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Abstract. It is a challenging task to develop an effective and robust object tracking method due to factors such as
severe occlusion, background clutters, abrupt motion, illumination variation and so on. In this paper, a novel track-
ing algorithm based on weighted subspace reconstruction error is proposed. The discriminative weights are defined
through minimizing reconstruction error with positive dictionary while maximizing reconstruction error with negative
dictionary. Then, confidence map for candidates is computed through subspace reconstruction error. Finally, the loca-
tion of the target object is estimated by maximizing the decision map which is combined discriminative weights and
subspace reconstruction error. Furthermore, the new evaluation method based on forward-backward tracking criterion
to verify the robustness of the current tracking performance in updating stage, which can reduce the accumulated error
effectively. Experimental results on some challenging video sequences show that the proposed algorithm performs
favorably against eleven state-of-the-art methods in terms of accuracy and robustness.
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1 Introduction

Object tracking is one of the most research topics due to its wide range of applications such as

behavior analysis, activity recognition, video surveillance, and human-computer interaction. Al-

though it has obtained a significant progress in the past decades, developing an efficient and robust

tracking algorithm is still a challenging task due to numerous factors such as illumination variation,

partial occlusion, pose change, abrupt motion, background clutter and so on.

The main tracking algorithms can be classified into two kinds: generative1–7 or discriminative

methods.8–12

Generative methods focus on searching for the regions which are the most similar to the tracked

targets with minimal reconstruction errors of tracking. Adaptive models including the WSL track-

er13 and IVT method4 have been proposed to handle appearance variation. Adam et.al1 used several
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fragments to build an appearance model to handle partial occlusion and pose variation. Recently,

sparse representation methods have been used to represent an object by a set of trivial target tem-

plates and trivial templates3, 14 to deal with partial occlusion, pose variation and so on. Thus, it is

critical to construct an effective appearance model in order to handle various challenging factors.

Furthermore, generative methods discard useful information surrounding target regions that can be

exploited to better separate objects from backgrounds.

Discriminative methods treat tracking as a classification problem that distinguishes the tracked

targets from the surrounding backgrounds. A tracking technique called tracking by detection has

been shown to have promising results in real-time. This approach trains a discriminative classifier

online to separate an object from its background. Collins et al.15 selected discriminative features

online to improve the tracking performance. Boosting method has been used for object tracking

through combining weak classifiers to establish a strong classifier to select discriminative features,

and some online boosting feature selection methods have been proposed for object tracking.16, 17

Babenko et al.8 proposed a novel online MIL algorithm for object tracking that achieves superior

results with real-time performance. An efficient tracking algorithm based on compressive sensing

theories was proposed by Zhang et al.9 It uses low dimensional features randomly extracted from

high dimensional multi-scale image features in the foreground and background, and it achieves

better tracking performance than other methods in terms of robustness and speed.

The above tracking methods have shown promising performance. However, they have some

shortcomings. Firstly, although the goal of a generative method is to learn an object appearance

model, an effective searching algorithm and measuring method to match candidate samples to an

object model are difficult to obtain. Secondly, background varies broadly during a tracking process,

so it is difficult to achieve the aim of a discriminative method to distinguish a target region from
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a complicated background when the target looks similar to its background. Therefore, it is very

difficult to construct a discriminative target model.

2 Motivation

Subspace representation is possibly the most common choice for appearance models in object

tracking, mainly because it is easy to compute and robust for scale variation, rotation, pose changes

and illumination variation.18 Ross et al.4 proposed the IVT method which represents the tracked

target by a low dimensional PCA subspace and assumes that the error is Gaussian distributed

with small variances. Hence, the representation coefficient can be obtained by a simple projection

transformation. Furthermore, it is effective to handle appearance change caused by illumination

variation. However, it has following drawbacks. Firstly, ordinary least squares methods have been

shown to be sensitive to occlusion and background clutter based on reconstruction error. Secondly,

the update scheme uses new observations to update the subspace model without detecting outliers

and processing them accordingly, so it will cause inaccurate update for the subspace of the target

to bring tracking drifts and big tracking accumulated errors.

Recently, sparse representation has been introduced to the tracking task.3, 19–23 Mei et.al pro-

posed the L1 tracking method.3 For tracking in their algorithm, a candidate sample can be sparsely

represented by a template set or dictionary, and its corresponding likelihood is determined by the

reconstruction error with respect to target templates. The L1 tracker has obtained promising ro-

bustness compared with many existing trackers. However, the dictionary can not consider the

background, while the tracker uses an over-complete dictionary (an identity matrix) to represent

the background and noises. As a result, it may not discriminate the objects against complicated

background.
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Wang et al. proposed an online algorithm based on local sparse representation for robust object

tracking.19 It uses the sparse codes of local image patches with an over-complete dictionary for ob-

ject representation, and trains a linear classifier to separate the target object from the background.

However, the linear classifier is not robust to background clutters. Inspired by using generative and

discriminative models together to enhance the robustness of the tracker, a structured collaborative

representation-based visual tracking algorithm is proposed.20 Firstly, positive and negative sam-

ples are represented by their structured collaborative representation coefficients which obtained by

encoding sparse representation with target and background templates, then the structured collabo-

rative representation coefficients are used to train a Bayes classifier which can offer each candidate

a classification score. This method is similar to Wang’s work,19 as sparse coefficients are used for

object representation, and then a classifier is trained to distinguish target from background. Liu

et al. proposed a fast object tracking method with two stage sparse optimization.23 However, the

tracker essentially depended on on online self-training classifier and it is susceptible to drifting. A

robust visual tracker based on structured sparse representation appearance model proposed in,14 it

adds the structured information without utilizing the background template. Hong et al. proposed

a robust multi-task multi-view joint sparse learning method for visual tracking based on particle

filter framework.21 The method can exploit the underlying relationship shared by different views

and different particles, but also it can capture the frequently emerging outlier tasks.

There are three drawbacks of some existing methods based sparse representation as follows.

Firstly, Sparse representation coefficients are used for object representation and the tracking task

is treated as a binary classification problem. The trained linear classifier is sensitive to background

clutter and appearance change. Secondly, the prototype L1 tracker is vulnerable to failure in the

case of the dictionary is updated with background image patches or inaccurate tracked results.
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This is because the wrong templates are also possibly activated for approximating the observa-

tions and achieve high likelihood with the background image patches or inaccurate tracked results.

Thirdly, some tracking methods are only trained based on object appearance without utilizing the

information from the background, which does not ensure distinguish ability.

To overcome these flaws mentioned above, a novel tracking algorithm via weighted subspace

reconstruction error is proposed in this paper. As shown in Fig.1, we firstly define the discrimi-

native weights based on sparse construction using the positive dictionary and negative dictionary

respectively. It is similar to Fisher linear discriminant criterion, the goal of discriminative weights

is to minimize reconstruction error using positive dictionary while maximizing reconstruction er-

ror using negative dictionary. The discriminative weights can reduce the sensitiveness of a failure

in the case of the dictionary is updated with background image patches, as the background image

patches can not be used for updating the dictionary because of their low of discriminative weights.

Secondly, the confidence map for candidates is computed through subspace reconstruction error.

In the last step, the optimal location is estimated by maximizing the decision map which combines

discriminative weights and subspace reconstruction error. In updating stage, a forward-backward

tracking criterion to verify the robustness of the current tracking performance. The evaluating cri-

terion can effectively handle tracking outliers and reduce the cumulative errors. The details of our

method are shown in Fig.1. Empirical results on some challenging video sequences demonstrate

the superior performance of our method in terms of accuracy and robustness to state-of-the-art

tracking methods.

The main contributions of this paper are as follows.

1. The discriminative weights are defined to distinguish the target from complex background
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Fig 1 The flow of our proposed tracking algorithm.

clutter accurately. The use of discriminative weights is to minimize the reconstruction er-

ror using a positive dictionary while maximizing the reconstruction error using a negative

dictionary. The discriminative weights are obtained by the positive and negative dictionary

reconstructions respectively and can ensure the distinguish ability.

2. The forward-backward tracking criterion is used to evaluate the current tracking perfor-

mance, which can be adopted to decide whether to update the subspace appearance model

and reduce the accumulated errors effectively.

3. The decision map combining discriminative weights and subspace reconstruction error can

make use of the advantages of sparse representation and subspace appearance model, which

can enhance the robustness to multiple challenging factors.

4. Experimental results on some challenging video sequences show that the proposed algorithm

outperforms twelve state-of-the-art methods in terms of accuracy and robustness.

This is is an extension of our paper showing preliminary results in.24 The rest of this paper is

organized as follows. Details of our proposed method based on weighted subspace reconstruction
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error are demonstrated in Section 3. Experimental results are shown and analyzed in Section 4.

The conclusion is presented in Section 5.

3 Proposed method

3.1 Particle filter based tracking formulation

In our method, we estimate the target states using the Bayesian inference framework. Supposed

that the observations of the target Z1 : t = {Z1, Z2, · · · , Zt} up to time t, the target state xt can be

computed by the maximum a posteriori (MAP) estimation as follows:

xt = argmax
xt

p(xt|Z1:t) (1)

In our method, we estimate the target states using the Bayesian inference framework, the target

state xt can be computed by the maximum a posteriori (MAP) estimation as follows:

x̂t = argmax
xt

p(xt|z1:t) (2)

The posteriori probability p(xt|z1:t) can be inferred by Bayesian theory

p(xt|z1:t) ∝ p(zt|xt)p(xt|z1:t−1) (3)

with

p(xt|z1:t−1) =

∫
p(xt|xt−1)p(xt−1|z1:t−1)dxt−1 (4)
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Fig 2 Illustration of details to define the discriminative weights. It is similar to the linear discriminant criterion: the
goal is to minimize the reconstruction error using a positive dictionary while maximizing the reconstruction error using
a negative dictionary. The discriminative weights are obtained by the positive and negative dictionary reconstructions
respectively and can ensure the distinguish ability.

In the particle filter framework, the posterior p(xt|z1:t) can be computed approximately by a

finite set of random sampling particles. In the proposed method, the target state xt is modeled by a

six-dimensional parameter vector for affine transformation. We model each transformation param-

eter independently by a Guassion distribution between two consecutive frames. The observation

model p(zt|xt) reflects the similarity between the target template and a candidate.

In our method, p(zt|xt) is formulated to minimize the weighted subspace reconstruction error,

which is defined by

p(zt|xt) ∝ e−w∗ε (5)

where w and ε are detailed in following sections.

3.2 Discriminative weights

We define the discriminative weights based on sparse construction using the positive dictionary

and negative dictionary respectively. It is similar to Fisher linear discriminant criterion, the goal
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of discriminative weights is to minimize the reconstruction error using a positive dictionary while

maximizing the reconstruction error using a negative dictionary. The positive and negative samples

can ensure the distinguish ability. The details of discriminative weights are shown in Fig.2.

In our method, tracked results are used for the construction of the positive dictionary and some

samples that are away from the target are used for negative dictionary. In this way, we can ob-

tain a dictionary consisting of positive and negative samples as follows. Firstly, we assume the

location in the first s frames have been obtained by nearest matching method. Tracked results are

collected to form the positive dictionary Dp = {Dp
1, D

p
2, · · · , D

p
i }, i = 1, 2, · · · , Np. Then, we

sample some image patches away from the current location of the target to establish the negative

dictionary Dn = {Dn
1 , D

n
2 , · · · , Dn

i }, i = 1, 2, · · · , Nn. The final dictionary is represented as

D = [Dp, Dn] ∈ <d×(Np+Nn), where Np and Nn are the numbers of positive samples and negative

samples, respectively. Each column in dictionary D is obtained through L2 normalization on the

vectorized positive and negative dictionary.

With the sparsity assumption, the candidates within the target region can be represented as the

linear combination with only a few basis elements of the dictionary by solving

argmin
αi

‖yi −Dαi‖22 + λ‖αi‖1 (6)

where α denotes the corresponding sparse code of each candidate, and λi is control parameter.

Similar to the Fisher linear discriminant analysis,25 the tracking is regarded as a process to find

a classifier given a target and its background. The aim of object tracking is to find the candidate

which should produce a smaller reconstruction error using the positive dictionary, but vice versa
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using the negative dictionary. The discriminative weights are defined as follows.

wi =
ξpi

ξni + µ
(7)

To normalize

wi =
wi∑
wi

(8)

where ξpi = ‖yi −Dpα
p
i ‖22 and ξni = ‖yi −Dnα

n
i ‖22, which denote the reconstruction errors using

two different sub-dictionaries, and µ is a constraint factor to avoid non-division. From the above

equation, a candidate having a smaller discriminative weight is more likely to be the target, and

vice versa. The discriminative weight can effectively distinct a target object from a complicated

background. More importantly, it reflects the possibility of an object being a target by encoding

the sparse coefficients using positive and negative dictionaries.

3.3 Subspace reconstruction error

A candidate with a smaller reconstruction error based on the subspace representation is more likely

to be the target. Based on this concern, the reconstruction error of each candidate is computed

based on the subspace model generated from a target template Dp using Incremental Principal

Component Analysis (IPCA).

The eigenvectors form the normalized covariance matrix of template Dp, U = [u1, u2, · · · , ul],

which is corresponding to the largest l eigenvalues computed by PCA. Based on U , we can obtain
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projection coefficient for each candidate by

βi = UT (yi − ȳ) (9)

where yi denotes the candidate sample, and ȳ is the mean feature of template Dp. Then, the

subspace reconstruction error of each candidate is computed by

εi = ‖yi − (Uβi + ȳ)‖2 (10)

where εi indicates a candidate is more likely to be a target object with a smaller reconstruction

error. We gradually learn a low-dimensional subspace representation, which can adapt the on-line

target appearance change.

3.4 Decision map

The smaller discriminative weight and reconstruction error one candidate has, the closer it is to the

real location in the coming frame. Therefore, we use maximum posterior to estimate observation

model p(zt|xt). In our tracking algorithm, the final decision map is defined by

pi = e−wi∗εi (11)

and the optimal state xt at frame t is estimated by

x̂t = argmax
i

pi (12)
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where wi represents the discriminative weight of each candidate sample, and εi represents the

subspace construction error. The tracking result is one candidate has the highest confidence value.

3.5 Update scheme

For the dictionary D = [Dp, Dn], we update the negative dictionary every 5 frames to sample

away from the current tracking result. To update the positive dictionary, the sample on the current

tracked location is added and then to delete the oldest sample in the positive dictionary .

To construct a subspace appearance model, if we directly update the template with new obser-

vations, errors are likely to be accumulated and the tracker will drift away from the target. To a

robustness tracking algorithm, if the performance is good by implementing a tracking algorithm

from the frame t to the frame t + 1, it also obtains the better performance by implementing the

tracker from the frame t + 1 back to the frame t. Therefore, we use a forward and backward26

tracking criterion to evaluate the current tracking performance. Fig.3 shows the flow of forward-

backward tracking method.

Forward tracking: starting from the current frame t to the next frame t + 1, let us denote the

target location in the t-th frame by x∗t , the location obtained using our method in frame t + 1 by

x∗t+1 (see the red dashed arrow in Fig.3).

Backward tracking: starting from the current location x∗t+1, we obtain a backward tracking

result x′t in the previous frame t using our method (see the green dashed arrow in Fig.3).

If the target is correctly tracked, x∗t should be equal to the x′t. Thus, forward-backward tracking

error is defined as follows:

error = ‖x∗t − x
′

t‖2 (13)
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Fig 3 Illustration of evaluation criterion via forward and backward tracking method.

If the performance of one tracking method performs well, the error should be very small. How-

ever, the current tracking could drift away from the target when the error is very big, so we do not

update the subspace model. A soft threshold is used to estimate the current tracking performance.

If error < τ (τ is set to 5 in our experiments), we update the subspace appearance model, other-

wise do nothing. The more details for appearance model updating are shown in the IVT method.4

3.6 Comparison with related work

It should be noted that the proposed tracking algorithm is significantly different from recently

related methods including L13 and IVT4 methods.

In L1 tracking method, a candidate sample can be sparsely represented by a template set or

dictionary, and its corresponding likelihood is determined by the reconstruction error with respect

to target templates. However, the algorithm selects only some samples around a target to model

the target template and they do not consider background influence, while the tracker uses an over-

complete dictionary to represent the background and noises. As a result, it may not discriminate

the objects against complicated background. In our method, we first select some samples away

from the current object’ location to model the negative dictionary, then the discriminative weight-
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s are defined through minimizing reconstruction error with positive dictionary while maximizing

reconstruction error with negative dictionary. The discriminative weights make use of the relation-

ship between the object and background, so they helps our tracker to distinguish the object from

complex background.

To update the subspace appearance model in IVT method, if we directly update the template

with new observations, errors are likely to be accumulated and the tracker will drift away from

the target. A forward-backward tracking criterion to evaluate the current tracking performance.

Compared with directly updating appearance model, our method can handle tracking outliers and

reduce the cumulative error.

4 Implementation and Experiments

4.1 Experimental setup

We evaluate the proposed tracking method based on weighted subspace reconstruction error using

ten challenge video sequences with impact factors including abrupt motion, occlusion, illumination

variation and background clutter (See Table 1). We compare our proposed tracker with other

eleven state-of-the-art methods including: L1 tracker (L1),3 real-time compressive tracking (CT),9

multiple instance learning tracker (MIL),8 incremental visual tracking (IVT),4 fragment tracker

(Frag),1 weighted multiple instance learning tracker (WMIL),11 MTT,27 LSAT,28 PN algorithm

(PN),29 VTD,2 ODOT19 and LOT.30 For fair comparison, we adopt the source codes or binary

codes provided by the authors with tuned parameters for best performance. For some trackers

involving randomness, we repeat the experimental results 5 times on each sequence and obtain the

averaged results.
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Table 1 Evaluated video sequences.
Sequence #Frames Challenging Factors
Car4 659 illumination variation, scale change
Car11 393 illumination variation, scale change, background clutter
Jumping 313 abrupt motion
Caviar1 382 partial occlusion, scale change
Caviar2 500 partial occlusion, scale change
Caviar3 500 partial occlusion, scale change
Deer 71 abrupt motion, background clutter
Occlusion1 898 partial occlusion
Occlusion2 819 partial occlusion
DavidIndoor 462 illumination variation, scale change, out-plane rotation
Girl 501 partial occlusion, appearance change, rotation
Couple 140 partial occlusion, shaky, abrupt motion, background clutter

Table 2 Center location error (CLE). Red fonts indicate the best performance while the blue fonts indicate the second
best ones. (Ours− represents our tracking method without the forward-backward tracking criterion).

Sequence PN L1 VTD MIL Frag CT WMIL IVT MTT LSAT LOT ODOT Ours− Ours

DavidIndoor 9.7 7.6 13.6 16.2 76.7 12.8 11.4 3.6 13.4 6.3 58.2 69.3 15.6 3.5

Occlusion1 17.7 6.5 11.1 32.3 5.6 19.5 23.5 9.2 14.1 5.3 21.3 6.7 6.2 5.2

Occlusion2 18.6 11.1 10.4 14.1 15.5 16.5 16.7 10.2 9.2 58.6 18.9 9.0 8.2 6.7

Caviar1 5.6 119.9 3.9 48.5 5.7 16.8 23.8 45.3 20.9 1.8 2.2 55.2 41.3 2.1

Caviar2 8.5 3.2 4.7 70.3 5.8 61.7 59.8 8.6 65.4 45.6 3.4 7.9 3.2 2.6

Caviar3 – 18.6 58.2 100.2 116.1 61.4 69.2 66.2 67.5 55.3 42.4 25.4 62.8 3.0

Car4 18.8 4.1 12.3 60.1 179.8 218.1 162.5 2.9 37.2 3.3 183.8 175.3 2.8 2.7

Car11 25.1 33.3 27.1 43.5 63.9 78.4 96.1 2.1 1.8 4.1 47.7 23.4 2.1 1.8

Deer 25.7 171.5 11.9 66.5 92.1 95.0 25.1 127.6 9.2 69.8 94.8 159.7 9.8 6.8

Jumping 3.6 92.4 62.7 9.9 58.5 47.4 64.4 36.8 19.2 55.2 6.2 13.9 22.9 5.5

Girl 23.2 62.4 21.4 32.2 18.0 38.6 44.2 48.4 23.9 143.3 16.1 12.3 18.6 13.5

Couple – 110.6 40.6 33.9 32.6 35.6 35.7 105.1 47.4 129.7 34.4 125.3 24.2 9.6

Average
CLE

15.7 53.4 23.4 44.0 55.9 58.5 52.7 38.8 27.4 48.2 44.1 56.8 18.1 5.3

In our all experiments, regularization constant λ is set to 0.01. We resize the target image patch

to 32× 32 pixels and extract raw feature to represent a target object.

4.2 Quantitative analysis

We perform experiments on ten publicly available standard video sequences. As the ground truth,

the center position of a target in a sequence is labeled manually. This ground truth is provided in

Wus work.31 For quantitative analysis, we use average center location errors as evaluation criteria
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Table 3 Success rate (SR). Red fonts indicate the best performance while the blue fonts indicate the second best ones.
(Ours− represents our tracking method without the forward-backward tracking criterion).

Sequence PN L1 VTD MIL Frag CT WMIL IVT MTT LSAT LOT ODOT Ours− Ours

DavidIndoor 0.60 0.63 0.53 0.45 0.19 0.50 0.48 0.71 0.53 0.72 0.21 0.14 0.47 0.78

Occlusion1 0.65 0.87 0.77 0.59 0.89 0.71 0.68 0.85 0.79 0.90 0.54 0.87 0.85 0.91

Occlusion2 0.49 0.67 0.59 0.61 0.60 0.59 0.59 0.59 0.72 0.33 0.42 0.68 0.72 0.75

Caviar1 0.70 0.28 0.83 0.25 0.68 0.50 0.42 0.28 0.45 0.85 0.76 0.19 0.27 0.84

Caviar2 0.65 0.81 0.67 0.25 0.26 0.31 0.26 0.59 0.33 0.28 0.80 0.76 0.79 0.83

Caviar3 – 0.42 0.15 0.16 0.13 0.23 0.20 0.13 0.14 0.28 0.23 0.24 0.14 0.82

Car4 0.64 0.84 0.73 0.34 0.22 0.17 0.23 0.92 0.53 0.91 0.18 0.21 0.91 0.92

Car11 0.38 0.43 0.43 0.17 0.08 0.01 0.02 0.74 0.58 0.49 0.37 0.54 0.78 0.81

Deer 0.41 0.04 0.58 0.21 0.07 0.08 0.44 0.22 0.60 0.35 0.55 0.03 0.60 0.62

Jumping 0.69 0.09 0.08 0.51 0.14 0.04 0.02 0.28 0.30 0.09 0.61 0.55 0.53 0.67

Girl 0.57 0.33 0.51 0.52 0.69 0.36 0.41 0.43 0.62 0.08 0.72 0.78 0.48 0.80

Couple – 0.12 0.38 0.41 0.44 0.42 0.45 0.10 0.30 0.08 0.43 0.11 0.63 0.82

Average SR 0.58 0.46 0.45 0.33 0.37 0.33 0.35 0.49 0.49 0.45 0.49 0.43 0.60 0.80

to compare the performance, and the pixel error in every frame is defined as follows.

CLE =
√

(x′ − x)2 + (y′ − y)2 (14)

where (x
′
, y
′
) represents the object position obtained by different tracking methods, and (x, y) is

the ground truth. The second evaluated metric is the success rate,32 and the score in every frame is

defined as follows.

score =
area(ROIT ∩ROIG)

area(ROIT ∪ROIG)
(15)

where ROIT is the tracking bounding box and ROIG is the ground truth bounding box. If the

score is larger than 0.5 in one frame, the tracking result is considered as a success. Table 2 reports

the center location error, where smaller CLE means more accurate tracking results. In Table 2,

each row represents the average center location errors of the eight algorithms testing on a certain
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video sequence. The number marked in red indicates the best performance in a certain testing

sequence, and the number in blue refers to the second best result. Table 3 reports the success rates,

where larger average scores mean more accurate results. From Table 2 and Table 3, we can see

that our method achieves the best or second best performance compared with L1, CT, MIL, WMIL,

Frag, IVT, MTT, LAST, LOT, VTD, ODOT and PN for most of the sequences. Moreover, we draw

the error curve according to equation (14) for each video sequence (Fig.4). In addition, Fig.5,

Fig.6, Fig.7, Fig.8, Fig.9, Fig.10 and Fig.11 show the screen captures for some of the video clips.

More details of experiments are analyzed and discussed in the following subsections. Overall, our

method performs favorably against the other state-of-the-art tracking methods.

4.3 Qualitative analysis

Partial occlusion: The objects suffer heavy or longtime partial occlusion, scale change, defor-

mation and rotation in sequences Caviar1 (Fig.5(a)), Caviar2 (Fig.5(b)), Caviar3 (Fig.5(c)), Girl

(Fig.9(a)), Occlusion1 (Fig.7(a)) and Occlusion2 (Fig.7(b)). Fig.5 demonstrates that our tracking

method performs well in terms of position and scale when the objects undergo severe occlusion

and deformation. In the Caviar1 sequence, our method outperforms all other methods in all given

frames, while the MIL, L1, IVT methods completely drift to the background at frames #123, #137,

#153, #177, #185, and #195. The CT and WMIL trackers always have some drifts at shown frames.

In the Caviar2 sequence, our proposed method can completely track the object when the object suf-

fers partial occlusion at frames #221, while the other methods including the MIL, CT and WMIL

completely fail to track the object at frames #223, #317, #331, #456 and #485. In the Caviar3

sequence, the tracked object will be complete occlusion and it has the same color information with

the neighbor people. Therefore, it is very difficult to track this object. Our tracker performs better
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Fig 4 Error plots of all tested sequences for different tracking methods.
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(a) Caviar1

(b) Caviar2

(c) Caviar3

#123 #137 #153

#177 #185 #195

#221 #223 #317

#331 #456 #485

#1 #98 #131

#175 #305 #400

L1 CT MIL Frag WMIL LOT IVT Ours

Fig 5 Sampled tracking results for tested sequences of (a) Caviar1, (b) Caviar2 and (c) Caviar3.
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than the other all methods whereas the Frag and L1 methods are only able to track the objects at

frame #98, but our method can perform more accurately than the two methods at frame #98. What

is more, The CT, MIL, LOT, WMIL and IVT methods suffer completely from drift at frames #98,

#131, #175, #305 and #400, which verify that the five methods can not adaptively adjust these

changes and are not robustness to occlusion, resulting in serious drifts.

In the Occlusion1 and Occlusion2 sequences, we can see our tracking method performs better

than the other methods at frames #572, #642, #682, #732, and #822 in Fig 7(a) . The LOT method

suffers some drifts at frames #572, #642, #682 and #732. The MIL method also suffers severe

drifts at frames #682, #732 and #822. Therefore, these results verify the LOT and MIL methods

are not robustness to occlusion. See tracking results in Fig 7(b), our method can track the object

very accurately, while the other methods including the LOT, Frag, WMIL, CT, and MIL fail to

track the object at frames #581, #626 and #706.

In the Girl sequences, we can see our tracking method performs better than the all other meth-

ods at shown frames, especial at frames #433 and #442 when the girl suffers severe occlusion. The

Frag and LOT can track the target at frames #433 and #442 but with some drifts, while the WMIL,

L1 and CT trackers fail to track the target at all shown frames.

Background clutters: The trackers are easily confused an object is very similar to its back-

ground. Fig.6(b) and Fig.10 demonstrate the tracking results in the Deer and Car11 sequences

with background clutters. Fig.6(b) shows different trackers track a car in the complex background.

Thus, it is very difficult to distinguish the object from its background and to keep tracking the

object correctly. Comparatively, our method and the IVT exhibit better discriminative ability and

outperform other methods at frames #21, #56, #161, #271, #326 and #391. The MIL and WMIL

trackers completely drift to the background at frames #271, #326 and #391, which verifies that the
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selected features by the MIL and WMIL trackers are less informative than our method. The Frag

tracker has severe drifts at all given frames because its template does not update online, making

it unable to handle large background clutter. The CT method has severe drifts at all given frames

because it only uses compressive features and the Bayesian classifier is sensitive to background

clutter. In the Deer sequence, In the Deer sequence, our method outperforms all other methods in

all given frames, while other methods including the CT, Frag, L1, and LOT methods fail to track

the Deer at frames #5, #40, #45, #60 and #56 in Fig. We can also see the MIL methods completely

fail to track at all given frames.

Abrupt motion and blur: The objects in Deer (Fig.10), Jumping sequences (Fig.8(b)) and

Couple (Fig.9(b)) have abrupt motions. It is difficult to predict the location of a tracked object

when it undergoes an abrupt motion. As illustrated in Fig.10, when an object undergoes an in-

plane rotation, all evaluated algorithms except the proposed tracker do not track the object well.

We also see that the WMIL method fails to track at frames #40, #45, #50 and #56. The CT, Frag,

LOT, L1 and MIL methods suffer completely from drifts to the background at frames #5, #7, #40,

#45, #50, and #56. However, the IVT method can track the object accurately except there some

errors at frames #45 and #50. In the Jumping sequence, we can see that our method performs

better than other all evaluated algorithms (see all shown frames in Fig.10). The CT, L1, Frag, and

WMIL methods suffer completely from drifts in the shown frames. The IVT method performs

well at some frames, however, it suffers completely from drifts at frames #247, #287 and #296.

See from Fig.8, the MIL and LOT method can track face but there some errors at some frames. In

the Couple sequence, our method performs well when the target undergo abrupt motion, while all

other methods completely fail to track the target at frames #109, #122, #135 and #140.

Blurry images exist in the Deer and Jumping sequence (see Fig.10 and Fig.8(b)), because a fast
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(a) Car4

(b) Car11

#241 #281 #356

#506 #541 #631

#21 #56 #161

#271 #346 #391

L1 CT MIL Frag WMIL LOT IVT Ours

Fig 6 Sampled tracking results for tested sequences of (a) Car4, and (b) Car11.
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(a) Occlusion1

(b) Occlusion2

#187 #572 #642

#682 #732 #822

#271 #366 #431

#581 #626 #706

L1 CT MIL Frag WMIL LOT IVT Ours

Fig 7 Sampled tracking results for tested sequences of (a) Occlusion1, and (b) Occlusion2.
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(a) DavidIndoor

(b) Jumping

#81 #191 #311

#381 #411 #456

#20 #212 #236

#247 #287 #296

L1 CT MIL Frag WMIL LOT IVT Ours

Fig 8 Sampled tracking results for tested sequences of (a) DavidIndoor, and (b) Jumping.
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#143 #182 #283

(a) Girl

#1 #17 #109#109

#122#122 #135#135 #140#140

(b) Couple

#321 #433 #442

L1 CT MIL Frag WMIL LOT IVT Ours

Fig 9 Sampled tracking results for tested sequences of (a) Girl, and (b) Couple.

motion make it difficult to track the target object. As shown in frames #45 and #56 of Fig.10, our

proposed method can still track the object well than other methods.

Illumination variation: Fig.6(a), Fig.6(b) and Fig.8(a) show results from four challenging
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Deer

#45

#5 #7 #40

#50 #56

L1 CT MIL Frag WMIL LOT IVT Ours

Fig 10 Sampled tracking results for tested sequences of Deer.

sequences with significant change of illumination, scale and pose variation. For the Car 4 sequence,

there is a drastic lighting change when the vehicle goes underneath the overpass or the trees. Our

method and the IVT can track the car accurately, while the CT, Frag, WMIL and LOT methods

suffer completely drifts at the shown frames (in Fig.6(a)). The target object is small with low

contrast and drastic illumination change in the Car 11 sequence (Fig.6(b)). Our proposed method

and the IVT algorithm perform well in tracking this vehicle whereas the other methods drift away

when drastic illumination variation occurs (#200) or when similar objects appear in the scene

(#391).

In addition, appearance change caused by scale and pose as well as camera motion pose great

challenges. In the DavidIndoor sequence, our method and IVT perform better than the other meth-

ods. The Frag tracker suffers completely drifts at the shown frames.

Rotation and shaky factor: The target in the Girl sequence (Fig.9(a)) has big rotation. See

from the Girl sequence, the appearance information will change severe when the girl has a rotation.

Our method performs well at frames #182 and #283, while the WMIL, L1, CT and MIL trackers
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#108 #109 #110

#111 #112 #113

#114 #115 #116

#117 #118 #119

Fig 11 Tracking results of our method on Couple sequence under shaky factor. (from #108 to #109, the sequence
shakes up and down; from #109 to #110, the sequence shakes backward; from #113 to #114 and from #115 to #116,
the sequence shakes backward sharply)

.
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#118 #119 #120 #121

#150 #151 #152 #153

#158 #159 #160 #161

L1 CT MIL IVT WMIL Ours

#193 #194 #195 #196

Fig 12 Comparison of tracking results using different trackers on shaky video.
.
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suffer from drifts. Shaky factor occurs in the Couple sequence (Fig.9(b)): from #108 to #109, the

sequence shakes up and down; from #109 to #110, the sequence shakes backward; from #113 to

#114 and from #115 to #116, the sequence shakes backward sharply. As shown in Fig.9(b), our

method performs very well under abrupt motion and shaky factor. However, all other methods

completely fail to track the target at frames #109, #122, #135 and #140. Fig.11 shows tracking

results in details to verify the performance of our method under shaky factor clearly.

In order to further verify the performance of our method under shaky factor, different trackers

are tested on the shaky video that is shot in real-world scene (see Fig.12). As shown in Fig.12,

the camera quickly moves while the people stays still in the scene, so it brings much motion blur

by quick moving. See tracking results from Fig.12, our method performs better than the other

methods, especial at frames #118, #120, #150, #158, #161, #193 and #195 suffered from severe

motion blur by shaky factor. Therefore, these experimental results show the effectiveness of our

method.

4.4 Combined dictionary vs single dictionary

In our method, the discriminative weights are defined using equation (7). The goal is to minimize

reconstruction error using positive dictionary while maximizing reconstruction error using negative

dictionary. Thus, our method combines positive dictionary and negative dictionary. In order to

verify the performance of combined dictionary, we compare our proposed method using combined

dictionary, positive dictionary and negative dictionary, respectively. The discriminative weights

using positive dictionary only and negative dictionary only are defined as follows:

wpi =
ξpi∑
ξpi

(16)
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Table 4 Comparison of center location errors against discriminative weights using different dictionary.

Method

Sequence
Car4 Car11 Deer Girl Couple Jumping Caviar1 Caviar2 Caviar3 Occlusion1 Occlusion2 DavidIndoor

Positive dictionary 3.2 3.6 9.2 55.3 45.1 4.4 32.5 4.4 62.3 9.0 11.4 43.9

Negative dictionary 3.4 11.1 10.1 37.1 60.5 31.9 81.5 5.7 64.9 90.4 11.7 15.8

Combined dictionary 2.7 1.8 6.8 13.5 9.6 5.5 2.1 2.6 3.0 5.2 6.7 3.5

wni =

1
ξni∑

1
ξni

(17)

where ξpi = ‖yi −Dpα
p
i ‖22 and ξni = ‖yi −Dnα

n
i ‖22, Dp and Dn represent positive dictionary and

negative dictionary, respectively. The goal is to minimize the reconstruction error using a positive

dictionary in equation (16), while the goal is to maximize the reconstruction error using a negative

dictionary in equation (17).

In comparison experiments, wpi , w
n
i , and wi represent three different discriminative weights,

and they are used to compute the decision map in equation (11). Table 4 reports the center location

error using different dictionaries to define the discriminative weights, and Table 5 reports success

rates using different dictionaries to define the discriminative weights. From Table 4 and Table 5,

we can see that our method combining positive dictionary and negative dictionary achieves the best

performance compared with using positive or negative dictionary respectively. These experimental

results also verify the distinguish ability of our method using combined dictionary, so our method

can distinguish the target effectively from complex background.
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Table 5 Comparison of success rates against discriminative weights using different dictionary.

Method

Sequence
Car4 Car11 Deer Girl Couple Jumping Caviar1 Caviar2 Caviar3 Occlusion1 Occlusion2 DavidIndoor

Positive dictionary 0.87 0.73 0.60 0.23 0.35 0.70 0.38 0.75 0.15 0.85 0.70 0.31

Negative dictionary 0.84 0.55 0.58 0.55 0.17 0.47 0.27 0.68 0.14 0.36 0.66 0.48

Combined dictionary 0.92 0.81 0.62 0.77 0.79 0.67 0.79 0.83 0.83 0.91 0.75 0.78

4.5 Effect of forward-backward tracking criterion

In some sequences, the target may suffer from occlusion, background clutter, rotation, abrupt mo-

tion and other challenging factors. In such cases, many trackers and our method always suffer from

drifts or completely fail to track the target. If we directly update the appearance model with the

new observation, error is likely to be accumulated and the tracker will drift away from the corrected

location. Thus, the forward-backward tracking criterion is used for evaluating the current tracking

performance of our method. We update the subspace appearance model using new observations if

the forward-backward tracking error is very small.

In order to verify the performance of forward-backward tracking criterion, our method is im-

plemented on some challenging sequences with forward-backward tracking criterion and without.

These comparison results are shown in Table 2 and Table 3 (Ours− represents our tracking method

without the forward-backward tracking criterion). Fig.13 shows comparison results of our tracking

method using the forward-backward tracking criterion and without the criterion. As shown in Ta-

ble 2, Table 3 and Fig.13, our method with the forward-backward tracking criterion performs well

than without the criterion. Thus, this criterion can effectively evaluate the tracking performance to

decide whether or not to update the appearance model.
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#160 #195 #220 #390

(a) DavidIndoor

#119 #125 #150#95

(b) Caviar1 

#50 #80 #95 #135

(c) Caviar3 

#220 #250 #300#190

(d) Jumping 

Ours— Ours

Fig 13 Comparison of our tracking method using the forward-backward tracking criterion and without.
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Table 6 Comparison of average FPS.

Algorithm CT MIL IVT WMIL LOT ODOT Ours

Average FPS 34.3 6.7 20.1 24.4 0.2 0.3 3.7

4.6 Complexity analysis

In the IVT method, the computation involves matrix-vector multiplication and the computation

complexity is O(dk). The computation complexity of the CT tracker using random projection

to extract features is O(cn), where c is the number of nonzero entries in each row of projection

matrix. The computation complexity of LASSO algorithm to compute the sparse coefficients for

sparse representation is O(d2 + dk). The ODOT method needs to implement two-stage object

tracking using sparse representation, so it is very slow. The computational load of our method

is mainly to compute sparse coefficients and subspace appearance model construction, and the

complexity is O(d2 + dk).

In order to compare the detailed computational time of our tracker with other tracking methods,

we test different trackers using MATLAB on an i3 3.20 GHz machine with 4 GB RAM. Then, some

selected trackers are implemented on different video sequences, the whole running time is stored

on each sequence, and then we can obtain the frames per second (FPS) at the all tested sequence.

Finally, we report the average FPS from the all test sequences in Table 6.

4.7 Discussion

As shown in our experiments, our method can address these factors including abrupt motion, clut-

tered background, occlusion, and Illumination variation more effectively. This can be attributed to

some reasons listed as follows. (1) We define the discriminative weights through estimating the s-

parse construction error using negative and positive samples, which help our method to distinguish

33



#32 #85 #163

#54 #69 #69#90

(a) Pedestrian2

(b) Biker

Fig 14 Two failed tracking cases:(a) out of plane rotation and abrupt motion; (b) object of interest leaves completely
out of screen and reappears.

target from background clutter accurately. (2) The decision map combining discriminative weights

and subspace reconstruction error can use the advantages of sparse representation and subspace

learning model, which help to handle the appearance change and background clutter effectively.

(3) The new valuation criterion based on the forward and backward tracking method can han-

dle tracking outliers and reduce the cumulative error. Therefore, our tracker can obtain favorable

performance.

However, our proposed method may fail when an object of interest leaves completely out of

screen and reappears or an out-of-plane rotation and an abrupt motion occur in the current se-

quences (see Fig.14). Fig.14(a) shows the tracked object completely out of the screen and reap-

pears after some frames. Our tracker can not track the object in a long time when an object of

interest leaves completely out of screen, so there are big errors to update the subspace appearance

model. Fig.14(b) shows an out-of-plane rotation and an abrupt motion after #69. Our method drifts

away the ground truth because the appearance model can not match well between the object model

and the candidates, and it cannot distinguish the object from the changed background when abrupt
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motion.

Overall, our method performs favorably against the other state-of-the-art tracking methods in

the challenge sequences.

5 Conclusion

In this paper, we have proposed a novel tracking algorithm based on a weighted subspace recon-

struction error. Firstly, the discriminative weights are defined through minimizing the reconstruc-

tion error using a positive dictionary while maximizing the reconstruction error using a negative

dictionary respectively. The discriminative weights can distinguish a target from its background

clutter accurately due to the use of positive and negative samples to encode sparse coefficients.

Combining discriminative weights and subspace reconstruction error can make use of their advan-

tages including sparse representation and subspace appearance model, which help to handle ap-

pearance variation and sever occlusion effectively. Furthermore, the new valuation method based

on forward-backward tracking criterion can handle tracking outliers and reduce the cumulative er-

ror. Experiments on some challenging video sequences have demonstrated the superiority of our

proposed method to twelve state-of-the-art ones in accuracy and robustness.
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