Cryptococcal transmigration across a model brain blood-barrier: evidence of the Trojan horse mechanism and differences between Cryptococcus neoformans var. grubii strain H99 and Cryptococcus gattii strain R265

Tania C. Sorrell a,*, Pierre Juillard a, b, d, Julianne T. Djordjevic a, b, Keren Francis a, b, Anelia Dietmann c, d, Alban Milonig c, d, Valery Combes a, d, Georges E.R. Grau a, d

a Marie Bashir Institute for Infectious Diseases and Biosecurity, University of Sydney and Westmead Millennium Institute for Medical Research, Westmead, New South Wales 2145, Australia
b Fungal Pathogenesis Laboratory, Centre for Infectious Diseases and Microbiology, Westmead Millennium Institute, Westmead 2145, Australia
c Department of Neurology, Innsbruck Medical University, Innsbruck, Austria
d Vascular Immunology Unit, Department of Pathology, School of Medical Sciences, University of Sydney, NSW 2006, Australia

Received 11 May 2015; accepted 31 August 2015

Available online

Abstract

Cryptococcus neoformans (Cn) and Cryptococcus gattii (Cg) cause neurological disease and cross the BBB as free cells or in mononuclear phagocytes via the Trojan horse mechanism, although evidence for the latter is indirect. There is emerging evidence that Cn and the North American outbreak Cg strain (R265) more commonly cause neurological and lung disease, respectively. We have employed a widely validated in vitro model of the BBB, which utilizes the hCMEC/D3 cell line derived from human brain endothelial cells (HBEC) and the human macrophage-like cell line, THP-1, to investigate whether transport of dual fluorescence-labelled Cn and Cg across the BBB occurs within macrophages. We showed that phagocytosis of Cn by non-interferon (IFN)-γ stimulated THP-1 cells was higher than that of Cg. Although Cn and Cg-loaded THP-1 bound similarly to TNF-activated HBECs under shear stress, more Cn-loaded macrophages were transported across an intact HBEC monolayer, consistent with the predilection of Cn for CNS infection. Furthermore, Cn exhibited a higher rate of expulsion from transmigrated THP-1 compared with Cg. Our results therefore provide further evidence for transmigration of both Cn and Cg via the Trojan horse mechanism and a potential explanation for the predilection of Cn to cause CNS infection.

© 2015 Institut Pasteur. Published by Elsevier Masson SAS. All rights reserved.

Keywords: Cryptococcus; Monocytes; Brain endothelium; Phagocytosis; Transmigration

1. Introduction

Despite the known predilection of Cn and Cg for the lung and central nervous system, the emergence of the VGII genotype of Cryptococcus gattii on Vancouver Island several years ago has revealed differences in clinical presentation [1]. In addition, Cn and Cg differ in host preference [2]. For example, Cg VGII most commonly causes lung disease and affects apparently healthy hosts whereas Cn var. grubii (molecular types VNI and VNII predominantly) typically causes meningitis in HIV-infected or otherwise immune-compromised hosts. In rat and mouse models, infection via the respiratory route with the type strain of Cn, H99 and the VGII outbreak strain of Cg (R265), resulted in mortality due...
to neurological and lung infection, respectively [3,4]. The
genesis of these differences is unexplained but may involve
differential passage across the blood brain barrier (BBB).
This hypothesis is consistent with the work of Ngamskul-
rungroj et al. [4], who demonstrated that the load of cryp-
tococci in the brains of mice injected intravenously with Cn
strain H99 was higher than that in mice infected with R265,
and that small inocula given intravenously resulted in much
higher mortality in the group receiving H99.

Cryptococci cause neurological disease following
dissemination from the lung via the blood and passage across
the blood brain barrier (BBB). Studies in murine models of
Cn infection suggest that cryptococci enter the brain through
the microvasculature of cortical and penetrating vessels [5,6],
form para-vascular micro-abscesses and spread secondarily
to the meninges, with development of meningitis. Debate has
centered on whether cryptococci are transported in the blood
and/or across the BBB as free cells or within mononuclear
phagocytes (the so-called Trojan horse mechanism). In animal
and cell models of cryptococcosis, it has been shown that
free cryptococci can either cross the BBB via specific ligand-
receptor interactions followed by transcytosis [7,8] or via the
mechanical trapping of cryptococci in the branches of the
capillaries followed by mechanical and/or biochemical
disruption of the capillary walls of endothelial cells and/or
their tight junctions (e.g. following exposure to cryptococcal
urease) [9,10]. Cryptococci have also been found in the blood
of experimental animals in association with monocytes
[11,12] and there is indirect evidence for transmigration
across the BBB by the Trojan horse mechanism. Specifically,
(a) adoptive transfer of pulmonary macrophages and blood
monocytes isolated from mice infected with Cn via inhala-
tion, led to cerebral cryptococcosis in healthy recipients [11];
(b) intravenous inoculation of murine macrophages infected
with cryptococci in vitro resulted in meningo-encephalitis,
and (c) clodronate-induced depletion of circulating mono-
cytes reduced disease severity and tissue fungal burdens [5,6,12].
In the context of AIDS-associated cryptococcal
meningo-encephalitis, it is notable that mononuclear phago-
cyte translocation into the CNS is facilitated by HIV infection
of these cells [13]. Demonstration of non-lytic exocytosis,
whereby cryptococci are expelled from mononuclear
phagocytes without affecting the viability of either cell type
[14,15] raises the additional possibility that they are trans-
ported via the blood stream within monocytes but are
expelled following cellular adherence to cerebral micro-
vascular endothelial cells and thence cross the BBB as free
cryptococci.

In this study we employed a widely validated in vitro model
of the BBB, which utilizes the hCMEC/D3 cell line derived
from human brain endothelial cells (HBEcc), which re-
capitulates functions and cell surface properties human
endothelial cells of the brain microvasculature [16], and
the human macrophage-like cell line, THP-1, to demonstrate
the existence of the Trojan horse mechanism of transport of Cn
and Cg across the BBB and to investigate species-dependent
differences in this process.

2. Materials & methods

2.1. Endothelial and monocyte cell lines

Human cerebral microvascular endothelial cells (hCMEC/
D3), referred to as HBEC, were a generous gift from Professor
P.O. Couraud, (Hopital Cochin, Paris, France). THP-1 mono-
cyte-like cells of human origin were obtained from Dr B.
Saunders (Centenary Institute, Sydney, Australia) [17].

2.2. Cryptococcal strains

Cn strain H99 (originally a gift of Dr Gary Cox, Duke
University) and Cg strain R265 (the more virulent genotype
VGII originating from a patient in the Vancouver Island
outbreak) - from the collection of W. Meyer, Westmead, NSW,
Australia) were sub-cultured from glycerol stocks and cultured
at 30 °C overnight on yeast-peptone-dextrose (YPD: USB,
Cleveland, Ohio, USA) agar prior to use.

2.3. FITC labelling and opsonisation of cryptococci

Cryptococci were pelleted from overnight YPD cultures,
washed with PBS, labelled with FITC in PBS (Sigma Aldrich,
St Louis, MO, USA) by incubation at 30 °C for 10 min with
light agitation, pelleted by centrifugation and washed 3 × with
Dulbecco’s PBS (Lonza, Basel, Switzerland) or until the su-
pernatant was clear. Labelled cryptococci were counted in a
haemocytometer and a volume containing 15×10^6 cells was
centrifuged. The pellet was resuspended in 750 μL human
serum prepared from clotted blood and 3.75 μL IgG opso-
aising antibody (18B7) directed against the cryptococcal
capsular polysaccharide, glucuronoxylomannan (GXM), a
kind gift from Arturo Casadevall, Albert Einstein College of
Medicine, Bronx, New York). Cryptococci were incubated in
serum and antibody for 30 min in a rotary shaker with light
agitation at 37 °C and pelleted by centrifugation. 150 μL of
serum/antibody supernatant was removed to bring the final
volume of supernatant to 600 μL. Cryptococci were resus-
pended in this supernatant before further use.

2.4. Phagocytosis of cryptococci by THP-1 cells,
calculation of phagocytic index and analysis by flow
cytometry

THP-1 cells were cultured in RPMI complete medium and
were either left unstimulated or stimulated overnight with
IFN-γ (10 ng/mL, Peprotech, Rocky Hill NJ USA) at 37 °C in
a 5% CO₂ atmosphere. Cryptococci were then labelled with
FITC and opsonized as described above. IFN-γ stimulated and
non-stimulated (NS) THP-1 cells were resuspended in RPMI
medium and FITC-labelled, opsonized cryptococci were added in a ratio of 1:5 THP-1 cells:cryptococci. Phagocytosis
was allowed to proceed for 3 h at 37 °C in a 5% CO₂ atmos-
phere. After incubation, suspensions were washed by centri-
fugation and labelled with 1.5 mM Uvitex solution
(Fluorescent Brightener 28, Sigma F-3543) for 10 min at

Please cite this article in press as: Sorrell TC, et al., Cryptococcal transmigration across a model brain blood-barrier: evidence of the Trojan horse mechanism
and differences between Cryptococcus neoformans var. grubii strain H99 and Cryptococcus gattii strain R265, Microbes and Infection (2015), http://dx.doi.org/
10.1016/j.micinf.2015.08.017
37 °C with light agitation. Images were captured and deconvoluted using a DeltaVision Deconvolution microscope.

To calculate the phagocytic index, a minimum of 100 THP-1 cells were counted per treatment in triplicates, along with the number of cryptococci ingested per THP-1 cell. Phagocytic index (PI), was determined using the following calculation:

\[PI = \left(\frac{\text{number of cryptococci ingested per THP-1 cell}}{\text{mean number of cryptococci/phagocytic cell containing cryptococci}} \right) \times 100 \]

For flow cytometry analysis, the pellets of both stimulated and non-stimulated THP-1, incubated with either Cn or Cg were resuspended in RPMI and aliquoted into a round-bottom 96 well plate. Samples were analysed on a Cytomics FC500 MPL or a Gallios (Beckman Coulter) flow cytometer (Beckman Coulter, Indianapolis, IN, USA).

2.5. Binding under shear stress

2.5.1. Preparation of HBEC monolayers

HBEC were seeded on to collagen-coated 35 mm culture dishes (Corning, NY, USA, Cat # 430165), grown to confluence in EBM2 medium as previously described (14) then stimulated overnight with TNF to simulate inflammatory conditions and up-regulate adhesion molecules (10 ng/mL; Peprotech).

2.5.2. Preparation of THP-1 cells

Control and IFN-γ-stimulated THP-1 cells, prepared as described above, were centrifuged at 500 g for 5 min at room temperature and labelled with Wheat Germ Agglutinin (WGA, Life Technologies, Grand Island, NY, USA), at a final concentration of 1 μg/mL in RPMI, for 10 min in the dark at 37 °C. WGA is a lipophilic fluorescent dye that is very quickly incorporated into the THP-1 cell plasma membrane. Cells were washed twice, resuspended in RPMI complete medium and incubated with FITC-labelled, opsonized cryptococci for 3 h as described above. Post phagocytosis, cells were washed in complete medium, their numbers adjusted to 2 × 10^5 cells/mL and cultures were maintained at 37 °C for the duration of the flow binding assay.

2.5.3. Assessment of binding under flow conditions

The flow 24 chamber apparatus consisted of a 0.010 mm Gasket with a 5.0 mm wide channel (GlycoTech, Gaithersburg, MD, USA) attached to a cast acrylic flow deck. A syringe pump (KD Scientific, Holliston, MA, USA) and a vacuum source were connected to each end of the flow 24 chamber. With the vacuum on, the flow chamber apparatus was then lowered onto a 35 mm petri dish containing confluent endothelium in resting or stimulated states, which was sealed onto the stage of an inverted microscope (Olympus, IX71).

Once a complete vacuum was established, RPMI complete medium was allowed to flow through the connecting tubing for 3 min to prevent air bubbles from interfering with the flow of cells. Approximately 3.5 ml of THP-1 cell suspension (2 × 10^5 cells/ml) was then loaded into the 5 ml syringe connected to the input tubing. A flow rate of 0.227 ml/min (corresponding to 1 dyne/cm² or 0.1 Pa) was applied for 15 min to allow cell attachment to the HBEC monolayer. Prior to counting the bound cells the monolayer was washed with complete medium for 3 min, or until no cells were observed in the flow-through. Ten randomly selected fields of view were imaged per test condition at 200× magnification. Images of WGA-stained THP-1 cells (red) and FITC-stained cryptococci (green) were captured. Images were then overlaid to determine the proportion of bound THP-1 cells containing cryptococci (yellow). Overlain images were also used to distinguish between phagocytosed cryptococci and non-internalized (adherent) yeast. These images were imported into ImageJ analysis software and analysed using the cell counter plug-in.

2.6. Transmigration

2.6.1. Endothelial cell monolayers

Corning 6.5 mm and 24 mm Transwells with 8 μm pores (Corning, NY, USA) were coated with 3% collagen. Each insert was rinsed with EBM2 medium, and 600 μl and 2.6 ml of EBM2 was added to the bottom chamber of the transwell, respectively. HBEC were seeded at 2 × 10^5 and 2 × 10^6 cells/well, respectively, and grown to confluence at 37 °C in an atmosphere of 5% CO₂, as determined using a sentinel well stained with WGA (5 μg/ml). FITC-labelled, opsonized cryptococci were allowed to undergo phagocytosis by THP-1 cells as described above. Free extracellular cryptococci were removed by two rounds of centrifugation over Ficoll-paque (GE Healthcare, Uppsala, Sweden). THP-1 cells containing phagocytosed or adherent cryptococci were collected from the interface and stained with 1.5 μM Uvitex (Fluorescent Brightener 28, Sigma F-3543) for 10 min in a rotary shaker with light agitation at 37 °C. Since Uvitex stains chitin in the fungal cell wall and does not penetrate through membranes of viable THP-1 cells, it enables cryptococci that have crossed the endothelial monolayer as free yeasts to be distinguished from those that have crossed inside THP-1 cells and been released subsequently. Suspensions of THP-1 cells ± cryptococci (3 × 10^5 in 100μL and 2.4 × 10^6 THP-1 in 1.5 ml) were added to HBEC monolayers in the small and large Transwells, respectively. After overnight incubation, medium and cells within the lower chamber of the Transwell were collected, centrifuged and imaged by DeltaVision deconvolution microscope or analysed by flow cytometry.

2.7. Effects of transmigration on the endothelial monolayer integrity

2.7.1. Impedance studies

Electrode arrays (Applied BioPhysics, Troy, New York) were pre-treated with l-cysteine (10 mM, Sigma) for 15 min, washed twice in sterile water and then coated with 3% collagen for 1 h. HBEC were seeded at 1 × 10^5 cells/ml and loaded into the electrical cell-substrate impedance sensing (ECIS) morphological biosensor (Applied BioPhysics) at 37 °C for a minimum of 48 h or until confluence was attained (plateau). Resting and IFNγ-stimulated THP-1 that had

Please cite this article in press as: Sorrell TC, et al., Cryptococcal transmigration across a model brain blood-barrier: evidence of the Trojan horse mechanism and differences between Cryptococcus neoformans var. grubii strain H99 and Cryptococcus gattii strain R265, Microbes and Infection (2015), http://dx.doi.org/10.1016/j.micinf.2015.08.017
phagocytosed cryptococci (Cn and Cg) were submitted to 2 rounds of centrifugation through Ficoll-paque to eliminate free cryptococci, and then added to the resting or TNF-stimulated HBEC at a ratio of 1 HBEC to 3 THP-1 cells ± Cn or Cg. Impedance readings of the endothelial monolayer were taken at 5 min intervals for 96 h. As controls, medium or THP-1 alone were added to separate wells.

2.7.2. Measurement of 70 kDa dextran permeability

Integrity of the HBEC monolayer was also assessed by measuring its permeability to dextran. HBEC were seeded onto 8 μm pore size, collagen-coated Transwell inserts in 24 well plates at 2 × 10^5 cells/ml and grown until confluent. Resting THP-1 cells that had phagocytosed cryptococci (Cn and Cg) were submitted to 2 rounds of centrifugation through Ficoll-paque to eliminate free cryptococci and then incubated for 24 h with the non-stimulated HBEC at a ratio of 1 HBEC to 3 THP-1 cells ± cryptococci (Cn or Cg). A 30 min treatment of the endothelial monolayer with cytochalasin D (10 μg/mL) was used as positive control for loss of monolayer integrity. After 24 h, the culture medium in the upper chamber was replaced with 70 kDa FITC-dextran (1 mg/ml, Invitrogen) diluted in DMEM without phenol red (Gibco). The lower chamber was filled with 600 μl of DMEM without phenol red. After gentle resuspension, 50 μl samples were removed from the lower chamber after 0, 30, 60, 90 and 120 min and the fluorescence intensity measured on a Fluostar Optima (BMG Labtech).

2.7.3. Visualisation of the integrity of the monolayer after assessment of electrical resistance

At the end of the ECIS experiment, the monolayers were washed gently to remove the unbound THP-1 cells and observed using phase contrast microscopy.

2.8. Statistical analysis

Statistical analysis was performed using either GraphPad Prism software version 5.0, or JMP statistical software (SAS Institute, Inc., Cary, NC). Comparisons of discrete or continuous probability distribution between phagocytosed Cn and Cg, or transmitted Cn and Cg were analysed by using a one-way ANOVA test. A probability (p) value of <0.05 was considered to be significant.

3. Results

3.1. Phagocytosis of Cn and Cg by THP-1 cells

We first compared the ability of un-stimulated and IFN-γ-stimulated THP-1 cells to phagocytose Cn and Cg using flow cytometry. Control THP-1 cells (Fig. 1A, red ellipse) were easily distinguished from THP-1 cells that had phagocytosed Cn or Cg (Fig. 1B, black ellipse) or free cryptococci (Fig. 1B, green ellipse) on the basis of both forward scatter and FITC fluorescence. Flow cytometry profiles were similar regardless of the activation status of the THP-1 cells or the cryptococcal species (not shown). After the 3-h incubation, When expressed as the proportion of THP-1 cells which had ingested at least one cryptococcal cell, phagocytosis of Cn and of Cg was significantly increased by activation with IFN-γ and for both conditions phagocytosis of Cn was significantly higher than Cg (Fig. 1C). The load of Cn and Cg per THP-1 cell was similarly increased by IFN-γ activation, with the load in unstimulated cells being significantly higher for Cn than Cg (Fig. 1D). The respective phagocytic indices (PI) are shown in Fig. 1D. Phagocytosis in the absence of opsonisation was minimal, whether or not THP-1 cells had been treated with IFN-γ (not shown).

3.2. Binding to brain endothelial cells under flow conditions

Binding of post-phagocytic THP-1 cells to HBEC was evaluated under flow conditions (1 dyne/cm²) to determine if there were differences between THP-1 cells that had been pre-incubated with FITC-labelled Cn and Cg. In the case of resting endothelium, no significant difference between the low level of binding of Cn- or Cg-loaded, non-stimulated and IFN-γ-stimulated THP-1 cells was observed, hence only the results for non-stimulated THP-1 cells are shown. In contrast, stimulation of the HBEC monolayer with TNF greatly enhanced binding of both Cn and Cg-loaded THP-1 cells, regardless of the activation status of the THP-1 cells (Fig. 2A and B, mid and lower histograms). For binding of cells pre-incubated with Cn, 17 ± 5 THP-1 cells per 10 fields of view (FOV) adhered to the resting monolayer with 4 ± 2 (21%) containing Cn (Fig. 2A). This number increased to 269 ± 42, with 175 ± 8 cells (65%, black bar) containing Cn after the endothelial monolayer had been stimulated with TNF (Fig. 2A). Pre-incubation of THP-1 cells overnight with IFN-γ did not significantly increase the number bound to TNF-stimulated HBEC (285 ± 95.1, with 181 ± 38.5 cells containing Cn (64%, black bar). A representative micrograph distinguishing the binding of empty THP-1 cells (red) from those containing intracellular Cn (green or yellow) to TNF-stimulated HBEC is shown in Fig. 2D. No binding of either empty or loaded THP-1 cells to resting HBEC is evident in Fig. 2C.

As with Cn, limited binding of Cg-containing THP-1 cells to non-stimulated HBEC was observed: 20 ± 4.2 THP-1 cells were bound, with 3 ± 1.4 (15%) containing Cg (Fig. 2B, upper bar). As observed for Cn-loaded THP-1 cells in Fig. 2A, there was no significant difference between the binding of non-stimulated and IFN-γ-stimulated, pre-loaded THP-1 cells to resting endothelium and thus only the results for non-stimulated THP-1 cells are shown. When HBEC were activated with TNF, the total number of bound, non-stimulated, pre-loaded THP-1 cells increased to 487 ± 304.1, with 275 ± 167 (57%, black bar) containing Cg (Fig. 2B). Stimulation with IFN-γ did not change the binding of the Cg-loaded THP-1 cells to HBEC: 508 ± 232.9 THP-1 cells were bound to the monolayer, with 300 ± 179.9 cells (59%, black bars) containing Cg (Fig. 2B).
3.3. Assessment of crossing the BBB via a Trojan horse mechanism

Transmigration experiments using FITC-labelled Cn and fluorescence microscopy were performed to obtain evidence that THP-1 cells transport cryptococci through the in vitro BBB model (Fig. 3). An Uvitex staining step was employed post-phagocytosis and pre-transmigration to label any non-phagocytosed cryptococci, including those that adhered to the THP-1 cell surface (FITC-positive and Uvitex-positive). This step was essential to distinguish these non-internalised from internalized (FITC-positive and Uvitex-negative) cryptococci, pre-transmigration. Fig. 3A shows dual-stained cryptococci immediately after phagocytosis showing green (intracellular) and blue or blue-green (extracellular) cryptococci. Note: these images were prepared prior to removal of extracellular cryptococci by two centrifugation steps through ficoll-hypaque, in order to demonstrate both intracellular and extracellular cryptococci. Post-transmigration, the presence of green FITC-positive, Uvitex-negative cryptococci is indicative of cryptococcal transport across the endothelial cell monolayer within THP-1 (Fig. 3B). These images clearly demonstrate transmigration of Cn and Cg via the Trojan horse mechanism.

3.4. Comparing the transmigration of Cn and Cg

Using the dual-staining procedure described above, the transmigration of Cn and Cg via the Trojan horse mechanism was compared using both flow cytometry and fluorescence microscopy. Flow cytometry was used initially to determine the total numbers of THP-1 cells that had transmigrated into the baso-lateral chamber (Fig. 4). Fluorescence microscopy was then employed to distinguish the different sub-populations present, based on the dual staining procedure. Initial experiments (in triplicate) revealed that transmigration of THP-1 cells post exposure to cryptococci was unaffected by TNF activation or not of HBEC monolayers of by activation of THP-1 cells. Results for transmigration across unstimulated HBEC are depicted in Fig. 4. After 24 h, 231,176 ± 125,208 THP-1 cells had transmigrated, with 7617 (3.1%) of them containing Cn and thus FITC-positive (Fig. 4A, white histogram). Among these, 5839 THP-1 (77%) had transmigrated within THP-1 cells as they were Uvitex-negative (black
histogram) and 1779 (23%) were Uvitex-positive (grey histogram). In the case of Cg, 111,959 ± 23,350 THP-1 had transmigrated after 24 h, with 8383 (6.7%) of them containing Cg (Fig. 4A). Among these, 3870 THP-1 (46%) had transmigrated within THP-1 cells i.e. were Uvitex-negative (black histogram) and 4513 (54%) were Uvitex-positive (grey histogram). As shown in Fig. 4A, both Cn and Cg were transported across the BBB by the Trojan horse mechanism. Although a relatively small percentage of THP-1 cells contained intracellular cryptococci, the number of Cn transported by this route was significantly greater than that of Cg. The number of free cryptococci in the baso-lateral chamber of the transwells is shown in Fig. 4B. The number of FITC-positive, Uvitex-negative Cn (which must have been expelled from THP-1 cells after transmigration) was significantly greater than that of Cg (compare black histograms). These Cn tended to be more numerous, although not significantly, than Cn that had transmigrated across the BBB as free or THP-1 surface-bound fungal cells (FITC-positive, Uvitex-positive).

3.5. Effects of THP-1 cells with or without phagocytosed cryptococci on endothelial integrity

To assess the integrity of the endothelial monolayer following interaction with THP-1 cells ± cryptococci (Cn or Cg) and subsequent to binding or transmigration, we measured
the electrical impedance and permeability to FITC dextran of the HBEC monolayer, respectively (Fig. 5). Whether HBEC were co-cultured with THP-1 cells alone or THP-1 cells that had phagocytosed \(Cn \) or \(Cg \), no change to the impedance was observed over 24 h. Similarly, impedance was not affected by stimulation of THP-1 cells with IFN-\(\gamma \) or of HBEC with TNF. These findings indicate that binding of phagocytosed cryptococci to the HBEC monolayer did not affect its integrity. When HBEC monolayers were examined by light microscopy, no apparent cellular damage was observed (Fig. 6A).

Fig. 3. Evidence for the Trojan-horse mechanism of cryptococcal transmigration through the BBB as revealed by fluorescence microscopy. (A) Phagocytosed cryptococci pre-transmigration. Following phagocytosis of FITC-labelled \(Cn \) or \(Cg \) by unstimulated and INF-\(\gamma \)-stimulated THP-1 cells for 3 h, unphagocytosed cryptococci were stained with Uvitex. Internalized cryptococci are observed as green/FITC\(^+\), while non-phagocytosed cryptococci are observed as both green/FITC\(^+\) and blue/Uvitex\(^+\). (B) Phagocytosed cryptococci post transmigration. Following removal of non-internalized FITC\(^+\)/Uvitex\(^+\) cryptococci post-phagocytosis by two centrifugation steps over Ficoll Hypaque, THP-1 cells were incubated with HBEC monolayers for 24 h. The colour of \(Cn \) or \(Cg \) associated with transmigrated THP-1 cells (in the basolateral chamber) was then assessed by fluorescence microscopy. Internalized FITC\(^+\) cryptococci were considered to have transmigrated through the BBB as phagocytosed cells, while internalized Uvitex\(^+\) cryptococci were considered to have transmigrated independently of THP1s and undergone phagocytosis post-transmigration.
Permeability of HBEC monolayers to FITC-dextran was also measured in transmigration experiments, after 6 and 18 h of culture. No increase in permeability was noted, in contrast to that of control HBEC monolayers treated with cytochalasin B (Fig. 6B).

4. Discussion

This study provides further evidence for the Trojan horse mechanism of transport of cryptococci across the human brain microvascular endothelium. Using a well-established ex vivo
model of BBB, recapitulated by use of an immortalized cerebral microvascular endothelial cell line, we demonstrated trans-migration of both \(Cn \) and \(Cg \) within THP-1 cells, confirming previous indirect evidence from mouse models of cryptococcal infection \([5,11,12]\). Importantly, electrical impedance analysis, dextran permeability studies and direct microscopy confirmed that the HBEC monolayer remained intact; i.e. its integrity was not compromised by transmigration of THP-1 cells and cryptococci. We also observed differences in transmigration between the type strain of \(Cn \), H99 (genotype VNI) and the commonest, more virulent sub-genotype of \(Cg \) (R265, genotype VGIIa) from the Vancouver Island outbreak.

Differences in the properties of THP-1 loaded H99 and R265 in this study are of interest since early studies of \(Cn \) and \(Cg \) infection suggested that differences in clinical presentation were explained by the respective associations of \(Cn \) and \(Cg \) with host immunocompromise and immunocompetence, rather than by the causative cryptococcal species. In the study of Chen et al., 86% of patients with AIDS presented with meningitis, whereas the majority (60%) of immune-competent patients presented with pulmonary disease and this pulmonary presentation was species-independent \([2]\). In the initial report of the Vancouver Island outbreak of \(Cg \) (genotype VGII) infection, 57% of HIV-negative patients presented with lung disease and 78% of HIV-infected patients presented with CNS disease \([1,18]\). The possibility of a genotype-dependent effect on clinical presentation was raised when Ngamskulrungroj et al. observed that strain H99 (VNI) of \(Cn \) and strain R265 (VGIIa) of \(Cg \) caused fatal brain and lung infection respectively, in a mouse inhalational model \([19]\). The observation by this group that a small intravenous inoculum (five cryptococcal cells) caused brain infection in only 10% of \(Cg \)-infected mice, compared with 60% of mice infected with \(Cn \) \([4]\), prompted us to study transport of these two strains across the BBB.

As expected from previous publications \([20]\), activation of THP-1 cells with IFN-\(\gamma \) in vivo resulted in a higher proportion of phagocytic THP-1 cells and higher cryptococcal loads per cell for both \(Cn \) and \(Cg \). However, \(Cn \) was phagocytosed by a higher proportion of unstimulated THP-1 cells than was \(Cg \) and loads of \(Cn \) per THP-1 cell were also increased. Based on the latter observation and the report of Ngamskulrungroj et al., we predicted that adhesion of phagocytosed \(Cn \) to HBEC monolayers would be greater than that of \(Cg \). However, this was not the case. Furthermore activation of THP-1 cells by IFN-\(\gamma \), a condition designed to mimic the activation status of blood monocytes during active cryptococcal infection
[21] did not affect adherence to HBEC. Adherence to unstimulated HBEC monolayers was minimal under flow conditions (simulating the shear stress associated with blood flow through the cerebral microvasculature) but was substantially increased by pre-activation of HBEC with TNF (simulating inflammatory conditions during active infection in vivo) [22,23]. TNF increases the expression of adhesion molecules (such as ICAM-1, ICAM-2, and VCAM-1) on endothelial cells in cerebral capillaries and especially in post-capillary venules, which are the major site of leucocyte transmigration across the BBB in inflammatory states). TNF-induced up-regulation of ICAM-1, a receptor for leucocyte integrins such as CD11b, which is expressed on monocytes (and THP-1 cells), is likely explain the increased adhesion of THP-1 cells (for review, see Refs. [24,25]). Our observation that the proportion of bound THP-1 cells containing Cn and Cg was greatly increased following activation of the HBEC monolayer is of interest as it suggests that phagocytosis of cryptococci modifies THP-1 cells in a way that promotes their binding to activated endothelial cells. We can postulate that phagocytosis induces either an upregulation or—as often seen with integrins—conformational changes in THP-1 cell surface molecules, including the phagocytic receptor, adhesion and signalling molecule, CD13 [26]. However, IFN-γ treatment did not enhance binding to either resting or TNF-stimulated HBEC, and both CD13 [27] and integrins are upregulated on mononuclear phagocytes by IFN-γ. Thus alternative adhesins or adhesion mechanisms must be involved; these may be associated with the release of mediators or membrane microparticles triggered by phagocytosis. Further investigation of the mechanism of adhesion was beyond the scope of this study.

Although binding of THP-1 cells, whether or not they contained cryptococci or were activated with IFN-γ, was low in the absence of TNF-induced activation of HBEC, transmigration was unaffected by activation of either cell type, confirming that these events are independent (for review see Ley et al.). These findings suggest that transmigration proceeds by a process independent of binding to receptors upregulated on THP-1 cells by IFN-γ and on HBEC by TNF. This interpretation is supported by our observation that a high proportion (65% and 57%) of THP-1 cells that adhered to TNF-stimulated HBEC contained intracellular Cn and Cg respectively, compared with 2.5% and 3.5% after transmigration. It is of interest that in studies involving “free” cryptococci, only a similar small percentage (1.5–5.5%) actually crossed the BBB (via transcytosis) [28]. We considered the possibility that the process of non-lytic exocytosis of cryptococci [15] from THP-1 cells post-migration lowered the apparent rates of transmigration via the Trojan horse mechanism. In this context, a report that non-lytic exocytosis of H99 from non-stimulated and IFN-γ-stimulated human primary macrophages, was greater than that of the R265 strain of Cg, is of interest [29]. Indeed free cryptococci that had crossed the HBEC monolayer within THP-1 cells were present in the basal chambers of transwells indicative of non-lytic exocytosis and significantly more Cn had been released than Cg.

Our results, if confirmed in future experiments, including the use of primary human mononuclear phagocytes, might explain the observation that multiplication of, and mortality from, Cn in the CNS is greater than that of Cg [19].

In summary, this study provides further evidence that cryptococci are transported across the BBB by the Trojan horse mechanism. Increased phagocytosis and transmigration of Cn within unstimulated THP-1 cells across HBEC monolayers and the increased extent of non-lytic exocytosis post-transmigration all contributed to a significantly increased load of free of Cn compared with Cg in the baso-lateral chamber of the transwells. These data invite studies of species-dependent differences in BBB interactions and transmigration. If confirmed, this may provide further insight into species-dependent differences in clinical presentations cryptococcosis.

Conflicts of interest

The authors have no conflicts of interest to declare in relation to this work.

Acknowledgements

This work was funded by a project grant #1050106 from the National Health and Medical Research Council of Australia, the Rebecca L. Cooper Foundation, and a philanthropic donation to the Marie Bashir Institute through the Sydney Medical School Foundation. TCS is a Sydney Medical School Foundation Fellow. The authors wish to thank Dr. Sophie Lev for her assistance with the fluorescence microscopy and its interpretation.

References

Please cite this article in press as: Sorrell TC, et al., Cryptococcal transmigration across a model brain blood-barrier: evidence of the Trojan horse mechanism and differences between Cryptococcus neoformans var. grubii strain H99 and Cryptococcus gattii strain R265, Microbes and Infection (2015), http://dx.doi.org/10.1016/j.micinf.2015.08.017
T.C. Sorrell et al. / Microbes and Infection xx (2015) 1–11

Please cite this article in press as: Sorrell TC, et al., Cryptococcal transmigration across a model brain blood-barrier: evidence of the Trojan horse mechanism and differences between Cryptococcus neoformans var. grubii strain H99 and Cryptococcus gattii strain R265, Microbes and Infection (2015), http://dx.doi.org/10.1016/j.micinf.2015.08.017