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Abstract 

Abstract 

Hypoglycemia is the medical term for a state produced by lower levels of blood glucose. 

It represents a significant hazard in patients with Type 1 diabetes mellitus (TlD:M) 

which is a chronic medical condition that occurs when the pancreas produces very 

little or no insulin. The imperfect insulin replacement places patients with TlDM 

at increased risk for frequent hypoglycemia. Deficient glucose counter-regulation in 

TlDM patients may even lead to severe hypoglycaemia even with modest insulin 

elevations. It is very dangerous and can even lead to neurological damage or death. 

Thus, continuous monitoring of hypoglycemic episodes is important in order to avoid 

major health complications. 

Conventionally, the detection of hypoglycemia is performed by puncturing the fin­

gertip of patients and estimate the blood glucose level (BGL) as well as the stage of 

hypoglycemia. However, the direct monitoring of BGL by extracting blood sample is 

inconvenient and uncomfortable, a more appealing preposition for preventing hypo­

glycemia is to monitor changes in relevant physiological parameters. Findings from 
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Abstract 

numerous studies indicate that sudden nocturnal death in type 1 diabetes is thought 

to be due to ECG QT prolongation with subsequent ventricular tachyarrhythmia 

in response to nocturnal hypoglycaemia. Though several parameters can be moni­

tored, the most common physiological parameters to be effected from a hypoglycemic 

reaction are heart rate (HR) and corrected QT interval (QTc) of the ECG signal. 

Considering the real-time physiological parameters (HR and QTc) changes during 

hypoglycemia, a non-invasive monitoring of glycemic level is predicted for the hypo­

glycemia. 

The topic of this thesis is covered by novel methodologies for the non-invasive hy­

poglycemia detection system by analyzing the behavioral changes of physiological 

parameters such as HR and QTc. These algorithms are comprised of three different 

classification techniques, i) variable translation wavelet neural network (VTWNN), 

ii) multiple regression-based combinational neural logic network (MR-NLN) and iii) 

rough-block-based neural network (R-BBNN). By taking the advantages of these pro­

posed network structures, the performance in terms of sensitivity and specificity of 

non-invasive hypoglycemia monitoring system is improved. 

The first proposed algorithm is VTWNN in which the wavelets are used as transfer 

functions in the hidden layer of the network. The network parameters, such as the 

translation parameters of the wavelets are variable depending on the network inputs. 

Due to the variable translation parameters, the proposed VTWKN has the ability 
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Abstract 

to model the inputoutput function with input-dependent network parameters. Ef­

fectively, it is an adaptive network capable of handling different input patterns and 

exhibits a better performance. With the adaptive nature, the network provides a bet­

ter performance and increases the learning ability. For conventional wavelet neural 

network, a fixed set of weight is offered after the training process and fail to cap­

ture nonstationary nature of ECG signal. To overcome with this problem, VTWNN 

with multiscale wavelet function is firstly introduced in this thesis. With the variable 

translation parameter, the proposed VTWNN gives faster learning ability with better 

generalization. 

The second algorithm, MR-NLN is systematically designed which is based on the 

characteristics of application. Its design is based on the binary logic gates (AND, 

OR and NOT) in which the truth table and K-map are constructed and it depends 

on the knowledge of application. Because the logic theory are used in the network 

design, the structure becomes systematic and simpler compared to other conventional 

neural networks (NNs) and enhance the training performance. Traditionally, the con­

ventional NN s with the same structure are applied to handle different applications. 

The optimal performance may not always guaranteed due to different characteristics 

of applications. In real-world applications, the knowledge based-neural network that 

understands all the characteristics of practical applications are preferred for optimal 

performance. In conventional NNs, the redundant connections and weights of conven­

tional neural networks make the number of network parameters unnecessarily large 
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Abstract 

and downgrades the training performance. But for neural logic network (NLN), the 

structure becomes simpler. 

The third algorithm focuses on the hybridization technology using rough sets con­

cepts and neural computing for decision and classification purposes. Based on the 

rough set properties, the input signal is partitioned to a predictable (certain) part 

and random (uncertain) part. In this way, the selected block-based neural network 

(BBNN) is designed to deal only with the boundary region which mainly consists of a 

random part of applied input signal and caused inaccurate modeling of data set. Due 

to the rough set properties and the adaptability of BBNN's flexible structures in dy­

namic environments, the classification performance is improved. Owing to different 

characteristics of neural network (NN) applications, a conventional neural network 

with a common structure may not be able to handle every applications. Based on the 

knowledge of application, BBNN is selected as a suitable classifier due to its modular 

characteristics and ability in evolving the size and structure of the network. 

To obtain the optimal set of proposed network parameters, a global learning opti­

mization algorithm called hybrid particle swarm optimization with wavelet mutation 

(HPSOWM) is introduced in this thesis. Compared to other stochastic optimization 

methods, the hybrid HPSO\VM has comparable or even superior search performance 

for some hard optimization problems with faster and more stable convergence rates. 

During the training process, a fitness function which is characterized by the proposed 

network design parameters is optimized by reproducing a better fitness value. 
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Abstract 

The proposed systems is validated using clinical trial conducted at the Princess Mar­

garet Hospital for Children in Perth, Western Australia, Australia. A total of 15 

children with 529 data points (ages between 14.6 to 16.6 years) with Type 1 dia­

betes volunteered for the 10-hour overnight for natural occurrence of nocturnal hy­

poglycemia. Prior to the application of the algorithms, the correlation between the 

measured physiological parameters, HR and QTc and the actual BGL for each subject 

were analyzed. The feature extracted ECG parameters, HR and QTc significantly 

increased under hypoglycemic conditions (BGL :::; 3.3mmol/l) according to their re­

spective p values, HR (p < 0.06) and QTc (p < 0.001). The observation on these 

changes within the physiological parameters have provided the groundwork for model 

classification algorithms. 
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Chapter 1 

Introduction 

Hypoglycemia is a common side-effect of insulin therapy for patients with type 1 di­

abetes mellitus (T1DM) and is the major limiting factor to maintain tight glycemic 

control. The deficiency in glucose counter-regulation may even lead to severe hypo­

glycaemia. It is always threatening to the well-being of patients with T1D:.vi since 

more severe hypoglycemia leads to seizures or loss of consciousness and the possible 

development of permanent brain dysfunction under certain circumstances. It has been 

confirmed that an increased risk of sudden death in young people is related to hypo­

glycemia and patients with type 1 diabetes. Thus, early detection and prevention on 

hypoglycemia becomes the number one treatment goal of diabetes. 

Though tremendous development blood glucose monitoring systems are currently 

available for diabetic self-management and control, long-term continuous measure­

ment of hypoglycemia still remains as a significant barrier for intensive therapy. This 
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thesis introduces novel methodologies for prediction on onset of hypoglycemia and 

providing early hypoglycemic alarms. This chapter begins with the background study 

of this research in Section 1.1. The thesis motivation, the objectives, contribution 

and organization are discussed in Sections 1.2, 1.3 and 1.4 respectively. 

1.1 Background 

Type 1 diabetes usually arises in children or young adults and is characterized by 

the inability to produce insulin. Although treatment regimens and types of insulin 

available have developed over time, individuals with Type 1 diabetes are still required 

to self inject with insulin to control their blood sugar levels. Insulin doses must be 

adjusted according to carbohydrate intake and the degree of physical activity being 

undertaken. 

Hypoglycemia, or low blood sugar levels, is one of the most common side effects among 

individuals with Type 1 diabetes. It is also well know as a barrier for achieving and 

maintaining tight glycemic control. Individuals who experience frequent episodes of 

hypoglycemia and those who have been on insulin therapy for a long period of time 

may develop impaired awareness of hypoglycemia. 

Early warning symptoms such as tremor and sweating may no longer occur and 

symptoms including drowsiness and lack of concentration become more prominent. 

Impaired hypoglycaemic awareness occurs in approximately 25 % of individuals with 
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1.1 Background 

type 1 diabetes. Severe hypoglycemia may lead to physical and psychosocial mor­

bidities such as brain damage, loss of consciousness, depression and low self-esteem 

[Frederick2008]. It is also well known as death-in-bed syndrome. Several research 

works have been reported where patients with type 1 diabetes have been found dead 

in an undisturbed bed [Klonoff2001]. 

Since hypoglycemia can occur at any age due to many different conditions, early 

detection and prevention of hypoglycemia is more important for diabetes patients. To 

prevent or minimize hypoglycemic morbidities and mortalities, it is vital to return the 

blood glucose level to normal soon after a hypoglycemic event occurs. The patients' 

conditions are obviously need to know; when the event of hypoglycemia is initiated, 

and/or how the early warning is detected [Osareh2008]. In other words, the need for 

hypoglycemia detection device is essential in order for giving alarm alert to Type 1 

diabetes patients or carer when low blood glucose level is detected. 

Currently, the glucose meters are still using as standard techniques for monitoring the 

blood glucose level as well as detection of hypoglycemia [Graaff1999]. Efforts have 

been made in order to reduce the level of invasiveness by decreasing the blood sample 

volume to a few microlitres, and measuring areas of the body less sensitive to pain 

than fingertips. However, the needle-type glucose sensor used in the system can only 

give accurate measurements over a certain period of time and it is limited to used in 

critical nocturnal stage. 

6 



1.1 Background 

Due to discomfort and inconvenience of finger-stick methods, minimally invasive or 

non-invasive continuous methods are tested and introduced using technologies like 

reverse iontophoresis, polarimetry, metabolic heat conformation, ultrasound, thermal 

emission, electromagnetic, photoacoustic, Raman, light absorption and bioimpedance 

spectroscopy [ Amaral2008]. Together with the choice of technique and sample regions 

are defined mostly by sweating, skin color, surface roughness, tissue thickness, breath­

ing artifacts, blood flow and body movements. However, hypo glycemia preventive ef­

fect of continuous glucose monitoring has not been successfully established in practise. 

The technology advancement in the diabetes diagnostic testing and self-monitoring 

market is expected to have a non-invasive hypoglycemia monitoring system with the 

use of novel design concepts. 

An alternative approach for detection of hypoglycemia is based on the considerable 

change of physiological factors during hypoglycemia. Findings from [Murphy2004] 

[Lee2004] confirmed that the electrocardiographic (ECG) abnormalities, especially 

in prolongation of corrected QT interval ( QTc) is greatly affected by hypoglycemia. 

Based on ECG variations, numerous studies [Alexakis2003] [Alexakis2006] have been 

investigated on the detection of hypoglycemia by means of artificial neural net­

work (A~N) and linear discriminant analysis (LDA). The detection of hypoglycemia 

has been investigated not only for ECG, but also for other physiological factors; 

electroencephalogram (EEG) signal [Juhl2010] [Iaione2005] and skin temperature 

[Johansen1986]. 
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1.1 Background 

Considering correlation between physiological parameters of ECG signal and the sta­

tus of hypoglycemia, non-invasive hypoglycemia monitoring systems have been tested 

by the use of appropriate computational intelligence technologies; fuzzy estimator 

[Ghevondian1997] [Hastings1998], fuzzy neural network estimator [Ghevondian2001]. 

By using fuzzy decision maker, a set of linguistic rules are generated. The status of 

hypoglycemia is predicted through the changes of heart rate (HR) and skin impedance 

parameters. 

Similarly, the Bayesian neural network algorithm has been applied in non-invasive 

hypoglycemia monitoring systems due to its merit in generalization when addressing 

both nonlinear and the fuzzy nature of patients' data. To implement neural network­

based monitoring systems, the physiological parameters of ECG signal such as heart 

rate (HR), corrected QT interval (QTc) and skin impedance were used as the main 

inputs and the status of hypoglycemia was detected [N guyen2006] [N guyen2007]. 

Furthermore, hybridization technologies such as genetic algorithm-based neural net­

work system [Chan2010] [Chan2011], evolved fuzzy reasoning model [Ling2010] [Ling2012], 

swarm-based support vector machine [Nuryani2012] and statical multiple regres­

sion with fuzzy inference system [Ling2011], have been successfully applied to hypo­

glycemia monitoring systems. Even though satisfactory performances were found by 

the use of intelligent computational techniques, the overall accuracy of the proposed 

detection systems may not be enough to work as a good hypoglycemia detector. Much 

more effort is still needed to improve the designs and technologies of hypoglycemia 
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monitoring systems in order to avoid major health complications in insulin dependent 

Type 1 diabetes patients. 

1.2 Motivation of Thesis 

To analyze the blood glucose level (BGL) as well as the presence of hypoglycemia, 

many monitoring systems have been developed to be invasive or minimally invasive 

with the use of a needle-type probe. [Shichiri1982] [Kajiwara1993]. However, this 

kind of measurement can only provide an isolated glucose level which does not reflect 

variations occurring throughout the day and night. For serve hypoglycemia, moni­

toring BGL continuously becomes almost impossible task, especially during the stage 

of nocturnal hypoglycemia. 

Other minimally invasive devices [Kimura1987] or non-invasive devices [Malin1994] 

[Heise1994] have been tested and introduced with the aid of current technologies such 

as reverse iontophoresis, suction effusion fluid and near-infrared spectroscopy. But 

they suffer from limitations in terms of measurement inaccuracy, high susceptibility 

to artefact noise, considerable time delays for obtaining results and long-term repro­

ducibility. The complications which are inherent with these techniques limit their use 

as practical non-invasive hypoglycemic monitors. 

An alternative idea and solutions are still needed for non-invasive continuous mon-

itoring of BGL as well as for prediction of hypoglycemia. To get a hold of this 
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requirement, hypoglycemia detection systems have been investigated by the use of 

physiological parameters that are stimulated by falling blood glucose levels. For in­

stance, Teledyne Sleep Sentry [Hansen1983] [Castano2000], multiparameter measure­

ment system, Mini Med Medtronic CGMS [Maia2007] and Abbott Freestyle Navigator 

CGMS [Weinstein2007]. 

Teledyne Sleep Sentry is equipped with a sensor and measures falling skin temper­

ature and skin resistance, but the device has high ratio of false positive alarms and 

results in a disrupted sleep cycle. In multiparameter measurement system, electroen­

cephalogram (EEG), pulse and skin impedance are used to monitor the status of 

hypoglycemia, however the parameter, skin impedance has less correlation. For Mini 

Med Medtronic CGMS and Freestyle Navigator CGMS, it has been reported that the 

large mean absolute relative difference (MARD) is received 10 to 15% and 26.4% due 

to low sensor efficacy while detecting hypoglycemia. 

Based on the strong relationship between physiological parameters and hypoglycemia, 

a non-invasive hypoglycemia monitor, HypoMon was tested and introduced from 

AIMedics Pty Ltd. This device measures the physiological parameters (heart rate 

(HR), corrected QT interval (QTc) and skin impedance) continuously and provides 

the detection of hypoglycemic episodes through the variations of those input param­

eters [N guyen2006] [N guyen2007]. By employing Bayesian neural network algorithm, 

the obtained sensitivity was found to be satisfactory, but the specificity need to be 

improved. More advanced neural network algorithms are still needed for obtaining 
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better testing sensitivity and specificity. 

In addition, fuzzy estimator [Ghevondian1997] [Hastings1998], fuzzy neural network 

estimator [Ghevondian2001] were proposed for hypoglycemia detection systems. In 

these systems, the status of hypoglycemia was predicted through the changes in phys­

iological parameters of the ECG signal. However, the membership functions which 

express the linguistic terms for fuzzy inference rules have to be defined. In prac­

tise, there is no formal approach for defining these rules and the optimization of 

these membership functions in terms of generalizing the data is also very important. 

Usually, tuning parameters of membership function is a time consuming task. 

In [Ling2010] [Ling2012], an evolved fuzzy reasoning model was developed to rec­

ognize the presence of hypoglycemic episodes. The physiological parameters such as 

heart rate and corrected QT interval of the electrocardiogram (ECG) signal were con­

tinuously measured for early detection of hypoglycemic episodes in Type 1 diabetes 

mellitus (TlDM) patients. In evolved FRM, the fuzzy rules and fuzzy membership 

functions were optimized by an evolutionary algorithm called hybrid particle swarm 

optimization with wavelet mutation (HPSOvVM). The results showed that the pro­

posed algorithm performed well in terms of the clinical sensitivity and specificity. 

However, in evolved FRM. more parameters were need to be optimized. Hence, it is 

desirable to have an automatic adaption procedure with less design parameters 

Further experiment were conducted by the use of neural network based rule discovery 
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system [Chan2010] [Chan2011]. The development was based on 420 data sets which 

were collected from 16 T1DM patients by using the genetic algorithm. It was found 

that the obtained sensitivity and specificity were reasonable. Apart from obtaining 

reasonable sensitivity and specificity, the neural network used in the developed de­

tection system might not be able to improve further because its processing capability 

and adaptability is limited by fixed neural network structure. 

Traditionally, conventional neural networks with fixed structures were applied to han­

dle different applications. However, those network models offer a fixed single set of 

weights after training process that may not be good enough if data sets are distributed 

in a vast domain separately and/ or the number of network parameters is too small. 

\Vith these conventional neural networks with fixed structure, the optimal perfor­

mance was not always guaranteed for the application with different characteristics. 

In some cases, the redundant connections and weights of conventional neural network 

makes the number of network parameters unnecessarily large and downgrades the 

training performance. Thus, the knowledge based neural network that understands 

all the characteristics of practical application is preferred for optimal performance. 

In addition, those conventional neural networks with fixed structure offer fewer de­

grees of freedom (DOF) due to their network structure. Generally, the neural network 

with fixed structures might not be able to scale up to meet with the application re­

quirements. Since the fixed structure NN were not structurally evolved during the 

training process, the degrees of freedom (DOF) were less. Conceptually, the number 
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1.2 Motivation of Thesis 

of DOF allowed the network to adapt more with the characteristics of application. 

The neural network models were less accurate if less DOF were offered. The need 

for better sensitivity and specificity will only be achieved if NN with more DOF are 

able to be designed for different characteristics of applications. For the direction of 

achieving a truly non-invasive hypoglycemia detection system, the neural network 

structure with the most DOF that will be breaking the barriers of fixed structure NN 

become the most desirable step. 

With a focus on improving sensitivity and specificity of the hypoglycemia detection 

system, in this thesis, three advanced neural network models such as variable trans­

lation wavelet neural network (VTWNN), multiple regression based combinational 

neural logic network (MR-NLN) and rough-block-based neural network (R-BBNN) 

were proposed in Chapter 3, 4 and 5 respectively. 

Neural network training and learning are important issues in its implementation. The 

learning algorithm determines the rules for optimizing the weight and structure of the 

neural network within the training period. In the developed hypoglycemia detection 

systems [N guyen2006] [N guyen2007], the commonly used training algorithms- back 

propagation algorithms with variable learning rate [Haykin1999], and conjugate gra­

dient algorithm [~loller1993] were only applied for training. However, these methods 

may only converge to a local minimum and are sensitive to the values of initial pa­

rameters. The function to be optimized needs to be differentiable and the learning 

method may only be good to some specific network structure. 
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To overcome local minimum problem, one of the most stochastic search algorithm, 

called particle swarm optimization (PSO) was introduced [Kennedy1995]. By the use 

of PSO algorithm, the error functions are less likely to be trapped in local minimum 

and need not to be differentiable. For proposed NNs in this thesis, an improved 

hybrid PSO with wavelet mutation (HPSO\VM) [Ling2008] is selected as a suitable 

training algorithm. The training performance in HPSOWM depends only on the 

input-output data and the derivative information of the cost function is not required 

as needed in back propagation algorithms [Mazumdar2008]. Otherwise, the updating 

rule is required to derive each time for each different network structure. Besides, 

the hybrid HPSOWM is comparable with other stochastic optimization methods by 

achieving faster and more stable convergence rates [Ling2008]. The effectiveness of 

each proposed novel neural network based hypoglycemia detection system is discussed 

detail in Chapters 3, 4 and 5 respectively. 

1.3 Objectives and Contributions 

The main objective of this thesis is to develop three advanced neural network clas­

sifiers for hypoglycemia detection. In this work, the main objective is to accurately 

detect hypoglycemia episodes or measure the blood glucose level non-invasively and 

continuously without the need for taking blood samples from the fingertips of diabetic 

patients. Only physiological parameters of ECG signal are required. 
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For the prediction of hypoglycemia episodes, advanced neural network classifiers such 

as variable translation wavelet neural network (VTWNN), multiple regression based 

combinational neural logic network (MR-NLN) and rough-block-based neural network 

(R-BBNN) are proposed. For optimization of the proposed neural network structures 

and weights, a global learning optimization algorithm called hybrid particle swarm 

optimization with wavelet mutation (HPSOWM) is introduced in this thesis. In 

the proposed neural network models, the usefulness and advantages of existing NNs 

are preserved, removing the major limitations of fixed structure l\N. Such advanced 

neural network models aimed to have advantages for all applications including the 

hypoglycemia detection system. 

With the following contributions, advanced neural network classifiers are designed 

and developed for the detection of hypoglycemic episodes in order to obtain higher 

sensitivity and specificity. The contributions are: 

• Introduce three different advanced neural networks namely variable translation 

wavelet neural network (VTWNN), multiple regression model based combina­

tional neural logic network (MR-NLN) and rough-block-based neural network 

(R-BBNN) for the hypoglycemia monitoring system. 

• The first proposed neural network, variable translation wavelet neural network 

(VTWNN) in which the wavelets are used as transfer functions in the hidden 

layer of the network. The network parameters, such as translation parameters of 
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the wavelets are variable depending on the network inputs. Due to the variable 

translation parameters, the proposed VTWNN has the ability to model the 

inputoutput function with input-dependent network parameters. Effectively, it 

is capable of handling different input patterns and provides better performance. 

• The second neural network, multiple regression based neural logic network 

model (MR-NL~) is systematically designed based on its own characteristics 

of application. In this design, the binary logic gates (AND, OR and NOT) 

and their associated truth table and K-map are constructed depend on the 

knowledge of application. Since the logic theory is used in the network design, 

the structure becomes systematic and simpler compared to other conventional 

neural network (NN) and enhances the training performance. 

• The third neural network, rough approximation block-based neural network (R­

BB~N) is designed based on the hybridization technology using rough sets and 

neural network. With the use of rough set defined regions, lower region and 

boundary region, the applied input signal is partitioned to a predictable part 

(certain) and the random (uncertain) part. In this way, the selected block-based 

neural network (BBNN) is designed to deal only with the boundary region which 

mainly consists of a random part of applied input signal and caused inaccurate 

modeling of data set. Due to rough set properties and the structural flexibility 

of BBNN, the classification performance is improved. 
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• Introduce hybrid particle swarm optimization with wavelet mutation (HPSOWYI) 

in order to obtain an optimal set of network parameters. For the proposed ad­

vanced neural networks, HPSOW:M is selected as a suitable training algorithm 

because its training performance depends only on the input-output data while 

the derivative information of the cost function is not required as in back prop­

agation algorithms. If the training algorithm needs the derivative information 

of cost function, the updating rule is required to derive each time for each dif­

ferent network structure. Besides, the hybrid HPSOWM is comparable with 

other stochastic optimization methods by achieving faster and more stable con­

vergence rates in optimization problems. 

• Investigate the proposed advanced neural network classifiers by the use of actual 

data sets of 15 T1DM children with ages 14.6 ± 1.5 years, which are collected 

at the Department of Health, Government of Western Australia. Validate the 

proposed algorithms as compared with other conventional algorithms such as 

feedforward neural network (FFNN), wavelet neural network (WNN), genetic 

algorithm (GA) based multiple regression with fuzzy interference system (MR­

FIS), evolved fuzzy interference system (FIS) and multiple regression (MR). 

Several experiments showed that the proposed algorithms performed well in 

terms of sensitivity and specificity. 
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1.4 Structure of Thesis 

The thesis is organized into seven chapters. Chapter 2 commences with a brief back­

ground into the definition of hypoglycemia, the glucose counterregulatory mechanism 

and its effect on the physiological parameters under hypoglycemic conditions. This 

chapter also includes the detailed methodology to obtain the physiological parame­

ters, the current technologies behind the hypoglycemia monitoring system and several 

evolutionary neural network classification models. It is finalized by introducing three 

distinct proposed advanced neural network classifiers, such as variable translation 

wavelet neural network (VTWNN), multiple regression based combinational neural 

logic network (:V1R-NLN) and rough-block-based neural network (R-BBNN). 

Chapter 3 initially introduces a detail design and methodology of optimized VTWNN 

for detection of hypoglycemic episodes. A brief account of all relevant theories such 

as wavelet theory, design of nonlinear activation function are also presented. A global 

learning or training algorithm, called particle swam optimization with wavelet muta­

tion (HPSOWM) and its parameters selection methods are discussed. This chapter 

also includes the investigation on the prolongation of QT interval of ECG signal dur­

ing spontaneous hypoglycemia with the aid of 15 children (aged 14.6 ± 1.5 years) 

with Type 1 diabetes. Extensive experimental results have shown that the proposed 

approach is effective for hypoglycemia detection by achieving better sensitivity and 

acceptable specificity. 
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Chapter 4 presents an integrated method, a neural logic network with multiple regres­

sion for the development of a noninvasive hypoglycemia monitoring system. Through 

ECG signal alternation, the episodes of hypoglycemia is firstly predicted by the use 

of knowledge based neural logic network (NLN) while the multiple regression model 

is used to enhance the sensitivity and specificity. This chapter also provides a system­

atic design of proposed NLN including the core inference mechanism with basic logic 

building blocks, namely neural-logic-AND, -OR, and -NOT gates and the truth table 

and K-map for decision making ability. The effectiveness of the proposed algorithms 

is validated through the use of other conventional neural classifiers. 

Chapter 5 focuses on the development of an intelligent diagnostics system using the 

hybrid approach of rough-block-based neural network for recognition of hypoglycemia. 

In this hybrid system, the pre-processing stage is firstly carried out by defining the 

lower region and boundary region based on the rough set properties. An in-depth 

description of architecture, including the partitioning of the applied input signal, 

HR and QTc to the predictable (certain) part and random (uncertain) part are also 

given in this chapter. Besides, the topology of selected block-based neural network 

(BBNN) with four different internal configurations and its adaptability in dynamic 

environments are also presented before the performance evaluation of proposed R­

BBNN is carried out with numerous comparison studies. 

Chapter 6 gives a discussion on the three proposed neural networks (VTWNK, MR­

NLN and R-BBNX), ranging from the proposed methodologies through to obtaining 
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experimental results and future recommendations. Based on the obtained experi­

mental results, the operation and performance of the proposed three networks are 

compared and a conclusion will be drawn. 

Chapter 7 summarizes the findings and results of this thesis and future research is 

presented. 
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Chapter 2 

Literature Review 

2.1 Hypo glycemia 

Glucose is a primary source of energy in the body and provides energy to all cells, like 

brain cells and red blood cells for every bodily function. It is regarded as an essential 

fuel for the central nervous system as well as tissues including muscle, fat, and liver 

that use fatty acids and other substrates to satisfy their energy needs. The glucose in 

the bloodstream comes from the digested food and transported to the body cells to 

be used as an energy source. In order for glucose to enter the cell, a hormone made 

by the pancreas, insulin bonds to a receptor site on the outside of the cell and acts 

like a key to open a doorway into the cell through which the glucose can enter as 

described in Fig. 2.1. 
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2.1 Hypoglycemia 

With Type 1 diabetes, cells in the pancreas that produce insulin are the target of 

the body immune system and are eventually destroyed. For this reason, people with 

Type 1 diabetes produce no insulin and the body cells cannot turn glucose (sugar) 

into energy. The complete lack of insulin in the body results in Type 1 diabetes as 

presented in Fig. 2.2. 

insulin 

Figure 2.1: Action for glucose and insulin in normal subject 

All patients with Type 1 diabetes will eventually require insulin treatment in order 

to maintain a near-normal level of blood glucose. Unless treated with daily injections 

of insulin, people with Type 1 diabetes accumulate dangerous chemical substances 

in the blood from the burning of their own fat as a substitute without insulin. In 

order to maintain blood glucose level close to a normal level, insulin replacement is 

required by daily injections for people with Type 1 diabetes. 

Intensified lowering of blood glucose reduces the risk of chronic complications of 

Type 1 diabetes; however, clinical attempts to achieve these benefits are limited 
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by an increased risk of hypoglycemia which is induced by aggressive insulin therapy 

[Cryer1985]. It has been discussed that diabetic patients, especially for those who 

have been treated with insulin are at risk for developing hypoglycemia while it is 

less likely to occur in non-insulin-dependent patients who are taking sugar-lowering 

medicine for diabetP« 

"'--, "'"' 

~;.@. 

Figure 2.2: Action for glucose and insulin in Type 1 diabetic patient 

Many different definitions have been provided to the concept of hypo glycemia [F;rier2007]. 

Firstly, hypoglycemia is literally translated as a state produced by a lower level of 

blood glucose. It represents a significant hazard in patients with Type 1 diabetes 

mellitus (T1DM) which is a chronic medical condition that occurs when the pan-

creas produces very little or no insulin. In [Field1989] , another definition is given 

to hypoglycemia as the occurrence of a wide variety of symptoms in association with 

a plasma glucose concentration of 50 mg/dl or less. In clinical studies [Assoc2005], 

the events of hypoglycemia are classified ranging from mild to serve level after re-

viewing the background of hypoglycemia. Most surveys revealed that the tighter the 
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2.1 Hypoglycemia 

glycemic control in the younger patient, the greater frequency of both mild and serve 

hypoglycemia [Becker2000]. 

The level of blood glucose low enough to define hypoglycemia may be different for dif­

ferent people, in different circumstances, and for different purposes and occasionally 

has been a matter of controversy. Most healthy adults maintain fasting glucose levels 

above 70mgjdL, (3.9mmol/l) and develop symptoms of hypoglycemia when the glu­

cose level falls below 55mg/dL, (3.0mmol/ L). In [DCCT1995], it has been reported 

that the severe hypoglycaemic episodes are defined in those whose documented blood 

glucose levels is 50mg/dL, (2.8mmol/ L) and the patient are advised to t~ke necessary 

treatment. 

A series of symptoms occur if there is not enough glucose supply to the brain since the 

brain and nervous system needs a certain level of glucose to function. The two typical 

symptoms of hypoglycemia arise from the activation of the autonomous central ner­

vous systems (autonomic symptoms) and reduced cerebral glucose consumption (neu­

roglycopenic symptoms). Autonomic symptoms such as headache, extreme hunger, 

blurry or double vision, fatigue, weakness and sweating are activated before neuro­

glycopenic symptoms follow. The initial condition of the presence of hypoglycemia 

can only become obvious when autonomic symptoms occur which allow the patient to 

recognize correct ensuing episodes [DCCT1991] [Merbis1996]. The neuroglycopenic 

symptoms such as confusion, seizures, and loss of consciousness (coma) arise due to 

insufficient glucose flow to the brain [Cryer1999]. 
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2.2 Physiological Disturbances in Hypoglycemia 

2.2 Physiological Disturbances in Hypoglycemia 

As a consequence of blood glucose concentration falling to a certain level, pronounced 

physiological changes occurred in response to hypoglycemia [Frier2007]. 
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Figure 2.3: Hierarchy of Responses to Hypoglycemia [Wolpert2007] 

As can be seen in Fig 2.3, falling glucose levels initiate a number of responses: in-

sulin secretion is inhibited, followed by the release of counterregulatory hormones 

(glucagon and epinephrine) when glucose levels reach approximately 70 mg/dL; this 

is the basis for the consensus statement that proposes 70 mgj dL as the diagnostic 

criteria for hypoglycemia. Continued decline in glucose eventually leads to neurologic 

dysfunction, widespread electroencephalogram (EEG) changes, cognitive dysfunction 

and severe hypoglycemia. Some major physiological responses to hypoglycemia are 
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outlined in the following Sections: 2.2.1, 2.2.2 and 2.2.3 respectively. 

2.2.1 Electrocardiography (ECG) 

Hypoglycemia has long been known to affect the electrocardiogram (ECG) causing ST 

wave changes with lengthening of the QT interval and cardiac repolarization. These 

changes may increase the risk of cardiac arrhythmia; various abnormal heart rhythms, 

including ventricular tachycardia and atrial fibrillation [Benhorin1990]. These alter­

nations are reflected by variations of ECG parameters, Q point, R peak and T wave 

peak including the commonly used QT interval (depolarization of the ventricles) which 

is the time taken from the start of the QRS complex to the end of the T wave (repo­

larization of ventricles) as presented in Fig. 2.4. 

A number of studies have been carried out on the prolongation of QTc interval un­

der both hyperinsulinemic hypoglycemia and spontaneous hypoglycemia and both 

conditions confirmed that QTc dispersion is increased in healthy individuals and in 

patients with Type 1 [Robinson2004] and Type 2 diabetes [Hallin1999]. 
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Figure 2.4: Illustration of the normal electrocardiogram (ECG) signal 

In [Marques1997], the effect of insulin induced hypoglycemia on cardiac repolariza­

tion was analyzed using ECG ofT wave and QRS complex morphology in 15 patients 

including 8 patients with insulin-dependent Type 1 diabetes and 7 patients with non­

insulin dependent diabetes patients. All15 subjects who underwent the glucose clamp 

studies had normal resting ECG and none of them showed microvascular complica­

tions. In this study, in order to analyze the ECG variations, ECG measurement was 

done by a high resolution method while the glucose clamp technique was applied for 

insulin-induced hypoglycemia. 

The obtained results indicated that the degree of QTc lengthening during clamped 
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hypoglycemia (583 ms) was greater compared to the euglycaemic control period (429 

ms) with p<O.OOl. An example of QT measurement from 1 subject under euglycaemia 

and hypoglycemia was given in Fig. 2.5 in which the QT intervals were marked using 

an on screen cursor by two independent observers. As can be seen in Fig. 2.5, the 

increase in heart rate can cause a reduction in the QT interval and the QT interval is 

corrected for differences in heart rate by Bazett correction, dividing QT by the square 

root of RR, (QTc = QT / ,flfR) [Assoc2008]. 

{a) (b) 

Figure 2.5: Typical QT measurement with on screen cursor placement from one sub­

ject during euglycemia: (a) showing a clearly defined T wave (b) showing prolonged 

repolarization [Marques1997] 

Different studies [Robinson2003a] [Robinson2003b] have shown that experimental hy­

poglycemia were associated with significant lengthening of the corrected QT interval 
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(QTc) in all subjects with and without diabetes. For hyperinsulinemic clamps stud­

ies, 10 non-diabetic subjects were organized into study 1 group and study 2 group in 

[Robinson2003a] and 17 healthy males subjects (ages 18 to 40 years) [Robinson2003b] 

volunteered. Regular measurements of cardiac repolarization, QT dispersion and QTc 

were performed by tangent method. The measured experimental results confirmed 

that the QTc interval increased significantly from 406 ms to 480 ms during hypo­

glycemia. 

Further investigation demonstrated that 8 adults with Type 1 diabetes had QTc 

lengthening (from 407 ms to 448 ms) during the experimental insulin-induced hypo­

glycemia [Lee2005]. In this experiment, hypoglycemic clamp studies were performed 

on two occasions, at leat 4 weeks apart. Measurements of QT interval were made 

using a custom-built high-resolution system with tangent method, called semiauto­

mated tangent method and its corrected value, QTc is calculated by the Fridericia 

cube root formula, QTc = QT / -ifi[R. 

In [Iaione2005], 17 male non-diabetic subjects with age of 27 ± 6.4 years were under­

went to study the ECG morphology, particularly for hypoglycemic QTc lengthening. 

With these subjects, a baseline ECG (blood glucose was around (5.0 mmol/l)) and 

hypoglycemic ECG (2.5 mmol/l) were recorded on a custom built system for high 

resolution ECG analysis. The QT measurement was done with two independent ob­

servers by using both tangent and non-tangent measuring methods in Fig. 2.6. In 

this study, the measured QT value was corrected for heart rate using the modified 
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Bazett's formula, QTc = QT / VRJi, where RR is 60/HR and it has shown to be sen­

sitive to typical ECG morphology during hypoglycemia by giving p-value less than 

0.0004. 

\I 
\ ; 

-- 1 

tangelli method I 

~ "" non-tangent method 
14 

(a) 

1 tangelli method 
~ 

• 

11 

'• 11 
11 
11 
11 
11 
11 

~ 
I 

I non-t~f mefuod 1 

~ ~I 

(b) 

-

Figure 2.6: QT measurement with tangent and non-tangent methods (a) a baseline 

ECG (b) a hypoglycemic ECG [Ireland2000] 
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Another observation was performed with 18 healthy subjects and the effects of con-

trolled hypoglycemia on cardiac repolarization especially on ECG descriptors of T 

wave and QRS complex morphology were evaluated. Several ECG variables character-

izing repolarization were analyzed from digitized 12-lead ECG during euglycaemic and 

hypoglycemic clamp studies [Laitinen2008]. The results showed that hypoglycemia 

has marked effects on the cardiac electrical function because it prolonged QTc interval 

from 408 ms to 429 ms during the hypoglycemic phase. 
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Figure 2.7: Increased heart rate during hypoglycemia [Hilsted1984] 

A similar experiment was conducted [Hilsted1984] for observation of haemodynamic 

changes during insulin-induced hypoglycemia. Seven male subjects (ages 22 ± 0.6 

years) volunteered for this experiment. In this experiment, the hypoglycemia was 

induced by IV injection of insulin and the cardiac output was measured. Fig. 2.7 

shows the blood glucose profile and the significant increase in heart rate in response 
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to hypoglycemia after 30 minutes of insulin infusion. The study confirmed that the 

increase in heart rate was a significant occurrence during hypoglycemia. 

A summary of the mean QTc lengthening during hypoglycemia is shown in Table. 

2.1. It can be distantly seen that all the techniques produce a highly significant 

change of QTc for euglycemia and hypoglycemia conditions. Hence, the QTc pro­

longation during nocturnal hypoglycemia is of clinical interest importance because it 

may contribute to sudden death. 

Euglycemia Hypoglycemia 

Subjects QTc ~QTc QTc ~QTc 

(ms) (ms) (ms) (ms) 

8 T1DM and 7 Healthy [Marques1997] 429 18 583 162 

10 Healthy [Robinson2003a] 400 20 450 70 

17 Healthy [Robinson2003b] 406 16 480 90 

8 T1DM [Lee2005] 407 16 448 57 

17 Healthy [Ireland2000] 399 7 459 67 

16 T1DM and 8 Healthy [Koivikko2007] 410 10 419 13 

18 Healthy [Laitinen2008] 408 9 429 30 

Table 2.1: Studies of changes in QTc during euglycemic and hypoglycemic studies 

A potential clinical application of prolonged cardiac repolarization to the non-invasive 

detection of impending hypoglycemia at night would be a significant benefit to adults 
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and young children with diabetes. In Table. 2.1, QTc (ms) 1 measured at the end of 

euglycemic clamp, D..QTc (ms)2 is measured from baseline to the end of euglycemic 

clamp while QTc (ms)3 is measured at the end of hypoglycemic clamp and D..QTc 

(ms)4 from baseline to the end of hypoglycemic clamp. 

2.2.2 Sweating and Skin Impedances 

During hypoglycemia, physiological parameter changes occur in patients due to the 

sympathetic nervous system, of which sweating is one of the predominant parameters. 

To analyze the effects of sweating in response to insulin-induced hypoglycemia, an 

experiment was conducted in [Ghevondian1998] to find out the relationship between 

blood glucose level and skim impedence/resistance. In this study, 12 volunteers (group 

A: 6 non-diabetic subjects and group B: 6 Type 1 IDDM patients) were monitored at 

regular intervals to analyze the transient behavior of sweating by effectively measuring 

the skin impedance. 

The experimental results found that the skin impedance for group A and B were 

decreased to a mean of 276 ± 135 ohms and 306 ± 176 ohms from their base line 

values, 400 ± 96 ohms and 417 ± 22. The graph in Fig.2.8 showed that the skin 

impedance was lower in hypoglycemia. The study also found that the mean heart 

rate of healthy and diabetic subjects increased by 11 and 21 beats per minute and 

the increasing heart rated during hypoglycemia was confirmed. By monitoring skin 

impedance, the level of sweating can be measured with aid of other physiological 
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parameters which will detect the onset of hypoglycemia in Type 1 diabetic patients. 
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Figure 2.8: The effect of BGL on skin impedances [Ghevondian2001] 

2.2.3 Electroencephalogram (EEG) 

As discussed in Section 2.2, the brain depends on a continual supply of glucose and 

is vulnerable to any glucose deprivation. It is also one of the first organs affected by 

lowered blood glucose levels. Hypoglycemia develops when rates of glucose entry into 

the systematic circulation are continually declining, and eventually leads to neurologic 

dysfunction, widespread electroencephalogram (EEG) changes, cognitive dysfunction 
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and severe hypoglycemia. Experiments have shown that hypoglycemia can cause EEG 

abnormalities in subjects with and without diabetes [Pramming1988] [Harradl985]. 
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Figure 2.9: Electroencephalograms at different BGL from one patient 

[Pramming1988] 

The effect of hypoglycemia on brain function was studied in 13 patients with insulin 

dependent diabetes [Pramming1988]. No changes were seen in EEG when the blood 

glucose concentration was above 3 mmol/l. At a median blood glucose concentration 

of 2 mmol/1, alpha activity decreased abruptly in the EEG concomitant with an 

increase in theta activity, reflecting neuronal dysfunction in the cortex. When the 

blood glucose concentration was further lowered, changes were observed in the EEG 

indicating that deeper brain structures were affected. Fig. 2.9 shows the EEG with 

different blood glucose concentrations for a patient. 
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In a similar experiment [I\guyen2010], a non-invasive hypoglycemia detection sys­

tem was developed by measuring physiological responses derived from EEG. From 

a clinical study of six children with type 1 diabetes (T1D), associated with hypo­

glycemic episodes at night, their centroid (centre of gravity) alpha frequency reduced 

significantly (p < 0.001) and their centroid theta frequency increased significantly 

(p < 0.02). Using the optimal Bayesian neural network methodology, the sensitivity 

and the specificity was found to be 78% and 55% respectively. However, the cor­

responding specificity for hypoglycemia detection system was still low. Therefore, 

continuing research is still aiming to develop advanced intelligent algorithms for im­

proving the overall accuracy of the hypoglycemia monitoring system. 

2.3 Existing Technologies for Hypoglycemia Detection 

Real-time continuous glucose monitoring has the potential to overcome diabetic com­

plications and increase the likelihood of patients with diabetes by maintaining optimal 

glucose level without symptomatic hypoglycemia. In clinical practice recommenda­

tions, it has also been suggested that continuous glucose monitoring is especially 

useful in patients with Type 1 diabetes in order to detect hypoglycemia unawareness 

and/ or frequent episodes of hypo glycemia. With ever improving advances in diabetes 

diagnostic technology, different blood glucose monitoring systems, invasive, minimally 

invasive and non-invasive are tested and introduced by the use of various techniques 
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with the choice of sample region as described in Fig. 2.10. 
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Figure 2.10: Overview of technologies for non-invasive blood glucose control: invasive, 

minimally invasive and non-invasive [Amaral2008] 

2.3.1 Invasive Techniques 

In the past few years, glucose meters in Fig.2.11 have been the method of choice for 

the measurement of blood glucose concentration for patients with TlDM. They use 

automatic lancet devices to prick the fingertip to take the blood sample, which is 

painful as the diabetic has to measure blood glucose very frequently i.e. more than 
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four times a day. Efforts have been made with reduced blood sample volume to a few 

microliters and minimized the painful aspects of piercing the fingertip by employing 

alternate sampling sites such as hand, upper arm, forearm or thigh with the use of 

32 gauge lancet. 

4 

Figure 2.11: A number of different electrochemical glucose meters [Clarke2012] 

However, the cost of strip and the boredom of making repeated measurements become 

the great barriers for Type 1 diabetic patients who frequently need to monitor BGL as 

well as episodes of hypoglycemia. Sometimes, the manual monitoring of blood glucose 

increases the risk of serve hypoglycemia due to their low efficiency in detecting fre­

quent episodes of hypoglycemia. Due to discomfort and inconvenience of finger-stick 

methods, the minimally invasive approaches which sample the interstitial fluid (ISF) 

with subcutaneous sensors have been developed by using subcutaneous sensors to 

determine glucose concentration in interstitial fluid [Block2008]. But they suffer from 

limitations in terms of discomfort to patients, requirement of continuous calibration, 

and high susceptibility to biofouling. So far there are no reports or patents which 

show that such minimally invasive methods have improved accuracy as compared to 
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invasive procedures. 

2.3.2 Non-invasive Techniques 

The development of non-invasive continuous glucose monitoring systems (NCGM) is 

the only way for achieving painless control of blood glucose level and improving life 

quality of diabetes patients with better regulation of hypoglycemia episodes. Fol­

lowing with the advanced technologies such as reverse iontophoresis, fluorescence, 

ultrasound, electromagnetic sensing, bioimpedance, raman, oscular near-infrared and 

mid-infrared spectroscopy, non-invasive investigations have been carried out together 

with the choice of sample regions, sweating, skin color, surface roughness, tissue thick­

ness, breathing artifacts, blood flow, body movements, ambient temperature which 

are sensitive for blood glucose measurement [Vashist2012]. 

The most promising instrument incorporating reverse iontophoresis technique was 

GlucoWatch G2 biographer in Fig. 2.12 which is in the form of a wrist-watch from 

Cygnus Inc., California, USA. In this device frequent measurement of blood glucose 

information was provided by extraction of interstitial fluid through the skin. This was 

done by conducting a constant low-level electric current (300p,A) through the skin 

between two electrodes, anode and cathode, thereby migrating sodium and chloride 

ions from beneath of the skin to the cathode and anode respectively. The detection 

of glucose also takes into account the skin temperature and perspiration fluctuations 

by employing thermo transducers and conductivity sensors in the device. 
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Figure 2.12: GlucoWatch biographer: non-invasive glucose monitoring device 

[Vashist2012] 

However, some limitations such as the requirement of calibration using a standard 

blood glucose meter, replacement of disposable pad every 12 hours, taken for the 

warm-up period, inaccurate glucose measurements if the patient is moving, exercising, 

sweating or having rapid temperature changes, come along with the GlucoWatch G2 

biographer. And also the device has also been found to cause skin irritation that 

becomes the most problematic factor for younger children where it was used for 

nocturnal monitoring. The device fails to detect hypoglycemia when it automatically 

shuts down in cases of sweating. Since sweating is a symptom of hypoglycemia, the 

device shuts down precisely when continuous monitoring is most needed. The clinical 

studies showed that the device performs better at high glucose levels but is not reliable 

in detecting low blood glucose levels [Tsalikian2004]. 

Another spectroscopical investigation has been done for OrSense ~BM-200G device 
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from OrSense Ltd., Israel [Tierneya2001]. The device employs red NIR occlusion 

spectroscopy, which is based on detecting the red NIR optical signal of blood due 

to changes in the glucose concentration in blood vessels of the finger. The device is 

integrated with wireless telemetry and measures glucose in less than a minute. It also 

has the internal memory to store up to 500 readings. It measures glucose continuously 

for up to 24 hours and does not require frequent calibrations. It is completely safe 

for patients without any risk of contamination. However, the system has not been 

commercialized and is being utilized for investigation and market awareness purposes 

only. 

On the other hand, a real-time continuous monitoring device, GlucoTrackTM was de­

veloped by Integrity Applications Ltd., Israel. This device determines the blood glu­

cose concentration in the earlobe with the help of a personal ear clip (PEC) equipped 

with sensors and calibration electronics. The three non-invasive techniques i.e. ultra­

sonic, electromagnetic and heat capacity were employed for glucose measurements. 

The device comes with USB and IR connectivity for battery recharge, software for 

data processing, internal memory for storing up to 1000 readings per user and alerts 

for hypo- and hyperglycemia. But it has not been commercialized according to the 

need for improved performance in calibration and algorithm employed for data pro­

cessing. 

For measurement of blood glucose level as well as detection of hypoglycemia, an 
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attempt has been made to develop a wristwatch-like device, the Teledyne Sleep Sen­

try [Hansen1983]. It is similar to GlucoWatch G2 biographer, capable of detecting 

falling skin temperature as well as skin resistance during sweating. The efficacy and 

credibility of Teledyne Sleep Sentry for detecting hypoglycemia was studied during 

night-time with 22 adult insulin-treated diabetics [Johansen1986]. The evaluation 

results for functional performance showed that Sleep Sentry was able to detect BGL 

less than 3 mmoll with sensitivity of 67 and specificity of 27 %. However, using only 

skin impedance as the dominant input source becomes the considerable factor for 

modeling and estimation of actual blood glucose. The Teledyne Sleep Sentry cannot 

overcome the issues of skin impedance such as considerable time lag and non-liner 

characteristics of skin in response to hypoglycemia. Due to its poor reliability, low 

sensitivity and specificity in detecting hypoglycemia, further improvement for the 

device, especially the technique that is employed within the device is still needed. 

Table 2.2 summarizes current non-invasive blood glucose monitors at prototype stage 

or if commercially available. In clinical practise recommendations, it has been sug­

gested that the CG:MS in Table 2.2 are useful for patients with hypoglycemia un­

awareness and/or frequent episodes of hypoglycemia. However, the hypoglycemia 

preventive effect of non-invasive continuous glucose monitoring have not been sue-

cessfully established in reality. 
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CGMS Company Target Site Technology Employed 

Devices 

GlucoWatch Cygnus Inc. Wrist skin Reverse iontophoresis 

GlucoTrack Integrity Applications Ltd. Ear lobe skin Ultrasound and electromagr 

OrSense OrSense Ltd. Fingertip skin Occlusion NIR spectroscopy 

NBM-200G 

Pendra Biovotion AG Wrist skin Bioimpedance spectroscopy 

Diasensor Biocontrol Technology Inc. Forearm skin NIR spectroscopy 
-· 

Glucoband Calisto Medical Inc. Wrist skin Impedance spectroscopy 

SugarTrac LifeTrac Systems Inc. Skin NIR spectroscopy sensing 

GluCall KMH Co. Ltd. Skin Reverse iontophoresis 

TouchTrak Samsung Fine Co. Ltd. Fingertip skin Electromagnetic sensing 

Pro 200 

Glu Control ArithMed GmbH Co. Ltd. Fingertip skin Electromagnetic sensing 

GC300 

Sleep Sentry Skin temper- Electric Current 

ature 

Table 2.2: Current non-invasive blood glucose/hypoglycemia monitors 
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2.4 Intelligent Detection of Hypoglycemia Using Physiolog-

ical Parameters (Non-invasive Technique) 

Although the recent technological advances in Section 2.3.1 offer a certain accuracy in 

detection of hypoglycemia, there are still formidable technological problems to over-

come. Since the detection of hypoglycemia is an important clinical problem, a reliable 

means of detecting hypoglycemia is still needed for maintaining optimum glycemic 

control. The ideal solution would be the development of non-invasive hypoglycemic 

monitors using intelligent technologies and physiological parameters of ECG signal. 

Algorithms Parameters 

Fuzzy reasoning model [Ghevondian1997] [Hastings1998] HR 

Fuzzy neural network [Ghevondian2001] HR, QTc 

Neural network [l\guyen2006] HR, QTc 

Bayesian neural network [Nguyen2007] [Nguyen2008] HR, QTc 

Neural network based rule discovery system [Chan2011] HR, QTc 

Support vector machine [Nuryani2012] HR, QTc, TpTec, 

ToTec, RTpc, QTpc 

Genetic algorithm based fuzzy reasoning model [Ling2011] HR, QTc 

Table 2.3: ECG parameters and intelligent methods for hypoglycemia detection 

The development of non-invasive hypoglycemia detection system with a base of ECG 
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parameter changes in response to hypoglycemia is listed in Table 2.3. In the next 

sub-sections, the research works in fuzzy logic, neural networks and their applications 

to the hypoglycemia detection system be briefly reviewed. 

2.4.1 Fuzzy Reasoning Model 

By the use of the fuzzy reasoning algorithm, a portable microcontroller-based hypo-

glycemia monitoring system was developed based on the observation of physiologi-

cal parameters such as sweating, snoring, heart rate (HR), ECG [Ghevondian1~97] 

[Hastings1998]. In the system, fuzzy logic was used as the estimation algorithm due 

to its linguistic properties and its non-linear properties. It served as a software engine 

in a portable hypoglycemic monitoring device that has been developed in Fig. 2.13. 

The system commences with the fuzzification process of the four physiological param-

eters using the triangle membership function which corresponds to three linguistic 

variables: normal, high and very high. By exploiting fuzzy decision making ability 

and generating a set of linguistic rules, the index of hypoglycemia is predicted through 

the defuzzification process. 

In fuzzy-based hypoglycemia detection system [Ghevondian1997] [Hastings1998], the 

membership functions which express the linguistic terms for fuzzy inference rules have 

to be defined. However, more parameters need to be determined for fuzzy membership 

functions and rules. Larger memory, more computational time and learning data 
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are required to develop FIS based hypoglycemia detection. Even fuzzy rules which 

represent certain information from the models can be generated, the domains of inputs 

and outputs represented by the fuzzy rules are not systematic. Therefore, it can be 

difficult to make diagnosis decisions based on those fuzzy rules. 

Signal AID Alarm LCD 
Conditioning Gonv. Display 

Circuit I 
..,.c. 

sweating I 
RAM Fuzzy 

snoring & Logic 
ROM Engine 

heart rate ------- -------

E~Q______ ··- 4X4 keypad 

Figure 2.13: Block diagram for monitoring hypoglycemia in diabetic patients using 

fuzzy reasoning model [Ghevondian1997] 

2.4.2 Fuzzy Neural Network 

For predicting onset of hypoglycaemia in insulin-induced subjects, a more compre-

hensive study was continued by the use of a novel fuzzy neural network estimator 

algorithm (FNNE) [Ghevondian2001]. In this analysis, hypoglycaemia was firstly 

induced in 12 volunteers (group A: 6 non-diabetic subjects and group B: 6 Type 1 

IDDM patients) using insulin infusion, and skin impedances, heart rates and actual 

blood glucose levels (BGL) were monitored at regular intervals. By analyzing the 
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static behavior of the measured physiological parameters of all 12 subjects, the mean 

heart rate of group A and group B was increased while skin impedance was decreased. 

With these significant variations, the FKNE algorithm was employed based on a set 

of first order estimation functions for estimating the BGL profiles and consequently 

detect the onset of hypoglycemia episodes. In [Ghevondian2001], the FNKE model is 

constructed by distributing the input and output relationships to weights connecting 

neurons. The error is limited to a reasonable level via sample training and used for 

modification of each weight value to acquire the final weight value for connections 

between neurons. Despite this the approach is suitable for hypoglycemia detection, 

the accuracy of FNNE-based detection system is low and further experiments are still 

needed. 

2.4.3 Neural Networks 

Considering the correlation between physiological parameters and the status of hypo-

glycemia, a non-invasive hypoglycemia monitor named as HypoMon was developed 

from AIMedics Pty Ltd by the use of Bayesian neural network algorithm [Nguyen2006] 

[N guyen2007]. In neural network based hypoglycemia monitoring systems, the phys-

iological parameters such as heart rate (HR), corrected QT interval (QTc) and skin 

impedance are used as the main inputs and the status of hypoglycemia is detected 

through the variations of those input parameters. The developed hypoglycemia moni-

tor, HypoMon consists of a battery-powered chest belt worn and was used to measure 
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the relevant physiological responses, while the actual blood glucose (BG) measure-

ments were collected as reference. The sensitivity obtained by the hypoglycemia 

detection neural network is acceptable, but the overall accuracy still needs to be 

improved. 

Furthermore, a neural network based rule discovery system which consists of a neu-

ral network based classification unit and a rule based extraction unit is proposed 

to perform diagnosis of hypoglycemic episodes in TlDM patients [Chan2011]. In 

this method, the neural network based classification unit is used for determining hy-

poglycemic episodes in TlDM patients using the specified physiological parameters 

while a set of rules which describe the domains of physiological parameters for which 

hypoglycemic episodes occur is extracted from the neural network classification unit 

by a rule based extraction unit. 

The development was based on 420 data sets which were collected from 16 TlD:YI 

patients by using the genetic algorithm. Experimental results show that the proposed 

neural network based rule discovery system can achieve reasonable sensitivity and 

specificity. Apart from obtaining reasonable sensitivity and specificity, the neural 

network used in the developed detection system might not be able to improve further 

because its processing capability and adaptability were limited by fixed neural network 

structure. 

In general, the neural network with fixed structures might not be able to scale up 
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to meet with the requirements because the processing capability of the network is 

restricted by the number of hidden neurons in the hidden layers. The need for better 

sensitivity and specificity will only be achieved if the different structures of neural 

network are designed for different characteristics of application. In other words, it will 

be more appropriate if the flexible structures of neural networks are employed based 

on the characteristics of application for good performance. Thus, in the direction 

of achieving a truly non-invasive hypoglycemia detection system, the flexible neural 

network structure that will be breaking the barriers of fixed structure become the 

most desirable step. 

2.4.4 Swarm-based fuzzy support vector machine (SVM) 

Another interesting method to detect hypoglycemia non-invasively is by means of 

physiological effects of hypoglycemia. In [l"uryani2012], a novel hypoglycemia detec-

tion strategy using swarm-based fuzzy support vector machine technique is developed. 

The proposed hypoglycemia detector system is a combination of two subsystems, 

namely fuzzy inference system (FIS) and support vector machine (SVM). Two most 

significant ECG parameters such as HR, QTc, TpTec, ToTec, RTpc, and QTpc are 

fed to SV:YI and classified to indicate the presence of hypoglycemia. 

Analysis also showed that three and five membership functions are used for FIS 

while radial basis function (RBF), sigmoid and linear kernel functions are employed 

for mapping the inputs to high dimensional space in SVM. The performances of 
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fuzzy SVM with different kernel functions are found to be satisfactory. However, 

the disadvantages of SVM algorithm only covers the determination of the parameters 

for a given value of the regularization, kernel parameters and choice of kernel. In a 

way the SVM moves the problem of over-fitting from optimizing the parameters to 

model selection. Sadly kernel models can be quite sensitive to over-fitting the model 

selection criterion. Hence, a further study still needs to be conducted by the use of 

other computational intelligence technologies. 

2.4.5 GA-based Fuzzy Reasoning Model 

Following the methodology of hybridization, genetic algorithm based fuzzy reasoning 

model [Ling2010] [Ling2012] and statical multiple regression with fuzzy inference 

system [Ling2011] was developed based on heart rate (HR), corrected QT interval 

(QTc), change of HR (~HR) and corrected QT interval (~QTc). 

In these two subsystems, the first subsystem, FIS plays a main role to approximate 

the correlation between the physiological parameters of ECG signal such as HR and 

QTc and the approximated hypo-index by using fuzzy rules. The larger approximated 

output gives the higher possibility of hypoglycemia. Based on the estimated hypo-

index and the change of the HR and corrected QT interval, the other subsystem called 

multiple regression model is used to classify the presence of hypoglycemia. The global 

searching algorithm of GA is used to find the optimal fuzzy rules and membership 

functions of FIS and the model parameters of regression method. 
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The MR based FIS system [Ling2011] gives a significant result with less model pa­

rameters when detecting hypoglycemia episodes noninvasively and continuously from 

the real-time physiological responses in TIDM children. However, this model still 

lacks systematic procedures for defining fuzzy membership functions and rules; the 

tuning of those parameters are a time consuming task. By addressing these issues, 

an automatic adaption procedure, which is comparable to neural network structure is 

desirable and it is regarded as on-going research for the development of a non-invasive 

hypoglycaemia detection system. 

2. 5 The Proposed Methodologies for Hypo glycemia De tee-

tion 

The proposed advanced neural network based hypoglycemia detection system is a type 

of consumer electronic device embedded in the digitized chest belt which encrypts 

and transmits the measured physiological parameters (heart rate and corrected QT 

interval) to a receiver computer using a wireless communication link. The collected 

data are applied to the proposed swarm based neural network classifiers (Fig. 2.14) to 

determine the level of hypoglycemia. An alarm sound is activated when the status of 

hypoglycaemia is detected thus warning the patient or physician in critical situations. 

To monitor the status of hypoglycemic episodes in TlDM patients, advanced neural 
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network classifiers with 4 inputs and 1 output system is developed. The four psycho-

logical inputs are heart rate (HR) and corrected QT interval ( QTc), change of heart 

rate and corrected QT interval (D..H Rand D..QTc) and the output is the presence of 

hypoglycemia (h), +1 represents hypoglycemia and -1 is non-hypoglycemia. In this 

thesis, three different advanced neural network classifiers namely variable translation 

wavelet neural network (VTWNN), multiple regression model based combinational 

neural logic network (MR-)JLN) and rough-block-based neural network (R-BBNN) 

are proposed. 

;:f .. .. .. · 
----------~---~ 

HR __ """""~:! 
QT: Advanced Neural 

Network Classifiers MfR -----"71 
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Status of 
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Figure 2.14: Proposed advanced neural networks based hypoglycemia detection sys-

tern 

The first proposed algorithm, VTvVN='J has adaptive network structure with its vari-

able translation parameter and is excellent in capturing the nonstationary nature 

of ECG signal. The second MR-XLl\ is the knowledge based neural network that 

understands the characteristics of practical application and is suitable for optimal 
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performance. For the third R-BB~N algorithm, the rough set properties are intro­

duced to the flexible network structure of BBNN which is enable to evolve internal 

structures and adaptability in dynamic environments. 

In order to evaluate the performance of advanced neural network classifiers in detect­

ing hypoglycemia, the two physiological parameters such as HR and QTc are used as 

the main inputs while ~HR, ~QTc are considered as additional inputs for improving 

sensitivity and accuracy of the proposed detection system. The effectiveness of pro­

posed algorithms, VTWNN, MR-NLN and R-BBKN in hypoglycemia detection will 

be briefly discussed in the following Chapters 3, 4 and 5 respectively. 
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Chapter 3 

Optimized Variable Translation 

Wavelet Neural Network For 

Non-Invasive Hypoglycemia 

Detection 

3.1 Introduction 

Neural networks (NNs) [Windrowl990] are useful tools for modeling and find the re-

lationship between the inputs and outputs of complicated systems. The models are 

typically obtained based on the input-output data available for training and testing. 
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3.1 Introduction 

However: the structure of KN is an important design concern for good system mod­

eling. Conventionally, the l\'N structure is determined based on expert knowledge to 

the target system, or is a fixed one assumed to be complicated enough to offer a good 

model, but the performance of NN cannot be guaranteed. 

Currently, a fixed network structure with a fixed set of weights are widely applied 

in areas such as load forecasting, classification, system modeling and control. Those 

network models offer fixed structure and a single set of weights after training process 

that may not be good enough if data sets are distributed in a vast domain separately 

and/ or the number of network parameters is too small. 

To handle this kind of problem, variable translation wavelet neural network (VTWNN) 

is firstly presented. In VTWNN, the wavelets are used as transfer functions in the 

hidden layer of the network. The network parameters, such as the translation pa­

rameters of the wavelets are variable depending on the network inputs. Due to the 

variable translation parameters, the proposed VTWNN has the ability to model the 

inputoutput function with input-dependent network parameters. It works as if sev­

eral individual neural networks are handling different sets of input data. Effectively, 

it is an adaptive network capable of handling different input patterns and exhibits a 

better performance. 

One of the most important issues on neural network is learning or training because 

the optimal set of network parameters is obtained through the learning process. An 
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improved hybrid PSO which incorporates a wavelet-theory-based mutation operation 

is used to train the parameters of the proposed VTWKN. By applying wavelet theory 

in PSO, it can enhance the searching performance exploring more of the solution space 

to reach a better solution. A study of VTWNK for the detection of hypoglycemic 

episodes in type 1 diabetes mellitus (TlDM) will be given. It was found that the 

variable structure characteristic can lead to better results with increased learning 

ability than the conventional fixed neural network structures. 

The chapter is organized as follows. In Section 3.2, the proposed VTWNN with 

its operation principle, network structure and parameter design is presented. The 

training of the parameters of the proposed network using HPSOWM will be presented 

in Section 3.3. In Section 3.4, an application of VTWNN to hypoglycemia detection in 

Type 1 diabetes mellitus (TlDM) is given to validate the effectiveness of the proposed 

network. Finally, the summary is given in Section 3.5. 

3.2 Variable Translation Wavelet Neural Network (VTWNN) 

The wavelet neural network is considered as a particular case of feedforward neu­

ral network and the neural network using wavelet basis function can provide faster 

convergence rates for approximation compared with conventional feedforward neural 

network. It has been applied in many research areas because of its excellent property 

in time-frequency localization of a given signal [Zekri2008] [Mallat1989]. 
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3.2 Variable 'franslation Wavelet Neural Network (VTWNN) 

By combining wavelet theory and neural network, wavelet neural network (WNN) has 

been developed in order to give better performance in function approximation and 

learning capabilities [Billings2005]. However, a conventional WNN fails to capture 

the characteristics of separately distributed input data. To overcome this, VTWNN 

with multiscale wavelet function is proposed in which the translation parameter (b) 

is depending on the neural network inputs. It offers the ability to model the input-

output function as the input-dependent network parameters. 

Input Parameter 
Memory (PM) 

K 

Data-Processing (DP) 
Neural Network Output 

Figure 3.1: Proposed architecture of the neural network [Ling2008c] 

Fig. 3.1, the architecture of the proposed VTWNN, which consists of two units, 

namely, the parameter memory (PM) and the data processing (DP) neural network. 

The PM stores some parameters (K) governing how the DP neural network handles 

the input data. By using this proposed neural network, some of the cases that cannot 

be handled by conventional neural networks with a limited number of parameters can 

now be tackled. For instance, it two set of data, 81 and 82 are separately distributed 

far from each other, the neural network with fixed structure can only model the data 

set S as shown in Fig. 3.2. 
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3.2 Variable Translation Wavelet Neural Network (VTWNN) 
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Figure 3.2: Diagram showing two sets of data in spatial domain [Ling2008c] 

In the proposed VTWNN, if the input data belongs to Sl, the P:M will follow pa-

rameter set to drive the DP neural network to handle Sl data. Similarly, when the 

input data belongs to S2, the parameters corresponding to S2 will be employed to 

drive the DP neural network to handle these input data. 

3.2.1 Basis Wavelet Theory 

Certain seismic signals can be modeled by combining translation and dilation of an 

oscillatory function within finite duration called wavelet. A continuous function 1/J(x) 

is called a mother wavelet or wavelet if it satisfies the following properties: 

Property I: 
+oo 

j 1/J ( x) dx = 0 (3.1) 
-x 

In other words, the total positive momentum of 1/J(x) is equal to the total negative 
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3.2 Variable Thanslation Wavelet Neural Network (VTWNN) 

momentum of '1/J(x). On the other hand, it is possible to show that the admissibility 

condition implies that~ (0) = 0, so that a wavelet must integrate to zero. Notice that 

'ljJ is the Fourier transform of wavelet 'ljJ and the admissibility condition is defined as: 

0 < c'lj; < +oo (3.2) 

where 

(3.3) 

Property 11: 

(3.4) 
-oc 

where most of the energy of '1/J(x) is confined to a finite domain and is bounded. The 

Morlet wavelet in Fig. 3.3 [Daubechies1992] is an example of the mother wavelet 

which is expressed as follows: 

-x2 

'ljJ (x) = e-2 cos (5x) (3.5) 

According to Property I, the Morlet wavelet integrates to zero while over 99% of 

the total energy of the function is contained in the interval of -2.5 ~ x ~ 2.5. In 

order to control the magnitude and position of '1/J(x), '1/Ja,b (x) is defined as: 

(3.6) 
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3.2 Variable Translation Wavelet Neural Network (VTWNN) 

where a is the dilation (scaling) parameter, and b is the translation (shifting) param-

eter. It should be noted that 

1/J1,o (x) = 1/J (x) 

As 

1/Ja,o (x) = ~1/J (~) 

it follows that 1/Ja,o (x) is amplitude-scaled version of 1/J(x). 

~(x) 

1~--~----~--~~--~----~--~ 

0.8 

0.6 

-0.4 

-0.6 

-0.8 

-1~--~~--~----~----~----~----~ 
~ ~ ~ 0 1 2 3 

X 

Figure 3.3: Morlet wavelet [Ling2008] 

(3.7) 

(3.8) 

In Fig. 3.4, different dilations of Morlet wavelet are explained. The amplitude of 

1/Ja,o ( x) will be scaled down as the dilation parameter a increases. This property is 

used to do the mutation operation to enhance the searching performance. 
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Figure 3.4: Morlet wavelet dilated by parameter a [Ling2008] 

3.2.2 Architecture of VTWNN 

The detail design and analysis of the variable translation wavelet neural network 

(VTWNN) will be discussed in this section. In the proposed VTWNN, the transla-

tion parameter, b is varying based on the neural network inputs. With the variable 

translation parameter b, the proposed VTWNN gives faster learning ability with bet-

ter generalization compared with other conventional neural networks. 
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Figure 3.5: Structure of Variable Translation Wavelet Neural Network 

The proposed VTWNN has a three-layer structure with nin nodes in the input layer, 

nh nodes in the hidden layer and nout in the output layer as presented in Fig. 3.5. 

The input of hidden layer is calculated by: 

nin 

sj = L UiVij, j = 1, 2, ... 'nh 

i=l 

(3.9) 

where ui(i = 1, 2, ... , nin) are the inputs, and vij denotes the weight between ith 

input and jth hidden nodes. 
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3.2 Variable Translation Wavelet Neural Network (VTWNN) 

In order to control the magnitude and position of wavelet, multiscaled wavelet func-

tion, '1/Ja,b (x) in (3.6) is used as the hidden node transfer function. For instance, at 

the first and second hidden nodes at j = 1, 2, the dilation parameter a is set 1 and 2 

and (3.6) becomes: 

(3.10) 

(3.11) 

In (3.11), the output of the wavelet is scaled down by 1/ V2. Similarly, for the jth 

hidden node, the dilation parameter a is set as j and the VTWNN output of hidden 

layer is given by: 

(3.12) 

In this proposed network, the Maxican Hat function in Fig. 3.6 is used as mother 

wavelet, 'lj; ( x) is denoted as follows: 

(3.13) 

Different kinds of mother wavelets such as Mexican hat wavelet (normalized), Mexican 

hat wavelet have been considered. By trial and error through experiments, it was 

found that all wavelet functions are good, and there is not much significant difference 

in terms of the cost values among all wavelet functions. Finally, Mexican hat wavelet 

is used as the mother wavelet in wavelet neural network while Morlet wavelet is 

considered as the mother wavelet in wavelet mutation operation of HPSOWM. 
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3.2 Variable Translation Wavelet Neural Network (VTWNN) 

From (3.12) and (3.13), the hidden nodes in the hidden layer of VTWNN is obtained 

by: 

~;,o, ~ )y (1- (S;; b;) }xp ( (~ )') (3.14) 

1~--~--~--~~~--~--~--~~ 

0.5 

lf(x) 

0 

~-5~~~~~~~~--~--~--~--~ 
4 ~3 -2 -1 0 2 3 4 

X 

Figure 3.6: :Maxican Hat Mother Wavelet 

The translation parameter, bi is depending on the input Si and is governed by a 

nonlinear function Ji ( ·) as follows: 

bj = jj (Sj) = 4j (1 + e:KjxSj -1) (3.15) 

where Kj is a tuned parameter that is used to control the shape of nonlinear function, 

Ji (·). The value of Kj is selected from interval [0.3 1.5]. The value of Kj should not 

be too small or too large. It behaves as a threshold function when K -t oo, and 

64 



3.2 Variable Translation Wavelet Neural Network (VTWNN) 

it becomes a constant line when K ---+ -CXJ. The effect of parameter K1 on the 

characteristics of nonlinear function j1 (-) in (3.15) is shown in Fig. 3. 7. 

b 0 

0.8 
-1 

-2 

-3 
1.0 

-8 -6 -4 -2 0 2 4 6 8 10 
s 

Figure 3.7: )Jonlinear function with different values of parameter K 

From (3.15) the value of translation parameters b1 is depending on the network related 

input S1 and the nonlinear function parameter K1. By doing so, the neural network 

is handling with variable translation parameter b1 with respect to neural network 

input parameter S1 in (3.9). Because of tunable nonlinear function parameter K1, 

the network increases flexibility and adaptability and provide better classification 
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3.2 Variable Translation Wavelet Neural Network (VTWNN) 

performance. The output of proposed VTWNN is calculated by (3.9)-(3.15): 

nh 

Yl = L 'lfJ],bj (Sj) .Wjl 

j=l 

nh ( nin ) 

= ~ 'lfJj,bj ~ ZiVij .Wjl, l = 1' 2, ... ' nout 

(3.16) 

(3.17) 

where w11 , j = 1, 2, ... , nh denotes the weight between the jth hidden layer and lth 

output layer. The network parameters of VTWNN are vi1, Wj! and K 1. The number 

of parameters for Vij is equal to nin x nh, the number of parameters for w11 is equal 

to nh x nout, and the number of parameters for K 1 is equal to nh. 

3.2.3 Design Parameters of VTWNN 

A. Number of Hidden Nodes (nh): The size of the hidden layer is a general question 

raised on designing multilayer FFNN for real-life applications. An analytical 

method to determine the number of hidden nodes is difficult to obtain owing 

to the complexity of the network structure and the undetermined nature of the 

training process. Hence, the number of hidden nodes is experimentally found. 

In practice, the number of hidden nodes (nh) depends on the application and 

the dimension of the input space. 

B. Parameter (K ): The parameter K is used to control the shape of the nonlinear 

function f (-) and govern the PM in Fig. 3.1 and shows the effect of tuned 

parameter K1 to b1. Generally, the range of K is tuned within 0.3 to 1.5. It 
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3.3 Hybrid Particle Swam Optimization with Wavelet Mutation 
(HPSOWM) 

shows that the function reduces to threshold function when K-+ oo. And also 

it becomes a constant line when K -+ -oo. 

C. Network Parameters (Weights): The network parameters weights are Vij and Wjl 

in Section 3.2.2 and a search method called hybrid particle swarm optimization 

with wavelet mutation (HPSOWM) in Section 3.3 is used to find the optimal 

parameters. 

D. Total number of parameters {npara): The total number of network parameters 

are calculated by: 

(3.18) 

3.3 Hybrid Particle Swam Optimization with Wavelet Mu-

tation (HPSOWM) 

To find the optimized design parameters in Section 3.2.3, hybrid particle swarm op-

timization with wavelet mutation (HPSOWM) is introduced in this section. It is a 

directed random search technique that is widely used in optimization problems to 

find out the optimal solution globally over a domain [Ling2008]. It is especially useful 

for complex optimization problems where the number of parameters is large and the 

analytical solutions are difficult to obtain. 

In addition, its training performance depends only on the input-output data, the 
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3.3 Hybrid Particle Swam Optimization with Wavelet Mutation 
(HPSOWM) 

derivative information of the cost function is not needed as in back propagation algo-

rithms in Appendix A.4.2. If the training algorithm needs the derivative information 

of cost function, the updating rule is needed to be derived each time for each different 

network structure. In addition, HPSOWM algorithm has comparable or even supe-

rior search performance for some hard optimization problems with faster and more 

stable convergence rates. 

Conventionally, the standard PSO in Appendix A.5.3 is used to find the optimal 

set parameters. Though it works well in the early stage, it leads to the problem of 

stagnation when a particle's current position coincides with the global best position. 

To deal with this phenomenon, an alternative approach, HGAPSO in Appendex A.5.3 

is used. In HGAPSO, a mutation process often used in GA into PSO is incorporated 

to the standard PSO to enhance the searching performance. Though this process 

allows the search to escape from local optima and search in different zones of the 

search space, it may not be the best approach by fixing the size of mutating space all 

the time along the search. 

In the HGAPSO, the solution space can be explored by performing mutation oper-

ations on particles along the search and premature convergence is more likely to be 

avoided. However, the mutating space is kept unchanged all the time throughout the 

search and the space for the permutation of particles in the PSO is also fixed. It can 

be improved by varying the mutating space along the search. It can be further im-

proved by incorporating a dynamic mutation operation space in which the mutating 
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(HPSOWM) 

space dynamically contracts along the search. 

To achieve this, a hybrid PSO with dynamic mutating space is introduced in this thesis 

by incorporating a wavelet function which is called hybrid particle swarm optimization 

with wavelet mutation (HPSOWM). The detail process of HPSOWM is presented in 

Algorithm 3.3.1. In HPSOW.:\1, the wavelet in Section 3.2.1 is used as a tool to 

model seismic signals by combining the dilations and the translations of a simple 

oscillatory function (the mother wavelet) of finite duration. Thus, the mutating 

space of PSO is dynamically varying along the search based on the properties of the 

wavelet function. The resulting wavelet mutation operation aids the hybrid PSO to 

perform more efficiently and provides faster convergence than the conventional PSO. 

The following advantages are offered by HPSOWM. 

A. Improve the solution stability: The mother wavelet in Section 3.2.1 satisfies an 

admissibility criterion which is a kind of half-differentiability. As a result, the 

stability of the operation is improved. 

B. Fine-tuning ability: By controlling the dilation parameter of the wavelet func-

tion, the amplitude of the function can be adjusted. This property can be used 

to realize a fine-tuning effect to the mutation operation by decreasing the ampli-

tude of the wavelet function to constrain the searching space when the number 

of iterations increases. Thus, the solution quality can be improved. 

From Algorithm 3.3.1, X(t) is denoted as a swarm at the t-th iteration. Each particle · 
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(HPSOWM) 

xP(t) E X(t) contains 11, elements xj(t) at the t-th iteration, where p = 1, 2, ... , () and 

j = 1, 2, ... , 11,; ()denotes the number of particles in the swarm and 11, is the dimension 

of a particle. 
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(HPSOWM) 

 

Algorithm 3.3.1: PSEUDO CODE FOR HPSO WITH WAVELET MUTATION(H PSQW}. 

t ~ 0 

Initialize X ( t) 

output (f(X(t))) 

while <not termination condition> 

t ~ t+ 1 

Update v(t) and x(t) based on (3.19) to (3.20) 

if v(t) > Vmax 

then v(t) = Vmax 

if v(t) < Vmin 
do 

then v(t) = Vmin 

Perform wavelet mutation operation with J-Lm 

Update x~(t) based on (3.23) to (3.26) 

output (X(t)) 

output (f(X(t))) 

return (:X) 

comment: return the best solution 

To find the optimized design parameters in Section 3.2.3, a swarm X(t) is constituted 

with number of particles and each particle is coded with network parameters, weight 
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(HPSOWM) 

parameters Vij and Wjt, the nonlinear transfer function parameter K which is in the 

form of x = [vij; wj1; K]. The objective of HPSOW:M is to maximize the fitness 

function (cost function) j(X(t)) in (3.31) of particles iteratively. The swarm evolves 

from iteration t to t+1 by repeating the procedures as shown in Algorithm 3.3.1. 

The velocity vf ( t) (corresponding to the flight speed in a search space) and the position 

x~(t) of the j-th element of the p-th particle at the t-th generation can be calculated 

using the following formulae: 

vf(t) = k·{{w·vf(t-1)}+{rp1 ·r 1 (i~-x~(t-1))}+{rp2 ·r2 (xi-x~(t-1))}} (3.19) 

and 

~(t) = x~(t- 1) + vf(t) (3.20) 

h -p - [~p -p -pl d ~ - [ ~ ~ ~ l . - 1 2 w ere x - :r1 , x2, ... , xk an x- x1 x2 , ... x"' , J - , , ... , K,. 

The best previous position of a particle is recorded and represented as i; the position 

of best particle among all the particles is represented as x; w is an inertia weight 

factor; r 1 and r 2 are acceleration constants which return a uniform random number 

in the range of [0, 1]; k is a constriction factor derived from the stability analysis 

of (3.20) to ensure the system to be converged but not prematurely [Eberhart2000]. 

Mathematically k is a function of rp1 and rp2 as reflected in the following equation: 

k- ( 2 ) 
- 12 - 'P - J rp2 - 4rp I 

(3.21) 

where rp = rp 1 + rp2 and rp > 4. 
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(HPSOWM) 

HPSOWM utilizes x and x to modify the current search point to avoid the parti-

des moving in the same direction, but to converge gradually toward x and x. A 

suitable selection of the inertia weight w provides a balance between the global and 

local explorations. Generally, w can be dynamically set with the following equation 

[Eberhart2000]: 

_ (Wmax- Wmin) T 
W- Wmax- T X (3.22) 

where t is the current iteration number, T is the total number of iteration, Wmax and 

Wmin are the upper and lower limits of the inertia weight, Wmax and Wmin are set to 

1.2 and 0.1 respectively. 

In (3.19), the particle velocity is limited by a maximum value Vmax· The parameter 

Vmax determines the resolution with which regions are to be searched between the 

present position and the target position. This limit enhances the local exploration 

of the problem space and it realistically simulates the incremental changes of human 

learning. If Vmax is too high, particles might fly past good solutions. If Vmax is too 

small, particles may not explore sufficiently beyond local solutions. From experience, 

Vmax is often set at 10%-20% of the dynamic range of the element on each dimen-

sion. l'\ext, the mutation operation in Section 3.3.1 is used to mutate the element of 

particles. 
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(HPSOWM) 

3.3.1 Operation of wavelet mutation (WM) 

The mutation operation is used to mutate the elements of particles. In general, 

various methods like uniform mutations or nonuniform mutations [Michalewicz1994] 

are employed to realize the mutation operation. However, the proposed WM operation 

exhibits a fine-tuning ability and the details of the operation are presented as follows: 

To being with hybrid PSO with wavelet mutation (HPSOWM), a probability of mu-

tation, f.Lm E [0 1] is defined. For each particle element, a random number between 0 

and 1 will be generated. If the generated number is less than or equal to f.Lm, the muta-

tion will take place on that element. For instance, if xP(t) = [xl (t), Xl (t), ... , x~ (t)] 

is the selected pth particle and the element of particle x~ (t) is randomly selected for 

mutation and its value are inside the particle element's boundaries, [~min• .oimax]. 

The resulting particle, xP(t) = [xl (t), Xl (t), ... , x~ (t)] is governed by: 

I x~(t) + C7 X (,oimax- ~(t)) 
x~(t) = 

x~(t) + C7 X (x~(t)- ~min) 

'(7 > 0 

'(7 < 0 

(3.23) 

where j E 1, 2, ... , K and K denotes the dimension of particles. The value of C7 which 

is governed by Morlet wavelet function in (3.5) as mother wavelet which is obtained 

as: 

1 (rp) 1 ~ ( C7 = 1/Ja,o( rp) = y'a 1/J -;; = y'ae 2 cos 5 (:)) (3.24) 
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(HPSOWM) 

Remark 3.1 Different kinds of mother wavelets have been considered during the de-

velopment of the algorithm, e.g., the Mexican hat wavelet (normalized), the Mexi-

can hat wavelet, the Morlet wavelet, the Gaussian wavelet, and the Meyer wavelet 

[Ling2008}. By trial and error through experiments for good performance, various 

wavelet functions have been investigated in terms of cost values. Last, the Morlet 

wavelet in (3.5) is chosen as the mother wavelet in the WM operation because the 

selected wavelet function offers the best performance. 

If a is positive and approaching 1, the mutated element of the particle will tend,to the 

maximum value of x~ (t). Conversely, when a is negative (a ::::; 0) approaching to -1, 

the mutated element of particle will tend to minimum value of x~ ( t). A larger value 

of lal gives a larger searching space for x~(t). When lal is small, it gives a smaller 

searching space for fine-tuning. Referring to Property I of the wavelet, the sum of 

the positive a is equal to the sum of the negative a when the number of samples is 

large and cp is randomly generated, i.e., 

1 -La= 0 for N-+ oo 
N N 

where N is the number of samples. 

(3.25) 

Hence, the overall positive mutation and the overall negative mutation throughout 

the evolution are nearly the same. This property gives better solution stability (a 

smaller standard deviation of the solution values upon many trials). As over 99% of 

the total energy of mother wavelet function contained in the interval [-2.5 2.5], cp can 
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be randomly generated from [-2.5a 2.5a]. 
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Figure 3.8: Effect of the shape parameter (wm to a with respect to ~ 

The value of the dilation parameter a is set to vary with the value of ~ to meet the 

fine-tuning purpose, where T is the total number of iteration and t is the current 

number of iteration. In order to perform a local search when t is large, the value 

of a should increase as ~ increases so as to reduce the significance of the mutation. 

Hence, a monotonic increasing function a which is governing a and ~ is proposed in 

the following form: 

a = e-ln(g)x ( 1-+ )'wm +ln(g) (3.26) 

where (wm is the shape parameter of the monotonic increasing function, g is the upper 

limit of the parameter a. The effect of various values of the shape parameter (wm and 
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the parameter g to a with respect to ~ shown in Figs. 3.8 and 3.9 respectively. In 

Fig. 3.9, g is set as 10000. Thus, the value of a is between 1 to 10000. 

Referring to (3.24), the maximum value of a is 1 when the random number of 'P = 0 

and a= 1 at t/T = 0. If a= 1, (3.23) becomes: 

(3.27) 

It ensures a larger searching space for the mutated element. When the value~ is near 

to 1, the value of a is so large that the value of a will be very small. For instance, at 

~ = 0.9 and (wm = 1 the dilation parameter a= 4000. The value of a= 0.015S, thus 

(3.24) becomes: 

x~ (t) = x~ (t) + 0.0158 x (para!nax- x~ (t)) (3.28) 

A smaller searching space for mutated element is given in (3.28). Changing (wm 

will change the characteristics of the monotonic increasing function of the W:M. The 

dilation parameter a will take a value to perform fine-tuning faster as (wm is increasing. 

It is chosen by trial and error which depends on the kind of optimization problem. 

When (wm becomes larger, the decreasing speed of the step size a of the mutation 

becomes faster. 

In general, if the optimization problem is smooth and symmetric, the solution can 

be found easier by the searching algorithm and fine-tuning can be done in the early 

stages. Thus, a larger (wm can increase the step size of mutating space. After the 

operation of the WM, an updated swarm is generated. The swarm with new particle 
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will repeat the same process. Such an iteration process will be terminated when a 

defined number of iterations are met. 
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Figure 3.9: Effect of the parameter 9 to a with respect to ~ 

3.3.2 Choosing parameters of HPSOWM 

HPSOWM is seeking a balance between the exploration of new regions and the ex-

ploitation of the already sampled regions in the search spaces. This balance, which 

critically affects the performance of HPSOvVM, is governed by the right choices of 

the control parameters: Swarm size (B), the probability of mutation (Pm), the shape 

parameter ( (wm) and parameter 9 of wavelet mutation. Some views about these 

parameters are given as follows: 
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(i) Increasing swarm size (B) will increase the diversity of the search space, and re-

duce the probability that HPSOWM prematurely converges to a local optimum. 

However, it also increases the time required for the population to converge to 

the optimal region in the search space. 

(ii) Increasing the probability of mutation (J-lm) tends to transform the search into a 

random search such that when J-lm = 1, all element of particles will mutate. This 

probability gives us an expected number (J-lm x B x r;;) of element of particles that 

undergo the mutation operation. In other words, the value of J-lm depends on 

the desired number of element of particles that undergo the mutation operation. 

Normally, when the dimension is very low (number of element of particles is less 

than 5, J-lm is set at 0.5 to 0.8). When the dimension is around 5-10, J-lm is set 

at 0.3 to 0.4. When the dimension is in the range of 11 to 100, J-lm is set at 0.1 

to 0.2. When the dimension is in the range of 101 to 1000, normally J-lm is set 

at 0.05 to 0.1. 

Lastly, when the dimension is very high (number of element of particles is 

larger than 1000) ,J-lm is set at < 0.05. The rationale to set this select criterion 

is: when the dimension of input signal is high, J-lm should be set to be a smaller 

value; when the dimension is low, J-lm should be set to be larger value. It is 

because if the dimension is high and J-lm is set to be a larger number, then the 

number of elements of particles undergoing mutation operation will be large. It 

will increase the searching time and more importantly will destroy the current 

79 



3.3 Hybrid Particle Swam Optimization with Wavelet Mutation 
(HPSOWM) 

information about the application in each iteration as all elements of particles 

are randomly assigned. 

Generally speaking, by choosing the value of J.Lm, the ratio of the number of 

elements of particles undergoing mutation operation to the population size can 

be maintained to prevent the searching process turning to a random searching 

one. Thus, the value of J.Lm is based on this selection criterion and chosen by 

trial and error through experiments for good performance for all functions. 

(iii) The dilation parameter a is governed by the monotonic increasing function 

(3.26), which is controlled by two parameters. They are called shape parameter 

(wm and parameter g. Changing the parameter (wm will change the charac-

teristics of the monotonic increasing function of the wavelet mutation. The 

dilation parameter a will take a value so as to perform fine-tuning faster as (wm 

is increasing. It is chosen by trial and error, which depends on the kind of the 

optimization problem. 

\Vhen (wm becomes larger, the decreasing speed of the step size ( 0') of the 

mutation becomes faster. In general, if the optimization problem is smooth and 

symmetric, it is easier to find the solution and the fine-tuning can be done in 

early iteration. Thus, a larger value of (wm can be used to increase the step size 

of the early mutation. Parameter g is the value of the upper limit of dilation 

parameter a. A larger value of g implies that the maximum value of a is larger. 

In other words, the maximum value of (wm will be smaller (smaller searching 
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limit is given). Conversely, a smaller value of g implies that the maximum 

value of a is smaller. In other words, the maximum value of a will be larger 

(larger searching limit is given). In our point of view, fixing one parameter 

and adjusting another parameter to control the monotonic increasing function 

is more convenient to find a good setting. 

3.4 Case Study in Hypoglycemia Detection System 

An optimized variable translation wavelet neural network (VTWNN) with 4 inputs 

and 1 output system is developed for the detection of hypoglycemic episodes in T1DM 

patients as shown in Fig. 3.10. 

/ 
HR----~ 

QTc-----+1 
MlR----~ 

b.Q~.-------+1 

' 

VTWNN 

HPSOWM / .. .. 
Operations ... ·· ----' 

,:f .. .. 
(+ve/-ve) 

Status of hypoglycaemia (h) 

Figure 3.10: Hybrid PSO based VTWNN hypoglycemia detection system 

The four psychological parameters of ECG signal are heart rate (HR), corrected QT 

interval (QTc), change of heart rate (6.HR) and change of corrected QT interval in 

time (6. QTc) are used as the input while the status of hypoglycaemia (h) ( +1 is 
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hypoglycemia and -1 is non-hypoglycemia) represents as the output. The proposed 

VTWNK detection system is mainly used to find the relationship between physio­

logical parameters of ECG signal (HR, QTc, ~HR and ~ QTc) and the presence of 

hypoglycemia (h). As presented in Fig. 3.10, a global learning optimization algo­

rithm, HPSOWM in Section 3.3.2 is used to optimize the parameters of system. 

3.4.1 Analysis of electrocardiogram (ECG) 

The ECG is a graphic recording of the electrical activity produced in association with 

the heart beat and measured on the body. Usually, a twelve lead system is used for 

the ECG recording which gives information about the activities of the heart. In ECG 

signal, the important points are the Q point, R peak and T wave peak as shown in 

Fig. 3.11. 

R 

T 

s 

Figure 3.11: The normal ECG Signal 

In order to analyze the signal, the characteristic of QRS wave is important and most 

of the useful information in the ECG is found in the intervals and amplitudes defined 
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by its features. The performance of ECG analyzing system depends on the accurate 

detection of QRS complex, QT interval of which the most important are the R peak 

detection, Q wave and T wave detection. 

The typical QRS complex wave consist of compact continuous wave, the first down­

wards negative wave is namely Q wave, the next sharply upwards positive wave is R 

wave, and the latter downwards negative wave is S wave as presented in Fig. 3.11. 

The QRS wave is the potential difference signal between the signal generated by the 

bilateral ventricle and transmitted to the surface body in the process of depolariza­

tion. Its general duration is 0.04s to 0.1s. The abnormal Q wave is useful in medical 

diagnosis. 

The ECG parameters under investigation involve the parameters in depolarization 

and repolarization stages of ECG signal. The important points of an ECG signal in 

Fig. 3.11 are the Q point, R peak and T wave peak, in which R peak is obtained by 

detecting the maximum amplitude which is higher than the defined threshold level. 

After obtaining R peak, it is regarded as a reference point and the Q waves, and peak 

of the T wave can be found by approximating their locations at the right and left 

sides of R peak. In normal ECG signal the Q wave and peak of T wave are located 

about 120 and 300ms intervals from R peak [Kguyen2008] [Ling2011]. 

Cumulating clinical and experimental evidence has shown in Section 2.2.1 that there is 

a marked change in ECG morphology, especially in QT interval and/ or QRS complex 
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during hypoglycemia. In our recent study [Nguyen2012], the lengthening of the QT 

interval has been demonstrated in Type 1 Diabetic patients by measuring the QT 

interval precisely. Fig.3.12 shows the variation of HR and QTc from one patient 

in which the value of HR and QTc are increased under hypoglycemia conditions by 

giving the values of 85 bp m and 4 76ms whereas 69 bpm and 400ms are obtained 

under normal states. 

Figure 3.12: The lengthening of QTc interval under normal vs. hypoglycemic states 

In this analysis of the ECG feature, R peaks are found by using a peak detection while 

the beginning and ends of P, Q, T waves are detected by the zero crossing method. 

Once R peaks are found, they are regarded as the reference and obtaining peaks of 

P waves, beginning of Q waves and T waves by scanning on both side of R peaks to 

get zero crossing points. As shown in Fig. 3.12, the QTc prolongation was associated 

with hypoglycemia and the QTc lengthening led to (>476ms) during hypoglycemia 
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against non-hypoglycemia. 

3.4.2 Data Set 

Detailed studies in 2.2.1 have shown that ECG waveforms are greatly affected during 

hypoglycemia including depression of the ST segment, flattening of the T wave and 

prolongation of QT interval. These changes are mostly investigated under insulin­

induced hypoglycemia, i.e. the insulin injections are intentionally performed on 

healthy volunteers in order to investigate ECG alterations during insulin-induced 

hypo glycemia. 

Instead of studying insulin-induced hypoglycemia, in this thesis, it is aimed to ex­

plore the effects of natural occurrence of hypoglycemic episodes on physiological re­

sponses. To perform, 15 children with T1DM (14.6 ± 1.5 years) volunteered for the 

10-hour overnight hypoglycemia study at the Princess Margaret Hospital for Chil­

dren in Perth, Australia. To measure the required physiological parameters, Hy­

poMon (AiMedics) was used to measure the required physiological parameters, while 

the actual blood glucose (BG) levels were collected as reference using Yellow Spring 

Instruments (YSI) blood glucose analyzers. The measurement results revealed that 

a profound effect on QT interval prolongation and corrected heart rate affected the 

degree of prolongation during hypoglycemia and may allow the development of a 

hypoglycemia detection device. 
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All the collected data was obtained with the approval from Womens and Childrens 

Health Service, Department of Health, Government of Western Australia, and with 

informed consent. A comprehensive patient information and consent form was for-

mulated and approved by the Ethics Committee. Each patient received the consent 

form which included the actual consent and a revocation of consent page at least two 

weeks prior to the start of the studies. He/she had the opportunity to raise questions 

and concerns with any medical advisers, researchers and the investigators. For the 

children participating in this study, the parent or guardian signed the relevant forms. 

(!) 
cc 

Blood glucose levels - 15 patients [Series 4000 & 5000] 

100 200 300 400 
Time (minutes) 

500 

Figure 3.13: Actual blood glucose level profiles in 15 T1DM children 

The main parameters used for the detection of hypoglycemia are HR and QTc. The 

actual blood glucose profiles for 15 T1DM children are shown in Fig. 3.13. Data 

were collected between 360 minutes to 480 minutes. The presence of hypoglycemia is 
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estimated at sampling period which is about 5 minutes and approximately 30 to 40 

data points are used for each patient. The responses from the 15 TlDM children ex­

hibit significant changes during the hypoglycemia phase against the non-hypoglycemia 

phase as shown in Fig.3.13. 
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I 

Patient Number N o.of Hypo Episodes Duration of Episodes(min) 

1 0 0 

2 8 40 

3 7 45 

4 10 50 

5 4 20 

6 14 75 

7 9 45 

8 11 55 

9 17 105 

10 0 0 

11 0 0 

12 9 45 

13 9 85 

14 13 70 

15 7 70 

Table 3.1: The 15 patients and their associated hypoglycemia and non-hypoglycemia 

events 

Among 15 patients, 12 T1DM patients were found to experience hypoglycemic episodes 

as their BGL threshold level were less than (3.3mmol/l), while 3 T1DM patients did 
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not experience hypoglycemia events as presented in Table 3.1. This is because no nat-

ural occurrence of hypoglycemia episodes were presented during measurement or they 

may not have been valid with the defined BGL threshold level. For the clinical appli-

cation in this study, BGL < 3.3mmoljl was considered a hypoglycemic episodes. The 

relationships between overnight measurements of QT interval corrected for heart rate 

(QTc) and falling BGL were discovered by the use of statistical correlation analysis 

in the following Section 3.4.5.1. 

3.4.3 Performance Evaluation 

To measure the performance of a biomedical classification test, the sensitivity, ~ and 

specificity, TJ are introduced [Altman1994]. Sensitivity measures the proportion of ac-

tual positives which are correctly identified while specificity measures the proportion 

of negatives which are correctly identified. 

Sensitivity (~) - (3.29) 

Specificity (TJ) (3.30) 

where: 

NTP is the number of true positives which means the sick people are correctly diag-

nosed as sick 
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N FN is the number of false negative which means the sick people are wrongly diag­

nosed as healthy 

N FP is the number of false positives which means the healthy people are wrongly 

diagnosed as sick 

NrN is the number of true negatives which means the healthy people are correctly 

diagnosed as healthy. The values of ~ and TJ are within 0 to 1. 

The objective of the system is to maximize sensitivity and specificity. Thus, the 

fitness function in Section 3.4.4 is designed to maximize both values. 

3.4.4 Fitness Function Formation 

The formation of fitness function depends on the application. In general, the sensi­

tivity (~) and specificity (TJ) in Section 3.4.4 are used to measure the performance of 

the biomedical classification test. In this clinical application, the sensitivity is more 

important than specificity because it identifies the actual hypoglycemic episodes in 

patients with TlDM. 

Essentially, the fitness function is designed to optimize the sensitivity and the speci­

ficity. The objective of the proposed system is to maximize the fitness function which 

is equivalent to the maximization of sensitivity and specificity. In order to meet with 

the objective, the fitness function f(~, TJ) is defined as follows: 
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(3.31) 

where ~t and fit are training sensitivity and specificity, ~v and fiv are validation sensi­

tivity and specificity. They are defined as follows: 

E, ~ { 
1 if ~t ~ 6 

(3.32) 

1- (?) if ~t < ~~ 

and 

E" ~ { 
1 if ~V~~~ 

(3.33) 

1- (~) if ~V < ~~ 

and 

n, ~ { 
1 if TJt ~ TJl 

(3.34) 

1- (~) if TJt < TJL 

and 

n"= \ 11- (~) if TJt ~ TJL 
(3.35) 

if TJt < TJL 

In some cases, the fitness function with constant values are used to control the balance 

between sensitivity and specificity [Ling2010]. However, this approach considered 

only training and testing data set which can increase the risk to the occurrence 

of overtraining. Thus, the validation strategy is introduced to the defined fitness 

function in (3.31) to reduce the risk of overtraining. 
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Fig. 3.14 shows the idea of defined fitness function. The x-axis represents the iter-

ation number and T denotes the total iteration number. The y-axis represents the 

classification performance which is governed by sensitivity and specificity. The main 

function of validation strategy is to train the training set and test the trained results 

with the validation set with respect to a target region. The definition of target region 

varies due to the performance requirement of the system. The target region related 

to sensitivity and specificity, for example, ~ > 0.6 and TJ > 0.4 . 
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Figure 3.14: Fitness function with validation strategy 

As shown in Fig. 3.14 at iteration Ta the training set performance has progressed 

to a good result. However, the performance of the validation set cannot meet the 

minimum requirement of the target region. As a result, the testing performance will 

92 



3.4 Case Study in Hypoglycemia Detection System 

be out of the target region. It is an overtraining phenomenon, i.e., the model is 

over-fit with the training set and the generalization performance reduced. 

At time Tb the performance of both the training set and the validation set are within 

the target region. As a consequence, the testing result has a good chance of meeting 

the performance requirement (~ > 0.6 and 'f/ > 0.4). Once both sets have reached the 

target region, the target region is updated by increasing the performance requirement 

level, i.e., ~ > 0.6 to ~ > 0.65. At time Tc, when both the training and validation 

performance are in the updated target region, the model parameters will be updated. 

Algorithm 3.4.1: ALGORITHM FOR FITNESS FUNCTION(!) 

'f/l +- 'f/d 

~~ +- ~d 

output ([t, i]t, [v,i7v) based on (3.29) and (3.30) 

output (f) based on (3.31) 

if (~t > ~~& 'f/t > T/l & ~v > ~~& 'flv > 'T/l) 

then ~d = ~d + A. 

Based on the above concept, the process of formulating the fitness function is shown 

in Algorithm 3.4.1. First, a target region will be defined with the lower boundaries of 

sensitivity (~1 ) and specificity (TJz) while the upper boundaries for them are defined as 

1. In Algorithm 3.4.1, ~d and 'f/d are the initial values of lower boundaries sensitivity 
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and specificity. Second, based on (3.29) and (3.30), the training sensitivity (~t), the 

training specificity (r;t), the validation sensitivity (~v) and the validation specificity 

(r;v) are evaluated. Referring to Fig. 3.14, the training performance is the result of 

xit and T/t· Similarly, the validation performance is the result of ~v and 'Tlv· Once Xit, 

T/t, ~v and 'Tlv are obtained, the fitness function is calculated as in (3.31). 

In (3.31), the maximum fitness value is equal to 4 when ~t, fit, ~v' flv equal to 1. 

It implies that both the training and validation performances have met the defined 

requirement. Finally, if the target region (~t > ~~ and T/t > r;1 and ~v > ~~ and 'Tlv > T/l) 

is reached, ~d will be updated by ~d +A, where the value of A is normally between 0.01 

and 0.05. For finding out the optimal sensitivity with fixed specificity value, only ~d 

will be updated during the training process. 

3.4.5 Experimental Results and Discussion 

The responses from 15 T1DM children in Fig. 3.13 exhibit significant changes during 

the hypoglycemia phase against the non-hypoglycemia phase. Normalization was used 

to reduce patient-to-patient variability and to enable group comparison by dividing 

the patients heart rate, corrected QT interval by his/her corresponding values at 

time zero. The information for each patient in terms of number and duration of 

hypoglycemic events for hypoglycemic episodes was tabulated in Table 3.1. 

To perform the classification test, the overall data set consisting of both hypoglycemia 
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data and non-hypoglycemia data points were organized into the training set (patient 

number 1 to 5 with 184 data points), the validation set (patient number 6 to 10 

with 192 data points) and the testing set (patient number 11 to 15 with 153 data 

points). Referring to Table 3.1, each training, validation and testing set consists 

of four patients whose natural occurrence of hypoglycemia can be observed for the 

defined BGL ~ 3.3mmol/l and one patient with no associated hypoglycemia events. 

Data sets that include both hypoglycemia data points and non-hypoglycemia data 

points were used to measure the classification performance in terms of sensitivity and 

specificity. 

In clinical application, the proposed VTWKN is selected as a suitable classifier due to 

its excellent characteristics in capturing the nonstationary nature of ECG signal. It 

models the input-output function as the input-dependent network parameters because 

of input dependent translation parameter b in (3.15). Due to the variable transla­

tion parameters b, the network becomes an adaptive network and provides better 

classification performance. 

The proper selection of the number hidden neurons (nh) is vital for improving the 

network performance. In VTWN~, the selection on the number of hidden nodes is 

the same as the way that is chosen in conventional neural network structure. There 

is currently no mathematical theory that provides a definitive number of neurons 

for optimal network performance. Conventionally, the number of hidden neurons are 

chosen by a trial and error method until the optimal solution is obtained. 
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However, there is a trade off between too small number or too big number of hidden 

nodes. If too few hidden neurons are selected, the network is unable to model complex 

data and results in a poor fit. If too many hidden neurons are used, then training 

will become excessively long and the network may over fit. Over fitting occurs when 

the network begins to model random noise contained within the data, resulting in a 

failure to converge on a generalized solution. During the simulation studies, different 

number of hidden neurons such as 5, 10, 15 and 20 are tried. Among them, the 10 

hidden neuron is given the best classification performance. 

All the network parameters [vij w11 K 1] of VTWNN are given by [-10 10] for vij 

and w11 while K 1 is selected between [0.3 1.5]. Since the number of parameters in 

VTWN~ mainly depend on the number of hidden neurons (nh) and 10 hidden nodes 

are experimentally selected for this application, the total number of VTWNN design 

parameters is about to be 66. Referring to (3.9)-(3.36), the output (y) of proposed 4 

input 1 output system in Fig. 3.10 is obtained by: 

10 ( 4 ) y = L '1/Jj,bj L ZiVij . Wjl 

j=l i=l 

(3.36) 

In this application, the status of hypoglycemia h is positive when the output y is 

positive which is defined as follows: 

h =I +1, 
-1, 

y"20 
(3.37) 

y<O 

The optimal values of VTW~N parameters are obtained through the maximization 

of designed fitness function (3.31). During the training process, for a given set of 
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particle x = [vij; wj1; K], HPSOWM evaluates the fitness value of each particle at 

each iteration step and searches for the optimum network parameters. In order to 

train VTWN~, the number of iteration is set at 1500. 

All parameters of HPSOWM such as Swarm size ( 0), the probability of mutation 

(JLm), the shape parameter ((wm) and parameter g of wavelet mutation were selected 

as specified in [Ling2008] apart from probability of mutation (JLm) and shape param­

eters ((wm)· It should be noted that there were no default rules to find the best 

parameters. A trial and error approach was carried out through experimentation. In 

this application, the basic setting of the HPSOWM parameters were defined as: 

• Swarm size 0 : 50 [Ling2008]; 

• Constant c1 and c2 : 2.05 [Ling2008]; 

• Maximum velocity Vmax : 0.4 [Ling2008]; 

• Probability of mutation JLm: 0. 7 (by trial and error for optimal performance); 

• The shape parameter of wavelet mutation, (wm : 2; 

• The constant value g of wavelet mutation : 10000 [Ling2008]; 

• Number of iteration T : 1000. 
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3.4.5.1 Statistical Correlation Analysis 

The prevalence of prolonged QT interval (starting from Q point to the end of T point 

in Fig. 3.11) on the ECG signal during spontaneous hypoglycemia in 15 children with 

Type 1 diabetes was examined and explored for the relationships between overnight 

measurements of QT interval corrected for heart rate (QTc) and falling glucose level. 

In this clinical application, BGL < 3.3mmol/l was considered hypoglycemic episodes. 

The relationships between overnight measurements of QT interval corrected for heart 

rate (QTc) and falling BGL were discovered by the use of statistical correlation anal­

ysis. The changes in measured ECG parameters are summarized in Table. 3.2. 

Parameters Hypolycemic State Normal State p-value 

HR 1.033 ± 0.242 1.082 ± 0.298 < 0.06 

QTc 1.0.31 ± 0.086 1.060 ± 0.084 < 0.001 

Skin Impedances I 1.111 ± 1.460 1.108 ± 1.277 
I 

< 0.984 

Table 3.2: Changes in ECG parameters: HR and QTC under hypoglycemic conditions 

Remark 3.2 In statistical significance testing, p-value is generally defined as a short 

form for probability value as well as another way of saying significance value. It can 

also be simply said as the chance that the relationship under observation is simply 

carried out by pure chance. Commonly, its range is defined from 0 (no chance) to 

1 (absolute certainty), i.e. p-value of 0.5 means a 50 % chance and 0.05 means 
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5 % chance. In most statistical analysis, an experimental result is declared to be 

statistically significant if the p-value for the observed result is less than the level of 

significance (p-value < significance level=O. 05). 

The statistical results in Table. 3.2 have proven that the feature extracted ECG 

parameters, HR and QTc are significantly increased under hypoglycemic conditions 

with p-value, HR (p<0.06) and QTc (p<O.OOl). However, in this clinical study (natu­

ral occurrence), the reduction of skin impedances of the patients was not strong with 

p-value < 0.984). It should be noted that in our previous 4-hour glucose clamp study 

[Nguyen2007], skin impedances reduced significantly during hypoglycemic episodes. 

Considering a higher correlation of HR and QTc to the status of hypoglycemia as 

presented in Table 3.2, they are used as the main inputs of hypoglycemia monitoring 

system while ~HR and ~ QTc are used for fine-tuning of the proposed detection 

system Fig. 3.10. The design parameters are optimized by the use of HPSOWM in 

Section 3.3 for improving the classification performance. 

3.4.5.2 Results Analysis 

Three comparison approaches such as (1) variable translation wavelet neural network 

(VTWNN) in Section 3.2, (2) wavelet neural network (WNN) in Appendix A.2 and (3) 

feedforwrad neural network (FFNN) in Appendix A.l are compared and analyzed. 

The performance of the proposed detection system is firstly analyzed by means of 
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a ROC curve in Fig. 3.15 in which the sensitivity (true positive rate) and the 1-

specificity (false positive rate) are relatively plotted. 

Method I Area under ROC curve(Training) 

VTWNN I 0.7082 

WNN 0.6758 

FFNN 0.6713 

Table 3.3: Comparison studies: Area under ROC curve 

In ROC curve analysis, the performance effectiveness is measured by the area under 

the ROC curve,i.e. the wider ROC curve area is defined as the better accuracy. 

The corresponding ROC curve areas for VTWNN, WNK and FFNN are compared 

and analyzed in Table 3.3. The study compared methods in VTWNN, WNN and 

FFNN found that the proposed VTWNN perform more accurately in detection of 

hypoglycemia (area under the curve= 0.7082) compared to \VNN and FFNN (area 

under the curve = 0.6753 and 0.6695). 
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Figure 3.15: ROC curve analysis 

In Fig. 3.3, the ROC curve indicates the relationship between sensitivity and speci-

ficity. It can be seen that the higher sensitivity is obtained when the specificity is lower 

and vice versa. For instance, if the cut-off point is fixed at T/z = 20% (1-specificity=0.8 

(80%) in Fig. 5), the sensitivity is supposed to be about 90% or if the cut-off point 

is fixed at TJz = 70% (1-specificity=0.3 (30%) in Fig. 3.3), the sensitivity is supposed 

to be about 40%. 

In this clinical application, the sensitivity which mainly identifies actual hypoglycemic 

episodes is more important than the specificity. Due to the importance of sensitivity, 

the cut-off point is defined in ROC curve (Fig. 3.15) at the lower boundary specificity 
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(r}l)= 0.6 (1 -7]1=60%) which is equivalent to maximum specificity, 7]1=40% and find 

the optimized sensitivity at the defined specificity region. 

Remark 3.3 In this application, the common criteria of classification performance is 

defined to be the sensitivity 2: 0. 6 and specificity 2: 0.4. To achieve this, the analysis 

starts at lower boundary specificity, 7]1=40%. If the proposed detection system can 

correctly detect the status of hypoglycemia, the sensitivity will be higher, ie., the higher 

sensitivity represents the better performance of the proposed classifier. 

At the defined initial specificity ( 7]1=40%), the mean value of training, validation and 

testing results were presented in terms of the sensitivity and specificity in Table 3.4. 

All results are averaging over 20 runs. In Table 3.4, the proposed optimized VTWNN 

is found to be satisfactory by giving mean (average) testing sensitivity and specificity 

value of 77.41 and 47.42% while the other comparison methods WNN and FFNN are 

giving (71.39 and 44.37% ) and (68.84 and 48.34%). 
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'r/l VTWNN WNN FFNK 

Training (%) Sen(€) 88.40 84.12 83.64 

Spec(ry) 40.80 40.63 40.50 

'Y 69.36 66.72 66.38 

Validation (%) Sen(€) 82.50 80.44 79.07 

40% spec(ry) 41.25 40.94 41.38 

'Y 66.00 64.64 63.99 

Testing (%) Sen(€) 77.41 71.39 68.84 

Spec(ry) 47.42 44.37 48.34 

'Y 65.41 60.58 60.64 

Table 3.4: Mean value of Training, Validation and Testing Results: Set specificity as 

7Jz= 40% 

In this application, it seems that the testing specificity ( 4 7.42%) is higher than the 

training specificity which is about 40.80%. It is because the nature of patients' data 

that is specified for testing set. As can be seen in Table 3.1, due to different nature of 

the patients' data to be used for the training set (patient number 1 to 5 ), validation 

set (patient number 6 to 10) and testing set (patients number 11 to 15), the higher 

testing specificity is obtained in Table 3.4. If the nature of testing data set is closely 

related to the training and validation sets, the testing specificity are expected to be 

similar to those in training and validation. 
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3.4 Case Study in Hypoglycemia Detection System 

For evaluation purpose, "'! analysis was introduced in (3.38). To meet with the min­

imum requirement of the proposed system (sensitivity 2:: 60% and specificity 2:: 40% 

), () was set to 0.6 (which is equivalent to sensitivity 60%). By substituting () in 

(3.38), the "'! analysis becomes "'! = 0.6~ + 0.47]. The obtained mean sensitivity and 

specificity were evaluated in terms of"'! analysis. As can be seen in Table 3.4, the pro­

posed VTWNK outperformed other comparison methods by achieving gamma value 

65.41%. 

"'( = ()~ + (1- ())1], () E [0.1, 1] (3.38) 

In order to prove that the optimized VTWNN gives better classification performance, 

the analysis is continuously carried out at different initial sensitivity and specificity 

at~~= 60% and 1]z = 40%, 6 = 40% and 1]z = 60% and 6 = 20% and 1]z = 80%. As 

presented in Table 3.5, the proposed VTWNN is working well for those defined target 

regions by achieving better testing sensitivity and acceptable specificity of 81.40 and 

50.91 %. However, for WNN and FFNK, they can only give best testing sensitivity 

and specificity of (74.42 and 48.18 %) and (69.77 and 49.09 %). Similarity, at the 

defined specificity 1Jz = 60 and 80 %, the proposed VTWNN gives better sensitivity 

and specificity compared with other classifiers. 

104 



3.4 Case Study in Hypoglycemia Detection System 

'fll VTWNN WNN FFNN 

Sen (~) 81.40 74.42 69.77 

40% Spec (ry) 50.91 48.18 49.09 

'Y 69.20 63.92 61.50 

Sen (~) 53.49 48.84 44.88 

60% Spec (ry) 68.18 72.73 70.00 

'Y 59.34 58.40 54.93 

Sen (~) 37.91 23.16 20.93 

80% Spec (ry) 84.55 90.17 93.28 

'Y 56.57 49.96 49.87 

Table 3.5: Best Testing Result for Hypoglycemia Detection with Different Approaches 

as ry1= 40%, 60%, and 80% 

From Table 3.6, it can be seen that the optimized VTWNN achieves better test-

ing sensitivity and specificity compared with other neural network classifiers (WNN, 

FFN~), evolved fuzzy interference system (FIS) and a genetic algorithm (GA) based 

multiple regression with fuzzy interference system (MR-FIS). As can be seen in Table 

3.6, the optimized VTWNN gives the best testing sensitivity of 81.40 % while the 

specificity is kept around 50 %. 

Based on the common criteria of clinical classification (sensitivity 2: 0.6 and specificity 

2: 0.4), from Table 3.4- 3.6, it can be distinctly seen that the optimized VTWl\N is 
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effective and suited for detection of hypoglycemic episodes. In summary, the effec­

tiveness of optimized VTWNN detection system can be distinctly seen in Table 3.4 -

3.6 with the better classification performance (81.40 % of Sensitivity and 50.91 % of 

acceptable testing specificity). 

Methods Sensitivity Specificity 'Y 

VTWNN 81.40 50.91 69.20 

MR-FIS [Ling2011] 75.00 50.00 65.00 

WNN 74.42 48.18 63.92 

FIS [Ling2010] 70.45 55.14 64.32 

FFN~ 69.77 49.09 61.50 

MR 65.12 57.27 61.98 

Table 3.6: Best Testing Result for Hypoglycemia Detection as TJz= 40% 

3.5 Conclusion 

For the detection of hypoglycemic episodes in T1DM patients, a hybrid particle swarm 

optimization based variable translation wavelet neural network (VTWXN) has been 

proposed in this chapter. An improved hybrid PSO is used to train the VTWNN 

parameters such as weights and parameters of nonlinear function. In the VTWKN, 

the translation parameter vary according to the input data. The network is therefore 
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made adaptive to the contingent changes of the environment. This adaptive charac­

teristics makes the VTWNN better for problems with large sets of input data in a 

vast domain. Thanks to the variable property of translation parameter, the learn­

ing and generalization abilities of the proposed VTWNN have been enhanced. The 

comparison results with other conventional classifiers (WNN, FFNN, FIS, MR-FIS 

and MR) showed that the optimized VTWNN detection system gives better testing 

sensitivity of 81.40% and specificity of 50.91%. 
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Chapter 4 

MR-based Combinational Neural 

Logic System and Its Application 

in Hypoglycemia Detection 

4.1 Introduction 

For hypoglycemia detection, a variable translation wavelet neural network (VTWNN) 

is presented in Chapter 3. Thanks to variable property, the performance of the 

VTWN::.; is better than conventional feedforward neural network structures. However, 

one main concern of the VTWNN is the computational demand which is reflected 

in the possibly larger number of network parameters than other networks. In this 

chapter, an integrated method, a neural logic network with multiple regression is 
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applied on the development of non-invasive hypoglycemia monitoring system. 

Generally, conventional neural networks with the same structure were used to handle 

different applications. However, optimal performance was not always guaranteed due 

to different characteristics of applications. In addition, the redundant connections 

and weights of conventional neural network makes the number of network parame-

ters unnecessarily large and downgrades the training performance [Leung2003]. In 

real-world application, the knowledge based neural network that understands all the 

characteristics of practical application is preferred for optimal performance. 

Conventionally, the statistical regression model [Seber2003] [Freedman2005] has been 

widely carried out for classification [Chang2009] [Chu2008]. The learning process 

between a set of independent and dependent variables are modeled based on their 

relationship. However, it is not suitable to use if the patients' data is irregular and/or 

if there is no relationship between dependent and independent variables. 

The modeling accuracy is only possible over the range of data where the model was 

developed. If it is used to model the irregular patients' data, the resulted regression 

model will have an unnaturally too wide possibility range. Despite both neural net-

work and multiple regression models show advantages in dealing with classification, 

the limitations on each algorithm still remain to obtain the best classification model. 

To overcome individual limitations of a conventional neural networks model and a 

109 



4.1 Introduction 

statistical regression model, a modified technique based on neural logic network com­

bined with multiple regression model is proposed in this Chapter. The proposed 

network is targeted to dedicated application since its design based on the binary 

logic gates (A~D, OR and NOT) [Lam2009], in which truth table and K-map are 

constructed depending on the knowledge of application. Because the logic theory is 

used in the network design, the structure becomes systematic and simpler compared 

to other conventional neural network and enhances the training performance. For a 

neural logic network with different structures for different applications, HPSOWM in 

Section 3.3 is selected as a suitable training algorithm. 

In this hybrid system, through ECG signal alternation, the episodes of hypoglycemia 

were firstly predicted by the use of knowledge based-neural logic network (NLN) 

while the multiple regression model is used to enhance the sensitivity and specificity. 

By applying the proposed method, it is found that a combinational neural logic 

network can achieve better results with more understanding of the characteristics of 

application. 

The Chapter is organized as follows: combinational neural logic system and multiple 

regression model, plus their training procedures by the use of HPSOWM are discussed 

in Sections 4.2 and 4.3 respectively. To show the effectiveness of proposed MR-based 

neural logic system, an application example will be given in Section 4.4. Finally, a 

chapter conclusion will be drawn in Section 4.5. 
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4.2 Design of MR-based Combinational Neural-Logic Net-

work (NLN) 

An integrated method based on neural logic network with multiple regression model 

is presented in this Section. As presented in Fig.4.1, there are two steps to develop 

the proposed system. For the first step, the approximated output is obtained by 

using the property of the combinational neural logic network structure. A statistical 

multiple regression is used in the second step for learning more about the relation-

ship between the combined inputs, i.e., approximated output of first sub-system and 

remaining inputs and the overall system outputs. By applying the proposed method, 

it is found that a combinational neural-logic network can achieve better results with 

more understanding of the characteristics of application. 

The design of NLN is based on the binary logic gates (AND, OR and NOT) [Lam2009], 

in which truth table and K-map are constructed depending on the knowledge of ap-

plication. By using logic theory, some redundant connections and weights of combi-

national neural logic networks are reduced. The network structure becomes simpler 

compared to other conventional neural network and enhances the training perfor-

mance. 
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Figure 4.1: The proposed MR-based combinational neural logic system 

4.2.1 Combinational Neural-Logic Network (NLN) 

In this section, a combination neural logic network consisting of rule based logic op-

eration and neural network operation will be discussed. As presented in Fig. 4.2, the 

proposed neural logic network mainly consists of (1) rule-based logic-AND, -OR and 

-NOT operations, (2) neural network operation and (3) combination function. 

Input-

;,~--------------------------------------------------,, 
I \ 

I \ 

: Rule Based Logic Operation J 
I 
I 

Combination ! -r~ 
. ~utput 

Function ! 
I 

I I 
1 Neural Network Operation I 
I I 
' I \ I 

''~-------------------------------------------------·'' 

Figure 4.2: Internal Structure of Combinational Neural Logic System 

In this hybrid system, the given system input will firstly undergo the rule-based logic 

operation which stores the boundary conditions and the properties of the logic-gates. 

The neural network operation is used to introduce the nonlinearity to the logic gates 
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for error correction. The neural logic network output is obtained via the combination 

function through the use of both rule-based logic operation and the neural network 

outputs. 

4.2.1.1 Rule-Based AND Gate 

For rule based logic operation in Fig. 4.2, a two-input-single-output logic AND gate 

is firstly proposed in this sub-section. Referring to Table 4.1, the neural logic AND 

operation is defined as: 

ul(t) ® u 2 (t) = 0 V (ul(t) + u2(t)- 1) E [0 1] ( 4.1) 

which is actually the bounded product of the input u 1(t) and u2 (t), where t denotes 

the current number of input vector which is a nonzero integer. V and ® denote the 

maximum operator AND operator. The inputs lie between 0 and 1 inclusively. The 

output of the neural-logic-Al\D operator will be fed to the rule base which guarantees 

the boundary conditions and the property of binary AND gates as shown in Table 

4.1. Throughout this paper, the neural-logic-AND operator is denoted by a "o", e.g., 

u 1(t) AND u2 (t) is written as u1(t) o u 2 (t). 

AoO = 0 Ao1 =A AoA=O AoA=A 

0 0 0 = 0 0 01 = 0 10 0 = 0 1 0 1 = 1 

Table 4.1: Boundary Condition and Properties of The Neural Logic Al\D Gates 
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4.2.1.2 Rule-Based OR Gate 

A two input single output logic-OR gate is presented for rule based logic operation in 

Fig. 4.2. Similarly, the inputs and output of rule-based OR gate lie between 0 and 1 

inclusively. Referring to Table. 4.2, the logic-OR gate is defined as: 

u1 (t) EBu2 (t) = (u1 (t) +u2 (t)) 1\1 E [0 1] (4.2) 

which is actually the bounded sum of the inputs x 1(t) and x2(t). EB denotes OR 

operator. Its operation follows the properties of binary OR gates as shown in Table 

4.2. The symbol, • is used as the OR operator throughout this paper, e.g., u 1(t) OR 

u2(t) is written as u1 (t) • u2 (t). 

A•O= A A•1 = 1 A•A=A A•A=A 

0. 0 = 0 0 •1 = 1 1• 0 = 1 1•1 = 1 

Table 4.2: Boundary Condition and Properties of The Neural Logic OR Gates 

4.2.1.3 Neural Network Operation 

For neural network operation in Fig.4.2, a three layer fully connected neural network 

in Appendix A.1 is employed. As discussed, the input vector for proposed neural 

network is denoted as U (t) = [u1 (t), u2 (t), ... Unin(t)] in which nin is the number 

of inputs, for a two input-input-singale-output neural logic-AND gate nin is equal to 

2 ; Vij, j = 1, 2, ... , nh denotes the weight between the input layer and the hidden 
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layer; nh is the number of hidden neuron; Wjl, l = 1, 2, ... , nout denotes the number 

of output nodes. For two-input-single-output neural logic-AND gate, the nout=1; bJ 

and b1 are the biases for hidden and output nodes. 

The input-output relationship of a fully connected feedforward neural network in 

Fig.A.l.1, Appendix A.l is calculated as follows: 

l = 1, 2, ... 'nout ( 4.3) 

The logarithmic sigmoid transfer function in (A.l.2) and hyperbolic tangent sigmoid 

transfer function in ( A.l.3) are used in the hidden layer and output nodes activation 

functions f} (-)and J? (·). From (4.1) and (4.3), the input-output relationship of the 

neural logic-AND gate is defined as: 

( 4.4) 

Consequently, the output of neural logic-OR gate can also be obtained from ( 4.3) and 

( 4.2) as follows: 

boR (t) = (0 V foR (ul (t) E8 U2 (t), Yl (t))) 1\ 1 ( 4.5) 

Subject to the properties of Table 4.1 and 4.2, the symbol 1\ and V denote the min-

imum and maximum operators. The combination function !AND(-) and foR(·) for 

neurallogic-A~D gate and neural logic-OR gate to be designed based on the applica-

tion requirements. They satisfy the boundary conditions and exhibit the properties 

of the binary AND and OR gates. Referring to Fig. 4.2, the output of rule based 

logic expression and neural network operation are defined as v1 and v2 . 
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Similarly, by the use of the characteristics of binary logic NOT gate, the output of 

neural-logic-NOT gate can also be defined as: 

<5 NOT ( t) E [ 0 1] = 1 - U ( t) (4.6) 

In ( 4.6), it can be seen that the characteristics of a binary logic NOT gate are still 

retained, i.e., ~OT 0=1 and NOT 1=0. The neural-logic-KOT operator is denoted 

by a "bar". For instance, NOT u(t) is written as u (t) 

4.2.2 Design Example on Combinational Neural-Logic Network 

In this section, the design of the combinational neural-logic system will be illustrated 

using a simple example. First, a truth table which governs the relationship among 

some linguistics stages, i.e., high (H) and low (L) are constructed. It should be noted 

that the linguistic variables, H and L are different from those in binary logic systems. 

H and L in binary logic systems refer to crisp 1 and 0. In combinational neural logic 

system, H and L refer to a state which is about 1 and 0. If a combinational neural 

logic circuit have two input (z1 and z2 ) and one output (<5), the two linguistic states 

for each input are H and L. A truth table for two input system is given in Table 4.3: 
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Zl Z2 8 

L L H 

L H H 

H L H 

H H L 

Table 4.3: Truth Table: Design Example 

L -
L 

I I 
I I 
I I 

, i.·H1"'-~1 
\ ' ,-, I 
\ ;_ i_ I 

\ , ...... _ .. , 

Figure 4.3: K map: Design Example 

The two linguistic states such as H and L divide the input into two subregions 0 to 

1. Taking the first row one of Table 4.3 as an example, it can be interpreted as if z1 

is about L and z2 is about L, then 8 is about H. These rules are determined based 

on human knowledge about the problem to be handled. Based on the truth table, a 

combinational neural logic system can be designed. 

With reference to the state H, taking z1 as an example, .Z1 denotes the neural logic 
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NOT of z1 . It means that z1 is about Hand 21 is about L in the neural logic function 

respectively. Referring to the truth tables in Table 4.3, the Karnaugh map (K-map) 

can be obtained as shown in Fig. 4.3. 

By the use of the K-map in Fig. 4.3, the output 8 can be obtained: 

6 = (21 o 22) • (z1 o z2 ) • (z1 o 22) (4.7) 

Referring to the property of neural logic gates, (A • A= A) tabulated in Tables 4.1 

and 4.2, ( 4. 7) can be written as: 

6 = (21 0 22) • (zl 0 22) • (21 0 z2) • (zl 0 22) 

(21 o (22 • z2)) • ((21 • z1) o 22) 

- 21 • 2"2 

( 4.8) 

( 4.9) 

(4.10) 

Remark 4.1 The above application illustrates the idea of designing a two-input­

single output combinational neural logic system. The idea can readily be extended to 

design a multiple-input-multiple-output combinational neural-logic system. It should 

be aware that the design of NLN, such as the construction of truth table and K-map 

in Table 4.4 and Fig. 4. 5, the definition of combination function in Fig. 4.2, are 

largely depended on the characteristics of application. 
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4.2.3 Multiple Regression Model 

A multiple regression model [Freedman2005] introduced in this section is used to find 

the relationship between the system's inputs and outputs. Referring to Fig. 4.1 1 

the inputs of regression model are the output of first subsystem ( 8) and the rest of 

the inputs based on the design requirement. In general, multiple regression model 

procedures will be estimated in the following form: 

(4.11) 

where Xi and Gi are the system inputs and outputs, i represents the input-output 

dimensions, (3 denotes the parameters of the regression model, and T1 is the number 

of order. In order to find the optimized model parameters, HPSOWM in Section 3.3 

is used. 

4.2.4 Design Parameters of MR-based Neural Logic Network 

A. Number of Hidden Nodes (nh): The size of the hidden layer is a general question 

raised on designing multilayer FFNN for real-life applications. An analytical 

method to determine the number of hidden nodes is difficult to obtain owing 

to the complexity of the network structure and the undetermined nature of the 

training process. Hence, the number of hidden nodes is experimentally found. 

In practice, the number of hidden nodes (nh) depends on the application and 

the dimension of the input space. 
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B. Network Parameters (VV eights): The network parameters, weights and biases 

are Vij, w11 , b1 and b1 and a search method hybrid particle swarm optimization 

with wavelet mutation (HPSOWM) in Section 3.3 is used to find optimal vales. 

C. Parameter (;3 ): The regression parameters/coefficients [;30 ;31 ;32 ... j3TJ are 

nonrandom but they are unknown quantities. In general, these parameters are 

predicted and substituted in the MRS equation in ( 4.17) for model estimation. 

It is important for correct determination of beta in order to find out the rela­

tionship between dependent variable (G) and independent variables (X). 

D. Total number of parameters (npara1): The total number of network parameters 

are calculated by: 

npara1 = (nin + 1) X nh + (nh + 1) X nout (4.12) 

E. Total number of parameters (npara2): For regression model, the total number of 

parameter is largely depend on the number or order 7], i.e., for second order, 77 

is 2 and there are three tunable parameters [;30 ;31 ;32 ] to be designed. The 

npara2 are calculated by: 

npara2 = (2 X nin) + 1 (4.13) 
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4.3 Training of MR-based NLN using HPSOWM 

The parameters of the MR-based combinational neural logic system are optimized 

by HPSOWM in Section 3.3 using the same fitness function in (3.31) in Section 

3.4.4. The optimized MR-NLN parameters are obtained through the maximization 

of defined fitness function in (3.31). During the training process, for a given set 

of particles x = [vii; wi1; bi; b1; ,8], HPSOWM evaluates the fitness value of each 

particle at each iteration step and searches for the optimum network parameters. In 

order to train MR-NLN, the number of iterations is set at 1000. 

4.4 Case Study in Hypoglycemia Detection System 

To monitor the status of hypoglycemic episodes in T1DM, the proposed integrated 

method, a neural logic network with multiple regression in Fig. 4.4 is applied on the 

development of a non-invasive hypoglycemia monitoring system. 

J 
I l_ 

Hypoglycemia ( 8 
HR 
QTc 
~ 

~ NLN (+/-) MRS 
iM/R i 
I I I !:J.QTc 

I I 
HPSOWM I i ............. -.................................................................................................................. _ .. _ .................................................................... , 

(h) 
Hypoglycae mia 

(+ve/-ve ~ 

Figure 4.4: The proposed combinational neural logic network for hypoglycemia mon-

itoring system 
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The inputs are four psychological parameters of ECG signal, the heart rate (HR) and 

the corrected QT interval (QTc), change of heart rate and change of corrected QT 

interval (D.H Rand D.QTc) while the output represents the presence of hypoglycemia 

(h), +1 represents hypoglycemia and -1 is non-hypoglycemia. In this hybrid system, 

through alternation the alternation of physiological parameters such as HR and QTc, 

the episodes of hypoglycemia were firstly predicted by the use of knowledge based 

neural logic network (NLN) while the multiple regression model is used to enhance 

sensitivity and specificity by the use of D.H R and D.QTc. After the training pro­

cess, the NLN gaves the predicted hypo-status ( 6) and the multiple regression model 

continuously detects the presence hypoglycemia based on 15 value. 

To illustrate the design procedure and the merits of the proposed approach, the pro­

posed MR-based combinational neural-logic system is employed to perform detection 

of hypoglycemia. Its design is based on expert knowledge of the task to be handled. 

A truth table is firstly set up which governs the relations among some linguistic states 

i.e., H for high and L for low. The H and L in binary logic systems refer to crisp 

1 and 0 respectively. In the subsystem's first part, NLN subsystem in Fig. 4.4, the 

physiological parameters of ECG signal such as HR and QTc are used as the inputs 

and the 6 is defined as the approximated output. 

122 



4.4 Case Study in Hypoglycemia Detection System 

HR QTc 0 

H H H 

H L L 

L H L 

L L L 

Table 4.4: Truth Table: Hypoglycemia Detection 

L L 

L 
-----·H·--··-------------

1 \ 
t j 

\ / 
.................. _________ .... ., ...... '' 

Figure 4.5: K map: Hypoglycemia Detection 

The two linguistic states for each variable are H and L given in the truth table, 

Table 4.4. These two linguistics states divide the input into two subregions, 0 to 

1. Depending on the characteristics of the applications, for a value of input HR: 

it takes as logic condition 1 (H) if HR E [1.01 "'2.575] whereas 0 (L) if HR E 

[0.4 79 "' 1.0019]. The same condition applied for QTc, it is defined as 1 (H) if QTc E 

[1.034"' 1.41] else 0 (L) if QTc E [0. 7"' 1.033]. For both HR and QTc, the values 
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which are out of these boundary conditions are taken as don't care condition (X). 

Picking up the first row in Table 4.4 as an example, it can be interpreted that if HR 

is about H (increased HR)and QTc (prolonged QTc) is about H, then 8 is H. These 

rules are determined based on human knowledge about the problem to be handled. 

With the help of the truth table in Table 4.4, the K-Map is constructed as shown in 

Fig. 4.5. Based on its own characteristics of this clinical application, the proposed 

NLN is designed to exactly follow the properties of logic-A~D gates which rules are 

defined from Table 4.1. Thus, the following logic expression is obtained as the output 

of the first combination neural logic subsystem ( 8) in Fig. 4.4 which is governed by 

the AND properties: 

8= HRoQTc ( 4.14) 

In order to map the inputs to be [ -1 1], the combination function in Fig. 4.2 is se-

lected as "tansig" , i.e., fAN D (VI, v2) = ta nsi g ( v1 + v2 ) in which vi and v2 are defined 

as the outputs of rule based logic operation and neural network operation. Other 

functions which could be replaced depend on the application. In this application, 

they are chosen experimentally to give a satisfactory result. 

After the approximated output 8 in Fig. 4.4 is obtained, the second subsystem called 

multiple regression model in Section. 4.2.3 is used to classify the presence of hypo-

glycemia based on the approximated output 8, .6..HR and .6..QTc. This model is used 

for fine-tuning of hypoglycemic detection performance due to the slight correlation of 
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~HR and ~QTc. The advantages of the regression model are that simple structure 

and few parameters are needed. 

4.4.1 Experimental Results and Discussion 

In this study group of 15 patients with Type 1 diabetes, the same data are used as that 

in Section 3.4.2. Similarly, BGL < 3.3mmol/l was considered a hypoglycemic episodes 

and the relationships between overnight measurements of QT interval corrected for 

heart rate (QTc) and falling BGL were revealed by the use of statistical correlation 

analysis given in sub-Section 3.4.5.1. In this analysis, the significant increment in 

HR, QTc in response to episodes of hypoglycemia gives p values of (1.033 ± 0.242 vs. 

1.082 ± 0.242 ± < 0.06) for HR and (1.031 ± 0.086 vs. 1.060 ± 0.084 < 0.001) for 

QTc. 

Table 3.1 discussed that among 15 patients, 12 T1DM patients were found to have 

their natural occurrence of hypoglycemic episodes for the defined BGL threshold 

level ( < 3.3mmol/l) while 3 of them had no associated hypoglycemia events. It is 

because there were no naturally occurring episodes of hypoglycemia presented during 

measurement or they may not have been valid with the defined BGL threshold level. 

Based on the patients information in Table 3.1, the overall data set is organized into 

the training set (patient number 1 to 5 with 184 data points), the validation set 

(patient number 6 to 10 with 192 data points) and the testing set (patient number 
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11 to 15 with 153 data points) which is the same condition in 3.4.5, Chapter 3. 

In this clinical study, an MR-combinational neural logic network is systematically 

designed to incorporate the developed hybrid neural logic network structure to the 

characteristic of application. As presented in Fig.4.4, there are two steps to develop 

the proposed system for hypoglycemia detection. The first step is to determine ap-

proximated output ( 8) based on the alternation of ECG parameters such as HR and 

QTc. In the first sub-system only two inputs are used because the design of the 

combinational neural logic network has two inputs and one output structure. 

As discussed in the earlier section, for logic operation in the first sub-system, the logic-

AND gates are selected based on their own characteristics of application. Referring 

to ( 4.4), the input-output relationship of the neural logic-AND gate is defined as: 

8AND (t) = (0 V !AND (ul (t) ·~ u2 (t), y (t))) 1\ 1 (4.15) 

As combinational neural logic system has two inputs and one output structure, y in 

(4.15) is defined from (4.3) as follows: 

( 
nh (nin ) ) y = J? 2:::::: Wjzfjnin 2:::::: WijUi - bj - bl 

J=l t=l 

(4.16) 

For J? (·) and f} (·), logsig (A.l.2) and tansig transfer functions (A.l.3) are used in 

the hidden layer and output nodes activation functions in order to map the output 

between 1 to -1. 
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Once the approximated output (6AND) is obtained, a multiple regression model is 

developed for fine-tuning of hypoglycemia detection system with the inputs (~HR, 

~QTc and 6) and output G. With these inputs and output, the multiple regression 

model in Section 4.2.3 becomes: 

( 4.17) 

In this application, the input parameters Xi is defined as Xi = [6i ~HR ~QTc], i = 

1, 2, ... , nin· The output Gi ~ 0 represents positive hypoglycemia (h = +1) and 

Gi < 0 represents negative hypoglycemia (h = -1) which is expressed as: 

{ 
+1, 

h= 

-1, 

( 4.18) 

As discussed in Section4.3, all the design parameters of MR-based combinational neu-

ral logic system will be taken as the element of particles to perform the HPSOWM 

process. Different numbers of hidden nodes (7, 11 and 15) are tried for the feedfor-

ward neural network in neural network operation in Fig. 4.2. Finally, the optimal 

performance was obtained when the number of hidden nodes, nh is 11. The lower 

and upper bound of the network parameters [vij Wjz bj bt] are given [-10 10]. For 

MR parameters, the lower and upper bound are given [-75 75]. The total number of 

tuned parameters for the first and second subsystem are about 45 and 7 parameters. 

In order to train MR-NLX, the number of iteration is set at 1000. The setting of 

HPSOWM parameters are the same that is chosen in subSection 3.4.5. In the follow-

ing section, the best trained of MR-based combinational neural logic system with the 
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best set of parameters will be given. 

4.4.1.1 Results Analysis 

To evaluate the effectiveness of the proposed hypoglycemia monitoring system, five 

approaches such as (1) multiple regression based neural logic network (MR-NLN) 

(2) neural logic network (NLN) [Lam2007] (3) wavelet neural network (WNN) in 

Appendix A.2 ( 4) feedforward neural network (FF~N) in Appendix A.1 and (5) 

multiple regression (:MR) in Section 4.2.3 are compared and analyzed. 

In this clinical application, it is important to keep a higher value of sensitivity because 

it mainly identifies actual hypoglycemic episodes in patients with T1DM. Due to 

the importance of sensitivity, the fitness function (3.31) was designed and find the 

optimized sensitivity while the specificity was kept at acceptable value, i.e., sensitivity 

2: 60% and specificity 2: 40% for this specific application. 

To analyze this, the initial specificity (ry1) in (3.31) was set at 0.6 (1 - ry1=60%) 

which is equivalent to specificity, ry1=40%. At the defined initial condition, ry1=40%, 

the average (mean) value of training, validation and testing results were analyzed 

in terms of the sensitivity and specificity in Table 4.5. The best set of parameters 

among 20 runs will be employed to develop a hypoglycemia monitoring system. If the 

proposed :VIR-NLN can correctly detect the status of hypoglycemia, the sensitivity 

will be higher, ie., the higher sensitivity represents the better performance of proposed 
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classifier. 

MR-NLN NLN WNl\ FFNN MR 

(4 Inputs) (2 Inputs) (4 Inputs) ( 4 Inputs) ( 4 Input~ 

Training Sen (~) 90.91% 90.23% 84.12% 83.64% 81.82% 

Spec (77) 40.47% 41.28% 40.63% 40.50% 41.32o/c 

Validation Sen (~) 90.62% 86.81% 80.44% 79.07% 82.19% 

Spec (77) 40.29% 40.00% 40.94% 41.38% 40.75o/c 

Testing Sen (~) 78.81% 74.93% 71.39% 68.84% 64.65% 

Spec (77) 51.45% 53.83% 44.37% 48.34% 53.09% 

Gamma("!) 67.86% 66.49% 60.58% 60.04% 60.03% 

Table 4.5: Mean Value of Training, Validation and Testing Results as 771= 40% 

As presented in Table 4.5, the average (mean) testing result of proposed MR-NLN 

was found to be satisfactory with better testing sensitivity and specificity, (78.81 

and 51.45% ) compared to the other traditional classifiers such as NLN (74.93 and 

53.83%), Wl\'N (71.39 and 44.37%), FFNN (68.84 and 48.34%) and MR (64.65 and 

53.09%). By comparing with MR-NLX and ~1~, MR-NLN gives a better sensitivity 

which implied that the sensitivity of the monitoring system was enhanced by the 

inputs of 6HR and 6QTc. 

In this application, it seems that the testing specificity in Table 4.5 (51.45%) is higher 
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than the training specificity which is about 40.47%. It is because of the nature of 

patients' data that is specified for testing set. As can be seen in Table 3.1, due to 

different nature of patients' data are used for the training set (patient number 1 to 5 

), validation set (patient number 6 to 10) and testing set (patient number 11 to 15), 

the higher testing specificity is obtained. If the nature of testing data set is closely 

related to the training and validation sets, the testing specificity are expected to be 

similar to those in training and validation. 

No.of Inputs Sen (~) Spec (ry) Gamma (r) 

MR-NLN 4 79.07% 53.64% 68.90% 

NLN 2 76.74% 54.55% 67.86% 

MR-FIS [Ling2011] 4 75.00% 50.00% 65.00% 

WNN 4 74.42% 48.18% 63.92% 

FIS [Ling2010] 4 70.45% 55.14% 64.32% 

FFNN 4 69.77% 49.09% 61.50% 

MR 4 65.12% 57.27% 61.98% 

Table 4.6: Best Testing Result for Hypoglycemia Detection as rtz= 40% 

Generally speaking, if more patients' data (up to 100 patients) could be collected, the 

testing specificity may come closer to the training specificity. However, all the actual 

data were collected at the Princess Margaret Hospital for Children in Perth, Western 
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Australia, Australia and obtaining more patients data is currently not possible due 

to the limited number of volunteered children with Type 1 diabetes and the limited 

funding supports. It should be considered as the limitation of this application. 

The 1 analysis was introduced as discussed in Section 3.4.5.2, i.e., 1 = oe + (1- O)'f/, 

(B E [0.1, 1]) for evaluation of proposed system performance. By Substituting the 

minimum requirement of proposed system which is around sensitivity ;::: 60% and 

specificity ;::: 40%, the 1 analysis becomes 1 = 0.6e + OA71. Based on this 1 analysis, 

as can be seen in Table 4.5, the proposed MR-NLN outperformed other comparison 

methods by achieving 1 value 67.86%. 

After the training process, the optimized MR-NLN achieved the better testing sen­

sitivity, 79.09% and acceptable specificity, 53.64%. It is because the network was 

systematically designed to incorporate the characteristics of the application into the 

structure of combinational neural logic system. As can be seen in Table 4.6, the 

proposed MR-NLN gives better sensitivity and specificity compared with the con­

ventional neural networks (WNN, FFNN), evolved fuzzy interference system (FIS) 

[Ling2010], genetic algorithm (GA) based multiple regression with fuzzy interference 

system (MR-FIS) [Ling2011] and MR. 

To validate the effectiveness of the proposed method, the analysis were continuously 

carried out by setting the initial specificity, 11t at 50%. As presented in Table 4.7, 
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No.of Inputs Sen (~) Spec (77) Gamma (r) 

MR-NLN 4 69.77% 60.91% 66.23% 

NLN 2 62.79% 62.73% 62.76% 

WNN 4 62.79% 55.85% 60.05% 

FFNN 4 60.47% 60.00% 60.28% 

MR 4 65.12% 57.27% 61.98% 

Table 4. 7: Best Testing Result for Hypoglycemia Detection as ry1= 50% 

the proposed MR-NLN gave larger gamma (r) value, 66.23% compared to other 

conventional neural networks. In short, the proposed MR-NLN can successfully detect 

the status of hypoglycemia by achieving best sensitivity and specificity at 79.07 and 

53.64%. 

4.5 Conclusion 

In this paper, multiple regression based-neural logic network is developed for hy-

poglycemia monitoring system by considering changes in physiological parameters 

of ECG signal during hypoglycemia and non-hypoglycemia reactions. Traditionally, 

neural networks with the same structure were applied to handle every application and 

may not give the optimal solution due to different characteristics of applications. 

In these two subsystems, the approximated hypoglycemia status, 8 is firstly obtained 
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4.5 Conclusion 

through the relationship between the inputs HR and QTc. Once the approximated 

output is obtained through the training process, a multiple regression model is used 

to detect the status of hypoglycemia with the inputs 8, ~HR and ~QTc. The results 

in Section 5.4.1.1 indicate that the hypoglycemia episodes in T1DM children can be 

efficiently detected non-invasively and continuously by achieving better sensitivity 

(79.07%) and specificity (53.64%). 

133 



Chapter 5 

Evolvable Rough-Block-Based 

Neural Network for Non-Invasive 

Hypoglycemia Detection 

5.1 Introduction 

On the last two Chapters 3 and 4, the variable translation wavelet neural network 

(VTWNX) and a neural logic network with multiple regression have been presented. 

With these improved networks, the classification performance was improved over 

conventional neural networks. However, those neural network models offer far fewer 

degrees of freedom due to their network structure. Conceptually, the number of 

degree of freedom allows the network to be more adaptive with the characteristics of 
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application. If there are less degrees of freedom, the model becomes less accurate. 

Therefore, the choice of an appropriate architecture of neural network plays an im-

port ant role. In [Nielsen1990], it has been proposed that several neural network 

architectures depend on the characteristics of their applications. For instance, the 

specialized structure of recurrent neural networks choose certain connections between 

neurons which are particularly relevant to given data sets [Kim1998]. Using such 

specialized structures it is possible to increase the efficiency and learning process of 

neural networks. 

As different structures of neural networks are needed for different applications with 

different characteristics, the neural network should be designed based on the char-

acteristics of applications in order to obtain optimal performance [Lippmann1987] 

[Kinoshita1987]. Though neural network itself has advantages in self-adaption, bet-

ter generalization capability and ability to work in noisy environments, there still 

remains some problems in managing the architecture of the network and accelerating 

the training of the network [Lingras1998]. 

The introduction of rough set theory has been regarded as an effective approach 

in order to deal with modeling vagueness and uncertainties. It has proved that its 

soundness and usefulness has been successfully applied in many fields, such as machine 

learning, data mining, data analysis, expert systems, knowledge acquisition and pat-

tern recognition [Pawlak1982] [Pawlak1991]. It is also a useful tool for pre-processing 
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data by applying its concept of approximation with a pair of set, lower and upper 

approximation of the set [Hassan2010]. 

Both rough set theory and neural networks show advantages in dealing with imprecise 

and incomplete knowledge. However, neural networks have complex structures when 

dimensions of input data are large while rough sets have the advantage of decreasing 

redundance among input data sets [Liu2004]. On the other hand, rough sets have poor 

generalization and weak tolerance whereas neural networks have better generalization 

ability and self-organization performance. By simplifying the input of neural network 

with the use of rough set algorithm, the number of training samples is reduced. 

Consequently, the size of the whole network structure is reduced and obtains faster 

convergence [Jagielska1999]. 

Dealing with individual limitations, a hybrid intelligent system is created by inte­

grating rough set techniques in the architecture of the neural network. This is due to 

the ability of rough sets to discover patterns in ambiguous data and to provide tools 

for data and pattern analysis [Jagielska1998]. In [Hassan2002], a hybrid method is 

developed by the integration of rough set theory to a neural network system which 

is specifically used for decision making and classification. In terms of the advantages 

of rough sets and neural networks, the hybrid system has been widely applied in 

the field of pattern recognition, image retrieval [Jaroslaw2003] and medical diagnosis 

[Zhang2009]. 
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5.1 Introduction 

In [Zhao2011] a new classifier, rough set based back propagation neural network is 

presented for bearing a fault diagnostic system. It has been illustrated that the 

hybrid system is able to classify the data effectively and achieves the goal of bearing 

fault classification. To estimate highway traffic, a rough neural network with upper 

bound neuron and lower bound neuron are introduced [Chandana2005]. In addition, 

a medical diagnostic support system, especially working as a cancer detection system 

is designed using extended rough neural network and multiagent [Yamaguchi2008]. 

Alternatively a hybridization methodology involving neural, fuzzy and rough ap-

proximation concepts, so called neuro-fuzzy inference systems has been developed 

[Chandana2007]. It is tested on the problem of approximating theoretical aerody-

namic equations of various parameters. The results are also confirmed that the num-

ber of training epochs are considerably reduced by the use of a rough approximation 

based neuro-fuzzy inference system. Although many hybrid systems based on rough 

sets and neural networks have been proposed, there are still some problems in feature 

selection and classification performances. 

In this Chapter, a new rough approximation block-based neural network (R-BBNN) 

is designed based on the concept of rough set properties, partitioning the applied 

input signal to a predictable part (certain) and the random (uncertain) part. Based 

on input data information, the lower region is defined with predictable data while 

the boundary region is considered with randomness and uncertainty of data. By the 

use of this lower and boundary regions, the block-based neural network is designed 
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to deal only with the boundary region which mainly consists of the random part of 

the applied input signal. Such approach improves the classification accuracy. 

Owing to different characteristics of neural network (NN) applications, a traditional 

neural network with a common structure may not be able to handle every application. 

Based on the knowledge of application, BB~N is selected as a suitable classifier 

due to its modular characteristics and ability in evolving the size of the network 

by adding more basic blocks. The structure of the network simply corresponds to 

determining signal flows between each block [Moon2001]. The design parameters of 

proposed R-BBNN are learned by the use of HPSOWM in Section 3.3. Case studies on 

hypoglycemia detection are employed to demonstrate the better performance which 

is achieved by rough-block-based neural network (R-BBNN). 

The organization of this Chapter is as follows: in Sections 5.2 and 5.3, the design 

and learning of the proposed rough-block-based neural network (R-BBNK) by the 

use of HPSOWM is presented. The detection of nocturnal hypoglycemic episodes in 

TlDM by the use of the proposed R-BBNN method is discussed in Section 5.4. To 

show the effectiveness of the method, several experiments are conducted, compared 

and analyzed with different kinds of neural networks in subSection 5.4.1. Finally a 

conclusion is written in Section 5.5. 
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5.2 Design and Architecture of Rough-Block-Based Neural 

Network 

The hybridization technology using rough sets concepts and neural computing for 

decision and classification are presented in this section. Neural network has been 

widely used as a universal function approximator due to its excellent property in 

dealing with complex function approximation [Jain1996]. However longer training 

time and complexity in neural computation become limiting factors when handling 

neural networks in every application [Yuliang2009]. Recently much attention has been 

given to accelerate the process of neural network learning and reduce complexity by 

carrying out a pre-process stage before the network training. 

As presented in Fig. 5.1, in order to carry out the pre-processing stage, the lower 

region and boundary region are defined based on the rough set concepts. By the use 

of defined rough regions, the input signal is partitioned to predictable (certain) part 

and random (uncertain) part. In this way the neural network is designed to deal only 

with the boundary region which mainly consists of the random part of applied input 

signal. Such architecture has the ability to reduce the size of NN input and scale 

down the whole structure of the network [Pawlak2002]. It satisfies the fact that a 

smaller network usually requires shorter learning time. 
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Figure 5.1: Proposed Rough-Block-Based neural network (R-BBNN) 

In order to unite the characteristics of application to the structure of neural net-

work, block-based neural network (BBKN) is selected as a suitable classifier due to 

its ability in evolving internal structures and adaptability in dynamic environments 

[ Jiang2004]. The proposed system in Fig. 5.1 is systematically designed to incorpo-

rate the characteristics of application to the structure of hybrid rough-block-based 

neural network (R-BBNN). A global training algorithm, HPSOWM is introduced for 

parameter optimization of proposed R-BBNN. 

5.2.1 Rough Set Preliminaries 

The rough sets theory predominantly deals with the classification analysis of impre-

cise, uncertain or incomplete information [Lingras1996]. It offers effective methods 

that are applicable in many branches of artificial intelligence (AI) technologies. Its 

soundness and usefulness has been proven in many real life applications. 
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Figure 5.2: Rough Set Approximation 

As shown in Fig. 5.2, the universe, (U) be a finite, non-empty set with, I, being 

an equivalence relation called the indiscernibility relation on U. I ( x) would then be 

described as an equivalence class of the relation I containing the element x. The 

concept of an indiscernibility relation brings about the fact that not all elements in 

the universe, U can be discerned given the information available. Further, such an 

indiscernibility relation is used to determine the lower, upper and boundary approxi-

mations which are expressed as: 

I (X) {x E U: I(x) ~X} (5.1) 

l(X) - {xEU:I(x)nX#O} (5.2) 

BN1(X) I (X) -l.(X) (5.3) 

where I (X) and I.( X) are defined as the lower and upper region of approximation 
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region while the boundary region is denoted as the disjoint between lower and upper 

approximation. Decision rules describe data patterns which are represented in the 

form: IF o: THEN (3, where o: is the condition part and (3 is the predicted class. 

The optimized lower and upper boundary parameters are obtained by using a global 

learning algorithm, HPSOWM in which elements of particle are organized with the 

boundary parameters, 6 E [1(X), I(X)] and give optimal values for those elements 

of particle. A detailed discussion on HPSOWM is given in Section 3.3. 

5.2.2 Topology of Block Based Neural Network 

A block-based neural network (BBNN) is a network design that is more flexible for 

changing the structure depending on the signal flow between blocks. It can be rep­

resented by a 2-D array of blocks and each individual neuron block works as a basic 

signal processing unit that is composed of a feedforward neural network having four 

variable input/output nodes [Moon2002]. 

As shown in Fig. 5.3, the structure of BBNN is organized with m rows and n columns 

of blocks which are labeled as Bij, in which ( i = 1, ... m) and (j = 1, ... , n). The first 

column of blocks, B11 , B21 , B31 ... , Bm1 is determined as the input layer of BBNN 

network structure while B 1n, B2n, B3n ... , Bmn is represented as output layer. The 

output of BBNN (y = YI, y2 , y3 , ..• , Ym) is a function of summation of weighted 

inputs and a bias which is characterized by feedforward neural network architecture. 
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A constant input value is given to redundant input nodes and un-used output nodes 

are ignored. 

Figure 5.3: Structure of Block-Based Neural Network 

Due to modular characteristics, BBNN can be easily expanded to be a larger net-

work. In Fig. 5.3, a block is connected to its neighboring blocks with signal flow 

represented by arrows: -!.. represent as 0 while t and ---t assign as 1. In this work, the 

connections between layers will only be considered as feedforward configuration in a 

forward direction. The structure of BBNN is determined by automatically internal 

configuration or input-output connection of basic blocks. 
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5.2.2.1 Four Different Internal Configurations of BBNN 

According to the input-output connections of the network structure, the block has four 

different types of internal configuration. Fig. 5.4 (a) and (d) represent two inputs and 

two outputs with different internal configurations while (b) and (c) correspond to one 

input-three outputs and three-output configurations. The capability of generalization 

is improved through various internal configurations of a block. Even though each basic 

block should be one input and three outputs (1/3), three inputs and one output (3/1), 

two inputs and two outputs (2/2), the extreme cases of all input nodes (4/0) or all 

output nodes (0/ 4) are considered as invalid configurations. 

For each basic block consists of four nodes and all node inside the block are connected 

with each other through the connection of weights, wij· A block can have up to a 

maximum of six connection weights including the biases. For the case of two inputs 

and two outputs in Fig. 5.4 (b) and (d), there are four weights and two biases. It is 

the same as in Fig. 5.4 (c), one input and three outputs structure which has three 

weights and three biases. 

For three inputs and one output in Fig. 5.4 (a), it belongs to three weights and 

one bias. Each node of a block can be an input or an output according to internal 

configuration which is determined by the signal flow. An incoming arrow to a block 

is defined as the input node and its associated outputs are considered as the block 

outputs with outgoing arrows. The output of each block is connected to another block 
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as the input signal. 

u3 u3 b2 
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u4 

Figure 5.4: Internal configurations of block-based neural network 

The output of the block is calculated by the summation of weighted inputs and biases 

corresponding to a feedforward neural network in Section A.1 as follows: 

Yj = L WijUi + bj, J. E J (5.4) 
iEJ 

where ui is the input to node i, Wij is a weight connection from node i to node j. 

bj is the bias, I and J are the two index set for input and output nodes. For (1/3) 

block I= 1 and J = 2, 3, 4. For block type of (3/1), I= 1, 3, 4 and J = 2 while the 

(2/2) block type has I= 1, 4 and J = 2, 3. For each node, it is characterized by the 
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following activation function, rp ( ·): 

( 2 -1) rp(u)=a 1 +e-,6u (5.5) 

where a and (3 are the transfer function parameters. The capability of network 

generalization is improved through various internal configurations i.e., two inputs 

and two outputs (Fig. 5.4 (a) and (d)), three inputs and one output (Fig. 5.4 (b)) 

and one input and three outputs (Fig. 5.4 (c)). 

The assignment of I and J in (5.4) depend on internal network configurations. For 

instance, in (2/2) configuration in Fig. 5.4 (a) and (d), I = 1, 3 and J = 2, 4 and 

I = 1, 4 and J = 2, 3, while (3/1) and (1/3) combination in Fig. 5.4 (b) and (c) 

have I = 1, 3, 4 and J = 2 and I = 1 and J = 2, 3, 4 . The extreme cases of four 

input nodes (4/0) or four output nodes (0/4) are considered as invalid configurations 

[ Jiang2007]. 

For instance, the output Yj of block in Fig. 5.4 (a) having the two inputs, u1 and u3 

and the two outputs, y2 and y4 is calculated as follows: 

Y2 = w12u1 + W32u3 + b2 

Y4 = Wl4Ul + W34U3 + b3 

(5.6) 

Likewise, the output Yj of other type of configurations in Fig. 5.4 (b), (c) and (d) 

can be calculated according to their respective value of I and J. A basic building 

block consists of four nodes which have cascaded each other through a connection 

weights, Wij. For each block, up to six connection weights and biases are available. In 
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this study, the connection between layers will only be considered in forward direction 

which is automatically determined by internal configurations or input-output signal 

flows (.!. represents as 0 while t and ---+ assign as 1). 

5.2.3 Design Parameters of Rough-Block-Based Neural Network 

A. Number of Hidden layers (n1): The selection of the number of hidden layer is 

the same way in which conventional feedforward neural networks are chosen. In 

a conventional neural network, the number of hidden nodes is chosen by a trial 

and error method until the optimal solution is obtained. The same conditions 

are applied, so an optimal number of hidden nodes is selected by a trial and 

error process till the desired condition is met. However there is a trade off 

between too small a number or too big a number of hidden layers, because a 

small number of hidden layers could be insufficient to reach the optimal solution 

and a larger number of hidden layers may increase the number of parameters 

to be tuned and would require more computation time. 

B. Network Parameters (Weights): The network parameters are weights, biases and 

transfer function parameters which are Wij, bj, a and (3. A search method hybrid 

particle swarm optimization with wavelet mutation (HPSOWM) in Section 3.3 

is used to find optimal values. 

C. Rough boundary parameters (6 ): Based on the nature of the application data, 
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the parameter 8 are defined for positive lower region, I+ (X) and negative lower 

region, I- (X) in (5.1)-(5.3). The correct determination of those boundary re­

gions is important because partitioning of the input data to certain (predictable) 

or uncertain (random) parts is largely depend on them. 

D. Total number of parameters {npara): The total number of R-BBNN parameters 

are calculated by: 

npara = ((nin- 1) X nz) + ((7 X nin) X nz) + (4 X nin) + 4 (5.7) 

nz ( 8 X nin - 1) + 4 X ( nin + 1) 

5.3 Training of Rough-Block-Based Neural Network 

Similarly, the parameters of the R-BBNN are optimized by HPSOWM in Section 

3.3 using the same fitness function in (3.31) in Section 3.4.4. The parameters of R­

BBNN are obtained through the maximization of defined fitness function in (3.31). 

During the training process, for a given set of particle x = [wij; a:; (3; 8], HPSOWM 

evaluates the fitness value of the each particle at each iteration step and searches for 

the optimum network parameters. In order to train R-BBNN, the number of iteration 

is set at 200. 
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5.4 Case Study in Hypo glycemia Detection System 

A case study in hypoglycemia detection system will be given in this section. The 

proposed rough-block-based neural network (R-BB~N) is employed to perform hypo-

glycemia detection in Type 1 diabetes mellitus (T1DM). Based on the knowledge of 

application, the hypoglycemia detection system is designed as 4 inputs and 1 output 

system as shown in Fig. 5.5. The four physiological inputs are heart rate (HR), 

corrected QT interval ( QTc), change in heart rate ( 6-H R) and change in corrected 

QT interval ( 6-QTc) while the output represent the status of hypo glycemia ( + 1 is 

presence of hypoglycemia and -1 represent non-hypoglycemia). 
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QTc-~' 
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/ 
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Figure 5.5: Hypoglycemia detection system using R-BBN?\ 

As shown in Fig. 5.6, in each rough region either (a) or (b), the first half region 

is defined as the lower region which mainly captures definite or certain parts of 

applied input signal. It is also responsible for output approximation. The second half 
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region is the boundary region which mainly deals with the random part of applied 

input signal. Once lower and boundary segregation have taken place, the block-based 

neural network (BBN~) will deal with the boundary region consisting of randomness 

and uncertainty, to reduce inaccurate modeling of data. The construction process of 

proposed R-BBNN is presented as follows: 

1. Partitioning of the input data to certain (predictable) or uncertain (random) 

parts based on rough regions which are made up of a combination of lower 

region and boundary region, (5.1)-(5.3). In order to meet with the objective of 

clinical application, lower region (5.1) is defined as positive lower region, I+ (X) 

and negative lower region, I- (X) in order to perform the output prediction. 

2. Prediction of output (status of hypoglycemia (+/-)by using(+/-) lower re­

gion) simplifies the neural network input i.e., if the applied input signal is 

within the positive lower region, the approximated the output is given as + 

hypoglycemia whereas it approximates as - hypoglycemia if the applied input 

signal is within the negative lower region. 

3. The rest of the elements which are associated with randomness and uncertainty 

are categorized under the boundary region (5.3) and a simultaneous classifica­

tion task is performed by block-based neural network (BBNN) Section 5.2.2. 

4. Network training is performed by the use of HPSOWM to obtain optimized 

parameters. Each particle x~ ( t) in the swarm X ( t) is encoded with rough 
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boundary parameters and network parameters as x = [<5 sz w~ b~ a ,8]. 

5. After the training process, the optimal rough boundary parameters, c5 from 

(5.1)-(5.3), BBNN parameters, structure, weight and biases, Sz, wL and b~ from 

(5.4), transfer function parameters, a and ,8 from (5.5) are obtained for the pro­

posed R-BBNN detection system. The process is repeated until no improvement 

in classification performance has been achieved. 

Input~ 

Input~ 

!+(X) 

(a) 

I_(X) 

~output 

~output 

Figure 5.6: (a) Positive lower boundary regions (b) Negative lower and boundary 

regions 
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5.4.1 Experimental Results and Discussion 

In subsection 3.4.5.1, the statistical results on normalized heart rates, correct QT 

interval and their association with hypoglycemia has significant increases in heart 

rate and corrected QT interval by giving p value of HR < 0.06 and QTc < 0.001. 

From 15 patients' data in Table 3.1, the training set (patient number 1 to 5 with 184 

data points), the validation set (patient number 6 to 10 with 192 data points) and 

the testing set (patient number 11 to 15 with 153 data points) are organized as in 

Sections 3.4.5 and 4.4.1 respectively. In this section, hypoglycemia episodes (BGL 

:::; 3.3mmoljl) are detected using the proposed hybrid rough set based block neural 

network as presented in Fig. 5.5. 

Firstly, the applied input signal such as HR, QT, ~HR and ~QTc will undergo rough 

set operation in order to partition certain (predictable) or uncertain (random) parts. 

Based on the characteristics of this clinical application,i.e., based on the nature of the 

applied inputs (HR, QT, ~HR and ~QTc) information, the boundary parameters 

for rough set operation are defined. For the input HR, the upper and lower positive 

regions are defined as I HR+ E [0.5068 ""'2.4736] and IHR+ E [0.980054""' 2.31798], 

whereas IHR- E [0.5068 ""'2.4736] and LHR- E [0.609376"' 0.94962] are defined for 

negative lower and upper regions. 

similarly, the lower and upper region for input QT is defined I QT+ E [0.5068""' 2.4736] 

and LQr+ E [0.980054 rv 2.31798], I QT- E [0.5068 I"V 2.4736], LQr- E [0.609376 rv 0.94962] 
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in which I qr+ and Iqr- represent as defined positive and negative regions. In this 

application, the inputs !:J.H R and !:J.QTc are used to improve sensitivity and speci­

ficity because they have information regarding time changes of HR and QTc. By 

feeding them to BBNN as inputs, the network obtain more information and can do 

classification tasks accurately. 

The output prediction is carried out based on those rough regions, i.e., if the applied 

input signal is within the positive lower region (I+ (X)), the approximated output is 

given as + hypoglycemia whereas it approximates as - hypoglycemia if the applied 

input signal is within the negative lower region (I_ (X) ). For instance, For the 

input HR, if it is within the positive lower boundary (IHR+ ), it is approximated as+ 

whereas it is defined as - if it is within the negative lower boundary (IHR- ). 

A similar way to input QTc, in which the boundary output is defined as + and- if they 

are under their respective positive lower boundary Iqr+ and negative lower boundary 

Iqr-. The rest of the elements which are neither in the positive lower region (I+ (X)) 

nor negative lower region (I_ (X) ) , are categorized under the boundary region (5.3) 

and a simultaneous classification task is performed by block-based neural network 

(BBNN). 

Since there are four inputs (HR, QTc, !:J..HR and !:J..QTc) are used in this application, 

the structure of BBNN in Section 5.2.2 is organized with m = 4 rows while the number 

oflayers (n1) is determined through the training process. As discussed in Section 5.2.3, 
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the selection of number of layers ( n1) is carried out by a trial and error method that 

is the same chosen for the number of hidden nodes in conventional feedforward neural 

network. In a hypoglycemia detection system, the best classification performance is 

obtained when n 1 is equal to 2 which has the best structure combination as shown in 

Fig. 5.7. 

1 1 
.,..........,. r---"1< 

HR(t)_,i 11 

M!R ( t )--:J...--..-1 

Figure 5. 7: Best Rough-block-based neural network (R-BBNN) structure 

Based on the obtained structure through the training process, the output of each 

block is calculated by (5.4) and (5.5). The overall output y in Fig.5.7 is defined as 
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positive when the status of hypoglycemia h is positive which expressed as: 

{ 
+1, 

h= 
-1, 

y2:0 

y<O. 

Without the introduction of rough regions, only for the BB:'IJ"N model, the number of 

layers (nz) needs to be up to 6 layers for the best performance as shown in Fig. 5.8. 

l l l l 1 1 
HR(t)-ff~~~-8-8-8-+Y 

QT (t)_jZJ~ ,;__, ~ ,J, ± d: -+* 
'-~~~-lli~ 

1 1 ,---l, ,h i ,---l, 
MiR(tr-.fSB-8-ili-t0-t@~-* 

l i l i l l 
AQ~(t)-~~~-E-El~--* 

l 1 l l 1 1 
Figure 5.8: Best evolved block-based neural network structure (BBNN) 

Compared with Fig. 5.7 and 5.8, it can be seen that the number of layers (n1) is 

reduced to 2 layers. As a consequence of the reduced number of network layers, the 

number of network parameters is also decreased , i.e., less design parameters in R-

BBNN4 (102 parameters) whereas 258 parameters in BBNN4. In addition, the total 
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number of training epoches required to obtain a stable system has been reduced to 200 

using rough-block-based neural network. All the design parameters of rough-block­

based neural network (R-BBNN) are encoded with particles of HPSOWM within 

the parameter boundaries,i.e., Sz E [0 1], w~ E [-7.55 7.55], b~ E [-7.55 7.55], 

a: E [1.55 10], (3 E [0.55 2.5]. The setting of HPSOWM parameters are the same 

that is chosen in subsection 3.4.5. In the following section, the best performance 

results of the proposed R-BBNN will be discussed. 

5.4.1.1 Results Analysis 

For comparison and analysis purposes,(!) a hybrid rough-block-based neural net­

work (R-BBNN),(2) block-based neural network (BBNN) [Jiang2004],(3) a hybridiza­

tion methodology involving rough set and conventional feedforward neural network, 

rough feedforward neural network (R-FFNN),(4) conventional wavelet neural network 

(WNN) in Appendix A.2 and (5) conventional feedforward neural network (FFNN) in 

Appendix A.l with 4 inputs and 1 output are employed. All approaches are trained 

by HPSOWM. 

The performance of the proposed rough set-based neural network model with four 

inputs (R-BBNN4), different types of neural network models, block-based neural net­

work with four and two inputs (BBNN4) and (BB:N"N2), wavelet neural network with 

four inputs (WNN4) and feedforward neural network (FFNN4) are firstly evaluated 

in terms of mean values (averaging over 20 runs) as tabulated in Table 5.1. 
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R-BBNN4 BBNN4 BBKN2 WNN4 FF~N41 
Training Sen(E) 82.43% 86.45% 84.85% 84.12% 83.64% 

Spec(ry) 40.03% 40.73% 40.35% 40.63% 40.50% 

Validation Sen (E) 81.25% 92.50% 87.34% 80.44% 79.07% 

Spec(ry) 41.23% 40.29% 40.13% 40.94% 41.38% 

Testing Sen(E) 82.09% 79.30% 76.28% 71.39% 68.84% 

Spec(ry) 50.91% 50.00% 50.40% 44.37% 48.34% 

Gamma( "f) 69.62% 67.58% 65.56% 60.58% 60.04% 

Table 5.1: Mean Value of Training Validation and Testing Results as rJz= 40% 

As discussed earlier, the sensitivity of the detection system is more important than 

the specificity because it mainly represents the performance of the classifier. Based 

on the importance of sensitivity, the fitness function (3.31) was designed to find 

the optimized sensitivity while the specificity was kept at an acceptable value, i.e., 

sensitivity 2': 60% and specificity 2': 40% for this specific application. 

For analysis, the initial specificity (ry1) in (3.31) was set at 0.6 (1- rJz=60%) which is 

equivalent to maximum specificity, ry1=40%. At the defined initial condition, ry1=40%, 

the average (mean) value of training, validation and testing results were analyzed in 

terms of the sensitivity and specificity in Table 5.1. 

From Table 5.1, it is found that the average (mean) testing result of proposed R-BBNN 
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is satisfactory by achieving testing sensitivity and specificity (82.09 and 50.91 %). 

Compared with other approaches, BBNN4 (79.30 of sensitivity and 50.00% of speci­

ficity), BBNN2 (76.28 of sensitivity and 50.40% of specificity), WNN4 (71.39 of sen­

sitivity and 44.37% of specificity) and FFNN4 (68.84 of sensitivity and 48.34% of 

specificity), the proposed hybrid system gives a better result in terms of sensitivity 

and specificity. 

As introduced in the earlier subSections 3.4.5 and 4.4.1, the similar gamma analysis 

( 'Y = e~ + (1 - B)ry, e = 0.1 to 1) is defined to evaluate the performance of the 

proposed R-BBNN4 detection system. The value of e is set to 0.6 since the minimum 

requirement of the hypoglycemia detection system is 60 % of sensitivity and 40 % of 

specificity. In terms of"( analysis, the proposed R-BBNN is found to be satisfactory 

which gives"( value of 69.62 % while BBNN4, BBNN2, WNN4 and FFNN4 have"( 

value of 67.58 %, 65.93 %, 64.96% and 60.04 %. 

In order to prove l::l.H R and l::l.QTc are useful inputs to enhance the sensitivity of 

the proposed detection system, the evolvable BBXN is tested with 4 inputs (BBNN4) 

and 2 inputs (BBNN2). In Table 5.1, the improvement can be satisfactorily found by 

achieving, 79.30% of sensitivity in BBNN4 compared with BBXN2 giving (76.28%) 

of sensitivity. 

Since the prediction of the hypo glycemia status, ( + 1 I -1) in ( 5.8) is performed using 

(+I-) lower regions, i.e., if the applied input signal is within the positive lower region, 
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the approximated output is given as + hypoglycemia. On the other hand, if the 

applied input signal is in the negative lower region, - hypoglycemia is approximated. 

The optimized boundary parameters are obtained after the training process which can 

simplify network inputs and achieves better sensitivity as tabulated in Table 5.2. The 

proposed R-BBN~4 is efficient in obtaining better testing sensitivity, 83.72% and ac-

ceptable specificity, 51.91% which outperforms the other classifiers (BBNN4, BBNN2, 

MR-FIS4, WNN4, FIS4 and FFNN4) whose respective testing sensitivity and testing 

specificity are 79.09% and 51.82%, 76.74% and 52.73%, 75.00% and 50.00%, 74.42% 

and 48.18%,70.45% and 55.14% and 69.77% and 49.09%. The comparison studies are 

continuously carried out by means of 1 analysis in which the proposed R-BBNN4 is 

found to be satisfactory with a 1 value of 71.00%. 

I Methods I Sen(~) I Spe(77) I Gamma(!) I 

R-BBNN4 83.72% 51.91 % 71.00% 

BBNN4 79.09% 51.82% 68.18% 

BBNN2 76.74% 52.73% 67.14% 

WNN4 74.42% 48.18% 63.92% 

FFNN4 69.77% 49.09% 61.50% 

Table 5.2: Best Testing Results as 7Jt= 40% 

As can be seen in Figs. 5.7 and 5.8, the proposed R-BBNN needs only 2 network 

layers instead of using 6 layers in BBNN4. In addition, the 2 layers conventional 
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BBNN with no rough pre-processing can only give sensitivity, 60.47% and specificity, 

42.73% whereas R-BBNN with 2 layers achieves 83.72% of sensitivity and 51.91% of 

specificity. It should be noted that the proposed methodology should not only be 

efficient in obtaining better sensitivity but also achieve faster learning rates with a 

reduced number of network parameters. 

5.5 Conclusion 

The innovative approach is based on the merit of rough set and block-based neural 

network which is integrated and introduced in this paper. Firstly, a rough approxima­

tion property is adopted by defining lower and boundary regions and implementing 

those defined regions within a neural network framework. In order to integrate the 

characteristics of application to the proposed methodology, block-based neural net­

work is selected as a suitable classifier due to its ability in performing simultaneous 

optimization of both structures and weights. To enhance the performance of the pro­

posed R-BBNN4 system, a hybrid particle swarm optimization with wavelet mutation 

(HPSOWM) operation is used to optimize the design parameters. 

To illustrate the effectiveness of the proposed approach, R-BBNN4 is practically real­

ized in detection of hypoglycemia episodes in patients with Type 1 diabetes mellitus 

(T1DM). The performance of the proposed hybrid system is compared with some 
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of the existing neural networks, BBNN4, BBNN2, WNN4, FFNN4. The compari­

son results show that the performance of proposed R-BBNN4 method is superior to 

other comparative classifiers by achieving higher sensitivity 83.72% and acceptable 

specificity 51.91%. 

From results in Section 5.4.1, it is quite evident that hypoglycemia episodes in T1DM 

children can be efficiently detected non-invasively and continuously from the real­

time physiological responses. The proposed architecture has been designed in such a 

way that that rough set method can greatly accelerate the network training time and 

improve its prediction accuracy. 

It should be noted that the proposed methodology should not only be efficient in 

obtaining better sensitivity but also achieve a faster learning rate with reduce number 

of network parameters, i.e., only 82 parameters are needed for R-BB::--.JN4 while 128 

parameters are needed for BBNN4. It also revealed that the proposed approach 

improves classification performance and results in early convergence of the network. 
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Chapter 6 

Summary and Discussion 

For the non-invasive hypoglycemia detection system, this thesis is covered by three 

novel methodologies namely variable translation wavelet neural network (VTWNN), 

multiple regression based combinational neural logic network (MR-NLN) and rough­

block-based neural network (R-BBNN) which are presented in Chapters 3, 4 and 5 

respectively. For an optimal set of proposed network parameters, a global learning 

optimization algorithm called hybrid particle swarm optimization with wavelet mu­

tation (HPSOWM) is used. It has been proven that, by exploiting the advantages of 

each algorithm, the performance of the non-invasive hypoglycemia monitoring system 

is improved. In this Chapter, the comparison studies between algorithms in terms of 

network operation principle, network complexity and learning ability will be given. 
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6.1 Summary on the Characteristics of Network Topologies 

In this Section a general description regarding the characteristics of proposed network 

topologies is discussed. Each topology is best suited for use in specific application 

offering its own advantages and disadvantages. 

The first topology is the VTWNN which uses multi-scaled wavelet function in the 

hidden layer. The network parameters, such as the translation parameters of the 

wavelets are variable depending on the network inputs. Because of variable translation 

parameters, the network becomes adaptive network, able to model the input-output 

function with input-dependent network parameters. Due to the adaptive nature, 

the network provides better performance and increased learning ability. It will be 

beneficial if the VTWNN handles different input data with different values of the 

network parameters. 

The second topology is MR-NLN in which the binary logic gates (AND, OR and 

NOT) are cooperatively designed by the use of a truth table and K-map. Because 

the logic theory is used in the network design, the structure becomes systematic and 

simpler compared to other conventional neural network and enhances the training 

performance. Traditionally, conventional NX with the same structure are applied to 

handle different applications. The optimal performance may not always be guaran­

teed due to different characteristics of applications. In real world applications, the 

knowledge based NN that understands all the characteristics of practical application 
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is preferred for optimal performance. In conventional NN, the redundant connec­

tions and weights makes the number of network parameters unnecessarily large and 

downgrades the training performance. But for l\LN, the structure becomes simpler 

as compared to conventional NN because some redundant connections are removed. 

The third topology is R-BBNN which is a hybrid intelligent system designed by 

integrating rough set techniques in the architecture of the neural network. In this 

system, design improvements are made by the use of rough set properties in which 

partitioning of the applied input signal to a predictable part (certain) and a random 

(uncertain) part is carried out by using lower and boundary regions. Once rough set 

pre-processing is finished, a simultaneous classification task is performed by block­

based neural network (BBNN) in order to deal only with the random (uncertain) 

part of the applied input signal. In BBNN model, the network structure is simply 

determined by signal flows between each blocks. Due to rough set properties and the 

adaptability of BBl\N's flexible structures in dynamic environments, the classification 

performance is improved. 

For hypoglycemia detection, the VTWNN in Chapter 3 gives better performance 

compared with conventional neural network structures such as wavelet neural net­

work (WNN), feedforward neural network (FFNl'\) and radial basis function network 

(RBFNN). However, the main concern of the VTWNN is its computational demand 

which is reflected in the possibly larger number of network parameters. In Chapter 

4, an integrated method, a neural logic network with multiple regression is applied 
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to the development of noninvasive hypoglycemia monitoring system. In general, con­

ventional neural networks with the same structure were used to handle different ap­

plications. However, optimal performance was not always guaranteed due to different 

characteristics of applications. 

The structural difference between VTWNN and :MR-NLN is one of the important con­

cerns. Though adaptive VTWNN is best suited for different input data with different 

values of the network parameters, their structure is less dedicated to the nature of 

application. Moreover, in fully-connected VTWNK, some links in the network could 

be practically redundant while the redundant connections are reduced in MR-NLN. 

In general, the redundant connections and weights of conventional NN makes the 

number of network parameters unnecessarily large and downgrades the training per­

formance. Due to the reduction of those redundant connections, the NLN network 

structure becomes simpler. 

With these above improved networks, VTWNN and MR-NLN, the classification per­

formance was improved over conventional neural networks. However, both VTWNN 

and MR-NLN offers for less degree of freedom due to their network structure. It is be­

cause their network designs are not structurally evolving during the training process. 

Conceptually, the degree of freedom that allowed for the network is less adaptive with 

the characteristics of application. As a consequence, the model becomes less accurate. 

In R-BBNN, BBNN classifier is selected as a suitable classifier due to its modular 
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characteristics and ability to evolve the size of the network by adding more basic 

blocks. With the flexible network structure, the degree of freedom is increased and 

the learning and generalization abilities are improved. 

6.2 Comparison Studies on Experimental Results 

Experimental results of the application on hypoglycemia detection system will be 

given in this section. Three proposed networks, VTWNN, MR-NLN and R-BBNN 

are compared and analyzed. 

Methods Sensitivity ( ~) Specificity ( TJ) Gamma (I) 

Training 82.43% 40.03% 65.4 7% 

R-BBNN Validation 81.25% 41.23% 65.24% 

Testing 82.09% 50.91% 69.62% 

Training 90.91% 40.47% 70.73% 

MR-NLN Validation 90.62% 40.29% 70.49% 

Testing 78.81% 51.45% 67.86% 

Training 88.40% 40.80% 69.36% 

VTWNN Validation 82.50% 41.25% 66.00% 

Testing 77.41% 47.42% 65.41% 

Table 6.1: Mean value of Training, Validation and Testing Results: Set maximum 
specificity, TJmax= 40% 
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The best average (mean) training, validation and testing results are summarized 

in Table 6.1. Comparing the three proposed methods, the average (mean) testing 

sensitivity and specificity of R-BBKN (82.43 and 50.91%) is the best. In terms of 

Gamma ('y) analysis, the R-BBNN gives better'"'( value which is about 69.62% whereas 

VTWNN and MR-NLN gives 65.41% and 67.86% respectively. 

In Table 6.1, it seems that the results for R-BBNN in training, validation and testing 

are similar while results for MR-NLN /VTWNN have quite a big variation i.e. the 

training and validation results are much better than testing. As the data partitioning 

in training, validation and testing for these three different neural networks are the 

same, the training and validation results should be similar. However, the training 

and validation results of R-BBNN is less than the others. It is because BBNN needs 

to handle only for the data that are out of the defined rough lower boundary regions. 

Since BBNN needs to handle less amount of data, less background information is given 

to BBNN. It may lead to less sensitivity and specificity of training and validation. 

It is confirmed from Table 5.1 that sensitivity and specificity for the training and 

validation of BBNN (without rough set pre-processing) are about (86.45 and 40.73 

%) and (92.50 and 40.29 %) which are similar as obtained in MR-NLN and VTWNN. 

The best testing results of the hypoglycemia detection system by all the proposed 

networks are tabulated in Table 6.2. In this table, the best testing results are corn-

pared and analyzed in terms of sensitivities, specificities and gamma values. The total 

number of training epoches required to obtain a stable system are also presented. In 
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comparison studies between three proposed methods: the performance of R-BBNN 

is excellent by achieving testing sensitivity, specificity and gamma at 83. 72, 51.91 

and 71.00%. It can be seen that the number of design parameters required for each 

network look similar (68, 66 and 52 parameters), but the total number of training 

epoches required to obtain a stable system has been reduced to 200 in R-BBNN while 

MR-NLN and VTWNl\ needs 1000 and 1500. 

Methods Sens(~) Spec(ry) Gamma( I) Iteration 
Number 

R-BBNN 83.72% 51.91% 71.00% 200 

MR-NLN 79.07% 53.64% 68.90% 1000 

VTWNN 81.40% 50.91 o/c 69.20% 1500 

Table 6.2: Best Testing Results: Set maximum specificity, 1Jmax= 40% 

As can be seen in Table 6.2, the proposed R-BBNN and MR-NLN obtain better 

sensitivity and specificity with faster time i.e. iteration about 200 and 1000 due to less 

complexities and more flexibilities of network structure. Because the structure of R-

BBNN is simplest among three methods, it achieves better sensitivity and specificity 

with faster computation time, number of iteration is about 200. Generally speaking, 

the network may take longer time for stable and optimal results as the network 

structural complementarities increases. In this application, the optimal iterations 

number for each proposed methods are set by trial and error method. 

With a first look at VTWNl\ and MR-NLK in Table 6.2, it seems that the performance 
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of VTWNN is better than MR-:~"LN with best testing sensitivity of 81.40%. However, 

in terms of solution stability, the MR-NLN performs better by giving mean testing 

sensitivity and specificity at 78.81 and 51.45%. Overall, among the three proposed 

methodologies, the R-BBNN is efficient in obtaining better sensitivity with faster 

learning rates. 

6.3 Summary 

A summary of comparisons among three proposed methodologies in terms of topol­

ogy complexities, learning ability and overall performance rating is given in Table 

6.3. From Table 6.3, it can be seen that the complexities of network topologies are 

generally less in R-BBNN and MR-NLN due to the introduction of rough set and 

binary logic properties. Because of the evolvable BBNN network structure, the R­

BBNN offers a greater degree of freedom compared with MR-NL~ and VTWNN. For 

MR-NLN and VTWNN, the design of networks are not structurally evolving during 

the training process. As a consequence, the degree of freedom is less and these models 

become less accurate. 

Compared with other conventional neural networks such as feedforwrad neural net­

work (FFNN) and wavelet neural network (W~N) in Appendix A.2 in Appendix A.l, 

the proposed R-BBNK and MR-NLK are less complexities due to introductory of 

rough set and binary logic properties. By using those properties, the R-BB~N and 
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MR-NLN only need to handle only small amount of input data, where as conventional 

NNs in Appendix A.2 and A.1 are handling all the input data. But for VTWNN, the 

network complexities is similar to FFNN and WWN since no other properties such 

as rough set pre-processing and binary logic properties are incorporated in network 

structure. However, VTN~ has advantages in handling the distributed data while 

FFNN and VTWNN may not be good enough. 

The proposed NNs are developed in the Matlab (R2010b) platform using a Dell 

Optiplex 780 PC with an Intel Core Duo (E8400) Processor and 4 GB DDR3 SD 

RAM. It takes about 1 hour of computational time until the termination condition 

is met after 1500 iterations. Based on the knowledge and experience, the program 

developed in Matlab takes more computation time than the C language. It should be 

aware that the difference in computation time may come from different termination 

conditions, software and hardware implementation. In terms of computation time, 

the proposed R-BB~N and MR-NLN take less time for training which is about 30 

minutes and 15 minutes, whereas VTWNN and other conventional N:Ks take longer 

than 45 minutes. 

In addition, for R-BBNN and MR-NLN, their design is more dedicated to the ap­

plication while VTvVNN has less understanding on the knowledge of application. 

Generally, conventional neural networks with the same structure were used to handle 

different applications. However, optimal performance may not be always guaranteed 

due to different characteristics of applications. Thus, in real world applications, the 
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6.3 Summary 

knowledge based neural network such as R-BBN~ and MR-NLN that understands 

all the characteristics of practical application is preferred for optimal performance. 

The learning performance of all networks, R-BBNN, MR-NLN and VTWNN are 

found to be satisfactory. For this specific application in hypoglycemia detection, 

the performance of R-BBNN offers about 20 %improvement over the MR-NLN and 

VTWNN. To conclude, the overall performance of proposed three methodologies such 

as R-BBNN, MR-NL~ and VTWNN are better than other conventional classifiers, 

WNN, FFNN and MR in terms of sensitivity and specificity . 

R-BBNN MR-NLN VTWNN 

Topology Complexities Simple Simple Complex 

Network Flexibility (De- More Less Less 
gree of freedom) 

Dedicated Application More More Less 

Learning Algorithm HPSOWM HPSOWM HPSOWM 

Learning Ability Satisfactory Satisfactory Satisfactory 

Overall Performance Best Good Acceptable 

Table 6.3: Summary of the R-BBNN, MR-~LN and VTWNN 
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Chapter 7 

Conclusions and Further Research 

7.1 Conclusions 

In this thesis, novel methodologies for a non-invasive hypoglycemia detection system 

have been developed by analyzing the behavioral changes of physiological parameters, 

HR and QTc. These methodologies are comprised of three different classification 

techniques, namely variable translation wavelet neural network (VT\VNN), multiple 

regression based combinational neural logic network (MR-NLN) and rough-block­

based neural network (R-BBNN). Thanks to these advanced neural network classifiers, 

the learning, generalization abilities and classification accuracies are improved. The 

detail of three proposed methodologies have been discussed in Chapter 3, 4 and 5 

respectively. 
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7.1 Conclusions 

The variable translation wavelet neural network (VTWNN) algorithm in Chapter 3 

was the first of the three proposed algorithms to be used in the hypoglycemia detec­

tion system. In VTWNN, every hidden-layer activation function is characterized by 

multiscaled wavelet function in which the translation parameter is variable depending 

on the network inputs. One distinct advantage of VTWNN is that the input data 

are manipulating in the wavelet activation function and the output is estimated with 

input-dependent hidden layer activation function. Hence, the output of the VTWNN 

changes smoothly with respect to the nature of input data. By using VTWNN, some 

of the cases that cannot be handled by conventional neural networks with a limited 

number of parameters can be easily solved. 

As the second algorithm, a hybrid technique based on neural logic network combined 

with multiple regression model (MR-NLN) is proposed in Chapter 4. In MR-NLN, 

its network structure is systematically designed based on the characteristics of ap­

plication. The network structure is targeted to dedicated application. The network 

is designed by the use of binary logic gates (AND, OR and NOT) in which a truth 

table and K-map are constructed depending on the knowledge of application. Be­

cause logic theory is used in the network design, the structure becomes systematic 

and simpler compared to other conventional neural network and enhance the training 

performance. Compared to VTWNN, the number of network parameters in MR-NLN 

is smaller due to its simple structure. An important concern of the VTWNN is its 

computational demand reflected on the possibly larger number of network parameters. 
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7.1 Conclusions 

The redundant connections and weights of VTWNN makes the number of parameters 

unnecessarily large and may downgrade the training performance. 

The third algorithm, rough approximation block-based neural network (R-BBNN) 

focuses on the hybridization technology using rough sets concepts and neural com­

puting for decision and classification. Based on the rough set properties, the input 

signal is partitioned to a predictable (certain) part and random (uncertain) part. In 

this way, the neural network is designed to deal only with the boundary region which 

mainly consists of a random part of applied input signal causing inaccurate modeling 

of the data set. Based on the knowledge of application, block-based neural network 

(BBNN) is selected as a suitable classifier due to its ability in evolving internal net­

work structures and adaptability in dynamic environments. The performance results 

obtained by the R-BBNN aid in providing best classification accuracy. 

With improved networks, VTWN~ and MR-NLN, the classification performance was 

improved over conventional neural networks. However, both VTWNN and MR-NLN 

offers less degrees of freedom due to their network structure. In VTWNN and MR­

NLN, the network designs are not structurally evolving during the training process 

,i.e., the degree of freedom allowed for the network is less adaptive with the char­

acteristics of application. Conceptually, fewer degrees of freedom make the model 

less accurate. In R-BBNN with flexible network structure, the degree of freedom is 

increased and the learning and generalization abilities are improved. 
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7.2 Future Works 

To formally analyze the natural occurrence of hypoglycemia episodes based on the 

pre-defined BGL, three advanced neural network classifiers were used. A general 

comparison between the different proposed topologies are discussed in Chapter 6. In 

short, the performance of R-BBNN is the best among the neural network proposed 

in this thesis. It can be concluded that the performance results obtained by the three 

proposed algorithms (VTW~N, MR-NLK and R-BBNN) aid in improving the sensi­

tivity and specificity of hypoglycemia detection system compared with conventional 

algorithms (FFNK, WNK and RBF~N). 

7.2 FUture Works 

Some possible future research directions are given in this section. In terms of the 

algorithms that are employed for hypoglycemia detection, more systematic neural 

network architectures could be further designed and developed. The conventional 

networks with fixed architecture may not be good enough for every task. Those 

networks usually start with a defined architecture and the final parameters and/or 

structure under this architecture are determined through the learning process. 

Besides, the degree of freedom allowed for the neural networks should be more adap­

tive with the characteristics of application. More degrees of freedom make the net­

works more adaptable with the nature of application and provide better accuracy. 

For the networks with flexible structure, the degrees of freedom are increased and 
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7.2 Future Works 

generalization abilities are improved. Thus, the overall network architecture should 

be properly and systematically designed. 

Concerning with ECG parameters, the heart rate (HR) and corrected QT interval 

( QTc) are currently used as the inputs for hypo glycemia detection. From clinical and 

experimental studies, as shown in Section 2.2.1, there is a marked change in ECG 

morphology, especially in QT interval and/ or QRS complex during hypoglycemia. 

There should be other forms of ECG parameters that are significantly changing un­

der hypoglycemic conditions. A future work might need to investigate more ECG 

parameters for hypoglycemia detection. 

In terms of proposed algorithms, in order to validate the effectiveness, other clinical 

studies such as breast cancer detection [Singh2011], Parkinson's disease detection 

[Handojoseno2012] and other applications such as short-term traffic flow forecasting 

[Chan2012] should be further examined. 
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Appendix A 

Artificial Neural Networks 

Artificial neural networks (ANNs) are computational models inspired by the function­

ing of the human brain. They consist of simple but highly interconnected computing 

devices, each of which imitates the biological neurons. Research in the field of artifi­

cial neural networks has attracted increasing attention in recent years. After the first 

model of artificial neurons [Ash1994] had been proposed, new and more sophisticated 

neural network models have been made from decade to decade. A very important 

feature of artificial neural networks is their adaptive nature which makes such com­

putational models very appealing in applications, especially where there is little or 

incomplete understanding of the problem to be solved but where training data is 

readily available. 

Artificial neural networks have been widely used in pattern recognition and machine 
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learning. They possess strong adaptability and learning ability in addition to pre­

cision in data classification and prediction which is extremely high. Unlike classical 

statistical methods, the neural network can be applied to data analysis of small sam­

ples, without satisfying normal distribution. Because of the nonlinear transformation 

involved in the hidden layer, neural networks can work well with complex data. It 

offers the following advantages compared with conventional processing techniques: 

• It has a strong self-adoption learning ability 

• It can quickly recognize the abilities of parallel-distributed information storage 

and processing 

• There exists strong error-tolerance, and it is able to recognize input pattern 

with noise 

In all neural network models, a single neuron is the basic building block of the network. 

The operation of a single neuron is modeled by mathematical equations and the 

individual neurons are connected together as a network. Each neural network has its 

learning laws according to which it is capable of adjusting parameters of the neurons 

[Ham2001]. In most neural networks model, the operation of a single neuron can be 

divided into two separate parts; weighted sum and an output function as shown in 

Fig. A.O.l. 
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A.l Feed Forward Neural Network (FFNN) 
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Figure A.0.1: Model of artificial neuron 

For each input ui, i = 1, 2, ... , n has its associated weights wj, j = 1, 2, ... , m which 

can be modified to model synaptic learning. The node computes the activation func-

tion f ( ·) of weighted sum of inputs in the following form: 

(A.0.1) 

A.l Feed Forward Neural Network (FFNN) 

A multi layer feedforward neural network becomes the most famous due to its good 

approximation in any smooth and continuous nonlinear separation function in a corn-

pact domain to arbitrary accuracy [Windrow1990]. 
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A.l Feed Forward Neural Network (FFNN) 
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Figure A.l.1: Structure of three layer feedforward neural network (FFNN) 

For each input has its associated weights and it can be modified to model synap-

tic learning. The input-output relationship of a fully connected feedforward neural 

network in Fig. A.l.l is calculated as follows: 

( nh (nin ) ) 
Yz = /? L Wjzf'tn L WijUi - bj - bz 

J=l ~=1 

l = 1' 2' ... ' nout (A.l.1) 

where ui, i = 1, 2, ... , nin are the input variables, nin is the number of inputs while 

nh denotes the number of hidden notes. Vij, j = 1, 2, ... , nh is defined as the weight 

which is linked between the ith input and jth hidden nodes, w11 is the weight of link 

between the jth hidden and lth output nodes, bj and b1 are the biases for hidden and 

output nodes. The total number of tuned parameters are (nin + 1) x nh + (nh + 1) x 

nout· 

The transfer functions f} ( ·) and J? ( ·) are used as the activation function in the 
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A.2 Wavelet Neural Network (WNN) 

hidden nodes and output nodes. The following transfer functions, logarithmic sigmoid 

transfer function (A.1.2), hyperbolic tangent sigmoid transfer function (A.1.3) and 

linear transfer function (pureline) ( A.l.4) are commonly used in the neurons of hidden 

and output layers [Looney1997]: 

logsig (e) 

tansig (e) 

pureline (e) 

1 
1 + e-O E [0 1] , e E 3t 

2 
--::-:- - 1 E [0 1] , e E 3t 
1 + e-20 

e, e E 3t 

A.2 Wavelet Neural Network (WNN) 

(A.l.2) 

(A.l.3) 

(A.1.4) 

The wavelet neural network is considered as a particular case of feedforward neu-

ral network and the neural network using wavelet basis function can provide faster 

convergence rates for approximation compared with conventional feedforward neural 

network. In addition, the wavelet has been applied in many research areas because 

of its excellent property in time-frequency localization of a given signal [Zekri2008] 

[Mallat1989]. 

By combining wavelet with neural network, wavelet neural network (W~l\) has been 

developed in order to give better performance in function approximation and learning 
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A.2 Wavelet Neural Network (WNN) 

capabilities [Billings2005]. It can also be considered as a particular case of feedforward 

neural network (FFN)l") apart from using multi-scaled wavelet activation function, 

'1/Ja,b ( x) in the hidden layer. 

ul 

u2 

Figure A.2.1: Structure of wavelet neural network (WNN) 

By the use of wavelet as activation functions of the hidden layer. the dilation param-

eters (a) and translation parameter (b) of the wavelet is variable and definable with 

any real positive number. The input-output relationship of the WNN is given by: 

nh (nin ) 
Yl = ~ '1/J},bj ~ UiVij Wjl' l = 1, 2, ... 'nout (A.2.1) 

where ui, i = 1, 2, ... , nin are the input variables, nin is the number of inputs; nh 

denotes the number of hidden nodes; vij is the weight of the link between ith input 
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A.3 Radial Basis Function Network (RBFNN) 

and jth hidden node; j denotes the dilation parameter and bj is the translation 

parameter of the multiscale wavelet function; 'ljJ ( ·) is mother wavelet. The total 

number of parameters for WNN is nh x ( nin + nout + 1). 

A.3 Radial Basis Function Network (RBFNN) 

RBFNN has been widely used in pattern recognition tasks [Korrek2010] due to its fast 

learning and good approximation ability. However, the standard RBFNN has local 

respective regions property, the approximation effect is poor when it is applied for 

function estimation outside of the training data. In order to cope with this problem, 

a normalized RBFNN is developed as shown in Fig. A.3.1 for modeling and design 

of a non-invasive hypoglycemia monitor with physiological responses. 

In general, the structure of normalized RBFNN (NRBFNN) is the same for RBFNN 

apart from normalization of radial basis function in the hidden layer. Due to the ex­

trapolation property of normalized radial basis function neural network (NRBFNN), 

a smaller number of hidden neurons is needed to capture the entire input space. Thus, 

compared with standard RBFN::\, normalized RBFNN provides better generalization 

ability. 
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A.3 Radial Basis Function Network (RBFNN) 

As can be seen in Fig. A.3.1, each neuron in the hidden layer has n Gaussian mem-

bership function in the following form: 

9ij = exp (- (ui- ci1)
2

) 
()2. l 

t) 

j=1,2, ... ,m (A.3.1) 

where ui, i = 1, 2, ... , nin are the input variables, nin is the number of inputs; nh is 

defined as the number of hidden neurons; 9ij is the ith membership function in the 

jth neurons, Cij and (}~ are the center and the width of the membership function 

respectively. 

y 
~ 

u 

Figure A.3.1: Structure of radial basic function neural network (RBFNN) 

The output of jth hidden neuron is computed from the multiplication of the inner 

n membership functions which denotes the firing strength of jth hidden neuron and 
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A.4 Local Learning Algorithms 

expressed as follows: 

U·- Cj· n ( n ( )2) 
i.{)j (u) = n9ij (ui) = exp - ~ ~ afj J (A.3.2) 

Although normalization operation increases the computing complexity, it can give 

better interposition performance. The normalized output <I> 1 ( u) is calculated as: 

(A.3.3) 

If the basis functions of the RBF network are Gaussian functions, the normalized 

output is calculated by: 
nh 

Yz = L w1<I>1 (u) , 
j=l 

(A.3.4) 

where w11 is the connection weight between the jth normalized neuron and lthe output 

neuron in the output layer in which j = 1, 2, ... , nh and l = 1, 2, ... , nout· The total 

number of tuned parameters of RBFNN is nh(nin + n 0ut + 1). 

A.4 Local Learning Algorithms 

Learning or training is one of the most important issue in neural networks since the 

optimal set of network parameters is obtained through the learning process. It is a 

process by which the parameters of a neural network are adapted through a process 

of stimulation by the environment in which the network is embedded. The network 

learning is affected by two factors: the network structure and network parameters 

185 



A.4 Local Learning Algorithms 

(weights). The learning algorithm provides a rule to optimize the weight values 

while the structure affects the non-linearity of the network function. In the following 

sections, the local and global learning algorithms are discussed further for the training 

of network structure and parameters. 

Neural networks have different types and every type has its own learning rule. Each 

method of learning mainly changes the network parameters according to its learning 

rule to accommodate the network characteristics to its desired pattern. In order to 

train network parameters, some local learning algorithms such as hebbin learning rule 

in Appendix. A.4.1, back-p~opagation learning rule in Appendix A.4.2 are generally 

used. 

A.4.1 Hebbian Learning Rule 

The Hebbian Learning Rule is a learning rule that specifies how much the weight of 

the connection between two units should be increased or decreased in proportion to 

the product of their activation. The rule builds on Hebbs's learning rule [Hebb1949] 

which states that the connections between two neurons might be strengthened if 

the neurons fire simultaneously. The Hebbian Rule works well as long as all the 

input patterns are orthogonal or uncorrelated. A basic Hebbian adaption (Hebbian 

learning) has been mathematically described as follows: 

new= wold + nx·y· wji 1 ~ ., ~ z (A.4.1) 
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A.4 Local Learning Algorithms 

where i = 1, 2, ... , n, j = 1, 2, ... , p, TJ is a constant that represents an adaption rate, 

xi is the value of ith activation function in the input layer and Yi is the value of 

the jth activation function and Wji is the connection weights between two activation 

functions. 

A special case of Hebbian adaption is the delta rule, also sometimes called the Widrow-

Hoff rule in which the amount of weight adjustment is proportional to the delta 

between the target activation value bkj and the actual activation value Yki which is 

described as: 

(A.4.2) 

where 8kj = bkj - Yki and TJ is adaption coefficient which typically takes on values 

between 0 to 1. The detail implementation of delta rule is discussed in [Eberhart2007]. 

A.4.2 Back-propagation (BP) Learning Rule 

Back-propagation technique [Manic2002] [Zurada1992] [Ham2001] is one of the most 

popular training algorithms for neural networks. Basically, back-propagation is a 

gradient descent technique to minimize the error which is defined by the output error 

across all the output activation functions and all input patterns [Rumelhart 1986]. In 

this algorithm, the weight adjustment is performed based on the gradient information 

of error function (A.4.3) and updates the weights by moving them along the gradient 
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A.5 Global Learning Algorithm 

descendent direction and reduce the mean square error over all input patterns. 

DE 
!:::..wij (n) = -E Dwij +a l:::,.wij (n- 1) (A.4.3) 

where c and a are two non negative constant parameters called learning rate and 

momentum. With this learning algorithm, it is obviously known that a kind of con-

tinuous activation functions; sigmoid, hyperbolic and tangent need to be used instead 

of using step function in the hidden layer of NN. Since this method requires compu-

tation of the gradient of the error function at each iteration step, the continuity and 

differentiability of the error function are important. 

In order to improve the learning rate, different back propagation algorithms such as 

the back propagation algorithms with momentum [Haykin1999], and conjugate gra-

client algorithm [Moller1993] have been proposed in which the derivative information 

of error function is evaluated with regard to weights and biases in the network. How-

ever, the drawbacks such as the requirement of the derivative information, trapping 

in local optimum still come with this algorithm. 

A.5 Global Learning Algorithm 

To overcome the local convergence problem in solving complex nonlinear optimization 

problems, evolutionary computation (EC) [Yu2010] has been reported for obtaining 

globally optimal solutions. These EC methods rely much on expert knowledge or a 
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A.5 Global Learning Algorithm 

trial-and-error approach to determine the choice of the EC algorithm, its parame­

ter setting and the criterion for terminating the evolution. In this section, famous 

EC algorithms such as genetic algorithm (GA) and particle swarm optimization are 

discussed detail in Appendix A.5.1 and A.5.3 

A.5.1 Genetic Algorithm (GA) 

Genetic algorithm (GA) is one of the evolutionary computation techniques that is 

especially useful for complex optimization problems with a larger number of parame­

ters [Davis1991] [Ling2010b]. Unlike BP algorithm in Section. A.4.2, the GA searches 

for global solutions and does not require the objective function to be differentiable. 

Since error surfaces for even simple problems can be quite complex with many local 

optima, the GA seems to be better suited for this type of search. This algorithm 

is more suitable in a large, complex domain. They are also good to train different 

types of neural network regardless if they are feedforward neural network or any other 

structure of neural networks. This generally saves a lot of human effort in developing 

training algorithms for different types of networks. 

The GA searches from one population of points to another focusing on the area of the 

best solution while continuously sampling the total parameter space. In Algorithm. 

A.5.1, the standard pseudo code for the process of GA is given. In Algorithm. A.5.1, 

P is defined as P = [p1 P2 Ppop_size] in which pop_size is the number of 

chromosomes in the population. Each chromosomes Pi contains some genes Pij. The 

189 



A.5 Global Learning Algorithm 

population evolves from generation t to t + 1 by repeating the procedures: selection, 

crossover and mutation. The selection operation is used to select the chromosomes 

from the population with respect to some probability distribution based on fitness 

values. The crossover mutation is used to combine the information of the selected 

chromosomes (parents) and generates the offspring. The mutation operation is used 

to change the offspring genes. The Algorithm. A.5.1 stop either a ceratin condition 

is met or predefined number of iteration have been reached. 

Algorithm A.5.1: PSEUDO CODE FOR GENETIC ALGORITHM (GA) 

t f-- 0 

Initialize P(t) 

output (f(P(t))) 

while <not termination condition> 

tf--t+1 

Select 2 parents p1 and p2 from p(t- 1) using the selection operation 

Perform the cross over operation 
do 

Perform the mutation operation 

output (P(t)) 

output (f(P(t))) 
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A.5 Global Learning Algorithm 

A.5.2 Particle Swarm Optimization (PSO) 

Particle swarm optimization is another instance of the EC techniques that tackle 

complex optimization problems. It is a population-based stochastic optimization 

algorithm which is inspired by the social behaviors of animals like fish schooling and 

bird flocking [Kennedy1995]. It considers a number of particles that constitute a 

swarm. Each particle transverses the search space looking for global optimum. The 

construction of standard PSO with construction and inertia weight factors is shown 

in Algorithm. A.5.2. 

From Algorithm A.5.2, X(t) is denoted as a swarm at the t-th iteration. Each particle 

xP(t) E X(t) contains "" elements x~(t) at the t-th iteration, where p = 1, 2, ... , e and 

j = 1, 2, ... , ""; e denotes the number of particles in the swarm and"" is the dimension 

of a particle. First, the particles of the swarm are initialized and then evaluated 

by a defined fitness function. The objective of HPSOWM is to minimize the fitness 

function (cost function) f(X(t)) of particles iteratively. The swarm evolves from 

iteration t to t+1 by repeating the procedures as shown in Algorithm A.5.2. The 

operations are discussed as follows. 

The velocity v~ ( t) (corresponding to the flight speed in a search space) and the position 

x~(t) of the j-th element of the p-th particle at the t-th generation can be calculated 

using the following formulae: 

v~(t) = k · {{ w · v~(t -1)} + { cp 1 · r1 (i~- x~(t-1))} +{ 'P2 · r2(xj- x~(t-1))}} (A.5.1) 
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and 

xlj(t) = x~(t- 1) + v~(t) (A.5.2) 

where xP = [if, x~, ... 'i~] and X= [XI :£2 ' ... :£, ], j = 1, 2, ... , 1'1-. The best previous 

position of a particle is recorded and represented as x; the position of best particle 

among all the particles is represented as x; w is an inertia weight factor; ri and r 2 

are acceleration constants which return a uniformly random number in the range of 

[0,1]; k is a constriction factor derived from the stability analysis of (A.5.2) to ensure 

the system to be converged but not prematurely [Eberhart2000]. Mathematically k 

is a function of 'PI and cp2 as reflected in the following equation: 

k- ( 2 ) 
- \2 - '~' - v '~'2 - 4cp\ 

(A.5.3) 

where cp = 'PI + cp2 and cp > 4. 

PSO utilizes x and x to modify the current search point to avoid the particles moving 

in the same direction, but to converge gradually toward x and x. A suitable selection 

of the inertia weight w provides a balance between the global and local explorations. 

Generally, w can be dynamically set with the following equation [Eberhart2000]: 

( Wmax- Wmin) X T w = Wmax- T (A.5.4) 

where t is the current iteration number, T is the total number of iteration, Wmax and 

Wmin are the upper and lower limits of the inertia weight, Wmax and Wmin are set to 

1.2 and 0.1 respectively. 
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A.5 Global Learning Algorithm 

Algorithm A.5.2: PSEUDO CODE FOR STANDARD PSO (SPSO) 

t+-0 

Initialize X ( t) 

output (f(X(t))) 

while <not termination condition> 

t+-t+l 

Update v(t) and x(t) based on (A.5.1) to (A.5.2) 

if v(t) > Vmax 

do 
then v(t) = Vmax 

if v(t) < Vmin 

then v(t) = Vmin 

output (X(t)) 

output (f(X(t))) 

return (X:) 

comment: return the best solution 

In (A.5.1), 

the particle velocity is limited by a maximum value Vmax· The parameter Vmax de­

termines the resolution with which regions are to be searched between the present 

position and the target position. This limit enhances the local exploration of the 
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problem space and it realistically simulates the incremental changes of human learn­

ing. If Vmax is too high, particles might fly past good solutions. If Vmax is too small, 

particles may not explore sufficiently beyond local solutions. From experience, Vmax is 

often set at 10%-20% of the dynamic range of the element on each dimension. Next, 

the mutation operation is used to mutate the element of particles. 

Comparing with other population-based stochastic optimization methods such as evo­

lutionary algorithms, the PSO has comparable or even superior search performance 

for many hard optimization problems with faster and more stable convergence rates. 

However, observations revealed that the PSO sharply converges in the early stages of 

the searching process, but usually presents the problems on reaching the near optimal 

solution. It behaves like the traditional local searching methods that trap in the local 

optima. As a result, it is hard to obtain any significant improvements by examining 

neighboring solutions in the later stages of the search. 

Recently, different types of hybrid PSOs have been proposed to overcome the draw­

back of trapping in the local optima. The hybrid PSO was firstly proposed, in which 

a standard selection mechanism of PSO is integrated with the gradient descent infor­

mation, namely hybrid gradient descent PSO (HGPSO) [Angeline1998]. Though it 

is aimed to achieve faster convergence without getting trapped in the local minima, 

the computational demand of the HGPSO is increased by the process of the gradient 

descent [N oel2004]. 
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A.5.3 Hybrid PSO with GA mutation (HGAPSO) 

Another hybrid PSO algorithm named HGAPSO which incorporates a genetic al­

gorithm evolutionary operations of crossover, mutations and reproduction to hybrid 

PSO is proposed [Juang2004]. In the HGAPSO, the solution space can be explored by 

performing mutation operations on particles along the search and premature conver­

gence of standard PSO in Algorithm A.5.2 is more likely to be avoided. In HGAPSO, 

the GA mutation operation in (A.5.5) which starts with a randomly chosen particle in 

the swarm is introduced. The pseudo code of the hybrid PSO with the mutation oper­

ation is given in Algorithm. A.5.3 in which the mutation operation is performed after 

updating their velocities and positions. To perform mutation operation Algorithm. 

A.5.3, the following mutation operation is used: 

mut (xj) = Xj- w, r < 0 

mut (xi)= Xj + w, r 2:: 0 

(A.5.5) 

where Xj is a randomly chosen element of particle from the swarm and w is randomly 

generated within the range [0, 0.1 x para?:nax - para~inl which represent one tenth 

of the length of the search space. r is a random number between + 1 and -1 and 

para?:nax and para~in are the upper and lower boundaries of each particle element 

respectively. However, the mutating space is kept unchanged all the time throughout 

the search and the space for the permutation of particles in the PSO is also limited 

by w in (A.5.5). Fixing the size of mutating space all the time along the search may 

not be the best approach. 
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A.5 Global Learning Algorithm 

Algorithm A.5.3: PSEUDO CODE FOR PSO WITH GA MUTATION (HGAPSO) 

t f-- 0 

Initialize X ( t) 

output (f(X(t))) 

while <not termination condition> 

t+--t+l 

Perform the process of PSO (shown in Algorithm. A.5.2) 

do J Perform wavelet mutation operation with Pm in (A.5.5) 

output (X(t)) 

output (f(X(t))) 

return (X.) 

comment: return the best solution 
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