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Mutual Information-based Exploration on Continuous Occupancy Maps

Maani Ghaffari Jadidi, Jaime Valls Miro, and Gamini Dissanayake

Abstract— The problem of active perception with an au-
tonomous robot is studied in this paper. It is proposed that the
exploratory behavior of the robot be controlled using mutual
information (MI) surfaces between the current map and a one-
step look ahead measurements. MI surfaces highlight infor-
mative areas for exploration. A novel method for computing
these surfaces is described. An approach that exploits structural
dependencies of the environment and handles sparse sensor
measurements to build a continuous model of the environment,
that can then be used to generate MI surfaces is also proposed.
A gradient field of occupancy probability distribution is re-
gressed from sensor data as a Gaussian Process and provide
frontier boundaries for further exploration. The continuous
global frontier surface completely describes unexplored regions
and, inherently, provides an automatic termination criterion
for a desired sensitivity. The results from publicly available
datasets confirm an average improvement of the proposed
methodology over comparable standard and state-of-the-art
exploratory methods available in the literature by more than
20% and 13% in travel distance and map entropy reduction
rate, respectively.

I. INTRODUCTION

Active exploration implies expanding the explored re-
gions whilst maximizing map accuracy. Information gain-
based methods [1]–[3] tend to minimize entropy-based cost
functions to achieve “accuracy”. However, the fact that the
entropy of a random variable is a function of its distribu-
tion [4] gives rise to a major objection to the commonly
employed grid-based occupancy mapping techniques [5, 6]
which infer the map posterior through marginalization and
ignore the structural dependencies in the environment due to
the assumption of independence between cells.

In contrast, Gaussian Processes (GP) [7] learn distribu-
tions at query locations using correlation in the training set
(observations) hence capturing the environment’s structural
dependencies. We adopt GP occupancy maps [8]–[10] to
infer the map in its original high dimensional space. In
this paper, a novel method for active exploration based on
computation of MI surfaces is presented. The GP-based
mapping and exploration technique proposed in [10] is also
exploited here. However, instead of using mean values to
define the frontier map, a logistic regression classifier out-
puts a probabilistic representation of frontiers based on the
inferred map uncertainty. Since the proposed method utilizes
a high-dimensional regression technique to define posterior
distributions over map points and frontiers, it can alleviate
the shortcoming of the occupancy grid-based exploration
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Fig. 1. An illustrative exemplar of the MI surface from the Cave dataset.
The map areas beyond the current perception field of the robot preserve their
initial entropy values and the higher values demonstrate regions with greater
information gain. The map dimensions are in meters and the MI values in
NATS. The associated continuous occupancy and probabilistic frontier maps
are shown in Figure 3.

methods through capturing the uncertainty from the esti-
mated underlying distribution. Formally speaking, entropy
minimization through MI is equivalent to maximizing the
Kullback-Leibler divergence of the marginal distribution of
the random variables and their joint posterior which results
in maximizing the information gain. As can be seen in
the MI surface sample depicted by Figure 1, this repre-
sentation conveniently encapsulates a cost map appropriate
for information-driven robot guidance. The map shows the
difference between a prior map entropy derived from an
initial robot pose and map, and the conditional map entropy
from future measurements. In short, the main contributions
of this paper are:

1) Development of an exploration method using a prob-
abilistic frontier representation and continuous occu-
pancy maps able to handle sparse observations.

2) A novel method to predict the one-step look-ahead MI
surface to control the exploratory behavior of the robot
using a continuous map representation.

II. RELATED WORK

Frontier-oriented approaches are based on the geometry of
the map and the extraction of frontiers as unknown regions
in the neighborhood of known free areas [11]. Attempting
to develop uncertainty minimizer algorithms, in context of
the extended Kalman filter (EKF) simultaneous localization
and mapping (SLAM) [12], a combined information utility



suggested in [13] using the proposed information-based cost
function in [14] and an occupancy grid (OG) map MI. A
local optimization was implemented for one step look-ahead
optimal control action. The reported results indicated that the
utility for mapping attracts the robot to unknown areas whilst
the localization utility competes to maintain the robot well
localized relative to known features in the map. In order to
enhance the map quality of the EKF-based SLAM, in [15],
an a-optimal criterion for active exploration was used. To
simplify the objective function, the (feature) map covariance
matrix was approximated through ignoring the correlation
among the features. Furthermore, the search space of the
trajectories was limited by pruning a breadth-first search
algorithm to find global trajectories, leading to a tractable
method.

The information gain-based exploration methods remained
appealing by evolution of the SLAM algorithms. In [1], Rao-
Blackwellized particle filters are employed to compute the
map and robot pose posteriors. The proposed uncertainty
reduction approach was based on the joint entropy minimiza-
tion of the SLAM posterior. The information gain was ap-
proximated using ray casting for a given action. In practice,
due to the computational complexity a particle was drawn
from the particle set with a probability proportional to its
weight. In a similar framework in [2], the problem of active
SLAM and exploration and, specifically, the inconsistency
in the filter due to the information loss for a given policy
using the relative entropy concept was addressed. In [3],
with the assumption that all random variables are normally
distributed and employing the relative entropy metric, the
combined traveling cost and expected information gain was
developed.

The techniques in [16, 17] evaluate exploratory and place
revisiting paths, which are selected based on entropy reduc-
tion estimates of both map and path. Whilst the map entropy
is computed on an occupancy grid at coarse resolution, path
entropy is the outcome of Pose SLAM [18, 19], a delayed-
state SLAM algorithm from the pose graph family. Given
the inherent complexity in the formulation to calculate joint
entropy between robot pose and map, conditional indepen-
dence is assumed. In [20], the MI surface between a map
and future measurements was computed numerically. The
work assumes known robot poses, and relies on an OG
map representation and measurements from a laser range-
finder. The algorithm integrates over an information gain
function with an inverse sensor model at its core. It was
formally proven that any controller tasked to maximize an
MI reward function is eventually attracted to unexplored
areas, thus providing a strong basis for the MI-based study of
autonomous robotic exploration hereby proposed. The novel
solution is distinctly flexible in being able to deal with sparse
measurements and predicated on inferring a map posterior
using Bayesian updates with a forward sensor model, and
a continuous representation to define informative priors in
the estimation of conditional entropy (MI) maps. Moreover,
the work is thoroughly demonstrated with examples under
realistic conditions.

Fig. 2. Environment’s setup and the concept of generating training
data from range-finder beams can be seen in this picture. The negative
information from each beam provide required training data for free areas
which is captured through line segmentation.

III. GAUSSIAN PROCESSES MAPPING AND EXPLORATION

We employ continuous occupancy mapping technique
which benefits from GPs to learn correlation between map
points and infer the map in its original high dimensional
space. For a given query point in the map GP predicts a
mean, µ, and an associated variance, σ. The target value
can be y+ = 1 and y− = −1 for occupied and free
points, respectively, depending on the nature of the map,
i.e. a binary classification problem. Optimization of the
hyper-parameters is performed once at the beginning of
each experiment by minimization of the negative log of
the marginal likelihood function. For the prevailing case of
multiple runs in the same environment, the optimized values
can then be loaded off-line. In general, there is no guarantee
that predicted GPs mean values be constrained to the target
values. A logistic function squashes the predicted outputs
into the range (0, 1) and guarantees a valid probabilistic
interpretation. By enquiring over a uniformly sampled range
of points, we fuse the obstacle, mo, and the free area,
mf , maps to achieve the desired continuous occupancy map
(COM), m, as thoroughly explained in [10]. In order to
incorporate new information incrementally, map updates are
performed using the Bayesian Committee Machine (BCM)
technique [21]. Figure 2 shows the environment’s setup and
training points generation concept. Note that query points can
have any desired distributions. However building the map
over a grid, as done in Section IV, facilitates comparison
with standard occupancy grid-based methods, i.e. at similar
map resolutions.

In information gain-based exploration the commonly used
utility function is defined to maximize the MI between the
state and new measurements. The expectation over new
sets of measurements and actions gives a path and a goal
which is considered as the optimal behavior. The underlying
process involves moving the robot towards a candidate goal,
collect a set of measurements, and compute their likelihood.
The widely-employed approach to approximate the expected
information gain is using an inverse sensor model through ray



Algorithm 1 build frontier map(m,mo, σ, β, γ)
1: dm, dmo ← Compute ‖∇m‖1and‖∇mo‖1 numerically
2: σmin ← min(σ)
3: f ← zeros(size(m))
4: for all i ∈M do
5: f̄ [i] ← dm[i] − β(dm

[i]
o +m

[i]
o − 0.5)

6: w[i] ← γ
√
σmin/σ[i]

7: f [i] ← (1 + exp(−w[i]f̄ [i]))−1

8: end for
9: return f

Algorithm 2 build MI map(m)
Require: Current robot pose, sensor model;
1: m̄← m
2: I ← −(m log(m) + (1−m) log(1−m))
3: for all k do
4: Compute ẑ[k]t+1 and I[k]t+1 using ray casting in m

5: for i ∈ I[k]t+1 do
6: h̄← 0
7: for all z ≤ ẑ[k]t+1 do
8: p1 ← p(ẑ

[k]
t+1|M = 0)

9: p2 ← 0

10: for j ∈ I[k]t+1 do
11: p1 ← p1 × (1−m[j])

12: p2 ← p2 + p(ẑ
[k]
t+1|M = m[j])m[j]

∏
l<j

(1−m[l])

13: end for
14: pz ← p1 + p2
15: m̄[i] ← p−1

z p(ẑ
[k]
t+1|M = mi)m

[i]
∏
l<i

(1−m[l])

16: h̄← h̄+ pz[m̄[i] log(m̄[i]) + (1− m̄[i]) log(1− m̄[i])]
17: end for
18: I[i] ← I[i] + h̄N−1

z

19: end for
20: end for
21: return I

casting operation in OG maps [1, 16, 20, 22, 23]. A number
of policies define the robot path to simulate the action
and acquire new poses and measurements over possible
informative areas. Instead, we suggest to compute the MI of
the map and future measurements over all areas in the current
robot’s perception field using a continuous representation of
the map. We estimate the map posterior through the Bayes
update formula and compute the map conditional entropy
numerically. The COM technique infers a joint predictive
distribution over the map, therefore, the computed entropy
is more descriptive of the real map uncertainty (see fig. 1
in [20] for an illustration of map entropy vs. MI in OGs).

A. Frontier map

Constructing a frontier map is the fundamental ingredient
of any geometry based exploration approach. Since it reveals
the boundaries between known-free and unknown areas
which are potentially informative regions, it is also applicable
in information gain-based exploration strategies. From [10],
given any location i in the map, the value of a frontier can
be computed as

f̄ [i] = ‖∇m[i]‖1 − β(‖∇m[i]
o ‖1 +m[i]

o − 0.5), (1)

where ∇ denotes the gradient operator, and β is a factor that
controls the effect of obstacle boundaries. ‖∇m[i]‖1 indicates

Fig. 3. Probabilistic frontier map (right) computed from COM (left). The
map highlights the informative regions for further exploration by defining
distributions over frontier points. The lower probabilities show the obstacles
and walls whilst the values greater than the no discrimination probability,
0.5, can be considered as frontiers.

all boundaries whilst ‖∇m[i]
o ‖1 defines obstacle outlines. The

subtracted constant is to remove the biased probability for
unknown areas in the obstacles probability map.

A probabilistic representation of the frontier map is highly
favorable. It facilitates interpretation of the frontier concept
and provides a meaningful way to set an automatic termi-
nation criterion for exploration experiments. Thus, the mean
frontier surface proposed in [10] is converted to a probability
frontier map incorporating the map uncertainty. In order to
squash mean and variance values into the interval (0, 1), a
logistic regression classifier with inputs from f̄ [i] and the
map uncertainty σ[i] is applied to data which yields

p(f [i]|m[i], w[i]) =
1

1 + exp(−w[i]f̄ [i])
(2)

where w[i] = γ
√
λ[i] denotes the required weights,

λ[i] = σmin/σ
[i] is the bounded information associated to

location i, and γ > 0 is a constant to control the sigmoid
shape. The details of the frontier map computations are
presented in Algorithm 1. Figure 3 depicts an instance of
the frontier map from an exploration experiment in the Cave
environment. The aforementioned representation suggests a
compatible interface with other modules of our Bayesian
approach. In contrast to classical binary representation, defin-
ing frontiers in probabilistic terms as distributions over
informative areas using map uncertainty appears more fitting
to compute expected behaviors.

B. Mutual information map
The MI is defined as the reduction in uncertainty due to the

another random variable [4]. In other words, assuming robot
poses are known, for an exploratory action given a measure-
ment Z = z from Z ⊂ R≥0 we are interested to know
what will be the reduction in the map M = m uncertainty.
Therefore, the expected MI is applicable in active exploration
where given a future measurement the utility function tries
to maximize the uncertainty reduction. The MI between the
map and the future measurement Zt+1 = ẑ is

I(M ;Zt+1|z1:t)

=

∫
ẑ∈Z

∑
m∈M

p(m, ẑ|z1:t) log
p(m, ẑ|z1:t)

p(m|z1:t)p(ẑ|z1:t)
dẑ

= H(M |z1:t)−H(M |Zt+1, z1:t), (3)



TABLE I
COMPARISON OF THE DIFFERENT EXPLORATION STRATEGIES IN THE INDOOR DATASETS (AVERAGED OVER 30 EXPERIMENTS, MEAN ± STANDARD

ERROR)

Cave environment 20m× 20m; map resolution: 0.2m; frontier map threshold: 0.59
NF APS GPNF GPMI

Travel distance (m) 109.12 ± 4.72 317.83 ± 0.40 108.60 ± 7.64 100.54 ± 3.46
Exploration time (min) 14.50 ± 0.48 18.58 ± 0.28 5.40 ± 0.43 11.25 ± 0.38
Map ent. rate (NATS/step) -14.1576 ± 0.4683 -10.2131 ± 0.1500 -15.1586 ± 0.4250 -16.5754 ± 0.4905
Localization MSE (m) 0.3392 ± 0.0629 0.1234 ± 0.0348 0.0930 ± 0.0189 0.0784 ± 0.0135
Number of closed loops 17.10 ± 2.17 157.30 ± 1.28 31.30 ± 5.08 25.60 ± 2.11

Freiburg environment 40m× 15m; map resolution: 0.2m; frontier map threshold: 0.57
NF APS GPNF GPMI

Travel distance (m) 265.26 ± 10.59 n/a 170.37 ± 6.20 154.46 ± 5.39
Exploration time (min) 57.29 ± 1.25 n/a 18.23 ± 0.87 15.13 ± 0.90
Map ent. rate (NATS/step) -8.2347 ± 0.1582 n/a -12.6333 ± 0.3509 -13.0932 ± 0.3100
Localization MSE (m) 0.6135 ± 0.1432 n/a 0.3257 ± 0.0470 0.2035 ± 0.0256
Number of closed loops 17.00 ± 1.11 n/a 9.07 ± 0.64 7.87 ± 0.60

where H(M |z1:t) and H(M |Zt+1, z1:t) are map and map
conditional entropy respectively, which by definition are

H(M |z1:t) = −
∑

m∈M

p(m|z1:t) log p(m|z1:t) (4)

H(M |Zt+1, z1:t) =

∫
ẑ∈Z

p(ẑ|z1:t)H(M |Zt+1 = ẑ, z1:t)dẑ (5)

The exact solution requires computation of the conditional
predictive distribution for each map point. This involves
Nq (number of query points) times inversion of the corre-
sponding (Nq − 1) × (Nq − 1) covariance matrix. A more
tractable alternative is using the marginal predictive distri-
bution through marginalizing the GP’s latent function (joint
predictive distribution). Although this simplification equates
to independence between map points for prediction purpose,
it should be noted that the current estimate is computed by
considering full correlations between map points.

To compute the map conditional entropy, the predicted
map posterior given the new measurement Zt+1 = ẑt+1 is
required. The Bayesian inference finds the posterior probabil-
ity for each map point m[i] and k-th beam of the range-finder
as

p(m[i]|ẑ[k]t+1, z1:t) =
p(ẑ

[k]
t+1|m[i])p(m[i]|z1:t)
p(ẑ

[k]
t+1|z1:t)

(6)

p(ẑ
[k]
t+1|z1:t) =

∑
m[i]∈M

p(ẑ
[k]
t+1|m[i])p(m[i]|z1:t) (7)

The likelihood function p(ẑ
[k]
t+1|M = m[i]) is a beam-

based mixture measurement model [24], where the term
p(ẑ

[k]
t+1|M = 0) can be interpreted as the likelihood of

not observing the map point at location i, i.e. uniform
distribution, and the term p(ẑ

[k]
t+1|z1:t) is the marginal distri-

bution over measurements which is calculated in line 14 of
Algorithm 2 and denoted by pz . By numerically integrating
over a desired beam range, we can compute the predicted
map posterior entropy in Equation 5. For all points in the k-th
sensor beam’s perception field at the current robot location,
I [k]t+1, the MI can be written as

I [i] = h(m[i])− h(m[i]) (8)

where h(m[i]) is the current entropy of the map point
m[i] and h(m[i]) is the estimated map conditional entropy.
In Figure 1, an estimated MI map during an exploration
experiments in Cave environment is depicted. In practice,
at each time step, the map is initialized with the current map
entropy, H(M |z1:t), and for all map points inside the current
perception field the estimated map conditional entropy values
are subtracted from the corresponding initial values. In
Algorithm 2, the implementation of the MI map is given
where Nz denotes the resolution of numerical integration.

C. Decision making

The resulting MI map shows the expectation for uncer-
tainty reduction in the map at each place. In order to define
a utility function, the frontier map is initially thresholded
and, through k-means, clusters of geometric frontiers are
extracted. Let each geometric frontier be regarded as an
action from the exploration point of view. The action space
can thus be defined as A = {a[j]}nj=1. We define a utility
function as the difference between information gain reward
and traversal distance. The optimal action will therefore be
the one that maximizes the utility function. Therefore,

a? = argmax
a∈A

{αĪ(a)− d(a)1/2} (9)

where d(a) is the direct distance from the current robot
pose to the exploration action (squared root to prevent steep
variations), Ī(a) is the mean MI for an exploration action,
and α is a factor to relate information gain to the cost of
motion.

IV. RESULTS AND DISCUSSION

In this section the exploration results from extensive
scenarios are presented. The indoor experiments are focusing
on comparison of the presented method with comparable
exploratory methods available in the literature, whereas the
outdoor experiment demonstrates the scalability. An av-
erage improvement over the standard and state-of-the-art
exploratory methods by more than 20% and 13% in travel
distance and map entropy reduction rate, respectively, while



(a) (b)

(c) (d)

Fig. 4. MI-based exploration in Cave and Freiburg environments. (a) and (b) Pose SLAM maps, (c) and (d) continuous occupancy maps. In (a) and (b),
red curves are the robot path and green lines indicate loop-closures. The continuous occupancy maps show the occupancy probability at each location
where mid-probability value of 0.5 represents unknown points. Map dimensions are in meters.

maintaining the localization mean square error (MSE) 36%
lower, can be clearly seen in Tables I and II. The localization
MSE was computed at the end of each experiment by the
difference between the robot traveled path, i.e. estimated
poses and ground truth poses. The required parameters for
the beam-based mixture measurement model, frontier maps,
and MI maps computations are listed in Table III.

The experiments include exhaustive comparison among
the original nearest frontier (NF) [11], active Pose SLAM
(APS) [16], COM-based nearest frontier (GPNF) which
is considered as the immediate outcome in [10], and the
developed MI-based (GPMI) exploration approaches. In or-
der to maintain NF and APS methods in their original
frameworks, the results are computed using OG maps while
in COM-based methods the developed COM in [10] and
the probabilistic frontier map in this paper are employed.
In all of the presented results, Pose SLAM [18] is in-
cluded as the backbone to provide localization data to-
gether with number of closed loops. Additionally, regardless
of the exploration method, the same set of Pose SLAM
parameters was used in each environment. The simulated
robot and its sensors, i.e. the odometric and laser range-
finder, provide required sensory inputs for Pose SLAM
and the environment is built by loading a binary image.
The odometric and laser range-finder sensors noise covari-
ances were set to Σu = diag(0.1m, 0.1m, 0.0026rad)2 and
Σy = diag(0.05m, 0.05m, 0.0017rad)2, respectively. The
robot started the experiments with an initial pose uncertainty
of Σ0 = diag(0.1m, 0.1m, 0.09rad)2 and laser beams were
simulated through ray-casting operation over the ground truth
map using the true robot pose.

The proposed approach is demonstrated with exploratory
simulations in three mapping environments. The indoor
datasets include the Cave and Freiburg maps [25] and the
outdoor dataset is a parking area as an experiment in a
larger scale (16 times on average in area) to demonstrate
the scalability of the presented approach. The Cave map
represents a simple hand-drawn environment with a few
rough obstacles, whereas the Freiburg map is computed from
a real LMS-laser log taken with a Pioneer2 robot at the
University of Freiburg (building 079 AIS-Lab), and contains
many rooms and disconnected obstacles which make for a
challenging environment to explore. The implementation has
been developed in MATLAB (2014a) and GP computations
have been implemented using the open source GP library
in [7].

A. Indoor mapping and exploration

Table I summarizes the exploration results in the indoor
environments. The figures are averaged over 30 repetitions
of the experiments in order to demonstrate repeatability and
reliability of each method. To achieve the best outcome for
all of the compared methods, in the nearest frontier methods
(NF and GPNF), frontiers closer than 2m to the current robot
pose are ignored. Furthermore, only frontiers with the size
larger than 10 cells are considered valid in NF and APS. For
GPNF and GPMI, a threshold was set for the frontier map as
the termination condition of an experiment. These conditions
lead to avoiding excessive search and fluctuation in a small
area and exploring the whole map faster.

Despite the common belief in the literature, classic NF
performs sensible in terms of minimum requirements for an



Fig. 5. MI-based exploration in an outdoor parking area. This map, on average, is 16 times larger than the indoor maps in area and demonstrates the
scalability of the presented method. The lack of distinctive features in many region makes closing informative loops extremely challenging which can
easily lead to the localization inconsistency in such a large environment. Map dimensions are in meters.

exploration method. However, NF does not contemplate any
form of uncertainty reduction which explains the highest
localization error in Table I. APS tries to minimize the
approximated joint entropy of the map and robot pose which
results in completion of the experiment with a lower localiza-
tion error. However, by aiming for the most informative goal
together with the replanning policy, according to the utility
function, the robot may fluctuate among several areas of the
map. The increased travel distance and significantly higher
number of closed loops imply over-visiting of some already
known areas. The results show that grid-based mapping does
not give sufficient support for information-gain based explo-
ration as the robot may travel a long distance to approach an
informative area and meanwhile collect sparse measurement
along its way. This is where importance of GP mapping
becomes highlighted through handling sparse measurements
and fast map entropy reduction. In other words, in many
cases, the robot does not need to revisit partially observed
areas and the correlation between points in the map helps in
reducing the map entropy at a faster rate.

GPNF and GPMI exploit COM for mapping, exploration,
and planning providing a common ground for both travel
distance and uncertainty reductions. GP-based methods han-
dle sparse sensor measurements and by learning the envi-
ronment’s structural dependencies define distribution over
the map points occupancy and also frontier points. The
significant increase in the map entropy reduction rate while
maintaining the localization error low is due to this fact and
can be concluded from the data in Table I. GPMI through the
developed utility function tries to maximize the MI between
map and future measurements. It demonstrates a better long
term decision making, since it has the fastest map entropy
reduction rate as the MI map suggests. The developed MI
surface is a suitable cost map for planners such as A∗ as
demonstrated in the results. Although the map is one-step
look-ahead it is assumed to be fixed during the planning time.
Furthermore, traveling through uncertain traversable regions
facilitates closing informative loops in the SLAM process
by taking overlapping observations from diverse orientations.

TABLE II
COMPARISON OF THE GPNF AND GPMI IN THE OUTDOOR DATASET

(AVERAGED OVER 10 EXPERIMENTS, MEAN ± STANDARD ERROR)

Outdoor parking environment 210m× 42m; map resolution: 0.4m
frontier map threshold: 0.53

GPNF GPMI

Travel distance (m) 634.44 ± 36.54 594.94 ± 53.53
Exploration time (min) 20.51 ± 1.00 38.65 ± 2.17
Map ent. rate (NATS/step) -72.8809 ± 4.0572 -74.1553 ± 3.8043
Localization MSE (m) 2.5288 ± 0.4777 1.7357 ± 0.4664
Number of closed loops 34.50 ± 4.83 24.10 ± 8.89

Figure 4 illustrates the indoor exploration results with GPMI
method in Cave and Freiburg datasets.

B. Outdoor dataset

The outdoor scenario consists of a large parking area,
approximately 16 times larger than the earlier indoor setting.
Figure 5 shows the exploration results with the GPMI
method. The environment is not challenging only due to its
size, but also for the long sections with few distinguishing
features. Closing informative loops is non-trivial and moving
towards frontiers as they emerge along the long straight
section in the middle of the map significantly increases
robot pose uncertainty. Table II presents the comparative
results of running GPNF and GPMI in this dataset. It can
be seen how the latter performs slightly better in regards
to travel distance, map entropy rate, and localization error,
while computational cost is slightly worse. A longer run
experiment such as this reveals how the lack of an explicit
utility term for loop-closure actions results in statistically
closer figures. In exploratory problems future state and mea-
surements are unknown. As such, a method such as GPMI
with an integrated outlook on uncertainty minimization can
be a natural companion to a decision making framework
that more closely incorporates SLAM outcomes within the
planning process. This is not considered in this paper and
has been left for future work.



TABLE III
PARAMETERS IN THE PRESENTED ALGORITHMS FOR FRONTIER AND MI

MAPS COMPUTATIONS.

Parameter Symbol Value

1) Beam-based mixture measurement model:
Hit std σhit 0.05 m
Short decay λshort 0.2 m
Max range rmax 10.00 m
Hit weight zhit 0.7
Short weight zshort 0.1
Max weight zmax 0.1
Random weight zrand 0.1

2) Frontier map:
Occupied boundaries factor β 3.0
Logistic regression weight γ 10.0

3) MI map and utility function:
Number of sensor beams over 360 deg Bz 266
Numerical integration resolution Nz 10 m−1

Information gain factor α 15
Occupied probability threshold po 0.65
Unoccupied probability threshold pf 0.35

C. Computational complexity

The computational cost of GPs due to the need to invert
a matrix of the size of training data Nt is O(N3

t ). For
MI surface, the time complexity is at worst quadratic in
the number of map points in the current perception field,
Np, and linear in the number of sensor beams, Bz , and
numerical integration’s resolution, Nz , respectively, resulting
in O(N2

pBzNz).

V. CONCLUSION

A novel solution to the active perception problem with
a mobile robot has been presented in this paper. The
exploratory behavior of the robot is controlled using MI
surfaces between the current map and a one-step look ahead
measurements. It is based on learning spatial correlation of
map points with iterative GP-based regression from sparse
range measurements, and computing MI surfaces estima-
tion from a one-step ahead map posterior and conditional
entropy. The proposed exploration scheme exploits these
Bayesian updates to compute the most likely frontiers for
further inspection. The strategy has been contrasted against
comparable exploratory methods available in the literature
with improvements of more than 20% in travel distance and
13% in map entropy reduction rate. The methodology has
thus been proven capable of dense uncertainty minimization,
also in large-scale settings, while maintaining mean square
localization errors along the traversed path on average 36%
lower than comparable methods. GPs predictive distributions
over map points and frontiers provide necessary inputs for
MI computation, which truly depends on the distribution
of the defined random variables, resulting in fast entropy
reduction.
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