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ABSTRACT

In humans, the vaginal microbiota is thought to be the first line of defense again pathogens including Chlamydia trachomatis.
The guinea pig has been extensively used as a model to study chlamydial infection because it shares anatomical and
physiological similarities with humans, such as a squamous vaginal epithelium as well as some of the long-term outcomes
caused by chlamydial infection. In this study, we aimed to evaluate the guinea pig-C. caviae model of genital infection as a
surrogate for studying the role of the vaginal microbiota in the early steps of C. trachomatis infection in humans. We used
culture-independent molecular methods to characterize the relative and absolute abundance of bacterial phylotypes in the
guinea pig vaginal microbiota in animals non-infected, mock-infected or infected by C. caviae. We showed that the guinea
pig and human vaginal microbiotas are of different bacterial composition and abundance. Chlamydia caviae infection had a
profound effect on the absolute abundance of bacterial phylotypes but not on the composition of the guinea pig vaginal
microbiota. Our findings compromise the validity of the guinea pig-C. caviae model to study the role of the vaginal
microbiota during the early steps of sexually transmitted infection.
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INTRODUCTION

The obligate intracellular bacterial pathogen, Chlamydia tra-
chomatis, causes one of themost commonhuman sexually trans-
mitted infections with more than 1.4 million cases reported in
the United States in 2012 (CDC 2014). In women, C. trachomatis

can ascend from the lower to the upper genital tract, causing
diseases with an inflammatory etiology such as pelvic inflam-
matory disease, which if left untreated can lead to infertility and
ectopic pregnancy (Westrom 1975). The guinea pig is commonly
used to model ocular and genital disease upon infection with
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C. caviae (Mount, Bigazzi and Barron 1972). Although C. caviae
exhibits phenotypic differenceswith C. trachomatis, including re-
sistance to sulfonamides (Gordon and Quan 1972), non-fusing
inclusions (Rockey, Fischer and Hackstadt 1996) and a failure
to accumulate glycogen (Fan and Jenkin 1970), the genome of
C. caviae is similar to that of C. trachomatis in gene order and
gene content (Read et al. 2003). The guinea pig-C. caviae model
has been used to study sexual transmission from males to fe-
males (Rank et al. 2003) as well as the development of disease
pathology associated with ascending infection in females (Rank,
Batteiger and Soderberg 1990). This model is superior to the
available mouse models in several aspects. First, similar to the
human female genital tract and in contrast to the murine repro-
ductive tract (Iguchi et al. 1983), the guinea pig vagina is lined
with non-keratinized squamous epithelial cells (Durrani et al.
1985) that accumulate glycogen upon estradiol treatment (Rank
et al. 1982). Second, the length of the 17-day estrous cycle of the
guinea pig (Alkhalaf et al. 1992), although not identical, is closer
to that of the human menstrual cycle than that of the mouse (4
days) (Parkes and Brambell 1928). Third, key features of the dis-
ease process, such as endometritis (Peipert et al. 1996), salpingi-
tis (Mardh et al. 1977) and the lack of overt tubal disease (Wiesen-
feld et al. 2012), are better reproduced in the guinea pig than in
the mouse (Darville et al. 1997).

The vaginal microbiota is thought to be the first line of de-
fense against sexually transmitted infections (Spear, St John and
Zariffard 2007). Commensal lactic acid-producing Lactobacillus
spp. that are present in the human vagina have long been con-
sidered the primary protective barrier, creating an acidic en-
vironment (pH < 4.5) that reduces colonization by pathogens
(Stamey and Timothy 1975; Hanna et al. 1985; Boskey et al. 2001;
Stefka et al. 2014). However, recent culture-independent studies
have shown that only ∼73% of healthy asymptomatic women
have a vaginal microbiota dominated by Lactobacillus spp. (Ravel
et al. 2011), and a significant proportion of apparently healthy
women have a vaginal microbiota that instead is comprised of
a broad array of facultative and strictly anaerobic microorgan-
isms (Ravel et al. 2011). Epidemiological studies have shown an
association between a Lactobacillus-depleted vaginal microbiota
and increased risks of acquisition and transmission of sexually
transmitted infections, including HIV (Sha et al. 2005; Mirmon-
sef et al. 2012; Mitchell et al. 2013). While the guinea pig has been
widely used in Chlamydia research, very little is known about
the composition of the vaginal microbiota in this species. A pre-
vious study, done using culture-based methods, indicated that
the guinea pig vaginal microbiota include species of Corynebac-
terium, Enterococcus, Propionibacterium and Streptococcus, as well as
some Lactobacillus spp. (Hafner, Rush and Timms 1996). Culture-
based methods however have significant well-known limita-
tions (Bull and Hardman 1991; Hugenholtz, Goebel and Pace
1998), suggesting that in-depth characterization of the guinea
pig vaginal microbiota should be investigated a new using high-
throughput culture-independent 16S rRNA gene sequence anal-
ysis. Culture-independent analyses have shown that the com-
position of the human vaginal microbiota is dynamic over time
and most influenced by menstruation and sexual activity (Gajer
et al. 2012), although high estrogen/progesterone levels tend to
stabilize it. While longitudinal studies in women are needed to
answer questions about factors that influence the stability and
resilience of vaginal microbiota, animal models are needed to
examine the role of the vaginal microbiota in determining sus-
ceptibility to sexually transmitted diseases. In this study, we first
investigated the composition of healthy guinea pig vaginal mi-
crobiota over two estrous cycles, and subsequently examined

the impact of C. caviae infection on the vaginal microbiota over
two estrous cycles using a culture-independent 16S rRNA gene
sequence-based approach.

MATERIALS AND METHODS
Study design

A total of 15 female Hartley guinea pigs (Cavia porcellus) weigh-
ing 450–500 g were obtained from Charles River Laboratories,
Wilmington, MA, and housed individually in cages with fiber-
glass filter tops. The estrous cycle for each animal was de-
termined by observing the presence or absence of the vaginal
membrane daily. In guinea pigs, the vaginal membrane sponta-
neously opens on the first day of estrus and after 2–3 days re-
generates. Guinea pigs were observed through at least two com-
plete estrous cycles to confirm that each was cycling normally
before they were included in the experiment. Infection of ani-
mals was initiated on the first day of estrus (day 0), and samples
from control animals were collected based on the first day of es-
trus. Three groups of five animals were either infected with C.
caviae, non-infected or mock-infected. The infected group was
inoculated intravaginally with 20 μl of C. caviae (104 IFU; ap-
proximately 200 ID50 units) in SPG (2:7:7 ratio: succinic acid:
sodium dihydrogen phosphate: glycine) delivered with a pipette
tip inserted 2–3 cm into the vagina. Mock-infected guinea pigs
were inoculated intravaginally with 20 μl of SPG medium alone,
while the non-infected group was untouched. For sampling, the
guinea pigs were placed on their back and immobilized with a
hand placed over their abdomen. A flocked pediatric Eswabs (Co-
pan Diagnostics, Murrieta, CA, USA) was placed into the vagi-
nal opening and inserted up to the cervix. Swabs were rotated
8–10 times, removed, placed in 1 ml of liquid Amies transport
medium (Hindiyeh, Acevedo and Carroll 2001) and then stored
at −80◦C until processed. Samples were collected on days 2,
5, 8, 11, 14 and 16 post-infection in the first estrous cycle and
at similar times during the second estrous cycle. In a separate
set of five healthy and uninfected guinea pigs, measurements
of vaginal pH were obtained with a MI-414P Tip 4 cm probe
(Microelectrodes, Bedford, New Hampshire, USA). The protocol
was approved by the Institutional Animal Care and Use Com-
mittee of the University of Arkansas for Medical Sciences (AUP
file # 3288).

Genomic DNA extraction, 16S rRNA gene sequence
amplification, sequencing and analyses

Genomic analyses are described in Supplementary File 1 (Sup-
porting Information). The sequencing data generated under this
project have been deposited to the Sequence ReadArchive under
bioproject PRJNA270250.

Statistical modeling procedures

The packages MCMCglmm and rjags (Hadfield 2010; Plummer
2014) in R (version 12.1.3) were used to implement mixed effects
Bayesian Markov Chain Monte Carlo (MCMC) models; this ap-
proach allows for the significance testing of differences between
groups of animals, while accounting for correlations between
samples collected from the same animals over time. Differ-
ences in bacterial phylotype relative and absolute abundances
between experimental groups were evaluated using Bayesian
negative binomial random intercept models (Sheldon 1969;
Ntzoufras 2009). In these models, the response variable was 16S
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rRNA gene sequence read count. Both relative abundance and
absolute abundance models included an offset term. In the case
of relative abundance models, the offset was the log of the total
16S rRNA gene sequence read counts (calculated after excluding
chlamydial reads). For the absolute abundance models, the off-
set was equal to the difference between the log of total 16S rRNA
gene sequence read count and the log of the total 16S rRNA gene
abundance. Only one random factor (Grune et al. 2004) was used
in addition to multiple fixed factors including the day, cycle and
experimental group.

We run two MCMC chains for all models. For each chain,
10 000 iterations with a thinning of 10 after a ‘burn-in’ of 10 000
were used. Models were checked for convergence and mixing by
examining the Gelman–Rubin statistic (Gelman and Rubin 1992,
1996) among the two iterations, a potential scale reduction fac-
tor <1.1 was used for all parameters including fixed and ran-
dom factors. The parameters considered were posterior means,
and 95% credible intervals (CI). p-values associatedwith CIswere
defined as the infimum value of q over q-CI that do not con-
tain the reference mean value. To account for multiple test-
ing, q-values were computed using false discovery rate proposed
by Benjamini and Hochberg (1995) and Benjamini et al. (2001)
as implemented in the p.adjust() routine of R (R Development
Core Team 2013). In the pursuit of transparency, the R pack-
age knitr (Xie 2014) was used to make easy to follow scripts for
Bayesian modeling and graphical output generation using the
provided data files (Supplementary File 2, Supporting Informa-
tion). In addition, input data files and R scripts are available at
https://github.com/RavelLab/GuineaPigVMB.

RESULTS
Characterization of the microbial phylotypes as a
function of depth of coverage

A total of 180 samples were obtained from 15 guinea pigs at 12
time points. Amplification and sequencing of the V1–V3 hyper-
variable regions of 16S rRNA genes resulted in a dataset consist-
ing of 973 999 reads from 177 samples with an average length
of 471 bp and ∼6300 reads per sample (range 1961–15 585). The
depth of coverage was enough to detect taxa that comprise
∼0.02% of the population. Taxa found at less than this level are
referred to as ‘rare’ taxa, but these reads are only rare in the con-
text of sampling depth. Phylogenic classification of this dataset
identified a total of 191 bacterial phylotypes. A total of 99.9% of
the sequences were taxonomically assigned at the phylum level
with >95% confidence, while 98.6% were at class level, 98.2% at
order level, 97.4% at family level and 83.2% at genus level. Of
the 191 bacterial taxa present in the guinea pig vaginal micro-
biota, 29 taxa accounted for ∼90% of the dataset; this subset of
29 bacterial taxa is shown in Figs 1 and S1a (Supporting Infor-
mation). Rarefaction analysis, a common tool to estimate the
ability of the sequencing depth to capture the diversity in each
sample, was measured by Good’s coverage estimator and (Esty
1986) was 92.4% (SD = 0.027), 91.3% (SD = 0.029) and 91.6% (SD =
0.030) in the non-infected, mock-infected and infected groups,
respectively (Fig. S2, Supporting Information). The shape of the
rarefaction curves indicated that sequence coverage was com-
prehensive and that additional sequences would have yielded
little benefit (Gotelli and Colwell 2001).

Composition of the guinea pig vaginal microbiota

The majority of bacterial taxonomic groups found in the non-
infected guinea pig vaginal microbiota consisted of obligate and

facultative anaerobic bacteria (Table S1a, Supporting Informa-
tion), including members of the genera Corynebacterium, Anaero-
coccus, Peptoniphilus, Aerococcus, Facklamia and Allobaculum (Figs 1
and S1a, Supporting Information). Some of these genera, but not
all, were previously cultivated from the guinea pig vaginal mi-
crobiota (Table S2, Allobaculum); these included Corynebacterium,
Enterococcus, Streptococcus, Staphylococcus, Lactobacillus, Proteus,
Propionibacterium, Bifidobacterium and Bacteroides (Hafner, Rush
and Timms 1996). While Lactobacillus spp. were present in the
guinea pig vaginal microbiota, they represented a small propor-
tion of the total phylotypes (<0.48%) and inmost instances were
undetectable. Lactobacillus fermentum, often found in the gut mi-
crobiota, was detected with a mean relative abundance of 0.08%
± 0.1 SD, while L. crispatus and L. iners commonly found in the
human vaginal microbiota were detected with mean relative
abundance of 0.04% ± 0.06 SD and 0.01% ± 0.02 SD. Interestingly,
Gardnerella vaginalis, BVAB1, BVAB3, Mobiluncus spp., Megasphaera
spp. and Atopobium vaginae, which are all taxa associated with
bacterial vaginosis in humans, were not detected in the guinea
pig vaginal microbiota. However, BVAB2, which is a member of
the Clostridiales and is also associated with bacterial vaginosis,
was detected with a mean relative abundance of 0.11% ± 0.09
SD.

Effect of C. caviae infection on the composition of the
guinea pig vaginal microbiota

Chlamydial 16S rRNA gene sequences were detected in samples
from infected animals during the first 8 days of the first estrous
cycle but their abundance variedwidely (day 2 (7.49–37.33%), day
5 (1.52–76.48%) and day 8 (0.03–14.18%). However, after day 8 the
number of C. caviae dramatically decreased (Fig. 1) and this per-
sisted throughout the second menstrual cycle. Noteworthy, in
guinea pig 251, chlamydial reads were not detected between day
8 of the first menstrual cycle and day 11 of the second men-
strual cycle after which chlamydia relative abundance increased
to 9.48% on day 14 (Fig. 1 and Table S1a, Supporting Information).

To better characterize the impact of chlamydial infection
on the guinea pig vaginal microbiota, we compared diversity
of bacterial communities in different sample types including
the guinea pig vagina, guinea pig fecal samples and the hu-
man vagina. Because the range of Shannon diversity values de-
pends on the number of phylotypes detected and that num-
ber is different in each sample type, the Shannon diversities
indices were normalized by dividing each by ln(n), where n is
the number of phylotypes in a given sample type. The result-
ing quantity is a measure of evenness of the community and
its values range between 0 and 1(Sheldon 1969). Combining all
animal and treatment groups, evenness measurements ranged
between 0.291 and 0.918, with an average of 0.731± 0.01, indicat-
ing a high level of phylotype diversity, compared to the median
evenness of the human vaginal microbiota (0.33 ± 0.16) (Fig. S3a,
Supporting Information). In the non-infected andmock-infected
guinea pig groups, the median evenness were 0.75 ± 0.11, 0.74 ±
0.07 and 0.75 ± 0.11, respectively (Fig. S3b, Supporting Informa-
tion). Bayesian mixed effect modeling did not identify any sig-
nificant difference between the evenness of non-infected and
mock-infected samples. However, at peak infection (days 2, 5
and 8 of the first estrous cycle), the median evenness was 0.59
± 0.15. The evenness was statistically significantly lower in the
infected group compared to the mock and non-infected groups,
0.73 ± 0.08 (Fig. 2).

To estimate the effect of treatment and day in the estrous
cycle on relative abundance of different taxa, 66 phylotypes
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Figure 1. Relative abundances of bacterial taxa in the guinea pig vaginal microbiota of C. caviae-infected (a) and non-infected (b) animals sampled every 3 days over
two estrous cycles. The top 29 most abundant phylotypes are shown. ‘Others’ represents the sum of the remaining phylotypes.
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Figure 2. Species evenness on days 2, 5 and 8 combined, of guinea pig vaginal microbiota in non-infected and C. caviae-infected animals in cycle 1 and 2. The red lines
indicate the 95% CI. The mean of the dataset is shown as a red dot. The mean evenness of the vaginal community in C. caviae-infected animals in cycle 1 and 2 during

days 2, 5 and 8 combined are significantly different.

present in at least 25% of all samples were selected for analysis.
For each selected phylotype a zero-inflated negative binomial
random effects model was fitted to the data with the count of
16S rRNA gene sequence reads for the phylotype as a response
variable. In the models, the offset of log total 16S rRNA gene
sequence read count was used to estimate the effect of treat-
ment and day in the estrous cycle on the relative abundance of
the given phylotype. Zero-inflated models are routinely used for
modeling count data where the number of zeros cannot be ex-
plained by the base distribution (negative binomial in this case)
(Lambert 1992). Animal-specific random intercept accounts for
correlations between samples from the same animal.

Significant differences between themean relative abundance
of few selected phylotypeswere detected at different time points
during the two estrous cycles when comparing infected and
mock or non-infected animals. However, there was no partic-
ular pattern over days in the estrous cycle and in the number of
phylotypes for which a significant differencewas detected in the
mean relative abundance between infected and mock and non-
infected animals (Fig. S4a, Supporting Information). The lack of
major difference in the structure and composition of the guinea
pig vaginal microbiota in these three groups was thus evaluated
using total and taxa-specific absolute bacterial counts. Overall
the differences in vaginal bacteria relative abundance between
infected and non-infected animals were modest (Table S3, Sup-
porting Information).

Changes in the absolute abundance of bacterial
populations in non-infected, mock-infected and C.
caviae-infected animals over two estrous cycles

The absolute abundance of bacterial populations in guinea pig
vaginas was evaluated by quantifying 16S rRNA gene copy num-
ber per swab (cpn swab−1) using a pan-bacterial Taqman assay.
The 16S rRNA gene copy number per swab ranged between 5.13
× 103 and 1.53 × 109 cpn swab−1 with an average of 5.51 × 108

cpn swab−1 (Fig. 3a). Changes in the non-chlamydial 16S rRNA
gene copy number were not significantly different between the
non-infected andmock-infected experimental groups at all time
points, except on day 8 post-infection, where surprisingly, the
mean 16S rRNA gene copy of mock-infected animals was higher
than that of non-infected animals (Fig. 3a). In infected animals,
at peak infection (first estrous cycle), the non-chlamydial mean
total 16S rRNA gene copy number declined from a 8.93 × 107

cpn swab−1 on day 2 to a 1.95 × 105 cpn swab−1 on day 5, indicat-
ing ∼100-fold drop in the non-chlamydial 16S rRNA gene counts
(Fig. 3a). In infected animals over both estrous cycles, the over-
all non-chlamydial 16S rRNA gene copy number averaged 2.53 ×
107 cpn swab−1.

After day 8, 16S rRNA gene sequence reads assigned to
Chlamydia constituted less than 1% of phylotypes in three out
of five animals. Because the pan-bacterial TaqMan assay (Liu
et al. 2012) underrepresented the overall abundance of C. caviae, a

 by guest on D
ecem

ber 2, 2015
http://fem

spd.oxfordjournals.org/
D

ow
nloaded from

 

http://femspd.oxfordjournals.org/


6 FEMS Pathogens and Disease, 2015, Vol. 73, No. 4

104

105

106

107

108

109

108

107

106

105

104

103

108

107

106

105

104

103

Estrous Cycle 1 Estrous Cycle 2

C. caviae-infected guinea pigs

Non-infected guinea pigs

Estrous Cycle 1 Estrous Cycle 2

(a)

(b)

 B
ac

te
ria

l g
en

e 
co

un
ts

 B
ac

te
ria

l g
en

e 
co

un
ts

 B
ac

te
ria

l g
en

e 
co

un
ts

Days

2 5 8 11 14 16 2 5 8 11 14 16

 B
ac

te
ria

l g
en

e 
co

un
ts

Mock-infected guinea pigs

C. caviae ompA
Infected guinea pigs
Non−infected guinea pigs
Mock−infected guinea pigs

C. caviae ompA
Anaerococcus
Clostridiaceae Family
Peptoniphilus
Aerococcus
Facklamia

Allobaculum
Porphyromonas
Actinomyces
Enterococcus
Staphylococcus
Acinetobacter

Arcanobacterium
Aerococcaceae Family
Bacteroidales S24.7 Family
Bacteria Kingdom

C

B

108

107

106

105

104

103

A

Figure 3. Changes in estimates of absolute bacterial abundance in the guinea

pig vaginal microbiota over two estrous cycles. (a) Average bacterial 16S rRNA
gene counts and C. caviae ompA counts in the vaginal microbiota of guinea pigs
in each group. Values were normalized to gene counts per swab. ompA counts
for non-infected animals were below the detection level and were excluded. The

colored shaded areas indicate the standard errors. (b) Average bacterial count for
the 15 most abundant taxa found in guinea pig vaginal microbiota of C. caviae-
infected and non-infected animals over two estrous cycles. The count estimates
were calculated by multiplying the relative abundance obtained by 16S rRNA

gene sequencing by the total 16S rRNA gene counts in the corresponding sample.
Values are normalized to gene counts per swab.

specific Taqman qPCR assay using ompA of C. caviae was de-
signed to accurately quantify C. caviae genome copy numbers.
Because C. caviae carries a single ompA, ompA copy number
is equivalent to the number of C. caviae genomes. This assay
showed that the C. caviae absolute abundance between days
2 and 14 of the first estrous cycle ranged from 9.68 × 103 to
5.73 × 107 genomes per swab, peaking on day 5 (Fig. 3b). Af-
ter day 14 of the first estrous cycle, the abundance of C. caviae
generally started to decrease. This continued throughout the
second estrous cycle but was not the case in all animals (Figs
3b and S5, Supporting Information). Results from non-infected
and mock-infected animals were at or below background flu-
orescence, which after normalization was 3.8 × 103 C. caviae
genomes per swab. In the infected animals, the absolute abun-
dance of C. caviaewasmodeled using a negative binomial mixed
effect model with the mean absolute abundance of C. caviae es-
tablished by ompA qPCR (Fig. 3b). The mean abundance of C.
caviae at each day of the first estrous cycle was significantly
higher than the mean abundance of C. caviae on the last day of
the second estrous cycle. In addition, the mean abundance of C.
caviae at days 2, 5, 8, 11 of the first cycle were significantly higher
from the mean abundance of C. caviae at day 16 of the first cycle
and every day of the second cycle (Fig. 3b).

To identify time in the estrous cycle (days) where the mean
absolute abundance of infected samples was significantly dif-
ferent from the mean absolute abundance of non-infected or
mock-infected samples, Bayesian zero-inflated negative bino-
mial mixed effects models were applied with the 16S rRNA gene
read count as the outcome variable and the difference of the log
of total 16S rRNA gene sequence read count (calculated after ex-
cluding chlamydial reads) and the log of the total 16S rRNA gene
count as the offset (Table S1b, Supporting Information). In con-
trast to the results obtained for relative abundance, the num-
ber of phylotypes for which the mean absolute abundance in in-
fected animals was significantly lower from the mean absolute
abundance in non-infected and mock-infected animals showed
a clear pattern of dependence on the day in the estrous cycles
with amaximumof 34 phylotypes (out of 66 phylotypes included
in the analysis) affected on day 5 of the first estrous cycle (Tables
S4a and S4b and Fig. S4b, Supporting Information).

Comparison of the guinea pig and the human vaginal
microbiota

The most common bacteria found in the ‘healthy’ human vagi-
nalmicrobiota are Lactobacillus spp. (L. crispatus, L. iners, L. jensenii
and L. gasseri). Lactobacillus spp. produce copious amount of lac-
tic acid and thereby create an acidic environment (pH < 4.5)
(Ravel et al. 2011) that is thought to be protective against oppor-
tunistic pathogens. In the guinea pig vaginal microbiome, the
relative abundance of Lactobacillus spp. was less than 0.48% and
the absolute abundance ranged from 0 to 1.58 × 106 cpn swabs−1

(Tables S1a and S1b, Supporting Information). Importantly, lac-
tobacilli were only detected in 35% of the samples. In a separate
set of five uninfected guinea pigs, vaginal pH measured over a
complete estrous cycle indicated that on average the vaginal en-
vironment is slightly basic ranging between 6.83 and 7.21 (Fig.
S6, Supporting Information). This is consistent with the relative
paucity of lactic acid-producing bacteria in the guinea pig vagi-
nal microbiota.

To further examine the differences between the human and
guinea pig microbiota, we compared the composition of the
vaginal microbiota of 177 guinea pig samples to 338 samples
from reproductive age women with and without chlamydial
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infection (unpublished data) (Fig. 4). A total of 19 of the 42 bac-
terial species with average relative abundance >0.01% detected
in the human vaginal microbiota was detected in the guinea pig
vaginal microbiota but their relative abundances were dramati-
cally different (Table S5, Supporting Information). Some of the
phylotypes common to both the human and guinea pig vagi-
nal microbiota included Aerococcus spp., Actinomyces spp., mem-
bers of the Order Clostridiales, L. crispatus, L. iners, Bifidobacterium
spp. and Prevotella spp. (Table S5, Supporting Information). Using
Ward linkage hierarchical clustering, the human vaginal micro-
biota grouped into four of the previously described community
state types (Ravel et al. 2011), while most of the guinea pig vagi-
nal microbiota clustered into a novel community state type (CST
GPII). Evennesswas significantly higher in the guinea pig vaginal
microbiota compared to that of human (Figs S3a and S3b, Sup-
porting Information), indicating higher diversity of the guinea
pig vaginal microbial communities.

To further visualize the differences in the structure of the
guinea pig and human vaginal microbiota, principal coordi-
nate analysis (PCoA) was performed using weighted Unifrac dis-
tances (Lozupone et al. 2011). No clustering by infection status
was observed, both in human and the guinea pig (Fig. 5a). On
the other hand, two distinct clusters were identified that sepa-
rated human vaginal samples from other sample types includ-
ing guinea pig vaginal samples (Fig. 5b). However, C. trachoma-
tis infected human vaginal microbiota had a statistically sig-
nificant overabundance of CST IV-B and CST III, both of which
were already represented in non-infected samples. These results
indicate that while there are overlapping bacterial phylotypes
between the human and guinea pig vaginal microbiota, these
microbiota have distinct community composition and structure.

Comparison of the guinea pig gut and vaginal
microbiota

Some abundant bacterial phylotypes found in the guinea pig
vaginal microbiota are commonly found in the gut microbiota
such as Enterococcus spp. To evaluate the possibility that bacte-
ria from guinea pig feces might have colonized the guinea pig
vagina (cage effect), the composition and structure of the mi-
crobiota in four guinea pig fecal samples and one cage bed-
ding sample were characterized in a separate set of animals
maintained in similar conditions and environment. A total of
52 bacterial phylotypes were identified in these samples. The
most abundant phylotypes in the guinea pig gutmicrobiotawere
members of the Orders Clostridiales and Bacteroidales (median
relative abundance 23.17 and 5.76%, respectively), members of
the Families Ruminococcaceae and Lachnospiraceae (median rela-
tive abundance 3.22 and 11.74%, respectively), Allobaculum spp.
(median relative abundance 5.71%), Ruminococcus spp. (median
relative abundance 3.22%) and Bifidobacterium spp. (median rel-
ative abundance 11.6%), and in aggregate these comprised be-
tween 49.55 and 85.23% of each sample (Fig. S1b and Table S1c,
Supporting Information). Interestingly, 41 of these 52 bacterial
taxa were also detected in the guinea pig vaginal microbiota
(Table S1a, Supporting Information); however, their abundance
and the overall structure of themicrobiotawere significantly dif-
ferent (Fig. 5b). Overall, this analysis indicates that, (1) despite
the relatively low number of classified phylotypes, the guinea
pig gut microbiota is highly diverse with an average evenness of
0.88 ± 0.1 (Figs S3a and S3b, Supporting Information); (2) of the
52 bacterial taxa detected in the guinea pig gut microbiota, only
11 were found with average relative abundance >1% (Fig. S1b
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and Table S1c, Supporting Information); (3) of the 41 bacterial
taxa detected in both the guinea pig gut and vaginal microbiota,
only Bacteroidales S24–7 and Allobaculum spp. are present at >1%
in the guinea pig vaginal microbiota (Figs 1 and S1a, Supporting
Information). Differences in guinea pig gut and vaginal bacte-
rial community structure were further demonstrated by PCoA
analysis. The two types of samples formed two separate clus-
ters (Fig. 5). The possibility of transfer from feces to the vaginal
microbiota cannot, however, be excluded.

DISCUSSION

In the present study, we used culture-independent next-
generation 16S rRNA gene sequencing to characterize the
relative abundance of bacterial taxa in the vaginal microbiota in
non-infected and C. caviae-infected guinea pigs. Broad range 16S
rRNA gene quantitative PCR was used to estimate the absolute
abundance of these bacterial taxa. The guinea pig vaginal mi-
crobiota consists of obligate and facultative anaerobic bacteria,
including members of the genera Corynebacterium, Anaerococcus,
Peptoniphilus, Aerococcus, Facklamia and Allobaculum. Interest-
ingly, the vaginal microbiota bacterial composition and relative
abundance in C. caviae-infected guinea pigs were not noticeably
different from that of the non-infected or mock-infected guinea
pig vaginal microbiota. However, during the first 5 days post-
infection, while the C. caviae genome copies were increasing,
the remaining bacterial taxa decreased in numbers. These
changes were reversed as the infection cleared and C. caviae
genome copies decreased. In the second estrous cycle, the vagi-
nal microbiota of infected animals was indistinguishable from
that of non-infected or mock-infected animals, both in terms
of composition and relative abundance, as well as absolute
bacterial counts. Lactobacillus spp. were observed in only 35%
of the samples analyzed, and when present they constituted a
small fraction of the microbiota (<0.48%). Interestingly, bacte-
rial species such as G. vaginalis and A. vaginae, which are often

found in women’s vagina when Lactibacillus spp. are present in
low abundance, were not observed in the guinea pig vaginal
microbiota. These organisms have previously been found in the
vaginal microbiota of non-human primates (Spear et al. 2010;
Rivera et al. 2011), which also do not contain high numbers
of Lactobacillus spp. The features and structure of the guinea
pig vaginal microbiota highlight the differences between this
animal model and humans, and questions the model’s validity,
particularly to study the early steps of chlamydial infection
where a role for the vaginal microbiota is likely.

Traditional cultivation methods, in which bacterial pop-
ulations are isolated by cultivation on solid culture medium
have long been used to characterize the microbial communities
associated with many environments, including human and
animal body sites (see Syed, Svanberg and Svanberg 1981; On-
derdonk et al. 1986; Noguchi, Tsukumi and Urano 2003; Noguchi
et al. 2004). Such studies have provided significant insight into
host-associated microbial ecology. However, culture-based
approaches are biased and do not provide a complete picture
of bacterial diversity and community structure. Every facet of
the enrichment and isolation process including the nutrient
composition of the culture medium, temperature and atmo-
spheric gases, exposure to ambient light, competition between
organisms and the human bias associated with the selection of
colonies for further study constrains the growth of many bacte-
rial taxa from the original samples. Thus, error and subjectivity
is systematically introduced on the evaluated composition of the
natural population present in the sample. The cumulative effect
is a significant reduction in the breadth of recovered bacterial
diversity (Staley and Konopka 1985). These limitations are evi-
dent when comparing the culture-based characterization of the
guinea pig vaginal microbiota by Hafner, Rush and Timms (1996)
with the present data generated using culture-independent 16S
rRNA gene fragment sequencing. While most cultured taxa are
present in the molecular dataset, including Corynebacterium,
Enterococcus, Propionibacterium, Streptococcus, Staphylococcus,
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Proteus, Bifidobacterium as well as Lactobacillus spp., bacterial 16S
rRNA gene counts for these bacterial taxa were not consistent
with the CFU-based counts reported by Hafner, Rush and
Timms (1996) (Table S2, Supporting Information). The present
molecular survey of the guinea pig vaginal microbiota is likely
to be more comprehensive, in that it captured bacterial taxa
that were not cultured by Hafner, Rush and Timms (1996),
including many difficult-to-grow anaerobic bacteria.

16S rRNA gene sequencing-based taxonomic surveys provide
information on the relative abundance of bacterial taxa compos-
ing a microbiota. Comparison of the relative abundance of taxa
in the three groups showed there were few differences, suggest-
ing that C. caviae infection had little effect on the structure of the
guinea pig vaginal microbiota. Fig. 1 shows that in infected ani-
mals chlamydial 16S rRNA gene relative abundance was max-
imal on days 2 and 5 and drastically decreased by day 11.
Previously published data suggested that in guinea pigs, an
active cervical infection persists for approximately 20 days
post-infection (Golden et al. 2000). Chlamydia caviae-specific
ompA qPCR detected chlamydial DNA in the guinea pig vagina
throughout the first estrous cycle and into the second estrous
cycle, i.e. ∼48 days post-infection (Fig. 3), considerably beyond
the 20 days post-infection previously reported at the cervix
(Rank, Sanders and Kidd 1993). However, qPCR measures the
presence of DNA, inclusive potentially of dead chlamydiae. In
contrast, previous studies measured infectious EBs (IFUs). This
raises the possibility that qPCR might yield an overestimate
of the total number of viable chlamydiae present in a sam-
ple. We did observe resolution of the infection in the ani-
mals, which is consistent with the self-resolving property of
the C. caviae infection in the guinea pig (Rank, Sanders and
Kidd 1993).

Measurements of the overall bacterial burden (bacteria abso-
lute abundance) by qPCR revealed a clear inverse relationship
between bacterial abundance and the abundance of C. caviae
(Fig. 3). After resolution of the infection in the second estrous
cycle, no differences were found between the three groups,
indicating that while C. caviae DNA was detected in the sec-
ond estrous cycle, it did not affect the structure of the vagi-
nal microbiota. Peak C. caviae infection (days 2 to 11 of the first
estrous cycle) negatively impacted all bacterial species some-
what equally. It is likely that this decrease in bacterial burden
was the result of the strong immune response to C. caviae in-
fection (Rank and Whittum-Hudson 2010), as well as the in-
creased shedding of the squamous epithelium (Ojcius et al.
1998; Quayle 2002;Hafner, Beagley and Timms 2008). Both have
been shown to be maximal early in infection (Ojcius et al. 1998;
Quayle 2002; Rank and Whittum-Hudson 2010). While a re-
duction of bacterial burden during chlamydial infection has
not been previously reported, similar findings have been ob-
served with other pathogens such as Salmonella enterica, Strep-
tococcus pneumoniae, rotavirus, astrovirus, norovirus and aden-
ovirus (Barman et al. 2008; Yasuda et al. 2010; Ma et al. 2011).
Ma et al. (2011) noted a reduction in fecal total bacterial abun-
dance, as well as community diversity during viral diarrhea us-
ing denaturing gradient gel electrophoresis of 16S rRNA gene
amplicons and taxon-specific qPCR. Similar findings were ob-
served upon S. enterica serovar Typhimurium infection on the in-
testinal microbiota using molecular quantification of 16S rRNA
gene copies (Barman et al. 2008). However, none of these stud-
ies analyzed samples collected longitudinally post-infection,
so the long-term effects on the microbiota are unknown. Fur-
ther work is needed to better characterize the role of the host
factors such as the immune response, in reducing bacterial

burden in the guinea pig vaginal microbiota post-chlamydial
infection.

The purpose of amodel organism is to address questions that
are difficult to investigate in humans because of ethical or lo-
gistical issues. In this study, we aimed to evaluate the guinea
pig-C. caviae model of genital infection as a surrogate for study-
ing the role of the vaginal microbiota in the early steps of in-
fection in human C. trachomatis genital infection. Our results re-
vealed major differences in bacterial composition, diversity and
overall community structure between the guinea pig and human
vaginal microbiota. Importantly, a Lactobacillus-dominated mi-
crobiota, the hallmark of a healthy human vagina (Gajer et al.
2012), is not found in the guinea pig. Several phylotypes were
present in both the vaginal microbiota of human and guinea
pigs; however, thosewere present at very low relative abundance
in the guinea pig compared to human. Such phylotypes included
those found in women who normally have non-Lactobacillus-
dominatedmicrobiota, higher bacterial diversity and pH, and in-
termediate Nugent scores (Ravel et al. 2011). Further, the guinea
pig vaginal microbiota does not resemble that of women with
a bacterial vaginosis-like state (Fig. 5). Interestingly, the lack of
Lactobacillus spp. in the guinea pig results in a vaginal milieu
with a neutral pH, drastically different from the acidic (pH <

4) of the human vagina resulting from the production of lac-
tic acid by Lactobacillus spp. These findings are consistent with
surveys of the vaginal microbiota in other animals, including
non-human primates (Patton et al. 1996a,b, 1997, 1998, 1999,
2001, 2003, 2004; Schlievert et al. 2008; Spear et al. 2010, 2012;
Rivera et al. 2011), mice (Noguchi, Tsukumi and Urano 2003; Joo
et al. 2012), rats (Larsen, Markovetz and Galask 1976; Noguchi,
Tsukumi and Urano 2003; Dewi et al. 2013) and rabbits (Jacques
et al. 1986; Noguchi, Tsukumi and Urano 2003). The human mi-
crobiota appears unique in the animal kingdom, and its role re-
mains to be elucidated, while several hypotheses have been put
forward that would explain why women harbor these unique
Lactobacillus-dominated vaginal microbiota (Stumpf et al. 2013).
A recent paper by Gong et al. (2014) demonstrated that lactic acid
produced by vaginal Lactobacillus spp. exhibits anti-chlamydial
properties in vitro, suggesting it plays a critical role in protecting
women against infection. Ultimately, our findings compromise
the validity of the guinea pig-C. caviae model, not as a model to
study Chlamydia pathogenesis, but as amodel to study the role of
the vaginal microbiota during the early steps of sexually trans-
mitted infections or in priming the host response.

Interestingly, when animals are studied in captivity, the pos-
sibility of a cage effect cannot be excluded. In non-human pri-
mates such as the baboon, comparison of captive and wild
animals did not reveal major differences, and wild baboons
maintain a non-Lactobacillus vaginal microbiota (Rivera et al.
2011). Similarly, the unique community structure of the guinea
pig vaginal microbiota was not explained by the presence of
bacterial taxa found in the guinea pig gut or cage bedding.
We hypothesized that some of these taxa might transfer from
the cage environment, which contains feces, to the guinea pig
vagina. Analysis of the gut (stool) and cage-bedding microbiota
revealed similar bacterial community compositions that were
distinct from that of the guinea pig vagina. These communi-
ties shared some phylotypes, but all were present in very low
abundance in the guinea pig vagina. Thus, it is unlikely that the
guinea pig vaginal microbiota is shaped by exposure to stool or
cage-beddingmicrobiota; however, that possibility cannot be ex-
cluded until wild guinea pigs are studied. Furthermore, outside
of the 14–19 day estrous period, the guinea pig vagina is ‘closed’,
protected by a membrane (Stockard and Papanicolaou 1919),
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making microbial transfer from the cage environment to the
vagina highly unlikely. Interestingly, while the animals in this
study were kept in separate cages, their vaginal microbiota were
highly similar and stable over the time of the study, suggesting
that functional and genetic characteristics of the communities
are conserved and perhaps driven by local genital physiological
and immunological factors that shape the composition of the
guinea pig vaginal microbiota.

In conclusion, the guinea pig, an animal model used to study
chlamydial infection, does not harbor a vaginal microbiota simi-
lar to that of humans, it has a neutral pH and is not dominated by
Lactobacillus spp. Unlike mice, which have a keratinized vaginal
epithelium, the guinea pig vaginal epithelium is squamous and
similar to that of humans (Iguchi et al. 1983), suggesting that a
humanized guinea pig vagina could be colonized by ‘human’ Lac-
tobacillus spp. Importantly, while we believe that guinea pigs are
not recommended to study the role of the vaginal microbiota in
the early steps of chlamydial infection, the guinea pig-C. caviae
model does remain a valid system to study chlamydial genital
pathogenesis and disease or even sexual transmission.

SUPPLEMENTARY DATA

Supplementary data are available at FEMSPD online.
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