
On the Interplay Between Consistency,

Completeness, and Correctness in

Requirements Evolution

Didar Zowghi

Faculty of Information Technology

University of Technology – Sydney

Australia

Vincenzo Gervasi

Dipartimento di Informatica

University of Pisa

Italy

Abstract

The initial expression of requirements for a computer-based system is often informal
and possibly vague. Requirements engineers need to examine this often incomplete
and inconsistent brief expression of needs. Based on the available knowledge and ex-
pertise, assumptions are made and conclusions are deduced to transform this “rough
sketch” into more complete, consistent, and hence correct requirements. This paper
addresses the question of how to characterize these properties in an evolutionary
framework, and what relationships link these properties to a customer’s view of cor-
rectness. Moreover, we describe in rigorous terms the different kinds of validation
checks that must be performed on different parts of a requirements specification
in order to ensure that errors (i.e., cases of inconsistency and incompleteness) are
detected and marked as such, leading to better quality requirements.

Key words: Software requirements, consistency, completeness, evolutionary
correctness assurance.

Email addresses: didar@it.uts.edu.au (Didar Zowghi),
gervasi@di.unipi.it (Vincenzo Gervasi).

Preprint submitted to Elsevier Science 1 April 2003

1 Introduction

Software development is typically commenced when a problem is identified
that may require a computer-based solution. The expression of the require-
ments for the new system is often informal and possibly vague, as Jackson
puts it [1], a “rough sketch”. Requirements engineers need to examine this
incomplete and often inconsistent brief expression and based on the available
knowledge and expertise, and possibly on further investigation, to transform
this “rough sketch” into a correct requirements specification. The requirements
are then presented to the problem-owners for validation. As a result, new re-
quirements are identified that should be added to the specification, or some of
the previously stated requirements may need to be deleted in order to improve
it. So, at each step of the evolution of requirements, the specification can loose
requirements as well as gain some. One of the critical tasks of requirements
engineers in this process is to ensure that requirements specification at each
step remains correct, or alternatively that errors (i.e., violations of correctness
properties) are found as early as possible, their sources identified, and their
existence tracked for future discussion.

It is frequently the case that in an attempt to maintain consistency within the
requirements we remove one or more requirements from the specification and
fail to preserve its completeness. Conversely, when we add new requirements
to the specification to make it more complete, it is possible to introduce incon-
sistency in the specification. In this paper we argue that there is an important
causal relationship between Consistency, Completeness and Correctness (the
three Cs) of requirements. Increasing the completeness of a requirements spec-
ification can decrease its consistency and hence affect the correctness of the
final product. Conversely, improving the consistency of the requirements can
reduce the completeness, thereby again diminishing correctness. We ask the
question: “What are exactly the interplays among the three Cs?” These rela-
tionships need to be investigated further and guidelines have to be developed
for requirements engineers as to which is the best way to check and maintain
these properties at each step of requirements evolution.

Correctness by itself is an elusive concept. We can consider correctness from
at least two different perspectives:

(C1) From a formal point of view, correctness is usually meant to be the com-
bination of consistency and completeness. Consistency refers to situations
where a specification contains no internal contradictions, whereas com-
pleteness refers to situations where a specification entails everything that
is desired to hold in a certain context. We will be more specific when
we refer to correctness in Section 3, but for the moment let us empha-
size that consistency is an internal property of a certain body of knowl-

2

edge, whereas completeness is defined with respect to an external body
of knowledge.

(C2) From a practical point of view, however, correctness can be more prag-
matically defined as satisfaction of certain business goals. This indeed is
the kind of correctness which is more relevant to the customer, whose
goal in having a new system developed is to meet his overall business
needs.

In this paper we investigate what is the relationship between these two notions
of correctness, and what kind of arguments can be made in support of the
correctness of a specification. These questions will lead us to explore how
consistency and completeness affect these two notions.

Our work does not provide a universal solution to the difficult problem of prov-
ing the correctness of requirements. Too many factors are involved in writing
good requirements, and we believe any “silver bullet” for this problem to be
illusory. Rather, the paper offers a better theoretical understanding of how
consistency and completeness interact with correctness during requirements
evolution, and presents a framework that can be applied, with a variety of
formal and informal proof methods, to ensure that these properties are main-
tained (or recovered, if lost) during the evolution of the requirements. In our
opinion, having a clear understanding of what to prove can be as important as
finding the right correctness proof for each concrete case — both in practice
and in education.

The paper is organized as follows. Section 2 presents an overview of the sci-
entific literature concerning consistency, completeness, and correctness in re-
quirements. Section 3 presents our framework for requirements correctness in
an evolutionary setting, together with the formal definitions of the proof obli-
gations that must be discharged in order to prove correctness at each step.
It is followed by a complete example, showing how our framework is applied
in a realistic (although simplified) case. Section 5 discusses the impact of our
approach on current practice, and how other real-life problems relate to our
model. Some conclusions, and ideas for future work, conclude the paper.

2 Related works

In this section we provide a short overview of the literature related to the
concepts discussed in this paper.

3

2.1 Consistency

Consistency requires that no two or more requirements in a specification con-
tradict each other 1 . It is also often regarded as the case where words and terms
have the same meaning throughout the requirements specifications (consistent
use of terminology). These two views of consistency imply that mutually ex-
clusive statements and clashes in terminology should be avoided.

A wide variety of possible causes of inconsistency in software development
have been identified in the research literature. For example Nuseibeh [2] views
inconsistency as it arises between the views of multiple stakeholders in soft-
ware development. Among the reasons for the occurrence of inconsistencies,
he includes different language usage, varying development strategies, different
views held by participants, and the degree of overlap that exists in the areas of
concerns of different stakeholders. Nuseibeh defines an occurrence of an incon-
sistency very simply as the breaking of a rule, specifically a consistency rule
that explicitly describes some form of relationship that must hold between two
partial specifications. Easterbrook et al. [3] regard an inconsistency similarly
as any situation in which two parts of a specification do not obey some rela-
tionship that should hold between them. Being very general, these definitions
of inconsistency are not very informative: in fact, depending on the particular
rules or relationships that are being considered, any defect in a specification
(e.g., redundancy) could be termed as “inconsistency”.

An important distinction is made between inconsistency and conflict in [4].
A conflict is the interference in the goals of one party that is caused by the
action of another party. This view is shared by Robinson and Volkov [5] who
state that a “conflict” is a negative interaction where an interaction is a de-
pendency between two or more requirements and a conflict indicates that a
requirement interferes with the achievement of another requirement. An in-
consistency, on the other hand, occurs if a certain rule defined by the method
designer is broken. A conflict occurs typically when one party makes changes
that interferes with the other party’s development. This means that conflicts
do not necessarily result in any consistency rules being broken [4]. However, if
a conflict is considered as a mere interference, in effect what is being expressed
is that when a conflict arises, a fundamental rule of non-interference has been
broken. In that case conflicts and inconsistencies are indeed equivalent, the
only difference is in the type of rule that has been broken. Hence, any mech-
anism for detecting, resolving and managing inconsistency should effectively
be able to apply to conflict management too.

The approach taken by Easterbrook and Nuseibeh expressed in the above defi-

1 Or, more precisely, that it is never the case that the requirements cannot be all
satisfied at the same time.

4

nitions, moreover, makes a major, incorrect, assumption that an inconsistency
is necessarily a binary relation, that is, an inconsistency is caused by two parts
of a specification. This problem has also been recently identified by van Lam-
sweerde et al. [6] who state that most current techniques for inconsistency
handling in the current literature consider binary conflicts only.

Cugola et al. [7] distinguish between deviations and inconsistencies. They
address inconsistencies and deviations that arise in software development pro-
cesses and discuss ways in which inconsistencies between performance state
and enactment state can often be avoided by preventing further development
activities till some preconditions are forced to hold. Their logic-based tech-
nique is used to capture and tolerate some deviations from a process descrip-
tion during execution. In their approach some deviations can be tolerated as
long as the correctness of the system is not affected. In this case deviations
are recorded and propagated. A form of logical reasoning is carried out which
identifies some possible sources of inconsistency. If these identified sources do
interfere with the correctness of the system, then the incorrect data have to
be fixed or the process model has to be changed.

A more comprehensive view of what consistency means in software devel-
opment is adopted by Hangensen et al. [8]. Their proposed framework uses
the notion of a “description” for structuring and representing information. A
description is defined as some kind of object, which represents a piece of in-
formation and which could have any number of “interpretations” depending
on the observers’ decision on which universe of phenomena are relevant for
the observation. An actual subset of phenomena from this universe of phe-
nomena covered by the description is defined by means of an interpretation.
The consistency condition for two descriptions is defined as relations between
interpretations of descriptions. Their techniques for consistency handling are
modeled with respect to descriptions, interpretations and relations.

Other approaches that have emerged in the recent research literature attempt
to accommodate inconsistent data in a database by paying due attention to the
environment. For example Balzer [9] addresses the handling of certain kinds
of inconsistency. He discusses the notion of relaxing constraints and tolerating
inconsistencies and gives a simple technique to do this. He proposes modify-
ing constraints to explicitly identify their violations with “pollution markers”
acting as guards that can be used to modify the application’s behavior so
that the inconsistency can be tolerated by screening code that is sensitive to
the inconsistency or adjusting its behavior. He admits, however, that there is
an implicit informal goal of minimizing both the number and the duration of
inconsistencies and that they have to be resolved eventually and the sooner
the better. This admission is a clear indication that no matter how useful or
important inconsistencies are in requirements negotiations and discovery, they
have to be resolved before software development can continue into the next

5

stage, namely high-level design. Tolerating inconsistency, therefore, can only
be considered as a temporary measure. According to Balzer who was the initial
proponent of the notion of tolerating inconsistency in software development,
the duration and the number of inconsistencies have to be minimized. Balzer’s
approach therefore does not provide any strategies for the effective manage-
ment of inconsistency which includes the minimization of inconsistency.

Balzer further observes that his automatic repair technique only works for
particular situations and is not generally applicable because there are poten-
tially many ways to resolve inconsistencies [9]. He suggests additional user
input to be sought to complement the automated strategies. In fact this ap-
peal to user intervention for resolution of inconsistencies seems to be prevalent
in many frameworks of this nature for inconsistency handling (e.g. [10–17]).
Furthermore, Balzer’s approach mainly addresses the down-stream activities
of software development, namely handling inconsistency in design and code
specifications and in databases. Many of the techniques, strategies and meth-
ods that were introduced initially for the down-stream activities of software
development have often been adopted and tried by RE researchers but mostly
with limited success. This is because RE activities are fundamentally different
from the other activities in software development and there are many so called
“softer” factors involved in the construction of specifications that are unique
to RE.

Consistency in requirements models thus implies a lack of contradiction within
the presented information. Both a direct refutation of previously stated re-
quirement and an indirect denial of this description can constitute contradic-
tions within the requirements model. Direct refutation represents statements
within the model that are incompatible with each other. The truth of the first
statement of a requirement directly negates the truth of the second statement.
Moreover, information within the model can be refuted in an indirect man-
ner. A given set of facts could establish a potential situation that, given the
proper set of circumstances, would contradict other facts within the model.
Therefore, establishing consistency within a requirements model is primarily
a semantic task.

Requirements models include both explicit assumptions about the problem,
application domain, and the machine as well as implicit consequences of these
assumptions. A distinction is made between explicitly expressed requirements,
which means that one’s requirements involve an explicit mental representation
whose content is the content of the requirements, and implicit requirements,
which are derivable from the explicit requirements. In practice whether a state-
ment is an implicit consequence is a matter of degree. The accessibility of a
consequence depends on the complexity of finding a derivation. The more com-
plex the derivation, the more inaccessible its consequence. If a derivation is too
complex, its consequence is as inaccessible as if it were not implied at all [18].

6

In the same way, inconsistency can occur between explicit requirements (in
this case, it is more akin to a conflict), or involve implicit requirements (and in
this case, the cause may be an unforeseen interaction between requirements).

2.2 Completeness

While consistency has received greater attention by researchers in recent years,
completeness has also been addressed in a number of studies. Completeness
is an important component of software correctness, be it in a safety critical
system, embedded system or any other type of systems. One of the causes of
computer-related accidents and system failures is claimed to be the incom-
pleteness (among other flaws) in the software requirements, and not coding
errors [19]. Completeness is considered to be the most difficult of the specifica-
tion attributes to define and incompleteness of specification the most difficult
violation to detect [20].

According to Boehm [21], to be considered complete, the requirements doc-
ument must exhibit three fundamental characteristics: (1) No information is
left unstated or “to be determined”, (2) The information does not contain
any undefined objects or entities, (3) No information is missing from this doc-
ument. The first two properties imply a closure of the existing information
and are typically referred to as internal completeness. The third property,
however, concerns the external completeness of the document [11]. External
completeness ensures that all of the information required for problem defini-
tion is found within the specification. This definition for external completeness
clearly demonstrates why it is impossible to define and measure absolute com-
pleteness of specification. The only truly complete specification of something
would be the thing itself. A compromising position would be to determine
whether a specification is sufficiently complete. Decision on what is sufficient
completeness would have to be defined with respect to the type of system being
implemented. For example, in safety-critical systems sufficient completeness
may be defined with respect to system safety design constraints as well as
requirements derived from hazard analysis [22]. Clearly one of the available
techniques that could assist in the determination of external completeness of
the specification is domain modeling. This will be discussed in Section 2.4.

The importance of specification completeness in process-control applications
has received a great deal of attention in recent years. For example, Jaffe et
al have developed a set of formal criteria to identify missing, incorrect, and
ambiguous requirements for process-control systems [23]. This work has been
continued by Leveson in the design of formal specification languages [22]. Leve-
son argues that using a formal specification language alone will not lead to
finding incompleteness in the specifications and states that the level of incom-

7

pleteness discoverable is very much dependent on the features of the formal
specification language. Throughout the development of various formal speci-
fication languages, Leveson has found that propositional logic notation does
not scale well to complex expressions in terms of readability and to overcome
this concern, she has developed a tabular representation of disjunctive normal
form called AND/OR tables.

The notion of completeness is essentially related and tied to the purpose and
goal of a system. That is, the completeness of a specification is relative to
satisfying a certain set of goals. Letier and van Lamsweerde [24] suggest that
goals must be made explicit in the requirements engineering process because
goals drive the elaboration of requirements to support them and that they
provide a criterion for measuring requirements completeness. They define the
three Cs of requirements with respect to goal operationalization. In goal ori-
ented RE such as I* [25] and AGORA [26], goal refinement and elaborations
are used in the form of AND/OR graph to validate requirements specification
for completeness.

Completeness of specifications has also been tied to their performance. For
example, Woodside et al. [27] have investigated software specification com-
pleteness for its performance potential. These range from the execution cost
of operation and details of deployment up to missing subsystems and layers.
Hence, the “performance completion” of a specification implies that it con-
tains enough information to evaluate the performance of the system, to the
desired accuracy.

Most recent studies of completeness of specification in the literature are re-
lated to the application of some formal method for analysis and validation or
often related to algebraic specifications [28]. For example Sheldon et al [29]
have combined Z, Statecharts, and Stochastic Activity Network to validate a
Natural Language software requirements specifications for completeness, con-
sistency, and fault-tolerance.

The completeness of requirements specifications is not only with respect to
formal logic or mathematical theory but also includes completeness in regards
to socio-technical context of the system to be built. That is, human related
aspects of completeness are important as well as application domain related
issues of completeness. Completeness of a specification thus implies that all
customer’s needs will be met when the system is constructed. One’s intuition
about completeness frequently originates from one’s sense of causation [30].

8

2.3 Correctness

Correctness of a requirements specification describes the correspondence of
that specification with the real needs of the intended users much the same
way that correctness of a piece of software refers to the agreement of the
software part with its specification. Therefore, describing the software part
X as being correct is identical to stating that software part X meets all the
requirements imposed by the specifications [31]. Similarly, stating that the
specification of a software component is correct is equivalent to saying that
the specification meets (as far as possible) all the business goals stated by the
customer.

One of the recent applications of formal methods in RE is that of Heitmeyer et
al. [14] where the specification is expressed in SCR (Software Cost Reduction)
tabular formal notation and an automated consistency checker is used to check
the specification for syntax and type correctness, coverage, determinism, non-
circular definitions and other application independent properties. Heitmeyer
et al. provide a list of seven correctness properties derived from their formal
requirements model in SCR formal notation that is represented in Finite-State
Automaton (FSA), which produces externally visible outputs in response to
changes in monitored environmental quantities. The main purpose of these
checks is to determine if the requirements specification is well formed and so
they constitute a form of static analysis. Although the notation and the consis-
tency checking techniques seem promising, the requirements process they have
adopted is, in their own words, “an idealization of a real-world process”. This
is because they assume that it is possible to express all of the requirements in
their formal notation first, then run the automated consistency checker over
it to identify all inconsistencies in linear time and for the users to finally in-
tervene and correct the detected inconsistencies. But in the real-world RE is
an evolutionary and incremental process and hence the inconsistency analy-
sis which is part of this process must also be performed in an evolutionary
and incremental manner. This means that consistency checking is part of the
construction of the requirements specifications and should be performed in
parallel.

2.4 Requirements and domain modeling

Domain modeling improves the communication between the problem owners
and the requirements engineers. In many cases modeling the domain of ap-
plication and developing a conceptual model of the environment leads the
analysts directly to the requirements, since the goal of the software is to sup-
port a required mode of operation in the environment. This is particularly true

9

of those projects whose purpose is to automate an existing manual system.
Another very important role of domain modeling is associated with chang-
ing requirements. Since changes are inevitable in systems development, and
these changes often originate from a change in the environment, by modeling
the environment the requirements engineer can investigate potential changes
and provide valuable information for the designers so that they can achieve
appropriate modularity in design

Domain modeling is also used within RE to uncover the conceptual models of
the participants and their relationships during requirements elicitation. The
term domain modeling has been used in a variety of ways in the research
literature but its common usage has been to model an application domain
within which a family of related systems is constructed. The best description
of what domain modeling and requirements modeling are really about is given,
in our opinion, by Jackson and Zave [32,33]. They observe that part of the real
world becomes the environment of a development project, because currently
the problem-owners are dissatisfied with its behavior. Then a problem solver
(developer) suggests the building of a computer-based machine such that when
is introduced into the existing environment it would change the behavior of the
environment to the satisfaction of the problem owners. Jackson and Zave state
that the input and output of the machine are really part of the environment
and from this perspective, they claim that all statements made during RE are
about the environment. They do, however, provide a distinction by suggesting
the use of two distinct grammatical moods in systems development [34]. The
first mood is the indicative — that which is. The second mood is the optative —
that which we would like to be. The indicative mood of systems development
is also known as domain analysis.

Jackson refers to software development as building a machine simply by de-
scribing it [1]. He further states that description is at the heart of software
development in the sense that programs are descriptions of machines; require-
ments are descriptions of the application domain and the problems to be solved
there; and specifications are descriptions of the interface between the machine
and the application domain. Some of the environment phenomena D are pri-
vate to the domain, and internal machine phenomena M are private to the
machine. Both D and M , however, have also shared phenomena, that can be
sensed or caused by sensors and actuators. The machine’s external behavior
and properties are described in a specification S, expressed as a set of rela-
tionships over the shared phenomena. Requirements R are expressed as a set
of relationships over the domain phenomena, that is, D ∪ S. We will come
back to these concepts in the next section.

An interesting application of formal methods to domain modeling and require-
ments engineering is that of Dines Bjorner’s work on formalizing the domain
model for railway systems using the RAISE (Rigorous Approach to Industrial

10

Software Engineering) Specification Language (RSL) [35]. Unlike many other
formal methods, RAISE contains a method, a toolset as well as a specifica-
tion language. It embodies logic and features of VDM, OBJ, CCS, CSP, and
Standard ML. In a number of case studies, Bjorner shows how domain mod-
eling is an extremely important part of requirements engineering, and how
well-constructed domain descriptions can be even richer, more extensive, and
more informative than the requirements themselves.

3 An evolutionary model of requirements correctness

We consider now the general problem of determining whether a given require-
ments specification is correct or not. As mentioned in Section 1, completeness
is a relative property and may be determined only in relation to an external
reference. It follows from our definition (C1) of correctness that correctness,
in turn, needs to be considered with respect to such an external reference.
However, if we look at the requirements analysis process as a whole, no such
reference can be found — or, even if found, it is so removed in abstraction level
from the final requirements specification that it is hardly of any use. Thus,
the question arises: how can we discuss the correctness of requirements (and
especially their completeness) in rigorous terms if we do not have a direct term
of comparison?

In this section we present a framework for requirements evolution that allows
us to show how a suitable external reference can be found at each step, and
how this fact can be used to simplify and modularize correctness proofs, up
to showing correctness of the final specification.

3.1 Requirements, domain, and specification 2

According to Jackson [1,36], as illustrated in Figure 1, the role of requirements
(R) in software engineering is to state relationships that are desired to hold
between elements of a certain real world domain (D). Conversely, the role
of a specification (S) is to provide instructions for a machine that has an
interface to D so that the properties required in R hold. Thus, both R and S

predicates on entities in D, although with different intentions: R to state what
is desired, S to instruct a machine to behave in such a way that R holds. In
Figure 1, this is represented by the lines connecting R and S to D: the dashed

2 In the following, we use standard notation from set theory and logic, applied to
sets of statements. See Appendix A for a brief explanation of the notation used.

11

R

D

S

Fig. 1. A simple diagram showing the relationship between Requirements, Domain,
and Specification

line means “optative predication”, while the continuous line means “indicative
predication”.

Formally, we want to ensure that S ∪ D |= R. In informal terms, this means
that — given the assumption that the machine will perform as instructed by
the specification, and that our model of the domain faithfully describes how
the real world behaves — what we know about the domain, together with
what we know about the physical interfaces of the machine, will satisfy R in
the end. This formula allows us to discuss the completeness of S with respect
to R, but not the completeness (and thus the correctness) of R in isolation.
Moreover, this relation must not be regarded as a method to synthesize S and
D given R. Rather, it should be considered like a proof obligation that must
be discharged if we want to prove the correctness of S. Indeed, S ∪ D |= R

can be seen as proving that S and D together are complete with respect to R

— that is, nothing that is required (by R) to hold is left out of either S or D.
Also as part of the correctness proof, S ∪D must be shown to be consistent 3 .

In informal terms, proving that S ∪ D is consistent can be thought of as
ensuring that we are not asking the machine (through S) to perform something
that is not possible in the domain (as stated in D). According to (C1), proving
both completeness and consistency will prove the correctness of S with respect
to R and D: in essence, this is saying that the specification we have developed
satisfies our requirements in the given domain, and hence S is correct. This,
however, says nothing about the correctness of R.

3.2 On the evolution of R and D

The problem of the correctness of R (as opposed to that of the correctness
of S discussed above) can only be formulated in a more complex setting, de-
picted in Figure reffig:evol, that provides an external reference for proving the
completeness of R. This setting presents an evolutionary view on the require-

3 Unless, of course, we do not have any requirement at all — in that case, even an
inconsistent specification could be considered complete.

12

D1

B R1

D2

R2

D3

S

Fig. 2. Relationship between S, D and R in an evolutionary framework. Arrows
represent evolution steps between successive versions of requirements and domain
descriptions.

ments. Several revisions of the requirements are considered, each one serving
the role of a specification with respect to the previous one. This situation may
be found in practice when we consider the common case of a product family
undergoing several release cycles, but also, at a finer grain, inside a single
release cycle. In fact, requirements are rarely — if ever — created all at once.
Rather, they are usually obtained by progressively evolving a previous version
of the same requirements, in order to reflect an increased understanding of
the customer’s needs. Furthermore, the domain gets evolved in a similar way,
based on a deeper investigation about the relevant properties of the real world
within which the system will operate.

As shown in Figure 2, we assume that at the beginning of this chain of evo-
lution we have a statement of the business needs of the customer (B), and
at the end of the chain we have a final specification that can be used for the
implementation of the system. We will assume that the burden of proving the
correctness of B with respect to the customer’s real needs is on the customer,
or on the analyst that performed the initial elicitation (or market analysis
for the case of shrink-wrapped software). As an example, B might contain
statements like “We need to reduce the time needed to ship a product after
a customer’s order has been received”. The business-oriented view of correct-
ness of such a statement, i.e., how effective such a measure would be to ensure
bigger profits at the end of the quarter, is better left to management studies,
and is in our opinion not a subject for requirements engineering 4 . On the
other hand, finding the best way to turn these business needs into a software
system that satisfies them is a matter pertaining to requirements engineering,
as is proving the correctness of the specification for such a system.

In our framework, B provides a basis to avoid infinite regression, and serves
as a reference point for the second definition of correctness that we gave in
Section 1. Of course, the customer can change the business goals at any time,
but then conceptually the evolution cycle will have to start again. In practice,
however, in those circumstances we expect that the requirements engineer will
be able to reuse most of the relevant domain and requirements information

4 In fact, this initial statement has nothing to do with software, and could be
potentially satisfied by other means, e.g., by hiring more people or by outsourcing
shipping operations completely.

13

previously captured, as we will show later.

In Figure 2, the arrows represent the evolutionary steps that lead to improved
requirements and domain descriptions. In our view, requirements evolution
needs not be monotonic; in fact, we expect that during the analysis process,
and with a better understanding of the domain and of the customer’s goals, the
requirements analyst can change his mind about the desired behavior of the
system, adding or dropping requirements at any time. Thus, the arrows going
from Ri to Ri+1 do not represent strict refinement, but simply change from
one version of the requirements to the next. In typical development processes,
requirements evolution starts with a phase in which monotonic change is pre-
dominant, i.e., requirements are accumulated until the core set of needed fea-
tures has been reached. After that, evolution becomes mainly non-monotonic:
errors found in the requirements are corrected, marginal features are changed
or discarded, experimental requirements are added and then retracted, etc.

On the contrary, domain refinement is often monotonic throughout the pro-
cess. Domain refinement occurs, among other cases, when new properties of
the domain are incrementally uncovered as we come across requirements that
may be in need of additional information from the domain to make them fully
understood. Monotonicity in this context means that subsequent revisions of
D can be more detailed or include more facts that previous versions, but they
do not contradict what was already known to be factually true of the real
world. In other words, the domain discovery process yields essentially mono-
tonic evolution. Non-monotonic refinement can also happen, for example when
same aspect of the domain changes — in this case, the domain itself is evolv-
ing, whereas in the previous case it was our knowledge of the domain that was
evolving.

This distinction between monotonic and non-monotonic refinement of require-
ments and domain descriptions is known in the theory change literature [37]
as the distinction between revising and updating a body of knowledge. The
former is used when we are obtaining new information about a static world
where newer results may contradict the old ones while the latter consists of
bringing the information up to date when the world described by it changes
(i.e. a dynamic domain).

3.3 Proving correctness

In this section we analyze which properties should be proved at each evolution
step in order to guarantee correctness, both in sense (C1) and in sense (C2)
from Section 1. We first consider how completeness can be proved in the
presence of static domains or dynamic domains, assuming — without loss of

14

generality — that requirements evolution is always non-monotonic. Then we
show how discharging the proof obligations we have found for consistency and
completeness, correctness in sense (C2) can be obtained.

To simplify the notation, we denote with R0 the initial set of business needs
B, with D0 = ∅ the initial, empty domain description, and with Rn+1 the
final specification S. We assume that R0 is “business-wise correct”, that is,
complete with respect to the real user business needs and internally consistent,
as discussed above.

Notice also that, although we use the standard notation from logic, there is
no constraint about the language used to express R and D, nor on the way
entailment is proved. Indeed, requirements and domain description statements
could be expressed in plain English instead of using logic formulas. In that
case |=, too, must be interpreted as “any reasonable inference” among sets of
English statements. We will return to the subject in Section 5.

We first introduce two lemmas that will allow us to simplify the most common
cases for our main theorem:

Lemma 1 (Monotonic domain refinement) Let us assume that we are
performing an evolution step, from Ri and Di to the subsequent versions Ri+1

and Di+1, and that we are only adding new information about the domain, i.e.
Di+1 |= Di. Then,

(Ri+1 ∪ Di+1) 6|=⊥
︸ ︷︷ ︸

consistency

∧ (Ri+1 ∪ Di+1) |= Ri
︸ ︷︷ ︸

completeness w.r.t. Ri

=⇒ (Ri+1 ∪ Di+1) |= Ri ∪ Di

In other words, if we can prove that:

cons) our new requirements are consistent with the domain (i.e., they
are not asking for something that is impossible in the real world),
and that

complmd) the new requirements and domain description, together, do not
contradict the previous requirements,

then (Ri+1 ∪ Di+1) |= Ri ∪ Di holds.

Notice that we are not asking for the requirements themselves to be monotonic,
i.e., it can well be that Ri+1 6|= Ri.

A similar lemma can be proved for the case in which the domain refinement
is not monotonic, while requirements evolution is:

Lemma 2 (Monotonic requirements refinement) Let us assume that we
are performing an evolution step, from Ri and Di to the subsequent versions

15

Ri+1 and Di+1, and that we are only adding new requirements, i.e. Ri+1 |= Ri.
Then,

(Ri+1 ∪ Di+1) 6|=⊥
︸ ︷︷ ︸

consistency

∧ (Ri+1 ∪ Di+1) |= Di
︸ ︷︷ ︸

completeness w.r.t. Di

=⇒ (Ri+1 ∪ Di+1) |= Ri ∪ Di

In other words, if we can prove that:

cons) our new requirements are consistent with the domain described
so far, and that

complmr) the new requirements and domain description, together, do not
contradict the previous domain description,

then (Ri+1 ∪ Di+1) |= Ri ∪ Di holds.

Finally, we have the case in which both the requirements and the domain
change in a non-monotonic way. Such an evolution step amounts to essentially
changing everything we have collected so far in our analysis in an arbitrary
fashion (e.g., we could scrap both Ri and Di and take completely new Ri+1

and Di+1). In this case, the properties we are interested in must be proved
directly, i.e.

cons) (Ri+1 ∪ Di+1) 6|=⊥, and

complnm) (Ri+1 ∪ Di+1) |= Ri ∪ Di.

An important result stemming from the considerations above is expressed by
the following

Theorem 1 (Inductive correctness) Let (R0, D0), . . . , (Rn+1, Dn+1) be a
chain of evolution steps in the development of a specification. If at each step
the appropriate proof obligations cons, complmd, complmr, complnm are dis-
charged, according to the lemmas above, then

∀i ∈ [0..n], (Ri+1 ∪ Di+1) |= (Ri ∪ Di)

It follows by simple induction that

(Rn+1 ∪ Dn+1) |= (R0 ∪ D0)

or, by reverting to our original names and remembering that D0 = ∅,

(S ∪ Dn+1) |= B

This last result is particularly relevant. In fact, the theorem states that, if
at each step we discharge the appropriate proof obligations (summarized in

16

Condition Kind of step Proof obligations

Di+1 |= Di Monotonic domain evolution cons, complmd

Ri+1 |= Ri Monotonic requirements evolution cons, complmr

none Non-monotonic evolution cons, complnm

Table 1
Proof obligations for different kind of evolution steps.

Table 1), we are assured that the final specification, deployed in the domain
described by our final domain model, satisfies the customer’s business goals.
This last expression is indeed our definition (C2) of correctness.

The implications of Theorem 1 are twofold. On one side, the theorem links the
two definitions of correctness that we presented in Section 1, showing that the
customer- and business-oriented view of correctness in (C2) is just a coarse-
grained view of the more formally defined notion of consistency+completeness
given in definition (C1). On the other side, our framework provides guidance
on how a potentially huge, complex, and cumbersome proof of correctness of
a whole specification (i.e., S ∪ D 6|=⊥ and S ∪ D |= B) can be broken into
smaller, simpler, step-wise proofs at each evolution step. This is useful both
from a practical point of view (as will be discussed in Section 5) and from a
methodological point of view.

3.4 Handling failed proofs and non-refining evolution

In real life, it is hardly ever the case that a development process consists only
of correct refinement steps. Rather, back tracking, experimentation, sudden
reversing of direction, and rework are the norm. It is thus important to be
prepared to handle those cases in which the proof obligations shown above
cannot be discharged (simply because the corresponding properties do not
hold).

If the evolution step i + 1 just performed does not preserve consistency, i.e.
Ri+1∪Di+1 |=⊥, the situation is inemendable: the requirements are asking for
something that is impossible in the real world. Either actions must be taken
in the real world to change it so that the requirements become feasible (and
Di+1 is changed accordingly to describe the new domain), or the infeasible
requirements must be discarded (removing them from Ri+1).

If, instead, the evolution step does not preserve completeness, i.e. (Ri+1 ∪
Di+1) 6|= (Ri ∪ Di), several options are available. If something is missing from
Ri+1 (resp. Di+1), the relevant information can be copied from Ri (resp. Di)
and added to the new set. If Ri+1 ∪ Di+1 entails something that is in contra-
diction with the contents of Ri ∪ Di, the offending requirements or domain

17

(R , D)1 1 (R , D)k k(R , D)0 0 (R , D)i i i+1 i+1(R , D)

i+1 i+1(R , D) further evolution
steps start here

Fig. 3. Minimizing rework in case of failed completeness proof. The arrows repre-
sented completeness proofs; the crossed arrow represents the failed proof.

description statements can be retracted from the new set (so that information
inconsistent with Ri ∪ Di is no longer entailed), or from the previous set. In
the latter case, the completeness of Ri∪Di w.r.t. Ri−1∪Di−1 must be checked
again.

Of course, adding unnecessary requirements (resp. domain description state-
ments) or discarding necessary ones is not a solution if the offending change
was brought about deliberately. In this case, we are explicitly stating that we
do not want to maintain correctness w.r.t the previous evolution step because
that step was in some way wrong and we want to reject it (as a kind of failed
experiment). Still, we want to maintain correctness w.r.t. B. The most eco-
nomic way to maintain it is to find the closest preceding step which allows us
to maintain completeness, i.e. step k such that

(Ri+1 ∪ Di+1) |= (Rk ∪ Dk)

and

∀j > k, (Ri+1 ∪ Di+1) 6|= (Rj ∪ Dj)

In most cases, a few checks (starting at step i−1 and going backward) will be
sufficient to find a suitable correct ancestor. This approach allows us to start
a new branch of correct development with no need to repeat all the proofs
up to B, thus minimizing rework. The final result is depicted graphically in
Figure 3. Notice that this technique extends naturally to the case in which
k = 0, i.e., the whole requirements analysis process is started from scratch.

Finally, if no such k exists, and still we believe that our latest requirements
and domain model are the “right” ones, then we have a fundamental clash
between B and Ri+1, Di+1. This can happen, for example, when the require-
ments analysis process reveals that the initial statement of business needs was
inadequate, and did not represent faithfully the customer’s intentions, or that
it was infeasible (given that in the course of the analysis we have gained more
domain knowledge than was initially available). In this case, the only course
left is to amend B so that Ri+1 ∪Di+1 |= B. This, too, can be obtained in an
incremental fashion, re-checking the correctness proofs working forward until
the smallest k′ is found such that (Rk′ ∪ Dk′) |= B. This last case completes
our analysis.

18

4 A complete example

Let us illustrate the concepts presented above by means of a case study. We
assume the role of a requirements engineer, and show how the requirements
analysis for a simple control system — an automatic gate to regulate access to
a building — can be performed in a rigorous way according to our framework.
We also show a purely monotonic extension to our first implementation, and
a case of non-monotonic extension (i.e., our customer changes his or her mind
about the business goals), leading to some rework.

4.1 Problem statement

The business problem we are asked to solve can be stated as follows. Our
customer, the security officer of a company, wants to install an automatic gate
at the (only) entrance of a building, so that only authorized employees can
access the building. We thus have :

B = {Only authorized persons can enter the building.}

From these business needs we start our investigation on how to turn B into a
specification for a software system. Once again, notice that we are not ques-
tioning whether B is the “right” statement of business needs — we simply
assume that our customer is in good faith when stating it. Of course, B can
change during the development process, and we will show in Sections 4.3
and 4.4 how to handle such changes.

4.2 Requirements and domain evolution

At the beginning of the requirements analysis process, we do not have any
specific knowledge about the domain, and our initial requirement is given by
B alone. In other words,

B = R0 = {Only authorized persons can enter the building.}

D0 = {}

R0 cannot be directly implemented, thus we need to refine it. First, we perform
a simple formal transformation of the requirement to simplify it:

19

R1 = {Authorized persons can enter the building. Non-authorized persons are

prevented from entering the building.}

D1 = {}

Since clearly D1 |= D0, we must prove only cons (R1 ∪ D1 6|=⊥) and complmd

(R1 ∪ D1 |= D0) — both of which are trivial. Hence, our first step is correct
(in sense (C1)). For the next step we need to know (a) how to distinguish
authorized from non-authorized persons, and (b) how to allow or deny access
to the building. Regarding (a), we investigate company procedures and find
out that each employee is issued an identity badge that can also act as a swipe
card. Each card carries a Unique ID number (UID) that is uniquely associated
with the person to which the card is issued. 5 Regarding (b), we decide that a
locked bullet-proof glass door (gate) is an adequate means to prevent access
to the building. These information are now part of our domain knowledge:

R2 = {Authorized persons can enter the building. Non-authorized persons are

prevented from entering the building.}

D2 = {Authorized persons have ID cards whose UID is authorized. An open gate

allows entering the building. A locked gate prevents entering the building.}

This time, R2 |= R1, hence we have to prove cons and complmr (R2∪D2 |= D1),
which again hold trivially. We can now perform a more substantial step: we
decide that we want to recognize people by their ID cards, and update our
requirements accordingly:

R3 = {Persons who have an ID card whose UID is authorized can enter the

building. Persons who do not have an ID card whose UID is authorized are

prevented from entering the building.}

D3 = {Authorized persons have ID cards whose UID is authorized. An open gate

allows entering the building. A locked gate prevents entering the building.}

The relevant proof obligations are cons and complmd. The latter can be dis-
charged by substituting the definition for “authorized” given in D3 into R3

(the result is indeed R2, thus proving that R3 ∪ D3 |= R2), while the former
is trivial.

To make implementation of R3 possible, we must be able to discern whether a

5 This procedure is not very robust, since a badge could be stolen and used by
an intruder to impersonate a legitimate employee. However, this weakness stems
from the domain itself, i.e., from company policies, and not from the software to be
developed.

20

person has an ID card or not, and need a way to know if a given UID number
is authorized or not. We can ask a person to swipe his or her ID card through
a swipe card reader to prove ownership of an ID card. The reader will provide
the UID number, that we can then match against a database of authorized
UIDs (AuthDB for short). These facts must be recorded among our domain
knowledge,

R4 = {Persons who have an ID card whose UID is authorized can enter the

building. Persons who do not have an ID card whose UID is authorized are

prevented from entering the building.}

D4 = D3 ∪ {Persons who swipe an ID card, have an ID card. If a person swipes

an ID card, the card reader provides the UID of the card. The UID of a

card is authorized if it appears in AuthDB.}

We omit the correctness proof for this step, that is once again simple enough,
and move on to a more substantial refinement: we refine the notion of “pos-
sessing an authorized ID card” to the specific sequence of actions and tests
that must be conducted:

R5 = {When a person swipes an ID card, if the UID provided by the card reader

appears in AuthDB, then the gate must be opened. If a person does not

swipe an ID card, or the UID provided by the card reader does not appears

in AuthDB, then the gate must be locked.}

D5 = D4

Checking the correctness of this last step is a slightly more complex that in the
previous cases. We must prove cons and complmd. The former is trivial, but
the latter requires some attention. Formally, our proof obligation is R5∪D5 |=
R4. While the reasoning could be carried on informally, we choose this time
to resort to formal logic for added confidence (and presentation economy).
Unfortunately, as shown in Appendix B (to which we refer the reader for the
details of the proof), it turns out that complmd cannot be proved in this case
— and, indeed, the property does not hold.

The reason for this failure lies in the fact that R4 asks for authorized persons
— i.e., according to our domain, persons who possess an ID card whose UID
is authorized — to be granted access, while R5 restricts access to those au-
thorized persons that, additionally, take the extra step of swiping the card in
the card reader. Thus, the combination of R5 and D5 does not provide all the
functionalities requested by R4: we are being incomplete w.r.t. R4 (and, by
Theorem 1, also w.r.t. B).

Faced with this incompleteness, we can try to solve it by relaxing our previous

21

requirements (i.e., by dropping the unreasonable assumption that the mere
possession of an authorized card entitles the owner to access the building),
or by introducing more sophisticated technology in the domain (i.e., using
Bluetooth-based cards and sensors, so that possessor of a card can be detected
via radio signals), or by explicitly stating a distrust assumption (i.e., stating
that we assume that a person does not have a card unless he or she swipes it
in the card reader).

We opt for the latter, thus obtaining

R′

5 = R5 = {When a person swipes an ID card, if the UID provided by the card

reader appears in AuthDB, then the gate must be open. If a person

does not swipe an ID card, or the UID provided by the card reader

does not appears in AuthDB, then the gate must be locked.}

D′

5 = D4 ∪ {A person is presumed not to have a card unless he or she

swipes it in the card reader.}

Both cons and complmd hold for this set, thus proving that a system respecting
R′

5, deployed in the domain described by D′

5, would be correct with respect to
our customer’s business needs in B.

The evolution process can continue in a similar vein, until the requirements
are directly implementable on available hardware. In our example, we still
have to specify, in D, how UIDs can be read from the card reader, how the
gate can be locked or opened, and how can the system query the AuthDB.
The final R could, for example, be similar to

Rfinal = { When the system receives a “card passed” signal from the reader, it

reads the UID from the reader buffer. If that UID appears in AuthDB,

the system sends an “unlock command” to the gate controller. After

5 seconds, it sends a “lock command” to the gate controller. If, after

10 more seconds, the gate sensor still reports “gate open”, the system

sounds the warning alarm, until the sensor reports “gate closed”. . . . }

with a correspondingly detailed Dfinal . It is interesting to note that, although
our Rfinal and Dfinal would be consistent and complete w.r.t. B (if we have
discharged all our incremental proof obligations), they may well implement
functionalities that were not asked for originally. In Rfinal above, sounding
a warning alarm if the gate is stuck for some mechanical reason was not
requested in B. In fact, our definition of correctness does not include any
notion of minimality — another useful characteristic of its own, but outside
the scope of this work.

22

4.3 A monotonic extension

We consider now the case in which business needs change during the require-
ments analysis process. Let us suppose that our customer realizes that logging
of accesses is also needed, thus re-defining the business needs as

B′ = {Only authorized persons can enter the building. The time and identity of

every person entering the building must be logged.}

How can we introduce new functionalities in our requirements to satisfy the
new business need, while at the same time guaranteeing correctness and min-
imizing rework? As suggested in Section 3.4, an incremental approach can be
used.

Let us for simplicity assume that the change in B happens while we are at the
fifth step of evolution, i.e. R′

5 and D′

5 from the previous section. By checking
our requirements and domain against the new business needs, we discover
that we are no longer complete w.r.t. B ′. In fact, our old requirements lack
the logging functionality altogether. To solve the problem, we can simply try
to add new requirements to R′

5, obtaining, for example,

R6 = {When a person swipes an ID card, if the UID provided by the card reader

appears in AuthDB, then the gate must be opened, and the UID and the

current time are logged. If a person does not swipe an ID card, or the UID

provided by the card reader does not appear in AuthDB, then the gate

must be locked.}

D6 = D′

5 ∪ {The identity of a person is given by the UID of his or her card.}

If we can prove that R6 ∪D6 6|=⊥ and that R6 ∪ D6 |= B′, we can discard the
intermediate steps R1, D1 . . . R′

5, D
′

5 and continue development from R6, D6.
However, this usually happens only when the business needs and the new
requirements are not too far apart, i.e., if only a few evolution steps are being
shortcutted. This is, fortunately, the case of our example: we are considering
a monotonic extension of the business needs. By using the same techniques
described in Appendix B, we can easily prove that R6 ∪ D6 is consistent and
complete with respect to B ′, with no need for rework.

Sometimes, the added functionality cannot be easily proved to completely
satisfy the new business needs. In this case, more abstract versions of the
new requirements should be added to previous versions of the requirements
document. In our example, we could add the new functionality to R′

5 (let
us call the new version R′′

5), and prove R6 ∪ D6 |= R′′

5, R′′

5 ∪ D′

5 6|=⊥, thus
reducing the original problem to proving that R′′

5 ∪ D′

5 |= B′ (that can be

23

solved inductively by the same technique).

4.4 A non-monotonic extension

As a final point in our example, we consider a non-monotonic extension to our
customer’s business needs, like the following one:

B′′ = {Only authorized persons can enter the building, unless an emergency is

detected — in which case, anyone can enter the building.}

As can be expected, our requirements (while still consistent) are now no longer
complete: handling of emergencies is missing altogether. Here again we could
simply add the new functionality to R′

5, but if we try to discharge our proof
obligations, we discover that by so doing our requirements are complete w.r.t.
B′′, but no longer consistent. This is the typical case in which consistency and
completeness are at odds with each other. In fact, what we have is

R′

6 = {On emergencies, the gate must be opened. When a person swipes an ID

card, if the UID provided by the card reader appears in AuthDB, then the

gate must be open. If a person does not swipe an ID card, or the UID

provided by the card reader does not appears in AuthDB, then the gate

must be locked.}

D′

6 = D′

5

As can be noted, in case of an emergency the first requirement states that the
gate must be open, while the third requirement states that it must be locked
(unless someone authorized is entering at the same time). In this simple case,
consistency can be restored by appending an extra condition to the third re-
quirement: “. . . then the gate must be locked, unless there is an emergency”.
This is sufficient to restore consistency, while maintaining completeness. In-
deed, this last version of our requirements in correct w.r.t. B ′′.

4.5 Discussion

We can now look back at the question we posed in the introduction. As the
discussion in Section 3 and the case study have shown, we believe that the two
notions of correctness we mentioned in Section 1 are indeed closely related to
each other. It is thus important to explore the more formal treatment implied
by definition (C1) (consistency+completeness), because that provides us with
the pragmatically more relevant correctness in (C2) (satisfaction of business

24

goals). We can state that a formal treatment of consistency, completeness and
correctness at each evolution step in a requirements specification process do
actually allow us to satisfy the business goals of the customer (beside being a
valuable contribution by itself).

Indeed, at the end of our example, having discharged all the relevant proof
obligations at each step, we can rest assured that our Rfinal and Dfinal — de-
tailing the behavior of the system in terms of signals received from input ports
and of commands sent to output ports 6 , and thus directly implementable on
a standard machine — do actually satisfy the business needs “only authorized
persons can enter the building”. The same assurance would be much more dif-
ficult to obtain without a rigorous framework that clearly and rationally states
which properties must be proved, indicating how to structure the proofs into
manageable pieces.

5 The three Cs in practice

The framework we have proposed has a number of interesting connections with
other widely studied problems in requirements engineering. In this section we
discuss how our framework relates to other topics of interest of practitioners
and researchers alike.

5.1 Formality and informality

To perform consistency, completeness and correctness checking effectively and
to be able to automate this process (in order to assist the requirements engi-
neers in some of their more difficult and mundane tasks), the specification has
to be expressed in a formal notation. This is because computer-based analysis
requires an explicit formal semantics which provides the basis for the algo-
rithms that carry out the analysis. This is precisely the approach that has
been taken by proponents of formal methods in RE. Indeed much of the RE
research effort over the last three decades has been concentrated on developing
new formal requirements specification languages so that tasks such as syntax
correctness, reasoning about requirements and checking their consistency can
be automated in ways that are similar to how programs are compiled and
managed.

6 Note that this level of description lends itself naturally to specification and further
analysis through established formal methods, e.g. SCR and related tools. This is an
important feature of our framework, that provides integration with other approaches
and guidance for those high-level activities that are normally left out of “hard”
formal methods.

25

Although it is an advantage to have a formal proof of correctness of a spec-
ification (e.g. as in [38]), it may not be practical or may be too costly to do
so. Indeed, in many cases such proofs can be carried out by informal (but
rigorous) inspections of the requirements and domain descriptions, as we did
in the initial stages of our case study. The decision as which is the more ap-
propriate course of action depends on the degree of risk the stakeholders are
prepared to take. In safety critical software, for example, formal descriptions
and proofs are usually deemed necessary, while in business applications other
factors like time to market or development cost can be more important. More-
over, it is often the case that the requirements are vague at the beginning,
and gain formality while their evolution proceeds. It is thus not uncommon
for the respective proofs to be rather informal at the beginning, while be-
coming more and more formal as the requirements and domain descriptions
themselves become more formalized.

5.2 Tolerating inconsistency and incompleteness

It is important to stress that our framework identifies which kind of consis-
tency and completeness checks must be performed to verify correctness, but do
not prescribe how to handle any error found, and in particular do not impose
that the requirements and domain model themselves must stay correct at all
times. It is a well-known fact of life that requirements are often incomplete
and inconsistent during most of their life. The proof obligations we discussed
in Section 3 can be interpreted as validation checks that can (and should)
be made during requirements evolution in order to identify and expose pos-
sibly latent errors. Once such errors are exposed, they can be tolerated (as
advocated by [2,3,9,39,40]), if they reflect a genuine conflict of goals or simply
there is not enough information available yet to decide how to correct them.
Alternatively, they can be corrected immediately by changing the relevant re-
quirements or domain model elements. In any case, an informed decision can
be taken only after such cases have been identified and carefully analyzed.

5.3 Correctness measures and prioritization

The desire of being able to tolerate inconsistency and incompleteness also in-
troduces the need to measure the degree of consistency and completeness that
has been attained. Moreover, a priority could be assigned to requirements (and
domain description statements), so that in case of incorrectness, the less im-
portant requirements can be discarded, while retaining more important ones.
The ability to evaluate the impact that a new proposed requirement may
have on the correctness of a specification is also of great importance in other

26

cases. For example, the requirements prioritization used during negotiations
could incorporate an indication of how much and to what extent each of the
requirements being discussed contributes to the overall completeness of the
specification. This could be achieved by examining and ranking the depen-
dencies among individual requirements and also by building requirements into
clusters that contribute to reach a specific business goal.

As a measure for the “degree of consistency” we consider the ratio between
the size of a maximal consistent subset (mcs) of R ∪ D and the size of the
whole set 7 , i.e.:

δcons(R, D) =
|mcs(R ∪ D)|

|R ∪ D|

For consistent R and D, δcons(R, D) = 1, whereas the measure tends to 0 for
increasing degree of inconsistency. Analogously, as a measure for the “degree
of completeness” of a set S w.r.t. R ∪ D, we consider the ratio between the
size of a maximal subset of S that is entailed by R ∪ D (maximal entailed
subset, or mes) and the size of the whole set S, i.e.:

δcompl (R, D, S) =
|mes(R ∪ D, S)|

|S|

This measure, too, has value 1 when completeness holds, and assumes pro-
gressively lower values, down to 0, for decreasing completeness. Notice that
both measures indicate the degree of consistency and completeness in merely
numeric terms, and say nothing about how relevant the effect of any inconsis-
tency or incompleteness is on the overall satisfaction of the business goals.

At each step of evolution, it is important to identify any emerging incorrectness
resulting from adding new requirements or domain description statements. By
providing automated tools (e.g. [41], where inconsistency was addressed), that
suggest alternative solutions on how to manage these problematic additions,
together with the corresponding measures of completeness and consistency for
each alternative, the requirements engineer could be guided on what course
of action to follow to maintain a balance of completeness and consistency —
and hence correctness — in requirements specifications.

5.4 Process issues

Of course, the main advantage of the approach we have proposed lies in the
capability of immediately identifying those changes in the requirements or in

7 Of course, there may be more than one maximal consistent subset: we consider
here the size of any of the largest maximal consistent subset, thus our definition is
sound. The same holds for the definition of δcompl below.

27

the domain model that might introduce errors in the specification, thus achiev-
ing more precise verification and validation of the requirements. This kind of
checks are much more efficient if performed in a continuous way (i.e., each
edit action on the requirements or on the domain model triggers a check of
the properties described in Section 3) and automatically, by using appropriate
tools, like the simple model checker Smack we developed and used in the ex-
ample (see Appendix B), or the more sophisticated tools described in [41,42].
Automation can be achieved by directly writing the requirements in a formal
language that allows automatic theorem proving (e.g., propositional logic or
Datalog), or by using controlled natural language and providing a suitable
translation layer (as done, for example, in our previous works cited above)
instead. Naturally, for reasonably simple specifications (i.e., small, well writ-
ten, and easily navigable), and given enough resources, manual verification
is also possible and — as said above — can even be more convenient. How-
ever, it is difficult to guarantee constant reliability of these manual checks, so
automation should be sought whenever possible.

The technique we have described can also be used to guide the requirements
engineers and stakeholders in deciding when to stop eliciting more require-
ments, i.e. when the specification can be proved to be “sufficiently” correct
with respect to the business needs, taking for example the measures above as
an indicator. As part of future works we plan to perform an empirical study of
informal correctness justifications as “stop” criteria for requirements analysis.

Traceability is also an important property that needs to be addressed within
the requirements evolution process. Because software engineers use traceability
to guarantee that the requirements specifications and implementation of sub-
systems are complete with respect to the specified overall system requirements
and design constraints, any specification methodology that supports evolution
must have effective support for traceability. Our approach introduces a new
kind of relationships among requirements and domain description statements
that can be profitably traced, namely support (the tracing can be automatic
for formal requirements). The support relationship relates a requirement or do-
main description statement s ∈ Ri ∪Di to all those requirements and domain
description statements at step i + 1 that partake in the entailment proof that
guarantees the completeness of Ri+1 ∪ Di+1 with respect to s. Thus, our ap-
proach provides “for free” a particularly strong dependency relationship that
can be used for effective tracing of requirements and change impact analysis.

5.5 RE education and training

The process of managing the interplay between the three Cs of requirements
discussed in this paper can be used as a pedagogical tool to assist the RE stu-

28

dents develop a fuller understanding of what quality factors to look for during
the evolution of requirements. This process gives students a fuller appreciation
of the range of issues involved in requirements evolution and change manage-
ment. Furthermore, by demonstrating how inconsistency or incompleteness
could easily be introduced in the specification that ultimately threatens the
correctness, students will learn to be more careful and cautious when express-
ing requirements and domain descriptions. In our experience, developing a
thorough understanding of these important issues is fundamental in RE edu-
cation (see for example [43]).

6 Conclusions and future works

In this paper we provided a theoretical underpinning for the pragmatic view
of correctness, thus introducing more rigor into the process of requirements
evolution. In detail, we have described which kind of proofs must be carried
out at each step during the evolution of the requirements in order to ensure
that the final specification of a software system satisfies the business goals
of its customer. We have also proposed various ways in which our model can
be applied to real-life circumstances, both for validation purposes and as a
supporting technique during requirements negotiation and prioritization.

Furthermore, we hope that this work will bring to the attention of require-
ments engineers the importance of considering the three Cs (and their often
competing nature) at each step of evolution, rather than as one-shot properties
to be checked only as part of the final validation of the specification.

Our framework is a starting point for a line of research that aims to provide
practical tools and methods that alleviates the burden of providing proofs at
each stage of system evolution. Common lore has practitioners voicing un-
flattering judgments like: “Computer scientists. . . Their pronouncements are
more relevant to Zen than to the no-nonsense business of building useful [. . .]
programs and systems. They have no answer to real life problems like users
who change their minds or requirements that are in a constant state of flux.”
(Anonymous, cited in [1] page 113). We believe instead that the integration of
rigorous and formal results in an evolutionary model of requirements develop-
ment helps in reaching those very no-nonsense business goals that were called
for in the statement above.

In related research we have developed automated tools supporting consistency
checking in natural language requirements [41] as well as in formal logic [44],
in both cases applying a form of non-monotonic logic to carry out consistency
proofs. It is our intention to extend our approach to also support complete-

29

ness checking at each step of evolution, thus providing automated proofs of
correctness as outlined in Section 3. Such automated support will allow us to
test the validity of our argument by applying it in a case study over an entire
release of a product family, that we plan to jointly develop with an existing in-
dustry partner. Also, support for metrication, prioritization, traceability, and
stop criteria will be implemented in tools, providing the requirements engineer
with a complete support environment for the delicate requirements evolution
process.

References

[1] M. Jackson, Software Requirements & Specifications: a lexicon of practice,
principles and prejudices, Addison Wesley, Great Britain, 1995.

[2] B. Nuseibeh, To be and not to be: on managing inconsistency in software
development, in: Proceedings of the Eight IEEE International Workshop on
Software Specifications and Design (IWSSD’96), IEEE Computer Society Press,
1996, pp. 164–169.

[3] S. Easterbrook, B. Nuseibeh, Managing inconsistencies in an evolving
specification, in: Proceedings of the Second International Symposium on
Requirements Engineering (RE95), York, England, 1995, pp. 48–55.

[4] S. M. Easterbrook, E. E. Beck, J. S. Goodlet, L. Plowman, M. Sharples, C. C.
Wood, A survey of empirical studies of conflict, in: S. M. Easterbrook (Ed.),
CSCW: Cooperation or Conflict?, Springer-Verlag, London, 1993, pp. 1–68.

[5] W. Robinson, S. Volkov, A meta-model for restructuring stakeholders
requirements, in: Proceedings of the International Conference on Software
Engineering (ICSE97), Boston, USA, 1997, pp. 140–149.

[6] A. van Lamsweerde, R. Darimont, E. Letier, Managing conflicts in goal-driven
requirements engineering, IEEE Transactions on Software Engineering: special
issue on Managing Inconsistency in Software Development 24 (11) (1998) 908–
926.

[7] G. Cugola, E. D. Nitto, A. Fuggetta, C. Ghezzi, A framework for formalizing
inconsistencies and deviations in human-centred systems, ACM Transactions
on Software Engineering and Methodology 5 (3) (1996) 191–230.

[8] T. M. Hagensen, B. B. Kristensen, Consistency in software system development:
Framework, model, techniques, and tools, in: Software Engineering Notes
(Proceedings of ACM SIFSOFT Symposium on Software Development
Environment), SIGSOFT and ACM Press, 1992, pp. 58–67, 17(5).

[9] R. Balzer, Tolerating inconsistency, in: Proceedings of the 13th IEEE
International Conference on Sofware Engineering (ICSE13), IEEE Computer
Society Press, Austin, Texas, 1991, pp. 158–165.

30

[10] A. Borgida, S. Greenspan, and J. Mylopoulos, Knowledge representation as the
basis for requirements specifications, IEEE Computer April (1985) 82–91.

[11] D. W. Cordes, D. L. Carver, Evaluation methods for user requirements
documents, Information and System Technology 31 (4) (1989) 181–188.

[12] E. Dubois, P. Du Bois, and A. Rifaut, Elaborating, structuring and expressing
formal requirements of composite systems, in: Proceedings of CAiSE, Springer-
Verlag, Berlin, 1992, pp. 327–347.

[13] S. Easterbrook, B. Nuseibeh, Using viewpoints for inconsistency management,
IEE Software Engineering Journal 11 (1) (1996) 31–43.

[14] C. L. Heitmeyer, R. D. Jeffords, B. G. Labaw, Automated consistency checking
of requirements specifications, ACM Transactions on Software Engineering and
Methodology 5 (3) (1996) 231–261.

[15] B. Nuseibeh, J. Kramer, and A. Finkelstein, A framework for expressing
the relationships between multiple views in requirements specification, IEEE
Transactions on Software Engineering 20 (10) (1994) 760–773.

[16] H. B. Reubenstein and R. C. Waters, The requirements apprentice: Automated
assistance for requirements acquisition, IEEE Transactions on Software
Engineering 17 (3) (1991) 226–240.

[17] I. Sommerville, P. Sawyer, S. Viller, Viewpoints for requirements elicitation: A
practical approach, in: Proceedings of the IEEE 3rd International Conference on
Requirements Engineering, (ICRE98), IEEE Computer Society Press, Colorado
springs, USA, 1998, pp. 74–81.

[18] R. Kowalski, Logic for Problem Solving, North Holland Elsevier, New York,
1979.

[19] R. R. Lutz, Analyzing software requirements errors in safety-critical, embedded
systems, in: Proceedings of the First IEEE International Symposium on
Requirements Engineering (RE93), 1993, pp. 35–46.

[20] A. M. Davis, Software Requirements: Analysis and Specification, 2nd Edition,
Prentice Hall, 1993.

[21] B. W. Boehm, Verifying and validating software requirements and design
specifications, IEEE Software 1 (1) (1984) 75–88.

[22] N. Leveson, Completeness in formal specification language design for process-
control systems, in: Proceedings of the Third Workshop on Formal Methods in
Software Practice, Portland, Oregon, 2000, pp. 75–87.

[23] M. S. Jaffe, N. G. Leveson, M. P. E. Heimdahl, B. E. Melhart, Software
requirements analysis for real-time process-control systems, IEEE Transactions
on Software Engineering 17 (3) (1991) 241–258.

31

[24] E. Letier, A. van Lamsweerde, Requirements analysis: Deriving operational
software specifications from system goals, in: Proceedings of the Tenth ACM
SIGSOFT Symposium on Foundations of Software Engineering, ACM Press,
Charleston, South Carolina, 2002, pp. 119–128.

[25] J. Mylopoulos, L. Chung, E. Yu, From object-oriented to goal-oriented
requirements analysis, Commun. ACM 42 (1) (1999) 31–37.

[26] H. Kaiya, H. Horai, M. Saeki, AGORA: Attributed goal-oriented requirements
analysis method, in: Proceedings of the Tenth IEEE Joint International
Requirements Engineering Conference (RE02), Essen, Germany, 2002, pp. 13–
22.

[27] M. Woodside, D. Petriu, K. Siddiqui, Performance-related completions for
software specifications, in: Proceedings of the 24th IEEE International
Conference on Software Engineering (ICSE’02), ACM Press, Orlando, Florida,
2002, pp. 22–32.

[28] A. Bouhoula, Simultaneous checking of completeness and ground confluence, in:
Proceedings of the 15th IEEE International Conference on Automated Software
Engineering (ASE’00), Grenoble, France, 2000, pp. 143–153.

[29] F. T. Sheldon, H. Y. Kim, Z. Zhou, A case study: validation of guidance control
software requirements for completeness, consistency and fault tolerance, in:
Proceedings of the 2001 Pacific Rim International Symposium on Dependable
Computing (PRDC 2001), Seoul, Korea, 2001, pp. 311–318.

[30] K. Yue, What does it mean to say that a specification is complete?, in:
Proceedings of the IEEE International Workshop on Software Specifications
and Design (IWSSD’87), 1987, pp. 42–49.

[31] C. M. Lott, Correctness is congruent with quality, ACM Software Engineering
Notes 15 (5).

[32] M. Jackson, The world and the machine, in: Proceedings of 17th IEEE
International Conference on Software Engineering (ICSE17), IEEE Computer
Society Press, Seattle, USA, 1995, pp. 283–292.

[33] P. Zave, M. Jackson, Four dark corners of requirements engineering, ACM
Transactions on Software Engineering and Methodology 6 (1) (1997) 1–30.

[34] M. Jackson, P. Zave, Domain descriptions, in: Proceedings of the First
IEEE International Symposium on Requirements Engineering (RE93), IEEE
Computer Society Press, 1993, pp. 56–64.

[35] D. Bjorner, C. W. George, B. S. Hansen, H. Laustrup, S. Prehn, Models
of railway systems infrastructure, in: Proceedings of the First Workshop
on Formal Methods in Railway Industry, Nieuwegein, Netherlands, 1997,
http://www.ifad.dk/Projects/FMERail/proceedings1.html.

[36] M. Jackson, Problem Frames: Analyzing and structuring software development
problems, Addison Wesley, Great Britain, 2001.

32

[37] H. Katsuno, A. O. Mendelzon, On the difference between updating a knowledge
base and revising it, in: J. F. Allen, R. Fikes, E. Sandewall (Eds.), Proceedings of
the Second International Conference on Principles of Knowledge Representation
and Reasoning (KR’91), Morgan Kaufmann, San Mateo, California, 1991, pp.
387–394.

[38] M. P. E. Heimdahl, N. G. Leveson, Completeness and consistency in hierarchical
state-based requirements, IEEE Transactions on Software Engineering 22 (6)
(1996) 363–377.

[39] A. Finkelstein, D. Gabbay, A. Hunter, J. Kramer, B. Nuseibeh, Inconsistency
handling in multi-perspective specifications, IEEE Transactions on Software
Engineering 20 (8) (1994) 569–577.

[40] A. Hunter, B. Nuseibeh, Managing inconsistent specifications: Reasoning,
analysis and action, ACM Transactions on Software Engineering and
Methodology 7 (4) (1998) 335–367.

[41] D. Zowghi, V. Gervasi, A. McRae, Using default reasoning to discover
inconsistencies in natural language requirements, in: Proceedings of the Eight
Asia-Pacific Software Engineering Conference (APSEC’01), Macau, China,
2001, pp. 133–140.

[42] V. Gervasi, B. Nuseibeh, Lightweight validation of natural language
requirements, Software: Practice & Experience 32 (2) (2002) 113–133.

[43] D. Zowghi, S. Paryani, Teaching requirements engineering through role playing,
submitted to the 11th IEEE Joint International Requirements Engineering
Conference (RE03).

[44] D. Zowghi, R. J. Offen, A logical framework for modelling and reasoning about
the evolution of requirements, in: Proceedings of the Third IEEE International
Symposium on Requirements Engineering (RE97), 1997, pp. 247–259.

33

Appendices

A Notation

Throughout the paper, we use standard notation from set theory and logic.
In particular, we use capital letters (A-Z, possibly subscripted) to indicate
sets of statements, in various roles: as business needs, requirements, domain
descriptions, or specifications. The cardinality of such a set A, i.e., the number
of statements it contains, is indicated by |A|. Set union ∪ and set intersection
∩ maintain their usual meaning.

The entailment operator |= from logic is used to indicate derivation of a con-
clusion c from a set of premises P , according to a given set of derivation rules.
In this case, we write P |= c. Entailment is naturally extended to a set of
conclusions C, denoted as P |= C. The negation P 6|= c indicates that from
the premises in P it is not possible to ensure that c holds.

Notice that in the paper we do not assume a specific set of derivation rules:
for our purposes, first-order logic is as acceptable as is reasonable inference on
English statements (see Section 5.1 for details).

We use the symbols ∧ (and), ∨ (or), ¬ (not), =⇒ (implication), ∀ (for all),
and ∃ (exists) in their standard meaning. The symbol ⊥ (bottom) indicates
the tautologically false statement, i.e., logic impossibility. ⊥ can never hold,
thus it can only be derived from an inconsistent set of statements, i.e., a set of
statements that themselves can never hold all at the same time. Hence, A |=⊥
means that A is inconsistent. Conversely, A 6|=⊥ means that A is consistent.

B The completeness proof for Section 4.2

In Section 4.2 we had to prove the correctness of the fifth step w.r.t. the fourth
step, i.e.

R5 ∪ D5 6|=⊥ (consistency)

R5 ∪ D5 |= R4 (completeness)

In previous steps, the proofs have been simple enough that they could be
carried on just by inspection of the requirements. This time, however, the
proof is more substantial, and we choose to use a propositional logic based
form for added confidence. Table B.1 shows the correspondence between the
English form and the logic form of our requirements and domain model.

34

We carry on the proof using a simple ad-hoc model checker for propositional
logic, called Smack, that we developed in-house in support of our framework.
Smack input consists of a number of set assignments of the form

S = { p1. ... pn. }

where the pi are propositional logic formulae (e.g., those in Table B.1), and of
a number of completeness or consistency properties to prove, of the form

R U D |= S

or

cons R U D

where R, D and S are sets defined as shown above. Given this input, Smack

generates, compiles, and executes a C program that performs an exhaustive
search for violations of the properties listed in the input.

If we provide Smack with the definition of the three sets R5, D5, and R4,
consistency is easily verified. But if we ask to prove R5 ∪ D5 |= R4, the proof
fails, returning the following counterexample:

has(p,card) ∧ hasUID(card,UID) ∧ inAuthDB(UID) ∧ authorized(UID)

∧ authorized(p) ∧ ¬swipes(p,card) ∧ ¬canEnter(p) ∧ ¬openGate ∧
lockedGate

That is: we have a person who has a card; the UID of the card appears in
AuthDB; thus, the card is authorized and as a consequence the person is
authorized to enter the building. However, as long as the person does not
swipes the card, she cannot enter: the gate is locked. This is of course in
contrast with R4, that states that authorized persons must be granted access,
where authorization is in fact the mere possession of an authorized card. There
is no mention of any need to perform special actions (i.e., swiping the cards)
in R4. Thus, in our fifth refinement we are failing to completely satisfy what is
requested by R4 (and, by Theorem 1, we are not correct with respect to B).

It is worthwhile to remark that the problem could be “fixed” in various ways,
but not all of them are significant in terms of requirements evolution. For
example, by writing swipes(p,card)⇐⇒ has(p,card), complmd holds, and
the proof succeeds, but we are describing an odd domain, where: (a) if a
person swipes a card, then he or she has the card, but also (b) if a person
has a card, he or she is supposed to swipe it in the card reader all the time
(whether the person wants to access the building or not). Notice that this is
certainly not what is desired, as hinted by optionality in “Only authorized
persons can enter the building.”

35

A better solution is to refine our definition of an authorized person as follows:

Authorized persons are those that swipe ID cards whose UID is authorized.

that in terms of propositional logic amounts to writing

swipes(p,card) ∧ hasUID(card,UID) ∧ authorized(UID) ⇐⇒
authorized(p)

but this, too, is not entirely satisfactory: in the customer’s view of the world,
a person is authorized after the corresponding card has been issued, as long
as its UID code is found in AuthDB. Thus, ‘being authorized’ is a permanent
property of a person, and not a property that holds for a short moment while
the person swipes the card, and disappears immediately afterwards.

The best solution is probably to introduce an explicit expression of mistrust
in the domain:

A person is presumed not to have a card unless she swipes it in the card
reader.

that is,

¬swipes(p,card) =⇒ ¬has(p,card)

Notice that, albeit in logical terms the conjunction of this last statement
with the previously existing swipes(p,card) =⇒ has(p,card) is equivalent
with the swipes(p,card) ⇐⇒ has(p,card) we rejected above, its meaning
in terms of the interpretation of the requirements is much clearer, and thus
preferable. With this last change, both completeness and consistency hold; we
can proceed with the requirements analysis, reassured that our evolution step
is correct.

36

Requirements R5

When a person swipes an ID card, if
the UID provided by the card reader
appears in AuthDB, then the gate must
be open.

swipes(p,card) ∧ read(UID) ∧
inAuthDB(UID) =⇒ openGate

If a person does not swipe an ID card,
or the UID provided by the card reader
does not appears in AuthDB, then the
gate must be locked.

¬swipes(p,card) ∨ (read(UID)∧
¬inAuthDB(UID)) =⇒ lockedGate

Domain model D5

Authorized persons have ID cards
whose UID is authorized.

has(p,card) ∧ hasUID(card,UID)

∧ authorized(UID) ⇐⇒
authorized(p)

An open gate allows entering the build-
ing.

openGate =⇒ canEnter(p)

A locked gate prevents entering the
building.

lockedGate =⇒ ¬canEnter(p)

Persons who swipe an ID card, have an
ID card.

swipes(p,card) =⇒ has(p,card)

If a person swipes an ID card, the card
reader provides the UID of the card.

swipes(p,card) ∧
hasUID(card,UID) =⇒ read(UID)

The UID of a card is authorized if it
appears in AuthDB.

inAuthDB(UID) ⇐⇒
authorized(UID)

Requirements R4

Persons who have an ID card whose
UID is authorized can enter the build-
ing.

has(p,card) ∧ hasUID(card,UID)

∧ authorized(UID) =⇒
canEnter(p)

Persons who do not have an ID card
whose UID is authorized are prevented
from entering the building.

¬has(p,card) ∨
(hasUID(card,UID) ∧
¬authorized(UID)) =⇒
¬canEnter(p)

Table B.1
The R5, D5 and R4 sets in English and in propositional logic.

37

