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As database systems are increasingly being used in advanced applications, it is
becoming common that data in these applications contain some elements of
uncertainty. These arise from many factors, such as measurement errors and
cognitive errors. As such, many researchers have focused on defining comprehensive
uncertainty data models of uncertainty database systems. However, existing
uncertainty data models do not adequately support some applications. Moreover,
very few works address uncertainty tuple calculus. In this paper we advocate a
probabilistic data model for representing uncertain information. In particular, we
establish a probabilistic tuple calculus language and its semantics to meet the
corresponding probabilistic relational algebra.
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1. INTRODUCTION
Today's database systems must handle uncertainties in the data they store. Such uncertainties arise
from different sources such as measurement errors, cognitive errors, approximation errors,
calculation errors, the dynamic nature of real world, and partially unknown environment. For
example, in an image retrieval system, an image processing algorithm may fetch images that are
similar to a given sample image, and feed the results into a relational database (Lakshmanan, 1997).
The results are generally uncertain. In a sensor application, depending on the reliability of the
sensor, the data from the sensor would be associated with a probability. In temporal database,
temporal information may be fuzzy due to the uncertainty of the dynamic nature of the real world.
Finally, uncertainty arises in information retrieval, where the research community has long used
probabilistic techniques for retrieval of document data based on “concepts”.

In order to perform anything useful, these data (with uncertainties) must be efficiently modelled
and stored in databases so that they can be subsequently accessed and used. To handle data with
uncertainties, many fundamental issues and challenges have to be re-examined. Some of these
include defining comprehensive uncertainty data models, semantic modelling of uncertainty data,
choosing a better theory on uncertainty, integrity and consistence constrains, safety under
uncertainty, establishing appropriate uncertainty relational calculus and algebra, integrating
uncertainty models, and implementation issues. Among these issues, defining comprehensive
uncertainty data models has attracted much research activity.

In the literature, there are two approaches to deal with uncertainty: probabilistic data models
(Cavallo, 1987; Dey, 1996; Fuhr, 1997; Pittarelli, 1994) and fuzzy data models (Buckles, 1983;
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Buckles, 1984; Prade, 1984; Zemankova, 1985). The more direct method of dealing with
uncertainty would be to specifically use a probabilistic data model because of the availability of a
very rich probability theory. So, our work in this paper concentrates on probabilistic data models.

From the systems point of view, model and management of uncertainty data must have
considerably more functionality and capability than the conventional database management
systems, due to the complicated structure of the data. In order to capture the general semantics of
uncertainty data, we propose a probabilistic data model for representing such uncertain information
in this paper. The model is based on PRM (Dey, 1996), and extends several operators to handle
uncertainty data using axiom systems in probability theory. Furthermore, we establish a
probabilistic tuple calculus to meet the corresponding probabilistic relational algebra. Before
describing our probabilistic data model in detail, we simply recall the classification of the
uncertainty of data and the related work in the current literature.

We begin in Section 2 with simple recall previous work on probabilistic databases. In Section 3,
we will define some basic concepts of probability databases, which will be used throughout the
subsequent sections. In Section 4, we establish a probability tuple calculus language (1PTRC). In
Section 5, we present a probability relational algebra. In Section 6, we will illustrate how to take
probabilistic relational algebra as a query language by some simple examples. Finally, in the last
section, we compare our model with the PRM model, and summarise the contribution of this paper.

2. RELATED WORK
A number of attempts have been made to develop fuzzy and probability data models for representing
uncertainty data (Dey, 1996; Fuhr, 1997; Pittarelli, 1994). Most of them are of only limited success
(a general review is in Dey,1996). Notable work includes the probabilistic relational model (PRM) by
Dey and Sarkar (1996), ProbView: a flexible probabilistic database system by Lakshmanan, Leone,
Ross and Subrahmanian (1997), probabilistic deductive databases by Lakshmanan and Sadri (1994),
incomplete information in relational databases by Imielinski and Lipski (1984), stable semantics for
probabilistic deductive databases by Ng and Subrahmanian (1995), combining deduction by
uncertainty with the power of magic by Schmidt, Kiessling, Guntzer and Bayer (1987), the
management of probabilistic data (MPD) by Barbara, Garcia-Molina and Porter (1992), information-
theoretical characterisation of fuzzy relational databases (FRD) by Buckles and Petry (1983),
extending the fuzzy database with fuzzy numbers (EFD) by Buckles and Petry (1984), the theory of
probabilistic database (PD) by Cavallo and Pittarelli (1987), a probabilistic relational algebra for the
integration of information retrieval and database Systems (PRA) by Fuhr and Rolleke (1997),
incomplete information costs and database design (IIC) by Mendelson and Saharia (1986), an algebra
for probabilistic databases (APD) by Pittarelli (1994), generalising database relational algebra for the
treatment of incomplete or uncertain information and vague queries by Prade and Testemale (1984),
fuzzy functional dependencies and lossless join decomposition of fuzzy relational database systems
by Raju and Majumdar (1988), answering heterogeneous database queries with degrees of uncertainty
by Tseng, Chen and Yang (1993), a statistical approach to incomplete information in database systems
(IIDS) by Wong (1982), and implementing imprecision in information systems by Zemankova and
Kandel (1985). This current research has explored the representation of incomplete and uncertain data
in a suitable structure that is powerful enough to develop higher-level semantics and uncertainty event
abstractions. An excellent summary of the research issues of uncertainty databases is described in the
paper by Dey and Sarkar (1996). They fall into four different categories:
• The first category deals with extending the relational algebra to handle “nul” values and

provides the semantics of “null” values. These representations using “null” values assume that
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data values are either known with certainty or they are unknown. This assumption, however, is
too restrictive to model most real applications.

• The second category deals with the uncertainty involved in the retrieval of incomplete data and
the cost of data incompleteness (Mendelson, 1986; Wong 1982). These models are useful tools
for deciding on desired levels of data storage, but are not adequate for the representation of data
uncertainty.

• The third category models data uncertainty using fuzzy set theory (Buckles, 1983; Buckles,
1984; Prade, 1984; Zemankova, 1985). The typical assumption in these models is that some
attributes (or data items) do not have precise values; rather, they take on “fuzzy” values. These
models can be used to model the fuzzy type of uncertainty data.

• The fourth category of work uses the well-known probability calculus (Cavallo, 1987; Dey,
1996; Fuhr, 1997; Pittarelli, 1994). These investigations extend the relational model to represent
uncertainty due to ambiguity using the well-known probability calculus. They provide a
framework for handling the probabilistic type of uncertainty data.
As we have seen, the current researches on uncertainty databases are based on relational model

due to the successful application of this model and the solid set theory. They are mainly focused on
defining the uncertainty data model and uncertainty relational algebra. However, only a little work
is on uncertainty query languages. One of our main contributions in this paper is to suggest a
probability tuple calculus language and its semantics.

There are various classes of models for representing uncertainty data in the current uncertainty
databases, but for the purposes of this discussion we classify these representations into two broad
categories: attribute uncertainty and tuple uncertainty.

The attribute uncertainty means that some attribute-values of an object are associated with
uncertainty. These models need usually to adapt a non-1NF (or N1NF) view of uncertainty relations
(Lakshmanan, 1997). Data in N1NF models has better intuition than in 1NF models. N1NF models
can provide a framework for describing the nature of uncertainty data. However, since N1NF
models use set-valued attributes, their model poses the usual implementation problem associated
with all N1NF relations (Dey, 1996).

The tuple uncertainty means a tuple is associated with a degree of member belong to a relation.
These models adopt a 1NF view of uncertainty relations. The operators for handling uncertainty
data can be naturally extended on top of traditional relational database models. In other words, these
models are implemented easier than N1NF models. However, the information of an event is usually
represented in several tuples in 1NF relations. That is, data in these models do not have good
intuition. For implementation, our work in this paper concentrates on tuple uncertainty. 

2.1 Concepts
Let N = {1, 2, …, n} be an arbitrary set of integers. A relation scheme R is a set of attribute names {A1,
A2, …, An}, one of which may be a probability stamp pS. Corresponding to each attribute name Ai, i ∈
N, is a set Di called the domain of Ai. If Ai = pS, then Di = (0, 1). The multiset D = {D1, D2, …, Dn} is
called the domain of R. A tuple x over R is a function from R to D (x: R → D), such that x(Ai) ∈ Di, i ∈
N. In other words, a tuple x is a tuple on scheme R. Restriction of a tuple x over S, S ⊂ R, written x(S),
is the sub-tuple containing values for attribute names in S only, i.e., x(S) = {<A, v> ∈ x | ∈ S}.

A formal interpretation of a tuple is: a tuple x over R represents our belief about attributes (in R)
of a real world object. If pS ∈ R, then we assign a probability of x(pS) > 0 to the fact that an object
has the values x(R - {pS}) for the corresponding attributes. Symbolically,

x(pS) = Pr[R - {pS} = x(R - {pS})]
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If pS ∉ R; i.e., if the relation scheme R is deterministic, then every tuple on R is assigned a
probability of one, and is not explicitly written. However, if x is a tuple on the scheme R, and pS ∉
R, it will be implicitly assumed that x(pS) = 1.

Two tuples x and y on relation scheme R are value-equivalent (written x ≅ y) if and only if, for all
A � R, (A ≠ pS) ⇒ (y(A) = x(A)). Value-equivalent tuples are not allowed in a relation; they must be
coalesced. Two types of coalescence operations on value-equivalent tuples are defined as follows:
1. The coalescence-PLUS operation is used in the definition of the projection operation.

Coalescence-PLUS (denoted by ‘⊕ ’) on two value-equivalent tuples x and y is defined as:

z = x ⊕ y ⇔ (x ≅ y) ∧ (z ≅ x) ∧ (z(pS) = Min{1, x(pS) + y(pS)})

2. The coalescence-MAX operation is used in the definition of the union operation. Coalescence-
MAX (denoted by ‘⊗ ’) on two value-equivalent tuples x and y is defined as:

z = x ⊗ y ⇔ (x ≅ y) ∧ (z ≅ x) ∧ (z(pS) = Max{x(pS), y(pS)})

Intra-Relation Integrity Constrains: Let r be any relation on scheme R with primary key K. The
following intra-relational constrains are imposed on r:

1. The total probability associated with a primary key value must be no more than one. In other
words, for all x ∈ r,

Since it has been implicitly assumed that the probability value for a tuple on a deterministic
scheme is always unity (the deterministic assumption), the above constraint reduces to key
uniqueness for each tuple when deterministic relations are considered.

2. For all x ∈ r, no part of x(K) can be null.

3. For all x ∈ r, if pS ∈ R, then x(pS) ∈ (0, 1) and x(pS) is not null.

Referential Integrity Constrains: Let r and s be two relations on schemes R and S respectively.
Let KR and KS be the primary keys of R and S, and let r.F → s.KS for some F ⊃ R. The following
referential constraints are imposed on r and s:

1. For all x∈ r, if there exists an attribute A ∈ F such that x(A) is null, then for all other attributes
B ∈ F, x(B) is also null. This ensures that the foreign key value of a tuple is not partially null.

2. For all x ∈ r, either x(F) is null (fully), or there exists y ∈ s such that

where KRF is a shorthand for KRU F. This ensures that the probability assigned for a set of
attributes must be consistent with the probability of the object that these attributes refer to.

In Dey (1996), a new operation called conditionalisation is used to derive conditional joint
distribution of different attributes given other attributes.

2.2 Limitations in Previous Models
While previous models, such as the PRM model, capture uncertainty, they have some definite
limitations. First, there is no corresponding probabilistic tuple calculus presented. Moreover, the
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uncertainty semantics of some operators of the probabilistic relational algebra, such as Coalescence-
PLUS, fuzzy-equal, and relational operations, are neither captured at their definitions, nor in a fully
satisfactory fashion. We shall illustrate the limitations using some examples as follows.

First, one of the Intra-Relation Integrity Constrains is not reflected in the extended operations in
PRM model. Let r be any relation on scheme R with primary key K. The total probability associated
with a primary key value must be no more than one. This constraint is not considered in the
extended relational operators in PRM. Now we illustrate this by the following examples.

The union of relations EMP and EMP' obtained according to the union operation in Dey (1996)
is as follows.

Certainly, relation EMP ∪ EMP' does not enforce the integrity constrains on probabilistic
relations. In our opinion, it is important to enforce this constraint in the extended relational operators
for probability databases. In our probability relational operators, we will give a consideration to the
constraint.

Second, the definition of coalescence-PLUS operation is inadequate to match the properties of
probability. The last limitation is that traditional equal relationship (=) used in PRM model cannot
fit the equal relationship under uncertainty. Indeed, because the user may not know exactly what the
probabilities of the tuples are, the queries to probabilities of the tuples in a probabilistic database
should be based on approximate matching rather than exact matching. In other words, traditional
equal relationship cannot fit these applications. We can easily illustrate them by examples as similar
as that used in the first limitation.

3. THE PROBABILISTIC DATA MODEL
In this section, we introduced the probabilistic data model that we used. We use upper case letters
such as A, B, … to represent attributes, and dom(A), dom(B), … represent the domains of A, B, …,
respectively. Lower case letters such as a, b,… denote the values of each domain. A special attribute
pS will denote the probability attribute and its domain dom(pS) = [0, 1]. µ, ν, µ1, ν1, … will
represent the tuples of a probabilistic relation.

EMP# DEPT pS

3025 SHOE 0.6

3025 TOY 0.3

6637 TOY 0.8

6637 AUTO 0.2

Relation: EMP

EMP# DEPT pS

3025 SHOE 0.8

3025 TOY 0.1

6637 TOY 0.3

6637 SHOE 0.5

Relation: EMP'

3025 SHOE 0.8

3025 TOY

6637 TOY 0.8

6637 AUTO 0.2

6637 SHOE 0.5

Relation: EMP ∪ EMP'
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Definition 1. Let A ≠ pS be an attribute. dom(A) the domain of A is a finite set of atomic values, for
which the predicates = and ≠ are defined. dom(A) is an ordered domain if there is one relation of <,
≤, ≥ and > over dom(A).

Definition 2. For dom(pS) = [0, 1) and ∀ a, b ∈ dom(pS), a ε-equal to b if |a - b| < ε, where ε (> 0)
given by experts is small enough. a ε-equal to b will be denoted as a =ε b. 

Generally, the domain of an attribute has to be finite. However, (0, 1) is an infinite set of
numbers. So, it is inadequate to describe fuzzy-equal by using “=”. Intuitively, we can divide
dom(pS) = [0, 1] into finite or countable sub-intervals using relation =ε in Definition 2, and each
sub-interval is taken as a atomic value. In this way, we can model the approximating and infinite
semantics of uncertainty data using relational data model.

For example, let ε = 0.0001, a1 =0.5, a2 =0.50001, a3 =0.34564, a4 =0.34563. We have

|a1 - a2| = 0.00001 < ε and |a3 - a4| = 0.00001 < ε
That is, a1 =ε a2 and a3 =ε a4. Note that “=ε” relation does not satisfy transmission law.

Definition 3. Let A be an attribute and dom(A) the domain of A. A probabilistic assignment P of A
is a function from dom(A) to [0, 1] so that for every x ∈ dom(A), P(A = x) ∈ [0, 1]. We use (x, P(A
= x)) to denote a probabilistic assignment of A. A = x is a certainty if P(A = x) =1 and P(A = a) = 0
for ∀ a ∈ dom(A), a ≠ x.

Definition 4. Let A be an attribute, P1(A = x) and P2(A = x) be two observations of A = x. (x, P1(A
= x)) is ε-equal to (x, P2(A = x)) if

|P1(A = x) - P2(A = x)| < ε
where ε > 0 is small enough. (x, P1(A = x)) ε-equal to (x, P2(A = x)) is written as (x, P1(A = x))

=ε (x, P2(A = x)).

For example, let A be an attribute, ε = 0.0001, (x, P1(A = x)) = (x, 0.8), (x, P2(A = x)) = (x,
0.79999), (x, P3(A = x)) = (x, 0.34564), (x, P4(A = x)) = (x, 0.34565). We have

| P1(A = x) - P2(A = x)| = 0.00001 < ε and | P3(A = x) - P4(A = x)| = 0.00001 < ε
That is, (x, P1(A = x)) =ε (x, P2(A = x)) and (x, P3(A = x)) =ε (x, P4(A = x)).

Definition 5. Let U = {A1, A2, …, An} be a set of attributes. The attribute domain dom(U) of U is
as dom(U) = dom(A1) × dom(A2) × … × dom(An). A tuple over U is a mapping µ: U → dom(U)
such that

∀ X ∈ U (µ(X) ∈ dom(X))

Let µ be a tuple over U and Y = {Y1, Y2, …, Ym} a subset of U. We will denote the projection
of µ onto Y as µ(Y) = (µ(Y1), µ(Y2), …, µ(Ym)).

Definition 6. Let U = {A1, A2, …, An} be a set of attributes, D a subset of U. A relation over
relational scheme D is a set of tuples over D. A database over database scheme U is a set of relations.

Furthermore, we can define probabilistic relation scheme, probabilistic relation, probabilistic
database, and the ε-equal relationship between tuples as below.
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Definition 7. A probabilistic relation scheme R is a set of attributes as {A1, A2, …, An}, one of
which may be a probability stamp pS. A tuple over R is a mapping γ: R → dom(R) such that

∀ X ∈ R (γ(X) ∈ dom(X) ∧ (γ(pS) ∈ (0, 1))

A relation over the probabilistic relation scheme R is a set of tuples over D. This relation is called
probabilistic relation.

Let r be a relation over the probabilistic relation scheme R and ν ∈ r. ν is a certainty if ν(pS) = 1.
And r is a certainty if µ is a certainty for ∀µ ∈ r. Apparently, we can view conventional relations as
the specific instances of probabilistic relations.

Definition 8. Let r be a relation over the probabilistic relation scheme R, µ, ν ∈ r two tuples. µ and
ν are value-equivalent (written µ ≅ ν ) if and only if, for all A ∈ R, (A ≠ pS) ⇒ (ν(A) = µ(A)).

Value-equivalent tuples are not allowed in a relation; they must be coalesced.

Definition 9. Let r be a relation over the probabilistic relation scheme R, µ, ν ∈ r two tuples. µ is
ε-equal to ν if µ ≅ ν , and |µ(pS) - ν(pS)| < ε, where ε > 0 is small enough. µ ε-equal to ν is written
as µ =ε ν. 

The ε-neighbor of µ is defined as: {ν| ν∈ r ∧ ν =ε µ }, denoted as µε. For the sake of convenience,
we suppose µε = {µ} in this article.

Definition 10. A probabilistic database is a set of the probabilistic relations.
Now we can strictly define the semantics of probabilistic relation, λ-relation as following.

Definition 11. Let R be a probabilistic relation scheme. Given K ⊆ R is a set of primary keys of R.
The probabilistic relation r over R is a finite set of non-null tuples over R such that:

1. for each tuple µ in r and A ∈ R, µ(A) is single-valued;

2. for ∀ µ, ν ∈ r, if µ and ν are two different tuples in r, then µ not ≅ ν . 

Usually, the relation of satisfying the above two conditions is in probabilistic First Normal
Form (1NF). The semantics of a probabilistic relation r over the probabilistic relation scheme R is
as the same in PRM model.

Definition 12. Let R be a probabilistic relation scheme, r1 and r2 two probabilistic relations over R.
r1 ε-equal to r2 if

1. for ∀ µ ∈ r1, ∃ν ∈ r2 such that µ =ε ν; and

2. for ∀ µ ∈ r2, ∃ν ∈ r1 such that µ =ε ν.

r1 ε-equal to r2 is written as r1 =ε r2.

Definition 13. Let R be a probabilistic relation scheme, r a probabilistic relation over R. A λ-cut
λ(r) of r is defined as

1. λ(r) is a relation over scheme R - {pS}; and

2. for ∀ µ ∈ rλ, ∃ν ∈ r such that µ = ν(R - {pS}) ∧ (ν(pS) ≥ λ). Note that if ∃ν 1, ν2, … νm ∈ r and,
ν1(pS) ≥ λ, ν2(pS) ≥ λ, …, νm(pS) ≥ λ, then we take only the tuple γ(R - {pS}) as a tuple of λ(r),
where γ(pS) is the largest one among ν1(pS), ν2(pS), …, νm(pS).
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4. PROBABILISTIC TUPLE CALCULUS LANGUAGE
Most of the current work has focused largely on uncertainty relational algebra. To enrich the current
work on uncertainty databases, we propose a probabilistic tuple relation calculus language, called
1PTRC in this section. First, we will give the well-formed formulae of the language, followed by
their interpretations and examples.

4.1 Symbols
• Predicates. Predicates are the same as that in well-known logics. We will use P, Q, P1, Q1, … to

represent predicates, which are also used for a probabilistic relation instance in a probabilistic
database. Let PSET be the set of all predicates.

• Variables. Let µ, ν, µ1, ν1, … represent tuple variables. A variable has the same scheme and
degree (arity) as the probabilistic relation scheme it is associated with. Variables may be
indexed. If µ is a variable, then µ(i) is an indexed variable where i is between 1 and the arity of
µ. µ(i) must be an atom. Let VSET be the set of all variables.

• Constants. We will use a, b, c, … to represent the constant symbols. Each constant has a scheme,
an atom. Let CSET be the set of all constants.

4.2 Well-Formed Formulae
We define an expression of 1NF probabilistic tuple relation calculus (1PTRC) as {µ | ϕ(µ) ∧
κ(µ(pS))}, where µ is a tuple variable; ϕ is a formula, which is similar to that used in traditional
tuple calculus language; κ(µ(pS)) is a standardising-probability operator defined in Subsection 5.2.
We define well-formed formula ϕ in the following after we define atomic formulae.

Definition 14. An atomic formula is one of the following.
1. P(ν) is an atomic formula, where predicate P is a probabilistic relation name. P(ν) means ν ∈ P,

or ν is a tuple of P, or ν is an element of P. 

2. ν = µ(i) is an atomic formula, where ν is a attribute value of the projection µ(i) of tuple µ over
the ith attribute and this attribute is not pS.

3. ν =ε µ(pS) is an atomic formula, where ν is the probability of tuple µ.

4. a θ ν(i), ν(i) θ a, or ν(i) θ µ(i) are atomic formulae, where a is a constant, and θ is an arithmetic
comparator (=, >), and the ith attribute is not pS.

5. a θ ν(pS), ν(pS) θ a, or ν(pS) θ µ(pS) are atomic formulae, where a ∈ [0, 1], and θ is an relational
comparator (=ε, >).

6. ν(i) = {ν | ϕ'(ν)} is an atomic formulae, ϕ' is a formula with a variable ν.

Definition 15. We define a well-formed formulae j recursively as follows:
1. each atomic formula is a formula;

2. if ϕ1 and ϕ2 are formulae, then ϕ1 ∧ ϕ 2, ϕ1 ∨ ϕ 2, and ¬ ϕ 1 are formulae;

3. if ϕ is a formula, then ∀ν (ϕ), ∃ν (ϕ) are formulae.

Note that 1PTRC is allowed to use {ν |¬ (ν ∈ r)}. Therefore, 1PTRC must satisfy the safe
constraint conditions. The above definition of ϕ is the same as that in conventional tuple calculus
languages except that =ε is substituted for =. In the approximating sense, the role of =ε is the same
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as =. So, the safe constraint conditions of 1PTRC are the same as ones of conventional tuple
calculus languages. And only difference is that =ε is substituted for = when the object is pS.

4.3 Semantics of 1PTRC
Let W =2U be the power set of U, dom(W) = {a | a ∈ dom(A) ∧ A ∈ W}.

Definition 16. An interpretation of 1PTRC is a 4-tuple as I = < U, dom(W), rR, MM>, where, 

1. U is the universe of 1PTRC;

2. dom(W) is the domain of the semantics of 1PTRC;

3. rR is the set of probabilistic relations over U;

4. MM is a binary tuple as MM = < CM, PM>, where,

CM: CSET |→ dom(W);
PM: PSET |→ rR.

where CM is a function that assigns a constant in dom(W) to each constant in CSET, and PM is
a function which assigns a probabilistic relation over U for each predicate of 1PTRC. 

For simplicity, the domain of interpretation for a calculus object φ is defined relative to the set
dom(W), universe of atoms, and is denoted by domφ(U). Atoms take their values from dom(W).

An interpretation of a constant a ∈ CSET, denoted as Ia, is a member of doma(U), where
doma(U) = dom(W). An interpretation of a predicate P ∈ PSET, denoted as IP, is a relation
instance, and IP ∈ domP(U). A variable µ is interpreted as a tuple instance, and Iµ ∈ domµ(U),
where domµ(U) = L1 × L2 × … × Ln and n is the degree of µ. Iµ(i) denotes the ith component of
the tuple that is the interpretation of variable µ. For well-formed formulae in 1PTRC, they are
interpreted as true or false by assigning interpretations to their constants, predicate symbols and
free variables.

The following are the rules for the interpretation of formulae in 1PTRC.

1. P(ν) is true if Iν ∈ IP.

2. ν = µ(i) is true if Iν = Iµ(i).

3. ν =ε µ(pS) is true if |Iν - Iµ(pS)| < ε.

4. a θ ν(i) is true if Ia θ Iν(i); ν(i) θ a is true if Iν(i) θ Ia; or ν(i) θ µ(i) is true if Iν(i) θ Iµ(i);

where (θ ∈ {=, >}.

5. a θ ν(pS) is true if |Ia - Iν(pS)| < ε; ν(pS) θ a is true if |Iν(pS) - Ia| < ε; or ν(pS) θ µ(pS) is true if
|Iν(pS) - Iµ(pS)| < ε; Where (θ ∈ {=ε, >}.

6. ϕ1∧ ϕ 2 is true if ϕ1 and ϕ2 are true; ϕ1∨ ϕ 2 is true if ϕ1 or ϕ2 is true; ¬ ϕ 1 is true if ϕ1 is false.

7. ∃ν (ϕ) is true if there is at least one assignment to ν which makes ϕ(ν) true, i.e., ϕ(ν) is true for
at least one value of Iν. ∀ν (ϕ) is true if ϕ(ν) is true for any assignment to ν.

8. ν(i) = {µ | ϕ'(µ)} is satisfied (made true) by the interpretations Iµ, Iν of its free variable if the
following condition is met: Iν(i) equals the set of assignments Iµ satisfying ϕ'(µ) for the
interpretation Iµ. If there are no such tuples Iµ, and Iν(i) is empty, then this formula evaluates to
false. In other words, the set constructor formula does not create an empty set.
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9. κ(µ(pS)) is satisfied by the interpretations Iµ, if  

holds, where K is primary key.

An 1PTRC expression {µ | ϕ(µ)} where µ is a free variable with arity k and ϕ(µ) is a well-
formed formula. An interpretation of this expression is the set of instances of µ that satisfy the
formula ϕ(µ), i.e., an element of domµ(U).

Tuple relation calculus language is mainly used for describing properties of query language. We
now illustrate the use of 1PTRC by examples.

Example 1. For example, let R = {Number, Name, Ring, pS}, and SHOOT is a relation over scheme
R as follows.

SHOOT: The scores of shooter team

Number Name Ring pS
2001 John 10 0.4

2001 John 9 0.5

2001 John 8 0.08

2001 John 7 0.02

2002 Allen 10 0.6

2002 Allen 9 0.3

2002 Allen 8 0.1

2003 Li 10 0.1

2003 Li 9 0.3

2003 Li 8 0.5

2003 Li 7 0.1

2004 Tom 9 0.1

2004 Tom 8 0.3

2004 Tom 7 0.6

Q1: What are the names, rings and probabilities of those shooters in the shooter team that the
probability of the ten-point ring is great than 0.3?

The 1PTRC expression of Q1 is as follows

{µ | (∃ν ) (SHOOT(ν) ∧ (ν(Ring) = 10 ∧ ν (pS) > 0.3) ∧ (µ(1) = ν(Name)

∧ µ (2) = ν(Ring) ∧ µ (3) = ν(pS)))}

The answer to Q1 is as follows.

Name Ring pS
John 10 0.4

Allen 10 0.6
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Q2: What is the information of Allen in the score table?
The 1PTRC expression of Q2 is as follows

{µ | (∃ν ) (SHOOT(ν) ∧ (ν(Name) = ‘Allen’') ∧ (µ = ν))}

The answer to Q2 is as follows.

Q3: What are the numbers and names of those shooters in the shooter team whose the probability
of the nine-point ring is better than Tom’s?

The 1PTRC expression of Q3 is as follows

{µ | (∃ν ) (SHOOT(ν) ∧ (∃ν 1) (SHOOT(ν1) ∧ ν 1(Name) = ‘Tom’ ∧ (ν(Ring) = 9

∧ ν (pS) > ν1(pS)) ∧ (µ(1) = ν(Number) ∧ µ (2) = ν(Name)))}

The answer to Q3 is as follows.

5. PROBABILISTIC RELATIONAL ALGEBRA
There is a lot of research on probabilistic relational algebras in the current literature. In order to
enrich the work, we define some considerable operators for handling data with uncertainty in
probabilistic relational algebras using axiom systems in probability theory in this section. First, we
will give the definitions of these operators, and then we will give a probabilistic relational algebra
and its semantics that consider these operators.

5.1 Several Operators
Let r be a probabilistic relation on scheme R with primary key K. Value-equivalent tuples are not
allowed in a probabilistic relation (Dey, 1996). They must be coalesced. We define two types of
coalescence operations on value-equivalent tuples.

1. The coalescence-PLUS operation is used in the definition of the projection operation.
Coalescence-PLUS (denoted by ⊕ ) on two value-equivalent tuples µ1 and µ2 is defined as:

ν = µ1 ⊕ µ 2 ⇔ (µ1 ≅ µ 2) Ÿ (ν ≅ µ 1) ∧ (ν(pS) = µ1(pS) + µ2(pS) - µ1(pS) * µ2(pS))

This definition can meet the probabilistic significance levels between events. For example, to
solve the projection operation on SHOOT over A = {Ring, pS} ⊂ R according to the above
coalescence-PLUS, SHOOT1 = ∏A (r) is as follows.

Number Name Ring pS
2002 Allen 10 0.6

2002 Allen 9 0.3

2002 Allen 8 0.1

Number Name
2001 John

2002 Allen

2003 Li
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SHOOT1: The statistical results of shooter team

By the requirements of Intra-Relation Integrity Constrains, we have

SHOOT2: The statistical results of shooter team

2. The coalescence-MAX operation is used in the definition of the union operation. Coalescence-
MAX (denoted by ⊗ ) on two value-equivalent tuples µ1 and µ2 is defined as:

ν = µ1 ⊗ µ 2 ⇔ (µ1 ≅ µ 2) ∧ (ν ≅ µ 1) ∧ (ν(pS) = Max{µ1(pS), µ2(pS)})

This operator is the same as that in PRM model. In order to keep probabilistic significance under
our relational operations, it also needs another operator as follows.

3. The total probability associated with a primary key value must be no more than one (Dey, 1996).
In order to meet this constraint in our extended relational algebra, we define an operation, called
as standardising-probability (denoted by κ) on a tuple µ(pS). Let

We define the standardising-probability κ as:

κ(µ(pS)) = µ(pS),   if   ∆K ≤ 1; µ(pS) / ∆K, otherwise

This operation is used for the extended relational algebraic operators to satisfy the Intra-Relation
Integrity Constrains. We will define the probabilistic relational operators using the above new
operations in next subsection.

5.2 The Extended Relational Operations
We now extend the traditional relational algebraic operators in order to provide facilities for
handling probabilistic data in real world applications. 

Let r and s be relations on the same probabilistic scheme R with primary key K. Then the union,
difference and intersection on the two relations are defined as follows.

Ring pS
10 0.784

9 0.7795

8 0.68409

7 0.6472

Ring pS
10 0.27083139

9 0.26927687

8 0.23631766

7 0.22357408
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1. Extended Union (∪ P)

r ∪ P s = {µ | (((µ ∈ r) ∧ (∀ν ∈ s(ν not≅ µ ))) ∨ ((µ ∈ s)∧ (∀ν ∈ r(ν not≅ µ )))

∨ (∃ν ∈ r ∃γ ∈ s(µ = ν ⊗ γ ))) ∧ κ (µ(pS))}

2. Extended Difference(∪ P)

r ∪ P s = {µ | ((µ ∈ r) ∧ (∀ν ∈ s(ν not≅ µ ))) ∨ ((∃ν ∈ r, ∃γ ∈ s((µ ≅ ν ≅ γ ∧ ν ≠ ε γ)

∧ (ν(pS) > γ(pS)) ∧ (µ(pS) = ν(pS) - γ(pS))))}

3. Extended Intersection(∩P) 

r ∩P s = {µ | ∃ν ∈ r, ∃γ ∈ s((µ ≅ ν ≅ γ ) ∧ (µ(pS) = Min{ ν(pS), γ(pS)}))}

Example 2. Let EMPA and EMPB be two relations below. 

Relation: EMPA

Relation: EMPB

Let ε= 0.001. Then the results of the above operations on EMPA and EMPB are as follows.

Relation: EMPA ∪ P EMPB

Relation: EMPA -P EMPB

EMP# DEPT PS
3025 shoe 0.80001

3025 toy 0.100001

6637 toy 0.30001

6637 auto 0.2

EMP# DEPT PS
3025 shoe 0.8

3025 toy 0.1

6637 toy 0.3

6637 shoe 0.5

EMP# DEPT pS
3025 shoe 0.80001

3025 toy 0.100001

6637 toy 0.3

6637 auto 0.2

6637 shoe 0.5

EMP# DEPT pS
6637 auto 0.2
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Relation: EMPA ∩P EMPB

4. Extended Projection(ΠP)
Let r be a relation on the probabilistic scheme R, and let S ⊂ R. The projection of r onto S is
defined as

5. Extended Selection (σP)
Let r be a relation on the probabilistic scheme R. Θ be a set of comparators over domains of attribute
names in R. Let Q be a predicate (called the selection predicate) formed by attributes in R,
comparators in Θ, constants in the domain of A for all A ∈ R, and logical connectives. The selection
on r for P, written (r) , is the set {a ∈ r | Q(µ)}. That is, 

where, Q a probabilistic predicate is the same as that in Dey (1996).

6. Extended Natural Join( P)
Let r and s be any two relations on scheme R and S respectively, and let R' = R - {pS} and S' =
S - {pS}. The natural join of r and s is defined as:

r P s = {µ | (∃ν ∈ r, ∃γ ∈ s((µ(R') = ν(R')) ∧ (µ(S') = γ(S')) ∧ (µ(pS) = ν(pS)γ(pS))))∧κ (µ(pS))}

5.3 The Relational Algebra and Several Theorems
After defined the above operations, the probabilistic relational algebra can be simply presented as
follows.

Let U be a set of attribute names, which is called the universe of the probabilistic relational
algebra (written as PRA). W = 2U be the power set of U, dom(W) = {a|a∈ dom(A)∧ A∈ W}. dom(W)
is the domain of the semantics of PRA. D = {D1, D2, …, Dn} is the set of distinct probabilistic
relation schemes, where Di ⊆ U, for 1 ≤ i ≤ n. RSET = {r1, r2, …, rn} is the set of probabilistic
relations, such that ri is a relation on Ri, 1 ≤ i ≤ n. CSETR is the set of all constant relations over the
subsets of U. rR is the set of relations over the subsets of U. Θ denotes a set of comparators over
domains in dom(W). The probabilistic relational algebra over U, dom(W), D, rR and Θ is the 7-tuple
as IE = < U, dom(W), D, rR, Θ, O, f>, where,

1. U is the universe of PRA;

2. dom(W) is the domain of the semantics of PRA;

3. D is the set of distinct probabilistic relation schemes;

4. rR is the set of probabilistic relations over U;

5. Θ is a set of comparators over domains in dom(W);

6. O is a set of ∪ P, -P, ∩P, ΠP, σP, P, and λ-cut;∆∆

∆∆

∆∆

EMP# DEPT pS
3025 shoe 0.8

3025 toy 0.1

6637 toy 0.3
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7. f is a binary tuple as f = < fC, fR>, where,

fC: CSETR |→ dom(W);

fR: RSET |→ rR;

Where, fC is a function that assigns a constant relation in dom(W) to each constant in CSETR,
and fR is a function which assigns a probabilistic relation over u for each relation in RSET.

An algebra expression over AE is recursively defined as

1. A constant relation c ∈ CSETR is an algebra expression;

2. For ∀ r ∈ RSET, r is an algebra expression;

3. For e is an algebra expression, λ(e), ΠP (e) and σP (e) are two algebra expressions;

4. Let e1, e2 be two algebra expressions, θ ∈ {∪ P, -P, ∩P, P}, e1 θ e2 is an algebra expression.

The result of an algebra expression must be a relation. We now present the semantics of algebra
expressions. For each e ∈ AE of degree k and each I ∈ {I} (where, {I} is the set of all instances over
fixed schema of n relations), the value of e on I, denoted e(I), is a relation of degree k. The formal
definitions are as follows:

1. c(I) = fC(c);

2. r(I) = fR(r);

3. λ(e(X))(I) = {t(X -{pS}) | t∈ e(I) ∧ t(pS) ≥ λ},

ΠP (e(X))(I) = {t(Y) | t(X) ∈ e(I) ∧ (Y ⊆ X)},

(I) = {t | t ∈ e(I) ∧ F(t)$;

4. (e1 ∪ P e2)(I) = {t | t ∈ e1(I) ∨ t ∈ e2(I)},

(e1 -P e2)(I) = {t | t ∈ e1(I) ∧ t ∈ ∉ e2(I)},

(e1
P e2)(I) = {t1 ° t2 | t1 ∈ e1(I) ∨ t2 ∈ e2(I)$.

Next we will present several theorems.

Theorem 1. The First Normal Form (1NF) is closed under extended union, extended intersection,
extended difference, extended natural join, extended projection, and extended selection.

Proof: It can be gained directly from the above definitions of extension operators. 

Theorem 2. The probability significance is met under extended union, extended intersection,
extended difference, extended natural join, extended projection, and extended selection.

Proof: The axioms or properties of probability certainly hold under these operations according the
definitions of them. So, the probability significance is met under extended union, extended inter-
section, extended difference, extended natural join, extended projection, and extended selection. 

Theorem 3. If E is an expression of 1NF probabilistic relational algebra, there is a safe expression
E' of 1NF probabilistic tuple calculus which is equivalent to E.

Proof: It can be proven from the above expressions of extension operators. 

Theorem 4. If E is a safe expression of 1NF probabilistic tuple calculus, then there is an expression
E' of 1NF probabilistic relational algebra which is equivalent to E.

Proof: It can be constructed according to the proof of the similar theorem in conventional
relational theory (Ullman, 1988).

∆∆

∆∆
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Apparently, the above definitions of 1PTRC and probabilistic relational algebra are as similar as
the conventional tuple calculus languages and relational algebras except that =ε is substituted for =.
In the approximating sense, the role of =ε is the same as one of =. So, the proof of this theorem can
be constructed directly from the proof of the similar theorem in conventional relational theory. And
only difference between the two proofs is that =ε is substituted for = when the object is pS. 

6. ALGEBRAIC QUERY LANGUAGE
The probabilistic relational algebra provides operations: union (∪ P), difference (-P), and intersection
(∩P) to insert and delete tuples on probabilistic databases. And the operations such as projection
(ΠP), selection (σP), and join ( P) are used to answer queries on probabilistic relational
databases. These operators are as similar as that in traditional relational algebras. However, because
the domain (0, 1) of pS is infinite, probabilistic relational algebra taken as a query language is
different from conventional query languages at probabilistic attribute pS. In this section, we now
show the algorithm of probabilistic relational operations in this subsection.

(1) Extended Union (∪ P)

Algorithm of union
input: relations r and s on scheme R
output: relation r1 = r ∪ P s on scheme R
begin

r1 ← r;
for all ν ∈ s do

for all µ ∈ r1 do
if ν ≅ µ then

µ ← (ν ⊗ µ )
else r1 ← r1 ∪ {ν };

for all µ ∈ r1 do
κ(µ(pS))

end.

(2) Extended Difference (-P)

Algorithm of difference
input: relations r and s on scheme R
output: relation r1 = r -P s on scheme R
begin

r1 ← r;
for all ν ∈ s do

for all µ ∈ r1 do
if ν ≅ µ then

if ν(pS) < µ(pS) then
µ(pS) ← µ(pS) - ν(pS)

else r1 ← r1 - {µ };
end.

(3) Extended Intersection (∩P)

Algorithm of intersection
input: relations r and s on scheme R

∆∆
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output: relation r1 = r ∩P s on scheme R
begin

r1 ← r;
for all µ ∈ r1 do

for all ν ∈ s do
if ν ≅ µ then

µ(pS) ← Min{µ(pS), ν(pS)}
else r1 ← r1 - {µ };

end.

(4) Extended Projection (      )
Algorithm of projection
input: relations r on scheme R and a subscheme S ⊂ R
output: relation r1 =        (r) on scheme 
begin

r1 ← ∅ ;
s ← {τ | τ = τ1(S) ∧ τ 1 ∈ r};
for all µ ∈ s do

if (∃ν ∈ r1(ν ≅ µ )) then
ν (pS) ← ν (pS) ⊕ µ (pS)

else r1 ← r1 ∪ P {µ(S)};
for all µ ∈ r1 do

κ(µ(pS))
end.

(5) Extended Selection (σP)
Algorithm of selection
input: relations r on scheme R and a probabilistic predicate Q
output: relation r1 = σP(r) on scheme R
begin

r1 ← ∅ ;
for all µ ∈ r do

if Q(µ) then
r1 ← r1 ∪ {µ};

end.

(6) Extended Natural Join ( P)

Algorithm of natural join
input: relations r on scheme R and s on scheme S
output: relation r1 = P on scheme D = R ∪ S
begin

r1(D) ← ∅ ;
for all µ ∈ r do

for all ν ∈ σ do
r1 ← r1 ∪ {(µ(R – {pS}), ν(S – {pS}), µ(pS) * ν(pS)};

for all µ ∈ r1 do
κ(µ(pS))

end.

∆∆

∆∆
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7. COMPARISON AND CONCLUSIONS
To model the probabilistic nature of data, uncertain data has to be incorporated into existing
databases (typically relational databases). However, current approaches have many shortcomings
and have not established an acceptable extension of the relational model. Dey and Sarkar (1996)
gave a good review of these probabilistic data models. In order to overcome some shortcomings in
the current models, they proposed a probabilistic relational model and algebra (PRM) that is a
consistent extension of the conventional relational model. 

They have defined several important operators, such as conditionalisation, coalescence-plus,
and coalescence-MAX that are useful for extending conventional relational models to support
uncertainty data. As an attempt, our model in this paper is based on PRM model such that some
excellent techniques can be inherited. Meanwhile, our model has the advantage of proposing
probabilistic tuple calculus and its semantics. For simplicity, the comparison of our model with the
PRM model focuses only on the following four cases.

1. One of Intra-Relation Integrity Constrains is not reflected in the extended operations in PRM
model. We applied standardising-probability operator in our extended operations such that the
probability significance is met under these operations.

2. The definition of coalescence-PLUS operation in PRM model is inadequate to match the properties
of probability. In our model, for two value-equivalent tuples µ1 and µ2, and ν = µ1 ⊕ µ 2, we defined
ν(pS) as µ1(pS) + µ2(pS) - µ1(pS) * µ2(pS). This definition satisfies the properties of probability.

3. Traditional equal relationship (=) used in PRM model cannot fit the equal relationship under
uncertainty. Indeed, because the user may not know exactly what the probabilities of the tuples
are, the queries to probabilities of the tuples in a probabilistic database should be based on
approximate matching rather than exact matching. In order to meet these applications, we use
“ε-equal” and “ε-neighbor” to fit the fuzzy-equal operator and the approximate matching
respectively, such that the approximation and infinite semantics of uncertainty data can be
modeled in our probabilistic data model.

4. PRM model focuses mainly on the probabilistic relational algebra. We not only presented a
probabilistic relational algebra and its semantics, but also established an equivalent probabilistic
tuple calculus language and its semantics. 

We have seen, our probabilistic data model can overcome some of these limitations in PRM model.
In particular, we establish a probabilistic tuple calculus to meet our probabilistic relational algebra. This
work can enrich the work on uncertainty data in the current literature. The key points of this work are:

1. It defined “ε-equal” to fit the fuzzy-equal in this section. With this definition, we can model the
approximating and infinite semantics of uncertainty data using probabilistic relational data model.

2. It established a probability tuple calculus language (1PTRC). In particular, the semantics of
1PTRC was developed, and some examples were applied to illustrate how to use 1PTRC.

3. It defined a probability relational algebra and its semantics. This probabilistic relational algebra
is demanded to satisfy the axioms or properties of probability.

4. It illustrated how to take probabilistic relational algebra as a query language.

We plan to extend our work in several directions. First, we will address optimisation issues of
our model and define new data model of handling probabilistic and fuzzy information. Second, we
will explore a proper method for supporting the semantics of uncertainty data.
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