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Abstract—A distributed MIMO system consists of M users served
by L distributed base stations (BSs), where the BSs are connected
to a central unit (CU) via L independent rate-constrained backhaul
(BH) links. In this paper we consider the design of an uplink
distributed MIMO system where the channel state information is not
available at the transmitters (users), under the BH rate-constraint.
We propose a new linear network coding (LNC) based protocol. In
this protocol, each BS attempts to forward N pre-assigned linear
functions of the M users’ messages, where N is determined by the
BH rate-constraint. The CU recovers all users’ messages by solving
the linear functions, provide that the linear functions are full rank.
The coefficients of the pre-assigned linear functions are carefully
designed to minimize the probability of rank deficiency of the
distributed MIMO system. Then we analyze the outage probability
(OP) performance of the proposed scheme. We analytically show
that as long as the BH rate is greater than the individual data
rate of one user, the OP of the proposed scheme decays like 1

SNRL

at high SNR. As the BH rate-constraint approaches M times the
data rate of one user, the performance of the proposed scheme is
10
L

log10 (L!) dB away from that of the full MIMO scenario at high
SNR. We also develop a structured way to efficiently construct the
coefficients of pre-assigned linear functions that yield the optimized
OP performance. Numerical results show that the proposed scheme
has significantly improved OP and frame error rate performance
over existing schemes.

I. INTRODUCTION

In a distributed multiple-input multiple-output (D-MIMO)
system, a number of mobile users are served by a number
of distributed base stations. These base stations are connected
to a central unit via independent backhaul links. By carefully
designing the functionality of the base stations, a D-MIMO
system can better leverage multi-user or inter-cell interference
and improve the reception quality, leading to enhanced spectral
efficiency, system capacity and energy efficiency [1]. A D-MIMO
system has potentials to significantly improve the performance
of current and future wireless communication networks, such
as coordinated multi-point (CoMP) [2] in LTE-advanced cellular
networks, mobile over Fiber to the x (FTTx) networks based on a
multi-source multi-relay model [3], and local area networks with
WiFi coordination. Moreover, D-MIMO provides an platform for
incorporating new technologies such as cloud radio access [4],
[5], [6], [7] and cloud storage [8].

A. State of the Art

The design of D-MIMO systems under rate-constrained back-
haul has received extensive interests [9], [10]. An approach
based on quantize re-map and forward (QMF) was proposed in

[11]. This approach was extended in [12] to a general network,
referred to as noisy network coding. In the QMF approach,
the base stations perform vector quantization of their received
signals at some rate satisfying the backhaul rate-constraint. It is
shown that QMF or noisy network coding achieves a rate region
within a bounded gap from the cut-set outer bound. Yet, from
an implementation viewpoint, QMF and noisy network coding
may not be practical due to the very high complexity of vector
quantization.

Recently, Nazer and Gastpar proposed a compute-and-forward
(CF) strategy [10] that can be employed in the uplink D-MIMO
system. This strategy is of particular interest in a practical sce-
nario where the channel state information (CSI) is not available
at the transmitters (mobile users), and the base stations cannot
share the CSI. In CF, each base station attempts to decode
and forward some finite-field linear combinations of a subset
of all users’ messages, by exploiting the structural property
of conceptual nested lattice codes. The information theoretic
performance of CF was examined for the uplink D-MIMO system
in the case of the overly simplistic Wyner model [13], rather
than a practical fading channel model. Recently, we proposed a
simplified CF based scheme, referred to as linear physical-layer
network coding, aiming at the practical implementations of CF
in fading channels [14]. Two major impairments to CF in an
uplink D-MIMO system are the non-integer penalty and the high
probability of rank deficiency. The non-integer penalty is due to
the severe quantization noise incurred by the mismatch between
the channel observations (with non-integer channel coefficients)
and the integer superposition of lattice codewords [10]. The high
probability of rank deficiency is due to that the CF coefficients
are distributively determined by the relays. In a realistic wireless
channel with fading and shadowing, a high probability of full
rank CF coefficients is not guaranteed, in contrast to the overly
simplified Wyner model case [13]. These two impairments are
particularly significant when the transmitters lack the CSI.

Another approach for the uplink D-MIMO system is quantize-
and-forward (QF) (or compress-and-forward), where the base
stations are referred to as oblivious base stations [1], [15], [16]. In
QF, each base station performs scalar quantization of the signal,
where the number of quantized bits are determined by the rate-
constraint of the backhaul link. The CU performs multi-user
decoding based on the quantized signals, while combating the
quantization noise. In a practical scenario where the backhaul
links have non-trivial rate-constraints, the performance of QF
may be poor due to the severe quantization noise.

From the literature, the ultimate performance of an uplink D-
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Fig. 1. Block Diagram of an M-user L-BS uplink distributed MIMO system
with rate-constrained backhaul links.

MIMO system remains unknown. For a practical scenario where
the mobile users do not have the CSI, and the base stations do
not share their CSI, the design of a high-performance D-MIMO
scheme becomes even more challenging. It remains difficult to
quantify the benefits of D-MIMO and evaluate its performance
gap to the full MIMO system.

B. Contributions

In this paper, we aim to design a high-performance up-
link D-MIMO system with moderate-to-stringent backhaul rate-
constraint, e.g., the backhaul rate-constraints and the data rates
are of the same order of magnitude. We focus on the scenario
where the transmitters do not have CSI and the base stations
do not share the CSI. The main contributions of this paper are
summarized as follows: 1) We propose a new linear network
coding based protocol. In the proposed protocol, each of the L
base stations attempts to forward N pre-assigned linear network
coding functions of the M users’ messages, satisfying the rate-
constraint of the backhaul link. The central unit recovers all M
users’ messages by solving the linear functions, provide that
the linear functions are full rank. The coefficients of the pre-
assigned linear functions are carefully designed to minimize the
probability of rank deficiency, leading to improved performance
over CF. 2) We analyze the information rate outage probability of
the proposed scheme. We analytically show that for a system of
M ≥ L, as long as the backhaul rate-constraint is greater than the
individual data rate of one user, the outage probability of the pro-
posed scheme decays like 1

SNRL at a high SNR. As the backhaul
rate-constraint approaches M times of the data rate of one user,
the performance of the proposed scheme is L/10log10L! dB away
from that of the full MIMO scenario at a high SNR. 3) We also
develop a structured way to efficiently construct the pre-assigned
linear functions that yields the optimized outage probability of
the proposed scheme. Numerical results show that the propose
scheme has significantly improved outage probability and frame
error rate performance over existing CF and QF schemes, e.g.,
more than 3 dB improvement in a M = L = 2 setup.

II. SYSTEM MODEL

Consider an uplink D-MIMO system with M single-antenna
users, L single-antenna base stations (BSs) and a common central

unit (CU). The BSs are connected to the CU via L independent
rate-constrained backhaul (BH) link. We consider that the BSs
are not mutually connected, and they do not share data or channel
state information (CSI). We consider an open-loop uplink system,
i.e., there is no feedback from CU to BSs, and from BSs to the
users. Thus, the users do not have the CSI.

The block diagram of the system is depicted in Fig. 1. The
system consists of two layers: air-interface layer and backhaul
(BH) layer. At the air-interface layer, M users transmit their
messages towards the BSs using the same frequency band and
time-slot. At BH layer, each BS processes its received signal and
forwards it to the CU. Upon collecting the signals from the L
BSs, the CU recovers all M users’ messages.

A. Air-Interface Layer

User m has a length-km message sequence denoted by bm,
m ∈ {1, 2, · · · ,M}. We consider that each user’s message
is drawn independently and uniformly over the binary field,
i.e., bm ∈ {0, 1}km ,m ∈ {1, 2, · · · ,M}. The mth user’s
encoder maps bm into a length-n coded-and-modulated complex-
valued symbol sequence xm = [ xm[1], · · · , xm[n] ]. Denote the
encoding functions by

xm = εm (bm) ,m ∈ {1, 2, · · · ,M} . (1)

The information rate of user m is Rm = km
n bits/channel-use.

The power constraints are

E

(
n∑
t=1

|xm [t]|2
)
≤ P,m ∈ {1, 2, · · · ,M} , (2)

where we consider that all users have the same power constraint
P . Our result in this paper can be easily extended to cases where
the users have different power constraints.

We consider a block fading channel, i.e. the channel coeffi-
cients remain constant over a block of n symbols and vary over
blocks. In one block, the signal received by the lth BS is

yl =

M∑
m=1

hlmxm + zl, l ∈ {1, 2, · · · , L} , (3)

where hlm denotes the complex-valued flat-fading channel co-
efficient from the mth user to the lth BS, and zl is a length-
n complex-valued additive white Gaussian noise (AWGN) se-
quence of zero mean and variance N0

2 per real-dimension. The
signal-to-noise ratio (SNR) is defined as ρ , P

N0
. In this paper,

we consider perfect synchronization among users at the relay.
We note that our new scheme to be proposed in Section IV also
applies to the asynchronous scenario. As we will see later in
Section IV, each relay will carry out joint multi-user decoding
w.r.t. all users’ messages. In the case with asynchronous access,
joint multi-user decoding such as iterative soft cancellation and
decoding can be carried out, as in the asynchronous code-division
multiple-access (CDMA) or interleave-division multiple-access
(IDMA) [17]. For our proposed scheme, the performance of the
multi-user decoding in the asynchronous case will be the same
as that in the synchronous case, as the interference structure and
per-user signal-to-interference plus noise ratio (SINR) are the
same for the synchronous and asynchronous cases.
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The lth BS processes its received signal yl. The reconstructed
signal is generally written as

fl (yl) , l ∈ {1, 2, · · · , L} . (4)

Remark 1 (Degree of channel state information): In this pa-
per, we consider that the channel state information (CSI) is not
available at the transmitters of mobile users. We assume that
the channel coefficients hlm, m ∈ {1, 2, · · · ,M}, are perfectly
known by the lth BS but not known by the l′-th BS for all l′ 6= l.

B. Backhaul Layer

Recall that the lth BS is connected to the CU via the lth
rate-constrained BH link, l ∈ {1, 2, · · · , L}. For more detailed
discussion on the rate-constrained BH link, please refer to [9],
[18]. In this paper, we denote by C

BH

l the maximum rate per-
block that can be supported by the lth BH link.

The signal fl (yl) generated by the lth BS is forwarded to the
CU via the lth BH link. We refer to fl (yl) as the BH function
of the lth BS. Due to the rate-constraint of the BH link, the BH
function must satisfy

H ( fl (yl) ) ≤ CBHl , l ∈ {1, 2, · · · , L} (5)

where H (·) denotes the entropy function. We assume error free
transmission of the reconstructed signal (4) over the BH links if
the rate constraint (5) is met.

Denote by ul = fl (yl), l ∈ {1, 2, · · · , L}. Upon collecting
u1, · · · ,uL, the CU attempts to recover all M users’ messages
b1, · · · ,bM . This decoding process is represented by[

b̂1, · · · , b̂M
]

= dec (u1, · · · ,uL) . (6)

An decoding error is declared if b̂m 6= bm for any m ∈
{1, · · · ,M}. This finishes one block of transmission.

Remark 2: In this paper, we focus on that all BH links have the
same rate-constraint per-block, i.e., C

BH

1 = · · · = C
BH

L = C
BH

.
Our result can be generalized to cases where the BH links have
different rate-constraints.

III. PROBLEM STATEMENT

A. Definition of Achievable Symmetric-Rate

In an open-loop uplink system considered in this paper, adap-
tive rate selection cannot be performed at the users, since CSI is
not available at the users and there is no feedback from BSs to
users. We focus on the symmetric-rate scenario where all users
have the same per-user data rate, i.e., R1 = · · · = RM = R,
or equivalently k1 = · · · = kM = k. We will discuss the
non-symmetric rate scenarios later in Section IV. For notation
convenience, the normalized BH rate-constraint CBH is defined
as

CBH =
C
BH

l

k
. (7)

For simplicity, CBHwill be referred to as the BH rate-constraint
hereafter.

Let H be a matrix which consists of all the channel coeffi-
cients, i.e., the {l,m}th entry of H is given by

H{l,m}=hlm. (8)

Each row of H consists of the channel coefficients hTl =
[hl1, · · · , hlM ] w.r.t. the lth BS. We consider that the entries of
H are i.i.d. and follow Rayleigh distribution.

For a deterministic H and a given BH rate-constraint CBH , a
(R,n, Pe) code consists of the following:

1. M encoding functions ε1 (·) , · · · , εM (·) of rate R.
2. L BH functions f1 (·) , · · · , fL (·) that satisfy the BH rate-

constraint CBH (as specified in (5) ).
3. A decoding function dec (·) at the CU (as specified in (6)

).
4. An error probability Pe, given by

Pe = Pr {dec (u1, · · · ,uL) 6= [b1, · · · ,bM ]} . (9)

A symmetric rate R is said to be achievable if, for any ε > 0,
there exists a (R,n, Pe) code such that Pe ≤ ε as n → ∞. We
emphasize that R is dependent on H and CBH .

B. Performance Metric: Information Rate Outage Probability

Let the target symmetric rate of each user be denoted by R0.
For the block fading channel considered in this paper, R0 may or
may not be achievable, depending on the realization of H as well
as CBH . In a channel realization that the achievable symmetric
rate R of a scheme is smaller than the target information rate
R0, an outage event is declared. The information rate outage
probability (OP) is defined as

Pout
(
R0, C

BH
)
, Pr {R < R0} . (10)

We will use Pout
(
R0, C

BH
)

as the performance metric of
the uplink D-MIMO system. In the literature, the OP is often
employed as the performance metric of a system without CSI
at the transmitter side. The OP provides a lower bound on the
frame error rate of a practical coding and modulation scheme.

Following the convention, a scheme is said to achieve a
diversity order of d as ρ→∞ if

Pout
(
R0, C

BH
)
∝ ρ−d. (11)

Here a ∝ b denotes that a is proportional to b. Note that achieving
the maximal diversity order is necessary for achieving the optimal
OP at a high SNR.

C. Stringent-to-moderate BH rate-constraint

The OP performance of the D-MIMO system is dependent on
1) the target data rate R0 and 2) the BH rate-constraint CBH .
In this paper, we consider the case with “stringent-to-moderate”
BH rate-constraint, where R0 and CBH have the same order
of magnitude. In particular, we will focus on CBH = NR0,
where N ∈ {1, ...,M}. For CBH >> R0, e.g., kCBH >

max
l∈{1,··· ,L}

H (yl)
1, the BH capacity is sufficient for the BSs to

forward their entire received signals y1,y2, · · · ,yL to the CU
via the BH links, and the CU can be viewed as a receiver with
L co-located antennas. This setup is called the full MIMO case
in this paper2. For CBH << R0, the performance of the system
will be bottle-necked by CBH which is not the interest in this
paper.

1Note that H(yl) ≥ H(xl) = kR0. Here, kR0 is the total information rate
per-block.

2More precisely, this case is referred to as the MIMO multiple-access setup.
For simplicity, we just call it the full MIMO setup.
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IV. PROPOSED NEW LINEAR NETWORK CODING BASED
PROTOCOL

In this section, we propose a new linear network coding based
protocol for the D-MIMO system.

A. Air-interface Layer

Let the encoding functions ε1 (·) , · · · , εM (·) be globally
known to all BSs. In the air-interface layer, the M users transmit
simultaneously. Given the received signals in (3), each BS
attempts to decode b1, · · · ,bM , e.g., using multi-user decoding3.
In general, each BS may successfully (or correctly) decode a
subset of the M users’ message, depending on R0 and the fading
channel realization. We note that since the BSs are not mutually
connected, joint processing among the BSs cannot be performed.

B. Backhaul Layer

In this part, we will present the proposed protocol for the
system with CBH = R0 (or N = 1), i.e., the normalized BH
capacity is the same as the target information rate. After that,
we will extend our proposed scheme to the cases with CBH =
NR0, N = 2, · · · ,M .

1) Pre-assigned LNC Function: Denote by wm the q-ary
conversion of bm, m ∈ {1, 2, · · · ,M}. The q-ary conversion
of a binary vector b = [b0, · · · ]T is invertible and given by
w = [w0, · · · ]T :

∑
i=0,1,···

wiq
i =

∑
j=0,1,···

bj2
j , where the entries

of w belong to {0, · · · , q − 1}.
In the proposed protocol, a pre-assigned linear combination

of the M users’ messages is given by

αl,1⊗w1⊕αl,2⊗w2⊕· · ·⊕αl,M⊗wM =

M⊕
m=1

αl,m⊗wm (12)

where αl,1, · · · , αl,M ∈ Fq , l ∈ {1, 2, · · · , L}, and Fq denotes
the Galois field of size q. Here, “⊗” represents the finite field
multiplication of a vector by a scalar, and “⊕” represents the
finite field addition between two vectors. In particular, when
q is a prime, “⊗ ”and “⊕” respectively denote the modulo-q
multiplication and addition. We refer to (12) as a pre-assigned
LNC function and αl,1, · · · , αl,M as the pre-assigned LNC
coefficients for the lth BS. Let the pre-assigned LNC coefficients
be denoted by a vector:

αl= [αl,1, · · · , αl,M ]
T
, l ∈ {1, 2, · · · , L} ,

which is known to BS l. Note that BS l does not have to know
αl′ for l′ 6= l. The pre-assigned LNC coefficients for all the L
BSs are denoted by the following matrix

A = [α1, · · · ,αL]
T (13)

which is referred to as a pre-assigned LNC coefficient matrix.

3In this section, we do not consider CF or physical-layer network coding
methods, which suffer from severe rank deficiency problem. Later, we will show
that our proposed scheme outperforms the CF in terms of outage probability in
Rayleigh fading channel.

2) Active LNC Function for CBH = R0 (N = 1): In the
ideal case where the lth BS can successfully decode all M
users’ messages, the exact pre-assigned LNC function in (12)
can be constructed indeed. In general, for each fading channel
realization, the lth BS may successfully decode only a subset
of w1, · · · ,wM . Let this subset be denoted by Sl. Then, in the
proposed scheme, BS l forwards the following LNC function4:

ul =

 M⊕
m=1,m∈Sl

βl,m ⊗wm

⊕
 M⊕
m=1,m∈Sc

l

βl,m ⊗wm


(14)

where

βl,m =

{
αl,m

0
if m ∈ Sl
if m ∈ Scl

(15)

and Scl denotes the complementary set of Sl. We refer to ul as an
active LNC function, and βl,1, · · · , βl,M as the active LNC coef-
ficients for the lth BS. Note that ul has the same rate as the target
symmetric data rate. Thus, H (ul) = kR0, l ∈ {1, 2, · · · , L}. For
N = 1, it is clear that (14) satisfies the BH rate-constraint in (5).

Remark 3: In our proposed scheme, BS l is notified with
the pre-assigned LNC coefficients in an off-line manner. These
coefficients are carefully designed and notified to the users before
data transmission. During the data transmission, BS l’s operation
will always be based on this pre-assigned αl,1, · · · , αl,M , for
all fading realizations. Yet, for different fading channel real-
izations, BS l can successfully decode different subsets of all
users’ message, which yields different active LNC coefficients
βl,1, · · · , βl,M .

Remark 4: In each block, BS l will first advise the CU its
active LNC coefficients. If the pre-assigned matrix A is known
to the CU, by forwarding only the indices of zeros element in[
βl,1, · · · , βl,M

]
, the overhead is at most M bits per-block per

BS. Such an overhead is negligible if M is much smaller than
the block length k.

3) Active LNC Function for CBH = N · R0, N ≥ 2: In this
case, each BS can forward up to N LNC functions of the users’
messages while satisfying the BH rate-constraint. We propose to
use the following LNC functions at BS l:

u
(1)
l =

M⊕
m=1,m∈Sl

β
(1)
l,m ⊗wm ⊕

M⊕
m=1,m∈Sc

l

β
(1)
l,m ⊗wm

...

u
(N)
l =

M⊕
m=1,m∈Sl

β
(N)
l,m ⊗wm ⊕

M⊕
m=1,m∈Sc

l

β
(N)
l,m ⊗wm, (16)

where the active LNC coefficients are

β
(i)
l,m =

{
αmod(l+i−2,L)+1,m

0
if m ∈ Sl
if m ∈ Scl

, i = 1, · · · , N.
(17)

Note that the N LNC coefficient vectors of any BS can be
obtained from a single A. For each BS, its N active LNC
coefficient vectors are some of N consecutive rows of A in a
cyclic-shift manner. Denote the N active LNC coefficient vectors

4Note that the second term in (14) is equal to zero and could be removed
from the expression. Here, the second term in (14) is explicitly shown in order
to highlight that the active network coding coefficients for those users’ messages
that are not successfully decoded are set to zero.



5

of BS l by

β
(1)
l =

[
β

(1)
l,1 , · · · , β

(1)
l,M

]T
, · · · ,β(N)

l =
[
β

(N)
l,1 , · · · , β(N)

l,M

]T
.

(18)
The active LNC coefficient vectors for all the L BSs are denoted
by

B =
[
β

(1)
1 , · · · ,β(N)

1 ,β
(1)
2 · · · ,β

(N)
L

]T
(19)

which is referred to as the active LNC coefficient matrix. We
refer to each zero element in B as an erasure.

In each block, given the received signals in (3), each BS
attempts to decode b1, · · · ,bM using joint multi-user decoding,
such as joint typicality decoding [16] or iterative soft interfer-
ence cancellation and decoding [22]. In general, each BS may
successfully decode a subset of the M users’ message, and the
zero terms in the active LNC coefficients βl are determined.
Then, BS l will advise the CU its active LNC coefficients βl.

C. Processing at the Central Unit

Given the N · L functions u
(1)
1 , · · · ,u(N)

1 ,u
(1)
2 · · · ,u

(N)
L and

B, the CU attempts to recover all users’ messages w1, · · · ,wM
by solving the following linear equations in Fq:

B

 w1

...
wM

 =


u
(1)
1

...
u
(N)
L

 . (20)

We note that the CU can successfully recover all w1, · · · ,wM

if and only if B has a full rank of M in Fq . An error happens
if B contains some patterns of erasures (zero elements) that lead
to rank deficiency of B.

Example 1: Consider M = L = 2 and N = 1. Let q = 3
and A = [1 1; 1 2]. Here, A has full rank in Fq where Fq is
an integer field of {0, 1, 2}. Suppose that BS 1 can successfully
decode both users’ messages, the active LNC coefficients will be[
β1,1, β1,2

]
= [1, 1]. The LNC function delivered to the CU will

be w1 ⊕w2. Suppose that BS 2 cannot successfully decode the
first user’s message but can successfully decode the second user’s
message, the active LNC coefficients will be

[
β2,1, β2,2

]
= [0, 2].

Then, the LNC function delivered to the CU will be w2. The
active LNC coefficient matrix is B = [1 1; 0 2] which has full
rank and the CU can recover both w1 and w2. Here a single
erasure will not affect the recovery of the two users’ messages.

D. Comments on the Proposed Scheme

The choice of the pre-assigned LNC matrix A is critical.
Intuitively, a well-designed A should be able to accommodate as
many erasures (i.e., the zero elements in B) as possible while still
having a full rank in the finite field. This will lead to improved
OP performance relative to that with an arbitrarily chosen A, as
we will show in the next section. The details on the design of A
will be presented in Section VI.

In the proposed LNC based protocol, the BSs exhibit the
feature of “cloud base stations”. The users are not aware of which
BSs are actually serving them, while each BS is not aware of
the operations of other BSs. This leads to several advantages in
practice, e.g., there is no need to design soft handover and the
cell planning can be simplified. For LTE cellular networks, in

particular, there is no need to change the system architecture in
order to employ the proposed protocol. The proposed protocol
also shares some features of the cloud storage using network
coding [8]. The erasures are due to that a BS cannot successfully
decode some of the users’ messages, which are largely decided
by the random realization of fading channels.

The proposed scheme differs from compute-and-forward in
that the LNC coefficients used by the BSs in our scheme are
pre-assigned (optimized) in advance. By carefully designing
the pre-assigned LNC matrix A (see next two sections), the
probability of rank deficiency at the CU can be minimized. In
contrast, in compute-and-forward, each BS selects the best N
LNC coefficients, but this frequently leads to rank deficiency at
the CU. We note that the method proposed in [19] for designing
the CF coefficient required feedback from the CU to the BSs,
which cannot be implemented in the open loop uplink system
considered in this paper.

We would like to note that our proposed scheme can be
extended to non-symmetric rate scenarios. Specifically, at the
relay we can partition the message sequence of a high-rate
user into several segments, where the length of each segment
is identical to the length of the message sequence of a low-
rate user. Next, the multiple segments of a high-rate user are
associated with multiple LNC coefficient vectors. Then, the LNC
operations at the relay and the decoding at the destination can
be straightforwardly applied.

We note that our proposed scheme applies to the case where
the number of users changes. Specifically, when a user leaves
the network, its pre-assigned LNC coefficients will be released.
When a user joins the network, it will be allocated with some pre-
assigned LNC coefficients that meet the LNC design requirement
(Cond. 1 on Page 17). Meanwhile, the allocation of pre-assigned
LNC coefficients for other users will remain unchanged. In this
way, only the pre-assigned LNC coefficients for the users that join
or leave the network will be computed. The resultant overhead is
not significant when most users keep being active in the network.

V. OUTAGE BEHAVIOR IN RAYLEIGH FADING CHANNELS

In this section, we study the OP behavior of the proposed
LNC based protocol for the uplink D-MIMO system in Rayleigh
fading channels. Throughout this section, we will focus on the
case of 5 M ≤ L. Our scheme can be generalized to the case of
L < M while N > 1 is required.

A. Main Asymptotic Results

In this section, we focus on the outage probability for the case
that all channels are i.i.d. and follow Rayleigh distribution, i.e.,
hl,m ∼ CN(0, 1). The analysis can be extended to the case with
different fading channel distributions. In general, deriving the
exact OP for a specific SNR is very difficult. Here, we present
some main results on the OP of our proposed protocol in the high
SNR regime. Our results will be useful for evaluating the outage
behavior of the proposed scheme, as well as its performance gap
to the full MIMO setup.

5In a practical system e.g. the 4G cellular system, when a single-antenna BS
need to serve multiple users, the BS will allocate different frequency bands for
them, e.g. using OFDM). This is the main reason why we do not consider the
case of L < M .
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Theorem 1: For M ≤ L, as long as CBH ≥ R0 (or N ≥ 1),
there exists a pre-assigned LNC matrix A such that, as ρ→∞,
the OP of the proposed scheme satisfies

Pout
(
R0, C

BH
)
∝

1

ρL
. (21)

It is noteworthy that achieving the maximal diversity order is a
necessary condition for a scheme to be OP optimal at a relatively
high SNR. It can be shown that in a conventional scheme where
BS l only recovers and forwards wj , j ∈ {1, ...,M}, the OP is
proportional to 1

ρ . This suggests that, as long as CBH ≥ R0,
our proposed scheme outperforms the conventional scheme at a
sufficiently high SNR.

Theorem 2: For M ≤ L, as long as CBH ≥ MR0 (or N ≥
M ), the OP of the proposed scheme becomes

Pout
(
R0, C

BH
) ρ→∞→ M

(
2R0 − 1

ρ

)L
. (22)

Using Theorem 2, we can evaluate the performance gap to the
full MIMO setup as follows.

Corollary 1: For M ≤ L, it can be shown that the OP of the
full MIMO setup is given by

PMIMO
out (R0)

ρ→∞→ M

L!

(
2R0 − 1

ρ

)L
. (23)

Comparing (22) and (23), our proposed scheme is 10
L log10 (L!)

dB away from the performance of the full MIMO setup as long
as CBH ≥ MR0 at a high SNR. The gap is 1.505 dB, 2.59dB
and 3.45 dB for L = 2, 3, 4 respectively. In Section VII, we
will show by numerical results that the above asymptotic results
hold when the SNR is greater than about 15 dB (or 25 dB) for
D-MIMO systems where R0 = 1 (or R0 = 2).

We note that a well-designed matrix A is necessary to achieve
the above results.

B. Outage Probability Analysis (Proof of Main Results)

We now analyze the OP of the proposed scheme and prove
the main results.

1) Preliminaries:
Definition 1 (Completely decodable region): For a given tar-

get symmetric rate R0, the achievable channel parameter re-
gion A(w1, · · · ,wM ) is defined as the collection of all
(hl1, · · · , hlM ) such that all of w1, · · · ,wM can be successfully
decoded by BS l. We refer to such a region as the completely
decodable (CD) region.

Lemma 1: For a given R0, at BS l, A(w1, · · · ,wM ) is given
by the collection of all (hl1, · · · , hlM ) s.t.

|hlm|2 ≥
2R0 − 1

ρ
,∀m ∈ {1, · · · ,M}

|hlm|2 + |hlm′ |2 ≥ 22R0 − 1

ρ
,∀m,m′ ∈ {1, · · · ,M},m 6= m′

...
M∑
m=1

|hlm|2 ≥
2MR0 − 1

ρ
. (24)

Proof: This follows from the well-known capacity region
of the M -user multiple-access channel (MAC). The proof was

based on superposition encoding and joint typicality decoding
[20].

An example of the CD region is illustrated in Fig. 2 for the
M = 2 case.

Remark 5: From the literature, it is known that there exist
spatially coupled codes that exhibit vanishing error probability
(as n→∞) as long as (hl1, · · · , hlM ) belong to the CD region
specified above [21].

In conventional M -user MAC, the receiver is required to
decode all users’ messages. In contrast, in the uplink D-MIMO
system, it is not necessary that every BS must successfully decode
all users’ messages. As long as the L BSs collectively forward
a number of linear message functions that have rank M , the CU
can recover all users’ messages. The following definition and
lemma will be used to reflect this feature.

Definition 2 (Partially decodable region): For a given set of
user-message index Sl ⊆ {w1, · · · ,wM} w.r.t. BS l, the partially
decodable (PD) region, denoted by A(Sl), is defined as the
collection of all channel parameters (hl1, · · · , hlM ) such that
the messages wm,wm ∈ Sl, can be successfully decoded while
wm,wm ∈ Scl , cannot be successfully decoded.

Remark 6: When Sl collects all M users’ message indices,
i.e., Sl = {w1, · · ·wM}, the PD region A(Sl) becomes the CD
region. When Sl is an empty set ∅, A(∅) specifies the region
that no user’s messages can be successfully decoded. We refer to
A(∅) as a non-decodable region. In general, there are 2M non-
overlapping PD regions for BS l, including the CD region and
the non-decodable region.

Lemma 2: For a given R0, the PD region A(Sl) is given by
the collection of all (hl1, · · · , hlM ) such that

|hlm|2 ≥
2R0 − 1

ρ

ρ ∑
m∈Sc

l

|hlm|2 + 1

 , ∀m ∈ Sl

|hlm|2 + |hlm′ |2 ≥ 22R0 − 1

ρ

ρ ∑
m∈Sc

l

|hlm|2 + 1

 , ∀m,m′ ∈ Sl,m′ 6= m

...∑
m∈Sl

|hlm|2 ≥
2|Sl|R0 − 1

ρ
, (25)

|hlm|2 <
2R0 − 1

2R0ρ

ρ ∑
m∈Sc

l

|hlm|2 + 1

 , ∀m ∈ Sc
l

|hlm|2 + |hlm′ |2 < 22R0 − 1

22Rρ

ρ ∑
m∈Sc

l

|hlm|2 + 1

 , ∀m,m′ ∈ Sc
l ,m

′ 6= m

...∑
m∈Sc

l

|hlm|2 <
2|S

c
l |R0 − 1

ρ
. (26)

Proof: It can be shown that if the inequalities in (25) are
satisfied, for all users belonging to Sl, their messages can be
successfully decoded while treating all the rest users’ signals as
noise. Also, it can be shown that if the inequalities in (26) are
satisfied, for all users belonging to Scl , none of their messages can
be successfully decoded. Combining these two parts, we obtain
the PD region for a given Sl.
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Fig. 2. Illustration of CD and PD regions of a M = L = 2 D-MIMO
system. The SNR is 10 dB and R0 = 2. Area 1 depicts the CD region
A(Sl = {w1,w2}). Areas 2 and 3 respectively depict the PD regions
A (Sl = w1) (or A (w1, w̃2)) and A (Sl = w2) (or A (w̃1,w2)). Area 4
depicts the non-decodable region A (Sl = ∅) (orA (w̃1, w̃2)).

Example 2: Consider M = 2. As long as |hl1|2 >
2R0−1
ρ (ρ|hl2|2 +1), BS l can successfully decode w1 by treating

user 2’s signal as noise, and the interference from user 1 to user
2 can be removed. In addition, if |hl2|2 < 2R0−1

ρ , BS l cannot
successfully decode w2. Lemma 2 generalize this to the M user
case.

In Fig. 2, we depict the CD region A(Sl = {w1,w2}) and
the PD regions A (Sl = w1) and A (Sl = w2) w.r.t. BS l, for a
M = 2 system. Here, the SNR is 10 dB and the symmetric rate is
R0 = 2. The horizontal axis denotes |hl1|2 and the vertical axis
denotes |hl2|2. The whole area is divided into four disjoint areas.
In particular, area 1 depicts the CD region A(Sl = {w1,w2})
which is specified in (24). For a channel realization where
|hl1|2 and |hl2|2 fall into this region, both w1 and w2 can be
successfully decoded. Area 2 depicts the PD region A (Sl = w1).
For a channel realization where |hl1|2 and |hl2|2 falls into this
area, w1 can be successfully decoded but w2 cannot. Similarly,
area 3 depicts A (Sl = w2). Area 4 depicts the non-decodable
region A (Sl = ∅) where neither w1 nor w2 can be successfully
decoded.

2) Outage Events at the CU: Recall that in the proposed
LNC based protocol, each BS forwards N LNC functions to
the CU via its BH link. Then, the CU attempts to recover all
M users’ messages based on the L · N LNC functions. It is
clear that the positions of erasures (zero elements) in the active
LNC coefficients are determined by the indices of the users that
cannot be successfully decoded at BS l. To be specific, for BS
l, the active LNC coefficient vector βl =

[
βl,1, · · · , βl,M

]T
is

determined by the PD region that the channel realization hl falls
into. By considering all L BSs, the outage event at the CU is
given below.

Lemma 3: An outage event at the CU happens if h1, · · · ,hL
belong to the L PD regions such that the corresponding active
LNC coefficient matrix B does not have a full rank of M in Fq .

To help with explaining the outage event, let us consider an
example with M = L = 2. Consider the CD and PD regions
as depicted in Fig. 2 for both BS 1 and BS 2. For a certain
realization of (h11, h12), BS 1 is subject to one of the four
disjoint regions. Similarly, for a certain realization of (h21, h22),

BS2 is subject to one of the four disjoint regions. Then, the
erasures in the active LNC matrix B is also determined. If
B turns out to be full rank, the CU can recover both users’
messages. Otherwise, an outage event happens. The outage events
for the M = L = 2 case are described below. For notation
simplicity, let A (Sl = w1) and A (Sl = w2) be respectively
denoted by A (w1, w̃2) and A (w̃1,w2) .

Corollary 2: For M = L = 2, an outage happens if
(h11, h12, h21, h22) ∈ Rout where:

A) For CBH = R0 (or N = 1),
Rout = { H: (h11, h12) ∈ A (w1, w̃2) ∩ (h21, h22) ∈ A (w1, w̃2)

or (h11, h12) ∈ A (w̃1,w2) ∩ (h21, h22) ∈ A (w̃1,w2)

or (h11, h12) ∈ A (w̃1, w̃2) ∪ (h21, h22) ∈ A (w̃1, w̃2) }.
(27)

B) For CBH = 2R0 (or N = 2),
Rout = { H: (h11, h12) ∈ A (w1, w̃2) ∩ (h21, h22) ∈ A (w1, w̃2)

or (h11, h12) ∈ A (w̃1,w2) ∩ (h21, h22) ∈ A (w̃1,w2)

or (h11, h12) ∈ A (w̃1, w̃2) ∩ (h21, h22) ∈ A (w̃1, w̃2)}.
(28)

Note that (27) and (28) differ in their last lines, i.e., “∪” in (27)
and “∩” in (28).

3) Asymptotic OP Results (Proof of Main Results): As the size
of the D-MIMO system, i.e., M and L, become large, there will
be a large number of events that will lead to outages at the CU.
This makes it very difficult to characterize the exact OP of the
proposed protocol for general M,L and N , even at the infinite
SNR regime. The results presented in Theorem 1 and Theorem
2 (in Section IV. A) showed the diversity order as well as the
asymptotic performance gap to the full MIMO setup, for general
M and L of M ≤ L. The remainder of this section is devoted
to the proofs of these results.

Recall the PD-regions in Definition 2. The event that user m ’th
message cannot be successfully decoded at BS l is given by
hlm ∈

⋃
Sl:wm /∈Sl

A(Sl). Here, hlm ∈
⋃

Sl:wm /∈Sl
A(Sl) specifies the

event that hlm falls into the union of the PD-regions A(Sl) where
Sl does not contain the mth user’s message wm. As ρ→∞, the
probability of such an event can be upper-bounded as follows.

Proposition 1: As ρ→∞ and for R0 <∞,

Pr

hlm ∈ ⋃
Sl:wm /∈Sl

A(Sl)

 ≤ 2MR0 − (M − 1)2R0 +M − 2

ρ

∝
1

ρ
. (29)

Proof: It can be shown that the following region

|hlm|2 <
2MR0 − 1− (M − 1)

(
2R0 − 1

)
ρ

,∀m = 1, · · ·M,

(30)
is strictly contained in the CD region. This follows from the fact
that the CD region is convex and thus any linear combination
of the corner points of the CD region is inside the CD region.
Geometrically, the region specified in (30) is an M -dimension
cubic that is strictly inside the pentagon of the CD region. Then,
based on the above relaxation, we have

Pr

hlm ∈
⋃

Sl:wm /∈Sl

A(Sl)

 ≤ Pr

{
|hlm|2 <

2MR0 -1-(M -1)
(
2R0 -1

)
ρ

}

=
2MR0 − (M − 1)2R0 +M − 2

ρ
.
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We now prove Theorem 1.
Proof of Theorem 1: For CBH = R0 (or N = 1), the

active LNC matrix B is of size L by M . Note that each event of
hlm ∈

⋃
Sl:wm /∈Sl

A(Sl) contributes to a zero element in B. Let

τ be the number of zero elements in the active LNC matrix B.
From the above proposition, as ρ→∞, we have

Pr [τ = T ] ≤
(
M · L
T

)(
2MR0 − (M − 1)2R0 +M − 2

ρ

)T
(31)

From Prop. 3 (on page 19 ), there exists a pre-assigned LNC
matrix A that is robust to L− 1 erasures. As long as τ ≤ L− 1,
the CU can successfully recover all M users’ messages. Thus
the OP is upper-bounded by

Pout

(
R0, C

BH
)
≤

M·L∑
T=L

(
M · L
T

)(
2MR0 − (M − 1)2R0 +M − 2

ρ

)T

=

(
M · L
L

)(
2MR0 − (M − 1)2R0 +M − 2

ρ

)L

+ o

(
1

ρL

)
∝ 1

ρL
(32)

In addition, since increasing N will not reduce the slope of
Pout

(
R0, C

BH
)
, we have Pout

(
R0, C

BH
)
∝ 1

ρL
for N > 1.

This completes the proof.
We next consider N = M and prove the result of Theorem 2.

The following lemma will be used.
Lemma 4: As ρ→∞, for R0 <∞, we have

Pr

hlm ∈ ⋃
Sl:wm /∈Sl

A(Sl)

 ≈ 2R0 − 1

ρ
+ o

(
1

ρ

)
(33)

for m = 1, · · · ,M, l = 1, · · · , L. The proof of Lemma 4 is given
in the appendix.

Proof of Theorem 2: As long as the pre-assigned LNC
matrix satisfies Proposition 2, for N = M , the CU cannot
correctly recover user m’ message only if there is no BS that
can successfully decode user m’s message. The probability of
such event is given by

Pr


L⋂
l=1

hlm ∈
⋃

Sl:wm /∈Sl

A(Sl)

 ≈
(

2R0−1

ρ

)L
+ o

(
1

ρL

)
(34)

where we have used the result of Lemma 4. As ρ → ∞, for
R0 < ∞ and N = M , the OP is equal to the probability that
the CU cannot correctly recover at least one of the M users’
messages, which is given by

Pout
(
R0, C

BH
)

=

M∑
m=1

Pr


L⋂
l=1

hlm ∈
⋃

Sl:wm /∈Sl

A(Sl)


≈ M

(
2R0−1

ρ

)L
+ o

(
1

ρL

)
. (35)

This completes the proof.
4) Impact of BH Rate-Constraint: To end this section, we

briefly discuss the impact of the BH rate-constraint (i.e. N ) on
the OP performance, where we focus on a small system. For
M = L = 2, we can derive an exact closed-form expression for

the OP at a high SNR for N = 1, as presented below and proved
in Appendix:

Theorem 3: For M = L = 2, as ρ→∞, the OP with CBH =
R0 (N = 1) is given by

Pout

(
R0, C

BH = R0

)
≈

4
(
2R0 − 1

)2
+ 2

(
2R0 − 1

)3
+
(
2R0 − 1

)4
ρ2

.

(36)
Remark 7: From Theorem 2, for M = L = 2 and N = 2, we

have

Pout
(
R0, C

BH = 2R0

)
≈ 2

(
2R0 − 1

ρ

)2

. (37)

Comparing Pout
(
R0, C

BH = 2R0

)
and Pout

(
R0, C

BH = R0

)
in (36), it is clear that a larger N gives rise to a reduced OP.
Furthermore, as R0 increases, the improvement due to a larger
CBH becomes greater. We note that this behavior holds when
M and L become large. (See Section VI.)

VI. DESIGN OF PRE-ASSIGNED LNC MATRIX A

In this section, we first present the existence of a pre-assigned
LNC matrix A that yields the OP results in the previous section.
Then, we study how to construct a desired matrix A in an
efficient manner.

A. Existence of Pre-assigned Matrix A

As a preliminary, we first describe a condition. As long as this
condition is met, the OP results shown in the previous section is
guranteed.

Condition 1 (Robust-to-Γ-erasures condition): A full rank
matrix is said to be robust to Γ erasures if after any τ ≤ Γ
entries are set to be 0, the resultant matrix is still of full rank.

As an example, the 5 × 2 matrix
[
1 0 1 1 1
1 0 1 1 2

]T
over

GF(3) is robust to 3 erasures but not to 4 erasures, because if
we set all 4 nonzero entries to be zero, then the matrix is not
full rank anymore. In order to have a 5 × 2 matrix robust to 4
erasures, we need a larger finite field than GF(3). For instance,[
1 1 1 1 1
1 1 2 2 3

]T
is a matrix over GF(5) robust to 4 erasures.

More generally, when M = 2, an L×M matrix A which is robust
to L− 1 erasures can be constructed over any GF(q), q ≥ 4, by

selecting the first L rows in
[
1 1 1 1 1 1 1 · · ·
1 a b 1 a b 1 · · ·

]T
,

where a, b are arbitrary two distinct elements in GF(q) other
than 0 and 1. It remains to discuss the cases when M ≥ 3.
As exemplifying matrices, one can check that1 1 1 1

1 1 12 12
1 12 1 12
1 12 12 1

 and

 1 1 1 1 1
1 1 12 12 2
1 12 1 12 3

T

over GF(13) are respectively robust to 3 and 4 erasures. In
the remaining part of this subsection, we shall show, by rather
technical but standard arguments in the network coding literature
(See [18] for example), that there always exists an L×M matrix
robust to L− 1 erasures over a sufficiently large finite field.
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1) Case M = L:
Proposition 2: When q >

∑M−1
n=2

(
M2−1
n

)
, there exists an

M ×M matrix A over GF(q) that is robust to M − 1 erasures,
i.e., after any n ≤M−1 entries of A are set to be 0, the resultant
matrix is of full rank M .

Remark 8: In the proposed scheme, each zero element in the
active LNC matrix B corresponds to a decoding failure of a
user’s message at a specific BS. For a matrix A that satisfies
Cond.1, only when there are M zero elements in B, B will have
rank deficiency and an outage event happens. In the proof of
Theo. 1, we showed that the probability of M zero elements is
proportional to 1

ρ as ρ→∞.
Proof: Let X be a set of indeterminates {xj,k}1≤j,k≤M ,

and A(X) be the M ×M matrix with (j, k)th entry being xj,k.
Further let Ψ be the collection of all subsets of X with 0 ≤ n <
M elements, and A(X,ψ), where ψ ∈ Ψ, be the matrix obtained
from A(X) by setting the (j, k)th entry to be 0 whenever xj,k ∈
ψ. Then, det(A(X,ψ)), to be denoted by fψ(X), is a nonzero
polynomial in indeterminates in X over GF(q). In order to show
that there exists a matrix A over GF(q) subject to Cond. 1., it
is equivalent to show that there exists an assignment of aj,k ∈
GF(q) to xj,k ∈ X such that the evaluation fψ((aj,k)1≤j,k≤M ) is
nonzero for all ψ ∈ Ψ. Denote by Ψ′ (resp. Ψ′′) the collection of
all such members in Ψ that each ψ ∈ Ψ′ (resp. ψ ∈ Ψ′′) contains
M − 1 indeterminates which all appear in a same row (resp. in
a same column) in A(X). Note that Ψ′ ( Ψ due to M ≥ 3.
Moreover, since

∏
ψ∈Ψ′ fψ(X) =

∏
ψ∈Ψ′′ fψ(X), it suffices to

show that there exists an assignment of aj,k ∈ GF(q) to xj,k ∈ X
such that the evaluation

∏
ψ∈Ψ\Ψ′ fψ((aj,k)1≤j,k≤M ) is nonzero.

Consider an arbitrary indeterminate xj,k. Note that there
are totally

∑M−1
n=0

(
M2

n

)
− M2 members in Ψ\Ψ′. Since the

degree of xj,k in fψ(X) is at most one for every ψ ∈ Ψ,
the degree of xj,k in

∏
ψ∈Ψ\Ψ′ fψ(X) is upper bounded by∑M−1

n=0

(
M2

n

)
−M2. By a more dedicate counting, we can further

show that the degree of xj,k in
∏
ψ∈Ψ\Ψ′ fψ(X) is at most∑M−1

n=0

(
M2

n

)
−M2−

(∑M−2
n=0

(
M2−1
n

)
−M + 1

)
−(M−1) =∑M−1

n=0

(
M2

n

)
−
∑M−2
n=0

(
M2−1
n

)
−M2 =

∑M−1
n=2

(
M2−1
n

)
, where

the last equality is due to the fact that (Mn ) =
(
M
n−1

)
+(

M−1
n−1

)
for any M,n > 1. By applying the lemma below

with f(x1, · · · , xn) =
∏
ψ∈Ψ\Ψ′ fψ(X), we conclude that if

q >
∑M−1
n=2

(
M2−1
n

)
, there exist aj,k ∈ GF(q) for 1 ≤ j, k,≤M

such that
∏
ψ∈Ψ\Ψ′ fψ((aj,k)1≤j,k≤M ) 6= 0, which guarantees

fψ((aj,k)1≤j,k≤M ) 6= 0 for all ψ ∈ Ψ. The proposition is proved.

Lemma 5: Consider a polynomial f(x1, · · · , xn) over GF(q).
Denote by dj the highest degree of xj in f(x1, · · · , xn). If q >
max{d1, · · · , dn}, then there exist a1, · · · , an ∈ GF(q) such that
f(a1, · · · , an) 6= 0.

Proof: This can be proved by an inductive argument on n,
which is obviously true for n = 1.

Remark 9: The technique adopted to prove Prop. 2 is to show
the existence of a nonzero evaluation of a properly designed
multi-variable polynomial over GF(q). It is well known that there
is a solution over GF(q) for a multicast network if q is larger than
the number of receivers in the network (See [22]). However, the
gap between the number of receivers and the minimum field size
qmin for the existence of an LNC solution can be extremely
large and the characterization of qmin remains open. Similarly, in

Prop. 2, the existence of an M×M square matrix A over GF(q)
subject to Cond.1 is only guaranteed when q >

∑M−1
n=2

(
M2−1
n

)
.

For instance, for M = 3, we need q > 28 and q > respectively
in Prop. 2. However, the minimum field size by computer search

subject to Cond.1 is q = 8 with matrix
[

1 1 1
1 α α3

1 α5 α

]
, where α is a

primitive element in GF(8).
2) Case M ≤ L:
Proposition 3: When q > M

∑M−1
n=2

(
M2−1
n

)
, there is an L×

M matrix A over GF(q) which is robust to L− 1 erasures, i.e.,
after any n ≤ L − 1 entries of A are set to be 0, the resultant
matrix is of full rank M .

Proof: Let X denote a set of indeterminates
{xj,k}1≤j≤L,1≤k≤M , and A(X) denote the L×M matrix with
(j, k)th entry being xj,k. Further let Ψ be the collection of all
subsets of X with n < L elements, and A(X,ψ), where ψ ∈ Ψ,
be the matrix obtained from A(X) by setting xj,k = 0 whenever
xj,k ∈ ψ. Corresponding to each A(X,ψ), define a collection
A(ψ) of L M ×M submatrices A1(X,ψ), · · · , AL(X,ψ) of
A(X,ψ) in such a way that each An(X,ψ) consists of the M
rows in A(X,ψ) indexed by {n, · · · , n + M − 1}, where the
indices are modulo L if they are larger than L.

Observe that for any ψ ∈ Ψ, there is at least one matrix in
A(ψ) that contains at most M − 1 zeros. This is because the
total number of zero entries in all matrices in A(ψ) is equal to
M |ψ| ≤M(L− 1), whereas there are only L matrices in A(ψ),
so that it is impossible for every matrix in A(ψ) to contain no
less than M zeros. For every 1 ≤ n ≤ L, denote by Xn ⊆ X the
set of indeterminates {xj,k}n≤j≤n+M,1≤k≤M , where the index
j is modulo L when it is larger than L, and denote by Ψn ⊆ Ψ
the collection of all subsets of Xn with M ′ < M elements.
Then, for each ψ ∈ Ψ, at least one An(X,ψ) ∈ A(ψ) belongs
to {An(X,ψ) : ψ ∈ Ψn}. It remains to show that when q >
M
∑M−1
n=2

(
M2−1
n

)
, there is an assignment of aj,k ∈ GF(q) to

xj,k ∈ X s.t. every matrix in
⋃

1≤n≤L{An(X,ψ) : ψ ∈ Ψn}
is of full rank M . Same as in the proof of Prop. 2, specific to
an arbitrary n, we can establish such a polynomial, denoted by
fn(Xn), in indeterminates in Xn that (i) the degree of every
indeterminate is upper bounded by

∑M−1
n=2

(
M2−1
n

)
; (ii) based

on an assignment of aj,k ∈ GF(q) to xj,k ∈ Xn, every matrix
in {An(X,ψ) : ψ ∈ Ψn} is of full rank M iff the evaluation of
this polynomial is nonzero. Then, it is equivalent to show that
there is an assignment of aj,k ∈ GF(q) to xj,k ∈ X such that
the evaluation of the polynomial

∏
1≤n≤L fn(Xn) is nonzero.

Since every indeterminate only appears in at most M matrices
in A(ψ), the degree of every indeterminate in

∏
1≤n≤L fn(Xn)

is upper bounded by M
∑M−1
n=2

(
M2−1
n

)
. When q is larger than

this value, a desired assignment is feasible according to Lemma
5.

B. Construction of Pre-assigned Matrix A

The previous subsection proves the existence of a pre-assigned
matrix A subject to robust-to-(L-1)-erasure condition. Recall
that matrix A is pre-assigned in the proposed scheme. Once
A is determined, it will remain unchanged for different fading
channel realizations. Therefore, from a practical perspective, the
complexity for obtaining matrix A will not be a major concern.
Yet, it will be of theoretical interests to investigate how to
efficiently construct such a matrix as follows. First, we shall
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reduce the construction of an L × M matrix robust to L − 1
erasures to the construction of an (L− 1)× (M − 1) matrix.

Proposition 4: Let A be an L ×M matrix over GF(q) sat-
isfying robust-to-(L-1)-erasure condition. Every entry in A is
nonzero and there exists a matrix over GF(q) satisfying robust-
to-(L-1)-erasure condition with all entries in the first row and
first column equal to 1.

Proof: Denote by aj,k the (j, k)th entry in A. Consider an
arbitrary aj,k. Denote by A′ the matrix obtained from A via
setting aj′,k = 0 for all j′ 6= j. Since A satisfies condition
robust-to-(L-1)-erasure condition, A′ has full rank M . If aj,k
is equal to 0, then the kth column in A′ is a zero column
and thus rank(A′) < M , a contradiction. Therefore, aj,k 6= 0.
Next, we can obtain another matrix A′′ from A via sequentially
multiplying the jth row by a−1

j,1 for all 1 ≤ j ≤ L, and then
sequentially multiplying the kth column in the new matrix by
a1,1a

−1
1,k for all 2 ≤ k ≤M . All entries in the first row and first

column in A′′ are then equal to 1. Since the rank of an arbitrary
matrix over a field keeps the same after any row or column in
the matrix is multiplied by a nonzero value in the field, matrix
A′′ satisfies robust-to-(L-1)-erasure condition too.

Recall that the size of a finite field must be a power
of a prime integer. Assume that q is a prime greater than
M
∑M−1
n=2

(
M2−1
n

)
, so that the existence of an matrix robust to

L− 1 erasures is guaranteed by Prop. 3.
Assume that q is a prime power greater than

M
∑M−1
n=2

(
M2−1
n

)
. If we need to find a matrix over GF(q)

s.t. robust-to-(L-1)-erasure condition by exhaustive search, the
total number of matrices over GF(q) we need to check is in the
order O(qLM ). If we assume that the computational complexity
is O(LM2) to check whether an L ×M matrix has full rank
(by Gaussian elimination for example,) the computational
complexity to find a matrix subject to robust-to-(L-1)-erasure
condition over GF(q) by exhaustive search is O(LM2qLM ).

We next establish a more structured way to construct a matrix
subject to robust-to-(L-1)-erasure condition. A matrix is called
a mixed matrix over GF(q) if every entry in it contains either a
value in GF(q) or an indeterminate. Let A denote a collection
of such M ×M square mixed matrices over GF(q) that every
indeterminate appears only at most once in every matrix, and let
X denote the set of indeterminates appearing in A. A max-rank
matrix completion of A is a procedure to assign values in GF(q)
to indeterminates in X such that the rank of every matrix in A
is preserved. When q > |A|, an algorithm is designed in [23]
for max-rank completion of A with computational complexity
O(|A|(M3 logM + |X|M2)).

Now, in order to construct an M × M matrix over GF(q)
subject to robust-to-(L-1)-erasure condition, it suffices to con-
struct a matrix over GF(q) with all entries in the first row and
the first column equal to 1 as a consequence of Proposition
4. Let A denote a mixed matrix such that (i) the entries in
the first row and the first column are equal to 1; (ii) the
(j, k)th entry is an indeterminate xj,k for all 2 ≤ j, k ≤ M .
Further denote by X the set of ordered pairs {(j, k) : 1 ≤
j, k ≤ M}, by Ψ the collection of all subsets of X with
n < M elements, and by A(ψ) where ψ ∈ Ψ the matrix
obtained from A via setting the (j, k)th entry to be 0 whenever
(j, k) ∈ ψ. Then, a max-rank matrix completion procedure on
A = {A(ψ) : ψ ∈ Ψ} is able to construct a matrix subject to

robust-to-(L-1)-erasure condition. Specific to an entry indexed
by (j, k), consider two members in Ψ: ψ′ = {(j′, k) : j′ 6= j},
ψ′′ = {(j, k′) : k′ 6= k}. Since det(A(ψ′) = det(A(ψ′′)),
a max-rank matrix completion of {A, A(ψ′)} is equivalent to
a max-rank matrix completion of {A, A(ψ′′)}. As a result, it
suffices to conduct a max-rank matrix completion procedure on
A = {A(ψ) : ψ ∈ Ψ\Ψ′} to find a matrix subject to robust-to-
(L-1)-erasure condition, where Ψ′ = {{(j1, k), · · · , (jM−1, k)} :
1 ≤ j1 < · · · < jM−1 ≤ M, 1 ≤ k ≤ M}. Then,
based on the algorithm proposed in [23], when q > |A| =∑M−1
n=0

(
M2

n

)
− M2 =

∑M−1
n=1

(
M2

n

)
, an M × M matrix A

subject to robust-to-(L-1)-erasure condition can be constructed
with computational complexity O(

∑M−1
n=1

(
M2

n

)
(M3 logM +

M4)) = O(M4
∑M−1
n=1

(
M2

n

)
). As an extension, we can also

adopt the max-rank matrix completion approach to construct an
L ×M matrix subject to robust-to-(L-1)-erasure condition. Let
A denote an L×M mixed matrix s.t. (i) the entries in the first
row and the first column are equal to 1; (ii) the (j, k)th entry
is an indeterminate xj,k for all 2 ≤ j ≤ L and 2 ≤ k ≤ M .
Based on A, define L M × M submatrices A1, · · · ,AL of
A in such a way that each An, 1 ≤ n ≤ L consists of the
M rows in A indexed by {n, · · · , n + M − 1}, where the
indices are modulo L if they are larger than L. As explained
in the proof of Prop. 3, after any L − 1 entries in A are set
to 0, there is at least one submatrix An among A1, · · · ,AL

containing at most M zeros. Thus, a max-rank matrix completion
procedure on the family A = {An(ψ) : ψ ∈ Ψ, 1 ≤ n ≤ L}
of mixed matrices, where Ψ and An(ψ) are defined in the
same way as in the previous paragraph, is sufficient generate an
L ×M matrix satisfying robust-to-(L-1)-erasure condition. By
a similar argument as in the previous paragraph, we can further
show that when q′ > L

∑M−1
n=1

(
M2

n

)
, the algorithm proposed

in [23] can construct an L ×M matrix satisfying robust-to-(L-
1)-erasure condition over GF(q′) with the computational com-
plexity O(L

∑M−1
n=1

(
M2

n

)
(M3 logM +(L−1)(M −1)M2)) =

O(L2M3
∑M−1
n=1

(
M2

n

)
).

VII. NUMERICAL RESULTS

In this section, we present numerical results of the uplink D-
MIMO system. Here we first present the numerical results of OPs
studied in the preceding sections. They serve as upper bounds on
the frame error rate (FER) of practical schemes with state-of-the-
art error-control codes and digital modulations. We will compare
the OP of the proposed scheme with those of existing schemes
in the literature. After that, we show the FER performance of
a practical turbo coded scheme with multi-user decoding at the
BSs. The pre-assigned LNC coefficient matrix A used in the
simulations are shown in Table I.

A. Outage Probability
We first consider an M = L = 2 system, where the per-

user information rate is R0 = 1 bit/channel-use. In Fig. 3,
the red curve (in solid line and with circles) is the OP of
a baseline scheme where BS 1 (or BS 2) only decodes and
forwards its user 1’s (or user 2’s) message6. The green curve

6In the baseline system, this assignment is fixed. In the model under con-
sideration, the cloud base stations do not share channel state information.
Therefore, the base stations cannot perform adaptive user selection according
to the instantaneous SNR.
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No. of users and BSs M = L = 2 M = L = 3 M = L = 4
Size of Fq q = 3 q = 8 q = 13

Pre-assigned matrix A A =

[
1 1
1 2

]
A =

 1 1 1
1 γ γ3

1 γ5 γ

 A =

 1 1 1 1
1 1 12 12
1 12 1 12
1 12 12 1


TABLE I

PRE-ASSIGNED LNC COEFFICIENT MATRIX A. HERE, γ IS A PRIMITIVE ELEMENT OF THE FIELD (FOR M = L = 3).
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Fig. 3. OP performance of M = L = 2 and R0 = 1.

(in solid line and with triangles) is the OP of the proposed
LNC based scheme, where CBH = R0 (N = 1).We observe
that, with our designed matrix A, the proposed scheme yields
dramatic performance improvement over the baseline scheme. In
particular, our proposed scheme achieves a diversity order of two,
which agrees with our analysis in Section V. We also plot the
derived closed-form result in Eq. (37), which matches with the
simulated results at SNR greater than 15 dB. We note that, if an
arbitrary A (rather than that described in Section VI) is used,
the OP of the LNC based scheme may be much worse than that
shown in this figure due to rank deficiency. In Fig. 3, we also plot
the OP of the proposed scheme, where CBH = 2R0 (N = 2).
At a medium-to-high SNR, a 2.6 dB improvement relative to that
of CBH = R0 is observed. The simulated curve matches with
our derived close-form result in Eq. (37) at SNR greater than 15
dB. We also observe that the OP performance is about 1.5 dB
away from that of the full MIMO setup, and this agrees with our
analysis presented in Section V. A.

We evaluate the performance for R0 = 2 as shown in Fig.
4, which lead to similar observations. We observe that the
performance improvement with CBH = 2R0 over that with
CBH = R0 is about 4.3 dB, which is greater than the 2.6 dB
in the R0 = 1 case in Fig. 3. This shows that as the data rate
R0 increases, increasing N will lead to a greater performance
improvement. This agrees with our discussion at the end of
Section V.

In Fig. 5, we compare the OP performance of the proposed
scheme with the compute-and-forward (CF) scheme [10] and the
quantize-and-forward (QF) scheme [24]. For the CF scheme, each
BS locally selects the N sets of coefficient vectors that yield the
highest computation rates which are greater than R0 [10]. For
the QF scheme, each BS quantizes its received signal into NR0

bits. The variance of the quantization noise was shown in [24].
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Fig. 4. OP performance of M = L = 2 and R0 = 2.
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Fig. 5. Comparison of OP performance of various schemes, where M = L = 2
and R0 = 2.
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Fig. 7. OP performance for various M ,M = L. R0 = 1.

We observe that the proposed LNC based scheme outperforms
both the CF scheme and the QF scheme. For N = 1, for the CF
scheme, there is a high probability that the coefficient vectors
separately selected by the BSs are not full rank. In contrast,
the proposed scheme can dramatically reduce the probability of
the rank deficiency by carefully designing the pre-assigned LNC
matrix A. For N = 2, the rank deficiency problem of the CF
scheme is alleviated, but its OP performance is still inferior to
that of the proposed scheme. Moreover, it can be seen that the
QF scheme is subject to a severe error floor, which is due to the
severe quantization noise. Note that we can derive the closed-
form result on the OP of our proposed scheme. At the moment,
a closed-form result cannot be done for QF and CF.

In Fig. 6, we consider an M = L = 3 system, where the
per-user information rate is R0 = 1. The BH capacities under
consideration are CBH = R0 and CBH = 2R0. It is clear that
proposed scheme yields dramatic performance improvement over
the baseline scheme. In particular, our proposed scheme achieves
a diversity order of three, which agrees with our analysis in
Section V.

In Fig. 7, we plot the OPs for various numbers of M and L
where R0 = 1. Here, we consider M = L = N . It is clear that as
M increases, the OP of the D-MIMO system with the proposed
LNC based approach improves. In contrast, the performance of
the baseline scheme (where BS l only decodes user l’s message)
becomes worse as M increases, due to that the interference
becomes more severe. At a SNR higher than 15 dB, we observe
that our proposed scheme is about 1.6 dB, 2.6 dB, 3.7 dB away
from the OP of the full MIMO case, for M = 2, 3, 4, respectively.
This agrees with our results in Theorem 2 and Corollary 1.

B. Frame Error Rates of Turbo-Coded and Modulated Systems

In Fig. 8, we consider an M = L = 2 system, where every
user employs a rate-1/2 turbo code with generator polynomials
[37, 21]8 and QPSK. The information rate is R0 = 1 bit/channel-
use. In our simulation, each block consists of 256 message bits.
Each BS carries out multi-user decoding via iterative a posteriori
probability (APP) detection and decoding [25], [26]. Note that
each BS is not aware of other BSs’ processing. For CBH = R0

(N = 1) , the simulated FER performance of the practical coded
and modulated system is about 1.5 dB away from our derived
theoretical OP (at a medium-to-high SNR regime). We conjecture
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Fig. 8. FER performance of M = L = 2. Each user employs a rate-half turbo
code and QPSK.
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Fig. 9. FER performance of M = L = 3. Each user employs a rate-half turbo
code and QPSK.

that this gap is primarily due to that the simulated coding and
modulation scheme may not be able to achieve the full rate-
region of the MAC. From the literature, it is known that universal
codes, such as spatially coupled LDPC codes, can be employed
to achieve the whole rate-region of the multiple-access channel
[21], and yield further improved FER performance. Interestingly,
for CBH = 2R0, the simulated FER performance of the practical
coded and modulated system is only about 0.2 dB away from
our derived theoretical OP, and the gap becomes almost un-
noticeable. These FER results further confirm our derived OP
results.

In Fig. 9, we consider an M = L = 3 system, where again
each user employs the rate-1/2 turbo code and QPSK. We observe
that, the simulated FER performance of the proposed scheme is
about 2.0 dB away from the theoretical OP, for both CBH = 2R0

and CBH = 3R0. This increased gap between the FER and the
theoretical OP, relative to the M = L = 2 case, is primarily
due to that the simulated coding and modulation scheme may
not be able to achieve the full rate-region of the MAC, and the
gap becomes greater as the number of users M increases. We
expect that spatially coupled LDPC codes can be designed to
considerably reduce this gap [21]. This will be considered in our
future work.
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VIII. CONCLUSIONS

We proposed a LNC approach for uplink D-MIMO sys-
tems where the transmitters do not have CSI. By carefully
designing the pre-assigned LNC matrix, the proposed scheme
exhibited significantly improved outage probability performance
over the base-line single-cell processing scheme, the compute-
and-forward scheme and the quantize-and-forward scheme. We
showed that as long as the BH rate-constraint is not smaller than
the data rate, i.e., CBH ≥ R0, the proposed scheme achieves a
full diversity order of L determined by the number of distributed
BSs. As CBH ≥ M · R0, the scheme is only 10

L log10 (L!) dB
away from the performance of the full MIMO setup at a high
SNR. In addition, the performance improves as the size of the
D-MIMO system scales up. We also showed that the frame error
rate performance of a practical turbo coded system is reasonably
close to our derived theoretical OP.

The work in this paper can be enriched from several aspects.
For example, it is an open question whether the performance gap
(of 10

L log10 (L!) dB when CBH ≥ M · R0) to the full MIMO
case can be further reduced. Also, the smallest field size q w.r.t.
the LNC matrix that guarantees this high-performance is still
unknown. In addition, the design of the LNC based approach
for the multi-antenna setup remains open. These interesting open
problems may deserve further investigations.

APPENDIX

Proof of Lemma 4: Define the following region:

D = { (hl1, · · · , hlM ) : hlm ≥
2R0 − 1

ρ
,∀m = 1, · · ·M. (38)

Clearly, A(w1, · · ·,wM ) ⊆ D, i.e., the CD region is contained
in the region D.

Also, define another region as:

G , Ac(w1, · · ·,wM ) ∩ D (39)

which is the part of D not overlapped with the CD region
A(w1, · · ·,wM ). It can be shown that G ⊆ A(∅).

We next show that as ρ→∞, G approaches an empty set. We
prove this by contradiction.

Consider R0 < ∞. Suppose that G is non-empty. According
to the definition of G in the above, none of the M users can
successfully decode its messages if (hl1, · · · , hlM ) ∈ G. This
suggests that

|hlm|2 <
2R0 − 1

ρ

(
1 + (M − 1)

2R0 − 1

ρ

)
ρ→∞
≈ 2R0 − 1

ρ
(40)

for (hl1, · · · , hlM ) ∈ G, since otherwise user m’s message can be
successfully decoded by treating the other (M -1) users’ messages
as noise. This leads to absurdity from the definition of D and
G ⊆ D. Therefore G is an empty set as ρ → ∞. The above
suggests that A(w1, · · ·,wM )→ D as ρ→∞. Then we have

Pr

hlm ∈ ⋃
Sl:wm /∈Sl

A(Sl)

 ≈
(
|hlm|2 <

2R0 − 1

ρ

)

=
2R0 − 1

ρ
+ o

(
1

ρ

)
.

Proof of Theorem 3: As ρ → ∞, the probability that
(hl1, hl2) belongs to A (w1, w̃2) is given by

Pr {hl1, hl2 ∈ A (w1, w̃2)}

=
2R − 1

ρ

(
1− 1

2

(
2R − 1

)2
ρ

− 2R − 1

ρ

)
+ o

(
1

ρ

)
(41)

=
2R − 1

ρ
+ o

(
1

ρ

)
, l ∈ {1, 2}.

This follows from integrating over the PD-region A (w1, w̃2)
over the pdf of a Rayleigh distribution. As ρ → ∞,
Pr {hl1, hl2 ∈ A (w1, w̃2)} is just the area of A (w1, w̃2), which
leads to (41). Similarly,

Pr {hl1, hl2 ∈ A (w̃1,w2)} =
2R − 1

ρ
+ o

(
1

ρ

)
, l ∈ {1, 2}.

(42)
As ρ → ∞, the probability that (hl1, hl2) belongs to the non-
decodable region A (w̃1, w̃2) is given by

Pr {hl1, hl2 ∈ A (w̃1, w̃2)}

=

(
2R − 1

)2
+
(
2R − 1

)3
+ 1

2

(
2R − 1

)4
ρ2

+ o

(
1

ρ2

)
.(43)

Consider the event specified in the second line of (27). The
probability of this event is

P
(1)

= Pr {h11, h12 ∈ A (w1, w̃2)}Pr {h21, h22 ∈ A (w1, w̃2)}

=

(
2R − 1

)2
ρ2

+ o

(
1

ρ2

)
where we have used Eq. (41). Similarly, the probability w.r.t. the
event w.r.t the third line of (27) is given by

P
(2)

=

(
2R − 1

)2
ρ2

+ o

(
1

ρ2

)
. (44)

Moreover, it can be shown that the probability of the event
specified in the fourth line of (27) is given by

P (3) = Pr {h11, h12 ∈ A (w̃1, w̃2)}+ Pr {h21, h22 ∈ A (w̃1, w̃2)}

= 2

(
2R − 1

)2
+
(
2R − 1

)3
+ 1

2

(
2R − 1

)4
ρ2

+ o

(
1

ρ2

)
where we have used Eq. (43). Finally, considering all error events,
we have

Pout
(
R0, C

BH = R0

)
≤ P

(1)

+ P
(2)

+ P
(3)

=
4
(
2R − 1

)2
+ 2

(
2R − 1

)3
+
(
2R − 1

)4
ρ2

+ o

(
1

ρ2

)
and this completes the proof.
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lenges of designing jointly the backhaul and radio access network in a
cloud-based mobile network,” in Future Network & Mobile Summit 2013,
Lisbon, Portugal,, Jul 2013.

[7] Y. Zhou and W. Yu, “Optimized backhaul compression for uplink cloud
radio access network,” IEEE Jour. Selected Area in Comm., vol. 32, no. 6,
pp. 1295–1307, June 2014.

[8] H. C. Chen, Y. Hu, P. P. Lee, and Y. Tang, “Nccloud: A network-coding-
based storage system in a cloud-of-clouds,” IEEE Trans. Compu., vol. 63,
no. 1, pp. 31–44, Jan. 2014.

[9] O. Simeone, O. Somekh, H. V. Poor, and S. Shamai, “Distributed MIMO
in multi-cell wireless systems via finite-capacity links,” in Proc. ISCCSP,
2008.

[10] B. Nazer and M. Gastpar, “Compute-and-forward: Harnessing interference
through structured codes,” IEEE Trans. Inf. Theory, vol. 57, no. 10, pp.
6463–6486, Oct. 2011.

[11] S. Avestimehr, S. Diggavi, and D. Tse, “Wireless network information flow:
A deterministic approach,” IEEE Trans. Inf. Theory., vol. 57, no. 4, pp.
1872–1905, Apr. 2011.

[12] S. Lim, Y. H. Kim, A. E. Gamal, and S. Chung, “Noisy network coding,”
IEEE Trans. Inf. Theory., vol. 57, no. 5, pp. 3132–3152, May. 2011.

[13] B. Nazer, A. Sanderovich, M. Gastpar, and S. Shamai, “Structured superpo-
sition for backhaul constrained cellular uplink,” IEEE Intern. Symp. Inform.
Theory, Jun. 2009.

[14] T. Yang and I. B. Collings, “On the optimal design and performance of
linear physical-layer network coding for fading two-way relay channels,”
IEEE Trans. Wireless Comm. (early-access available), 2014.

[15] O. Simeone, O. Somekh, H. V. Poor, and S. Shamai, “Local base station co-
operation via finite-capacity links for the uplink of linear cellular networks,”
IEEE Trans. Inform. Theory., vol. 55, no. 1, pp. 190–204, Jan. 2009.

[16] R. Zakhour and S. Hanly, “Base station cooperation on the downlink: Large
system analysis,” IEEE Trans. Inform. Theory., vol. 58, no. 4, pp. 2079–
2106, Apr. 2012.

[17] T. Yang, J. Yuan, and Z. Shi, “Rate optimization for idma systems with
iterative joint multi-user decoding,” IEEE Trans. Wireless Comm., vol. 8,
no. 3, pp. 1148–1153, Mar. 2009.

[18] P. Marsch, “Coordinated multi-point under a constrained backhaul and
imperfect channel knowledge,” a PhD thesis of TU Dresden, 2010.

[19] L. Wei and W. Chen, “Compute-and-forward network coding design over
multi-source multi-relay channels,” IEEE Trans. Wireless Comm., vol. 11,
no. 9, pp. 3348–3357, 2012.

[20] T. M. Cover and J. A. Thomas, “Elements of information theory,” John
Wiley & Sons, Inc., 1991.

[21] A. Yedla, P. S. Nguyen, H. D. Pfister, and K. Narayanan, “Universal
codes for the gaussian MAC via spatial coupling,” available at arx-
iv.org/pdf/1110.0252.

[22] S.-Y. R. Li, Q. T. Sun, and Z. Shao, “Linear network coding: theory and
algorithms,” Proc. IEEE, vol. 99, no. 3, pp. 372–387, Mar. 2011.

[23] N. J. A. Harvey, D. R. Karger, and K. Murota, “Deterministic network
coding by matrix completion,” Annual ACM-SIAM Symposium on Discrete
Algorithm, 2005.

[24] A. Sanderovich, S. Shamai, and Y. Steinberg, “Distributed MIMO receiver
- achievable rates and upper bounds,” IEEE Trans. Inf. Theory, vol. 55,
no. 10, pp. 4419–4438, Oct. 2009.

[25] B. M. Hochwald and S. ten Brink, “Achieving near-capacity on a multiple-
antenna channel,” IEEE Trans. Comm., vol. 51, no. 3, pp. 389–400, Mar.
2003.

[26] T. Yang, J. Yuan, and Z. Shi, “Jointly gaussian approximation and multi-
stage LLR combining in the iterative receiver for MIMO-BICM systems,”
IEEE Trans. Wireless Comm., vol. 7, no. 12, pp. 5250–5256, Dec. 2008.

Tao Yang (S’07, M’10) received B.Sc. degree in elec-
tronic engineering in 2003 from Beijing University
of Aeronautics and Astronautics (Beihang University),
Beijing, China. He received Master by research and
Ph.D. degrees in electrical engineering from the U-
niversity of New South Wales, Sydney, Australia, in
2006 and 2010, respectively. He was an OCE postdoc
research fellow in the Wireless and Networking Tech-
nologies Laboratory (WNTL) at Commonwealth Sci-
entific and Industrial Research Organization (CSIRO),
Sydney, Australia. He is now with School of electri-

cal engineering and telecommunications, the University of New South Wales,
Australia. He is holding an Australian Research Council (ARC) Discovery
Early Career Research Award fellowship. His research expertise and interests
include physical-layer network coding, multi-user and MIMO communications,
cooperative communications, error-control coding and iterative signal processing.
He has published more than 30 research articles in IEEE journals and conferences.
He served as the TPC members of IEEE ICC and WCNC. He was the recipient
of Australian Postgraduate Award (APA), NICTA research project award (NRPA)
and Supplementary Engineering Award (SEA) from the University of New South
Wales, and Publication Award from CSIRO ICT centre.


