi = Vi + λiQi. (A.1)

CSI 300 index I consisting of 300 underlying components is denoted by

I =
1000

∑300
i=1 ωigiPi
D

, (A.2)

where ωi is the proportion of tradable shares17 of the ith component stock, gi
is the share factor, and D is the sum of the value-weighted capitalization of the

constituent stocks in the initial period. The value of a contract is mI, where m is

the contract multiplier18 for cash settlement. Let θ be the number of contracts that

a trader holds. The notional value Z of the traders contract position is

Z = θmI =
1000θm

D

300∑
i=1

ωigiPi =
1000θm

D

300∑
i=1

ωigi(Vi + λiQi). (A.3)

The trading cost of manipulation per component Ci is

Ci = (Vi + λiQi)Qi + ciQi − ViQi = λiQ
2
i + ciQi, (A.4)

where ci is the per-share commission rate. Thus, the total cost for manipulation

of the underlying index is

C =
300∑
i=1

(λiQ
2
i + ciQi). (A.5)

The net profit from this manipulation is

16Dutt and Harris (2005) pointed out that the linear price function is widely accepted in market

microstructure theory, as Kyle (1985) have provided a seminal analysis.
17In the Chinese stock markets, shares are divided into two categories. One category is non-

tradable shares, for which most of the owners are government entities, so-called “state shares”;

the other category is tradable shares, which are held by normal shareholders. Most of the CSI 300

components comprise approximately two-thirds non-tradable shares.
18The value of a contract calling for cash settlement of m times the value of the index; m = 300

for CSI 300 futures index.
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Π = Z − C =
1000θm

D

300∑
i=1

ωigi(Vi + λiQi)−
300∑
i=1

(λiQ
2
i + ciQi). (A.6)

Maximizing Equation A.6 with respect to Qi yields the profit-maximizing quantity

for all underlying components, as follows:

Qi =
500θmωigi

D
− ci

2λi
. (A.7)

Substituting Equation A.7 into Equation A.1, we obtain the percentage price

change due to manipulation as

Pi − Vi
Vi

=
500λiθmωigi

DVi
− ci

2Vi
. (A.8)

It is useful to define a price elasticity εi with respect to the proportion of all

outstanding shares Si traded by the manipulator. Let

εi =
λiQi/Vi
Qi/Si

=
λiSi
Vi

, so λi =
εiVi
Si

. (A.9)

Substituting Equation A.9 into Equation A.8 yields

Pi − Vi
Vi

=
500θmωigiεi

DSi
− ci

2Vi
. (A.10)

We choose the absolute capitalization-weighted average percentage price change

for the index stocks as the tolerable price change k. We let ψi = SiVi∑300
j=1 SjVj

be the

capitalization-value weight for the ith component stock. Thus, the price change is

expressed as

300∑
i=1

ψi
Pi − Vi
Vi

=
300∑
i=1

ψi(
500θmωigiεi

DSi
− ci

2Vi
) ≤ k. (A.11)

Thus, the prudent position limit for the CSI 300 futures market is

θ∗ =
Dk

500m
∑300

i=1 ψiωiεi(gi/Si)
+

D
∑300

i=1 ψi(ci/2Vi)

500m
∑300

i=1 ψiωiεi(gi/Si)
. (A.12)

Because ci is very small relative to Vi, the second term in Equation A.12 does

not matter much. In addition, the CSI 300 index is a value-weighted index, so that

gi = Si and we can assume that all εi are a constant value ε, 19 so Equation A.12

reduces to Equation 1 as follows:

θ∗ =
Dk

500mε
∑300

i=1 ψiωi
.

19Dutt and Harris (2005) set it to 150. The component stocks of the CSI 300 are large stocks

and have stable liquidity, so we also assume that εi is a constant value.
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B. Derivation of the ceiling for risk-free cash-and-carry arbitrage. We

assume that if there is no arbitrage opportunity, the sum of cash flows for underlying

stocks and the CSI 300 futures from time t to T are equal to zero. We define the

variance as in Table A.1 and list details of the cash flows in Table A.2.

Parameter Setting Note Parameter Setting Note 

d
t   The trading day at time t 

d
T   

The trading day at time 

T 

St 
Imported from the 

real market 
The price of the CSI 300 index at time t ST  

The price of the CSI 

300 index at time T 

Ft  
The price of the CSI 300 futures at 

time t 
FT  

The price of the CSI 

300 futures at time T 

Cft 0.005% Commission for trading futures CfT 0.01% 
Handling fees for 

delivery 

Cst 0.02% Handling fees for buying stocks CsT 0.12% 
Handling fees for 

selling stocks 

Csi 0.21% Impact cost of stocks Cfl 0.015% Impact cost of futures 

r 6% Annual risk-free interest rate e 15% Margin ratio  

d 4.1495 
The sum of all dividends from time t to 

time T by compounding interest 
   

 

Table A.1. Parameter definitions

Items Cash Flow at day  td
 Cash Flow at  day  Td  

Stocks 

Buying stocks t
S   

Cost of buying stocks  
t st t si
S C S C   

Finance for buying stocks  
t t st t si
S S C S C   

Selling stocks  T
S  

Cost of selling stocks   
T ST T Si
S C S C  

Dividends  d  

Paying back the initial lending money  


    
( )/365

( ) (1 ) d dT t

t t st t si
S S C S C r  

Futures 

Margin of selling futures 
t
F e   

Cost of selling futures   
t ft t fi
F C F C   

Finance for selling futures  
t t ft t fi
F e F C F C   

Profit of closing position  t T
F F  

Cost of trading futures   
T fT T fi
F C F C  

Recovering margin  t
F e  

Paying back the initial lending money  


    
( )/365

( ) (1 ) d dT t

t t ft t fi
F e F C F C r  

 

Table A.2. Cash flows for risk-free cash-and-carry arbitrage.

As the sum of the cash flows at time t is zero, cash-and-carry arbitrage will be

successful when the sum of the cash flows at time T is greater than zero. Assuming

that the position is held because of the maturity time T for the futures, we let

St = ST = FT and determine that the ceiling for the no-arbitrage range is

ST − STCsT − STCsi + d− (St + StCst + StCsi)(1 + r)(Td−td)/365 + Ft − FT −

FTCfT − FTCfi + Fte− (Fte+ FtCft + FtCfi)(1 + r)(Td−td)/365 = 0.(A.13)
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Substituting St = ST = FT into Equation A.13, we can determine the ceiling F ∗t as

the fundamental value vt as follows:

vt = F ∗t =
ST (CsT + Csi + CfT + Cfi) + St(1 + Cst + Csi)(1 + r)(Td−td)/365 − d

1 + e− (e+ Cft + Cfi)(1 + r)(Td−td)/365
.

(A.14)

Thus, if the CSI 300 futures market price Ft is higher than vt, traders can engage

in risk-free cash-and-carry arbitrage and obtain a positive profit.

C. Genetic algorithm. We describe implementation of the genetic algorithm (GA)

for intelligent traders. We use the GA to optimize the forecasting of intelligent

traders. The GA with classifier system is revised from the typical GA of the Santa

Fe Institution Artificial Stock Market (SFI-ASM) as described by Arthur, Holland,

LeBaron, Palmer and Tayler (1997) and Ehrentreich (2008). The key task in ap-

plying the SFI-ASM GA to the ACFM is use of a classifier system to describe the

ACFM market conditions. Unlike the SFI-ASM, which uses a specialist for market

clearing to simplify the market conditions, the ACFM uses a continuous double auc-

tion to match orders, so the market conditions are more complex. We redesigned

a classifier system and let it use some rules similar to a technical analysis based

on the fundamental value vt−τ , the current bid-ask midpoint pmt′ , and the average

historical price p̄t,τ . All the classifier rules are listed in Table A.3. The forecasting

rule comprise two parts: the condition part describes the condition used according

to classified system rules, and the forecasting part consists of the three parameters

x, y, and z in Equation 4. There are 60 forecasting rules in total. When intelligent

trader i enters the market, the forecasting rule whose condition part matches the

current market condition is selected for the candidate list. Then the trader chooses

the best forecasting rule with the highest historical performance. If no forecasting

rule matches the current market condition, the GA generates a new rule for which

the condition part is set to match the current market condition and the forecast-

ing part is set randomly. Then the trader uses x, y, and z to forecast the current

fundamental value according to Equation 4. In brief, GAs use an evolution process

including selection, crossover, and mutation to optimize the forecasting rules of in-

telligent traders. The GA evolution process occurs every 120 periods. When the

evolution process is active, the selection process orders forecasting rules according

to their historical performance, and the crossover and mutation processes generate

a number of new forecasting rules from the rules with high historical performances

with an exogenous probability.20 The evolution process changes both the market

condition and forecasting parts of the forecasting rule. Then the GA uses the new

20The crossover rate is set to 0.1 and the mutation rate is set to 0.3.
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forecasting rules to replace some old rules with low historical performance.21 We

refer to Wei, Zhang, He and Zhang (2014) for details of the GA in limit order

markets.

Number Rule Number Rule Number Rule 

1 
' ,

/ 0.90m

t t
p p    10 

,
/ 0.90tt

p v     19 , ,
2

t tp p
  

2 
' ,

/ 0.93m

t t
p p    11 

,
/ 0.93tt

p v     20 , ,
4 2

t tp p   

3 
' ,

/ 0.95m

t t
p p    12 

,
/ 0.95tt

p v     21 , ,
6 4

t tp p   

4 
' ,

/ 0.97m

t t
p p    13 

,
/ 0.97tt

p v     22 , ,
12 6

t tp p   

5 
' ,

/ 1m

t t
p p    14 

,
/ 1tt

p v     23 ,
2

ttp v
  

6 
' ,

/ 1.03m

t t
p p    15 

,
/ 1.03tt

p v     24 ,
4

ttp v
  

7 
' ,

/ 1.05m

t t
p p    16 

,
/ 1.05tt

p v     25 ,
6

ttp v
  

8 
' ,

/ 1.07m

t t
p p    17 

,
/ 1.07tt

p v     26 ,
12

ttp v
  

9 
' ,

/ 1.10m

t t
p p    18 

,
/ 1.10tt
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 Table A.3. Classification rules.

D. Fitting maps for the order-size probability density functions for four

investor types. Using account data for order submission, we generated order-size

probability-density functions with Matlab for four trader types according to Equa-

tion 5. The fitting maps are presented in Figure A.1 and the goodness-of-fit coeffi-

cients are listed in Table A.4.

 
Investor type SSE R-square Adjusted R-square RMSE 

Informed traders 0.002758 0.9666 0.9655 0.00536 

Intelligent traders 0.001149 0.9951 0.995 0.00346 

Simple traders 0.0005317 0.9989 0.9988 0.002353 

Liquidity traders 3.58E-05 0.9999 0.9999 0.0006105 

 Table A.4. Goodness-of-fit coefficients for the order-size probabil-

ity density functions for four trader types.

21The replacement rate is set to 10%.
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Figure A.1. Fitting maps for order-size probability density func-

tions for four trader types.

E. Observed market price, order book, and trading volume. Here we pro-

vide some observational results from a typical simulation of Experiment 1. Figure

A.2 shows the price dynamics for the whole study period. The market price pt has a

consistent trend and similar fluctuations to the CSI 300 futures price pIF 1009 . Figure

A.3 shows the limit order book for one period; the shape is similar to that for real

data. Figure A.4 shows that the trading volume fluctuates in a similar way to the

real market volume dynamics. These figures confirm that the ACFM can generate

realistic features of the CSI 300 futures market.
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Figure A.2. Price chart for the market price, fundamental value,

and real CSI 300 stock futures price over the whole study period.
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Figure A.3. Order book dynamics for Experiment 1.
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