
Uncoordinated Cooperative Forwarding in Vehicular
Networks with Random Transmission Range

Xuefei Zhang∗, Guoqiang Mao†‡∗, Xiaofeng Tao∗ and Qimei Cui∗

∗ Beijing University of Posts and Telecommunications, China
† University of Technology Sydney, Australia ‡ National ICT Australia (NICTA), Australia

Abstract—This paper investigates cooperative forwarding in
large highly dynamic vehicular networks. Unlike traditional
coordinated cooperative forwarding schemes that require a large
amount of coordination information to be exchanged before
making the forwarding decision, this paper proposes an un-
coordinated cooperative forwarding scheme where each node,
with a random transmission range, decides whether or not to
forward a received packet independently based on a forwarding
probability determined by its own location. Analytical results
are derived on the successful end-to-end transmission probability
and the expected number of forwarding nodes involved in the
cooperative forwarding process. The multi-hop correlations and
multi-path correlations, which constitute major challenges in the
analysis, are carefully considered in our analysis. Simulations
are conducted to establish the performance of the proposed
scheme assuming different forwarding probability functions. In
addition to developing an uncoordinated cooperative forwarding
scheme, which is particularly suited for the highly dynamic
vehicular networks, this paper also makes important theoretical
contributions on analyzing the connectivity of networks with
nodes of variable and random transmission ranges.

I. INTRODUCTION

This paper considers the problem of cooperative forwarding
in highly dynamic vehicular networks. To measure the per-
formance of multi-hop cooperative forwarding schemes, two
important metrics are often used: the end-to-end transmission
success probability and the number of forwarding nodes. Of
course, if every node overhearing the packet between a source
and a destination forwards the packet with a high probability,
the packet can be delivered to its destination with a high
end-to-end transmission success probability but it may cause
a large number of redundant transmissions thereby wasting
precious radio resources. On the other hand, if the forwarding
probability is low which reduces the number of forwarding
nodes, the packet may not eventually arrive at its destination.

End-to-end packet transmissions in vehicular networks can
be either in single hop, i.e. transmissions only occur when the
source and the destination are within the transmission range
of each other, or via multiple hops. There are two common
approaches to end-to-end packet transmissions: broadcast and
cooperative communication. Broadcast remains to be the most
reliable and possibly the most widely used approach for packet
transmission [1, 2] however it is well known to cause a large
number of redundant transmissions and significant waste of
radio resources. Cooperative communication on the other hand
allows additional nodes in the vicinity of the route that over-
hear the transmitted packet to selectively assist in delivering

the packet to its destination, leveraging the broadcast nature of
the wireless communication to provide the diversity gain [3].
An optimally designed cooperative communication strategy
may reduce the number of forwarding nodes involved in the
transmission while guaranteeing a pre-designated transmission
success probability.

A common feature in existing cooperative techniques is
the coordination required among the participating neighbors.
These coordinations typically include the discovery of neigh-
bors in the vicinity, the collection of channel information
to these neighbors, and the selection of the best neighbor(s)
whose cooperation will maximize the performance [1, 3-6].
It was reported in [7] that the coordination overhead may
account for 99 percent of the total packet transmissions.
The heavy overhead involved in coordinating transmissions
of forwarding nodes may offset the benefits of cooperative
transmissions and negatively impact the performance of end-
to-end transmissions, particularly in highly dynamic vehicular
networks. Due to the associated coordination overheads, ex-
isting cooperative communication methods are suitable mostly
for static networks and cannot work well in highly dynamic
networks. As we have started to see the large-scale deployment
of vehicular networks, it is imperative to develop the coop-
erative communication method for highly dynamic vehicular
networks.

Node transmission range is a key factor in determining the
connectivity of highly dynamic networks. A dynamic network
is said to be connected if there is a path from any node to
any other node in the network. Obviously, connectivity is
a prerequisite for end-to-end transmissions to be successful.
Most of existing research on connectivity assume that each
node has an identical and fixed transmission range, which
may not be appropriate for real networks considering the
complex radio propagation environment and the heterogeneity
in wireless devices. Comparatively, the random transmission
range model, where each node has a random transmission
range drawn from a certain range, better reflects reality in
wireless networks because it can account for variability in the
communication links and the radio environment. For example,
in vehicular networks a node close to a high-rise building in
CBD may have a smaller transmission range compared with
a node in an open space on a highway.

Motivated by the above observations, in this paper we
consider an uncoordinated cooperative forwarding scheme
for vehicular networks, where each node with a variable
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and random transmission range overhearing a packet makes
forwarding decisions independently without prior coordination
with or measurement of channel information to its neighbors,
and even without being aware of their existence. Related work
on the uncoordinated cooperative forwarding schemes include
[8, 9], which considered cooperative transmission schemes
employing respectively a constant forwarding probability [8],
a forwarding probability which is a linear function of the
distance between the transmitter and the receiver [9], or a
forwarding probability determined jointly by the distance to
the destination and the spatial distribution of nodes [1]. In [3],
theoretical analysis was presented on the successful transmis-
sion probability using three uncoordinated forwarding schemes
in two-hop scenario where the source and the destination are
at most two hops away. Further, reference [4] investigated the
optimal forwarding scheme in the two-hop scenario. In [10],
the analytical result on optimal uncoordinated cooperative
forwarding probability in multi-hop scenarios was derived. But
the authors ignored the correlation between multiple paths
and multiple hops along the same path between the source
and the destination by modeling the transmission process as
a branching process so as to obtain an upper bound on the
successful transmission probability. The work in [11] analyzed
the connectivity of 1-D wireless networks considering a finite
number of nodes randomly deployed in a given region where
each node has a random communication range by utilizing ex-
isting results on the circle covering problem [12]. The authors
however have incorrectly ignored some subtle but important
differences between the circle covering and connectivity of 1-
D network caused by the boundary effects. Furthermore the
analytical result on successful transmission probability is also
expressed in a complicated form.

In this paper, we aim to fill an important theoretical gap left
by previous work on 1D network connectivity and on uncoor-
dinated cooperative forwarding schemes by deriving the exact
analytical result on the successful transmission probability and
the expected number of cooperative transmissions involved
in end-to-end communications considering the correlations
between multiple paths and multiple hops along the same path
between the source and the destination. More specifically, the
main contributions of this paper are:

• Considering one-dimensional highly dynamic networks
where each node has a random transmission range, this
paper proposes an uncoordinated cooperative forwarding
scheme, where each node receiving the packet makes
forwarding decisions independently of other nodes, us-
ing its own location, without prior coordination with
its neighbors and even without being aware of their
existence.

• The exact analytical results on the successful end-to-
end transmission probability and the expected number of
forwarding nodes involved in the multihop uncoordinated
cooperative communication are obtained, considering the
correlation between multiple paths and multiple hops
between the source and the destination.

• Developing an optimum uncoordinated cooperative for-
warding scheme, which is particularly suited for the
highly dynamic vehicular networks

• Simulations and discussions are presented to validate the
performance of the proposed uncoordinated cooperative
forwarding scheme under different forwarding probability
functions.

II. PROBLEM FORMULATION

In this paper, we consider a vehicular network on a highway.
The vehicular network is modeled as a one-dimensional (1-
D) network on a linear segment of length L with a single
source-destination pair. Without loss of generality, we assume
that the source is located at the origin and the destination is
located on +x axis. The probability distribution function of
the distance between a pair of randomly chosen nodes in a
1-D vehicular network can be readily obtained. Therefore, it
is straightforward to extend the results obtained in this paper
to 1-D networks with multiple source-destination pairs.

A total of n nodes, apart from the source at x0 = 0 and the
destination at L, are randomly and uniformly distributed within
(0, L). Let x1, x2,. . .,xn be the locations of these nodes and
each node has a random transmission range drawn identically,
independently and uniformly from [Rmin, Rmax]. Let ri be the
transmission range of the i− th node: ri ∼ U(Rmin, Rmax).
A node is in either an active mode or a silent mode. A node
is in the active mode if the node can receive or forward an
arriving packet; otherwise the node is in the silence mode.
Initially, all nodes are in the active mode and the transition
from the active mode to the silent mode will be described
later. Fig. 1 illustrates an instance of a network where the
triangle is the source, the square is the destination, circle nodes
are the nodes, and lines with arrow denote the corresponding
transmission ranges. As commonly done in the literature [1, 3,
4, 7], when we consider the transmission of a packet between
a source and a destination, movement of nodes during the end-
to-end transmission is not considered. That is, we consider a
snap-shot of the vehicular network at a particular time instant.
A typical end-to-end transmission can be completed in the
order of milliseconds, during which the movement of nodes
(vehicles) is comparatively small.

Moreover, we assume that each node knows its own lo-
cation, which can be readily obtained from GPS or via one
of the numerous wireless localization techniques available,
the location of the destination, which can be carried in the
packet header. Using the location information, the node makes
forwarding decision independently without prior coordination
with its neighbors and even without being aware of their
existence. More specifically, after the source broadcasts a
packet, the following rule is used in making a forwarding
decision when a node located at x ∈ (0, L) receives a packet:

• If the node receives a copy of the packet for the first
time, it calculates the forwarding probability using its
own location, and decides whether to forward the pack-
et according to the forwarding probability p(x). The
forwarding probability function is a design parameter
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Fig. 1. An illustration of the farthest k-hop transmitter.

that will be used to optimize the performance of the
uncoordinated forwarding scheme.

• If the node decides to forward the packet, it will transmit
the packet and then switch to the silent mode. Otherwise,
it drops the packet and then switches to the silent mode.

• The transmission naturally stops when there is no node
forwarding in the network.

Note that in our forwarding scheme, (1) it is assumed that a
proper MAC mechanism (i.e. CSMA) is employed to avoid
collision; and (2) a node forwards at most once.

A node at x is said to be a k-hop receiver if when the
packet is received by the node for the first time, the packet
has been transmitted k times by nodes located within [0, x)
including the transmission by the source. A node at x is said
to be a k-hop transmitter if the node is a k-hop receiver
and decides to transmit the received packet. Now, we give
another important definition: the endpoint location of a k-
hop transmitter, denoted by yk, is equal to the location of
the node location xk plus its transmission range rk of the
node, i.e. yk = xk + rk. A node at x is said to be the farthest
k-hop transmitter if the node is a k-hop transmitter and its
endpoint location is nearest to the destination among all k-
hop transmitters. We denote by zk the endpoint location of
the farthest k-hop transmitter. Following the definition, the
source is both the 0-hop transmitter and also the farthest 0-
hop transmitter, and z0 is equal to the transmission range of
the source. Let Nk be the number of k-hop transmitters. Fig.
1 illustrates relationship of the terms defined above.

A transmission from the source is said to be successful if
at least one copy of the packet successfully reaches the desti-
nation at L. Let M(L) be the random number of forwarding
nodes which have participated in transmitting the packet but
may not necessarily result in a successful end-to-end trans-
mission to the destination at L. Our objective is to evaluate
the successful end-to-end transmission probability, denoted by
Psuc(L), and the expected number of the forwarding nodes,
denoted by E[M(L)]. An optimally designed cooperative
transmission scheme should minimize E[M(L)] subject to the
constraint that Psuc(L) is above a certain designated threshold.

III. PROBLEM ANALYSIS

In this section, we first derive the analytical result on the
successful transmission probability Psuc(L) and the expected
number of forwarding nodes E[M(L)] for a general case.
Then, An optimally designed cooperative transmission scheme
is provided.

The successful end-to-end transmission probability can be
expressed as

Psuc(L) =
n∑

m=0

Psuc(L | m) Pr(Q = m) (1)

where Psuc(L | m) is the successful transmission probability
conditioned on having m relay nodes and Pr(Q = m) is
the probability that the random number of relay nodes Q
is equal to a given integer m. For convenience, we make a
distinction between “forwarding nodes”, denoted by M(L),
and the “relay nodes”, denoted by Q. We count those nodes
who will forward, if they receive the packet, as “relay nodes”.
On the other hand, all nodes, who have transmitted the packet,
are counted as “forwarding nodes” no matter whether the end-
to-end transmission is successful or not.

The expected number of forwarding nodes can be expressed
as

E[M(L)] =
n∑

m=0

E[M(L) | m] Pr(Q = m) (2)

where E[M(L) | m] is the expected number of forwarding
nodes conditioned on having m relay nodes.

Due to the independence of the forwarding decision of each
node, the probability of having m relay nodes is given by:

Pr(Q = m) =

(
n
m

)
βm(1− β)n−m (3)

where β is the probability that a randomly chosen node is a
relay node:

β =
1

L

ˆ L

0

p(x)dx (4)

and p(x) is the forwarding probability of the node at x, i.e. the
probability that the node at x decides to forward the packet,
if the node receives the packet.

The joint probability density function (pdf) of locations of
m relay nodes and the number of relay nodes Q = m for
m ≥ 1 can be expressed as

g(x1, . . . , xm, xm+1, . . . , xn, Q = m) (5)

=

(
n
m

) m∏
i=1

fX(xi)p(xi)
n∏

j=m+1

fX(xj)[1− p(xj)]

where fX(x) is the pdf of the location of a randomly chosen
node (out of all n nodes). Therefore, we can easily obtain the
pdf of the location of a relay node at x, denoted by gX(x),
conditioned on the number of relay nodes m for m ≥ 1 using
the total probability theorem and the Baye’s formula.

gX(x | Q = m) =
1

β
fX(x)p(x) = gX(x) (6)

From the first equality in (6), we can see that the conditioned
pdf gX(x | Q = m) is independent of the number of relay
nodes m.

Recall that zk is the endpoint location of the farthest k-hop
transmitter, whose pdf is denoted by h(zk). The successful



transmission probability from the source to the destination
conditioned on having m relay nodes can be expressed as

Psuc(L | m) = Pr(z0 ≥ L | m) + (7)
Km∑
k=2

Pr(zk−1 ≥ L, zk−2 < L | m)

where Km is the maximum number of hops between the
source and the destination and can be set to n in the
computation. Pr(z0 ≥ L | m) = Pr(z0 ≥ L) =´ Rmax

max(L,Rmin)
fR(r0)dr0 is the probability that the destination

is a 1-hop receiver, and fR(r) is the pdf of the transmission
range of a relay node.

For k ≥ 2, the probability that the destination is a k-
hop receiver conditioned on having m relay nodes can be
calculated as

Pr(zk−1 ≥ L, zk−2 < L | m) =
∑

m1,m2,...,mk−1∈Γ´ Rmax

Rmin

´ L
z0
. . .
´ L
zk−3

´ zk−2+Rmax

L

ξ(zk−1, . . . , z0, Nk−1 = mk−1, . . . , N1 = m1 | m)
dzk−1 . . . dz0

(8)

where Γ = {m1,m2, . . . ,mk−1 : m1,m2, . . . ,mk−1 >
0 and m1 + m2 + . . . + mk−1 = m}, Nk is the
random number of k-hop transmitters, mi is a positive integer,
ξ(zk−1, . . . , z0, Nk−1 = mk−1, . . . , N1 = m1 | m) is the joint
pdf of the endpoint locations and numbers of 0-hop, 1-hop,...,
(k−1)-hop transmitters conditioned on having m relay nodes.

Note that a relay node at x is the farthest k-hop transmitter
if and only if the following conditions are met:

• The node is a k-hop receiver. That means the node is
located within (zk−2, zk−1).

• The endpoint of the node is closest to the destination
among all k-hop transmitters.

Therefore, using the chain rule in probability theory and noting
that 1) zk−1 is only dependent on zk−2, zk−3 and mk−1 and
2) mk−1 is dependent on zk−2, zk−3, m1,m2,..., mk−2 and
m, the joint pdf can be calculated as

ξ(zk−1, . . . , z0,mk−1, . . . ,m1 | m) (9)
= h(zk−1 | zk−2, zk−3,mk−1)

Pr(mk−1 | zk−2, zk−3,m1,m2, . . . ,mk−2,m)

. . . h(z1 | z0, 0,m1) Pr(m1 | z0, 0,m)fR(z0)

where h(zk−1 | zk−2, zk−3,mk−1) is the pdf of zk−1

conditioned on zk−2, zk−3 and Nk−1 = mk−1, fR(z0)
is the pdf of the transmission range and Pr(mk−1 |
zk−2, zk−3,m1,m2, . . . ,mk−2,m) is the probability that the
number of (k − 1)-hop transmitters is mk−1 conditioned on
zk−3, zk−2, N1 = m1, N2 = m2, . . . , Nk−2 = mk−2 and
Q = m.

Now, we calculate Pr(mk−1 | zk−2, zk−3,m1,m2,
. . . ,mk−2,m). For k ≥ 2, it can be shown using Baye’s

formula and that Nk−1 has a binomial distribution condition
on zk−3, zk−2, N1 = m1, N2 = m2, . . . , Nk−2 = mk−2 and
Q = m that

Pr(Nk−1 = mk−1 | zk−3, zk−2,m1,m2, . . . ,mk−2,m) =(
m−

∑k−2
i=1 mi

mk−1

)
[GX(zk−2)−GX(zk−3)]

mk−1

[GX(L)−GX(zk−2)]
m−

∑k−1
i=1 mi

[GX(L)−GX(zk−3)]
m−

∑k−2
i=1 mi

(10)
where GX(x) is the cumulative distribution function (cdf) of
a relay node’s location, and GX(b) − GX(a) =

´ b
a
gX(x)dx

is the probability that a relay node is located within a and b.
Similarly, the probability that the number of 1-hop transmitters
equals to m1 conditioned on z0 can be expressed as

Pr(N1 = m1 | 0, z0,m) =

(
m
m1

)
[GX(z0)−GX(0)]

m1

[GX(L)−GX(z0)]
m−m1

(11)
Then, in order to obtain h(zk−1 | zk−2, zk−3,mk−1), we

need to calculate the conditional pdf (conditional on Q = m)
of the endpoint location of (k − 1)-hop transmitter, denoted
by ηY (yk−1 | zk−3, zk−2). Recall that yk−1 is the endpoint
location of a (k−1)-hop transmitter, i.e. yk−1 = xk−1+rk−1.
Since the two random variables xk−1 and rk−1 are inde-
pendent and further noting that xk−1 is within [zk−3, zk−2],
according to the pdf of sum of two independent random
variable, ηY (yk−1 | zk−3, zk−2) can be expressed as

For k = 1, if z0 +Rmin < Rmax

ηY (y1 | 0, z0) =

G(y1 −Rmin)

G(z0)(Rmax −Rmin)
,

Rmin ≤ y1 ≤ z0 +Rmin

1

Rmax −Rmin
,

z0 +Rmin ≤ y1 ≤ Rmax

G(z0)−G(y1 −Rmax)

G(z0)(Rmax −Rmin)
, ,

Rmax ≤ y1 ≤ z0 +Rmax

(12)

Otherwise,

ηY (y1 | 0, z0) =

G(y1 −Rmin)

G(z0)(Rmax −Rmin)
,

Rmin ≤ y1 ≤ Rmax

G(y1 −Rmin)−G(y1 −Rmax)

G(z0)(Rmax −Rmin)
,

Rmax ≤ y1 ≤ z0 +Rmin

G(z0)−G(y1 −Rmax)

G(z0)(Rmax −Rmin)
, ,

z0 +Rmin ≤ y1 ≤ z0 +Rmax

(13)



For k > 2, if zk−2 − zk−3 < Rmax −Rmin,

ηY (yk−1 | zk−3, zk−2) =

G(yk−1 −Rmin)−G(zk−3)

(G(zk−2)−G(zk−3))(Rmax −Rmin)
,

zk−3 +Rmin ≤ yk−1 < zk−2 +Rmin

1

Rmax −Rmin
,

zk−2 +Rmin ≤ yk−1 < zk−3 +Rmax

G(zk−2)−G(yk−1 −Rmax)

(G(zk−2)−G(zk−3))(Rmax −Rmin)
,

zk−3 +Rmax ≤ yk−1 < zk−2 +Rmax

(14)

Otherwise,

ηY (yk−1 | zk−3, zk−2) =

G(yk−1 −Rmin)−G(zk−3)

(G(zk−2)−G(zk−3))(Rmax −Rmin)
,

zk−3 +Rmin ≤ yk−1 < zk−3 +Rmin

G(yk−1 −Rmin)−G(yk−1 −Rmax)

(G(zk−2)−G(zk−3))(Rmax −Rmin)
,

zk−3 +Rmax ≤ yk−1 < zk−2 +Rmin

G(zk−2)−G(yk−1 −Rmax)

(G(zk−2)−G(zk−3))(Rmax −Rmin)
,

zk−2 +Rmin ≤ yk−1 < zk−2 +Rmax

(15)

Due to the fact that zk−1 is decided by the largest endpoint
location of the (k − 1)-hop transmitters, the conditioned pdf
of h(zk−1 | zk−3, zk−2,mk−1) can be calculated according to
the order statistics, i.e.,

h(zk−1 | zk−3, zk−2,mk−1) = mk−1ηY (zk−1 | zk−3, zk−2)

[HY (zk−1 | zk−3, zk−2)]
mk−1−1

(16)
where the conditional cdf HY (zk−1 | zk−3, zk−2) can be
calculated from the conditional pdf ηY (zk−1 | zk−3, zk−2).

Eq. (10) to (16) allow us to determine the joint pdf of the
endpoint locations and numbers of 0-hop, 1-hop, ...., (k− 1)-
hop transmitters conditioned on having m relay nodes:

ξ(zk−1, zk−2, . . . , z0, Nk−1 = mk−1, . . . , N1 = m1 | m)

=
m!

(m− k + 1)!

(
m− k + 1

q1, q2 . . . , qk−1, qk

)
[GX(zk−2)−GX(zk−3)] . . . [GX(z0)−GX(0)]

ηY (zk−1 | zk−3, zk−2) . . . ηY (z1 | 0, z0)
[HY (zk−1 | zk−3, zk−2)(GX(zk−2)−GX(zk−3))]

qk−1 . . .
[HY (z1 | 0, z0)(GX(z0)−GX(0))]

q1 [GX(L)−GX(zk−2)]
qk

(17)
where m = m1 + m2 + . . . + mk, qi = mi − 1 for i =
1, 2, . . . , k−1 and qk = mk. Then it can be derived m−k+1 =
q1 + q2 + . . .+ qk.

Therefore, (8) can be derived using (17) and multinomial
theorem,

Pr(zk−1 ≥ L, zk−2 < L | m) =
´ Rmax

Rmin

´ L
z0
. . .
´ L
zk−3

´ zk−2+Rmax

L

m!

(m− k + 1)!∏Km

k=2 [GX(zk−2)−GX(zk−3)] ηY (zk−1 | zk−3, zk−2)

{
∑Km

k=2 [HY (zk−1 | zk−3, zk−2)(GX(zk−2)−GX(zk−3))]
+ [GX(L)−GX(zKm−2)]}m−k+1dzk−1 . . . dz0

(18)
Then Psuc(L) can be calculated by (18) together with (3).
Finally, the expected number of the forwarding nodes con-

ditioned on having m relay node can be expressed as

E[M(L) | m] = mPsuc(L | m) +
Km∑
k=1

{∑
m1,m2,...,mk−1∈Γ

k−1∑
i=1

mi[Pr(zk−1 ≤ zk−2 < L,

Nk−1 = mk−1, . . . , N1 = m1 |m)
+Pr(zk−2 < zk−1 < L,Nk = 0, Nk−1 = mk−1,

. . . , N1 = m1 |m)]}

(19)

where zk−1 ≤ zk−2 implies that the endpoint location of
the farthest (k − 1)-hop transmitter is no larger than that
of the farthest (k − 2)-hop transmitter and the transmission
fails; zk−2 < zk−1 < L and Nk = 0 implies that no k-hop
transmitter exists despite zk−2 < zk−1 and the transmission
fails.

Pr(zk−1 ≤ zk−2 < L,Nk−1 = mk−1, . . . , N1 = m1 | m)

=
´ Rmax

Rmin

´ L
z0
. . .
´ L
zk−3

´ zk−2

zk−3

ξ(zk−1, . . . , z0, Nk−1 = mk−1, . . . , N1 = m1)
dzk−1 . . . dz0

(20)
and Pr(zk−2 < zk−1 < L,Nk = 0, Nk−1 = mk−1, . . . , N1 =
m1 | m) can be calculated by the same method.

Then, E[M(L)] can be calculated by (19) together with (3).
Remark 1
When Rmin = Rmax = R, the connection model degrades

to an unit disk model. Therefore, the farthest k-hop transmitter
is the node of the farthest location among all the k-hop
transmitters under the unit disk model.

Remark 2
When Rmin = 0 and G(x) is a linear function of x (i.e.

G(x) = x/L), we can obtain Pr(zk−1 ≥ L, zk−2 < L | m) 6
n!Rmax

(n+ k)!(Rmax −Rmin)k−1

∑
q1+q2+...+qk=m−k+1

∏k−1
j=1 (qj + 1)

for k > 2 by 1) ηY (zk−1 | zk−3, zk−2) 6
1

Rmax −Rmin
which can be derived from (14) and (15); 2) the cdf HY (zk−1 |
zk−3, zk−2) 6 1 which is true eternally; 3) the normalization
for zi, i.e., z

′

i = zi/L, which is the necessary condition for
dirichlet integral.

A. Design of Optimal Forwarding Probability Function

As our analysis in Section III, the forwarding probability
function p(x) plays an important role in determining the



performance of the forwarding scheme. In this subsection
we analyze the design of the optimal forwarding probability
function for the optimization problem:

min
p(x)

E[M(L)]

s.t. Psuc(L) ≥ 1− ε
(21)

The analytical expressions for Psuc(L) and E[M(L)] in
their present form do not allow us to readily analyze the
optimal functional form of p(x) that solves the optimization
problem. However, for particular forms of p(x), e.g. p(x) = c
and p(x) = ax, the optimum parameters for p(x) can be
found using the method of Lagrange multipliers and solved
numerically.

In the following analysis, we consider the simple case that
p(x) = c as an example. The optimization problem now
reduces to finding the value of copt:

copt = argmin
p(x)=c

E[M(L)]

s.t. Psuc(L) ≥ 1− ε
(22)

The Lagrangian of the optimization problem can be written
as

L(p(x) = c, η) = E[M(L)] + η(1− ε− Psuc(L)) (23)

The optimum value of c can then be obtained by setting the
partial derivative of L(p(x) = c, η) with regards to c and with
regards to η to 0 respectively and solving the equations. Then
we can derive that E[M(L)] and Psuc(L) are non-decreasing
function of c. Based on the observation, it follows that the
optimum value of c is the solution to the equation Psuc(L) =
1− ε, which can be found numerically.

IV. SIMULATION

In this section, we use simulations to establish the perfor-
mance of the proposed uncoordinated cooperative forwarding
scheme and provide some intuitively digestible results. Each
point in the simulation is the average value obtained from
20000 random simulations. Considering a 1D axis, n nodes
between the source and the destination are deployed following
a uniform distribution U(0, L). The transmission ranges of all
nodes follow a uniform distribution U(Rmin, Rmax) where
Rmin=5m and Rmax=10m. Apart from the distribution of the
node location and node transmission range, we found that
the the number of nodes n, the distance between source and
destination L and the forwarding probability design affect the
network performance according to the above analytical results.
Therefore, we explore the effects of

• the number of nodes n by assigning n= 10, 30 and 50. ;
• the distance between source and the destination L varies

from 10m to 100m ;
• the forwarding probability function design. We compares

the performance of uncoordinated cooperative forwarding
schemes using four different forwarding probability func-

tions, i.e. p(x) = c, p(x) =
2cx

L
, p(x) =

2c

Ra
(x − tRa)
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Fig. 2. The successful transmission probability on k-hop (i.e. Pr(zk−1 ≥
L, zk−2 < L))

where Ra is the period length and t =

⌊
x

Ra

⌋
, and

p(x) =


0, x ∈ (kRa, (k +

1

2
)Ra)

2c, x ∈ [(k +
1

2
)Ra, (k + 1)Ra]

where k =

0, 1, 2, . . .

⌊
x

Ra

⌋
. The design of functions guarantee that

the number of relay nodes are same under the four
forwarding probability functions, i.e.

´ L
0
p(x)dx = cL.

In our paper, we set c = 0.5. In the following figures,
the four cases are labeled as ’Constant’, ’Linear’, ’Peri-
odically linear’ and ’Periodically step’ respectively.

on the successful transmission probability Psuc(L) and ex-
pected number of forwarding nodes E[M(L)].

It is shown in Fig. 2 that the analytical result and the
simulation result match well. The lines in Fig. 2 express that
the probability that the destination to be reached by more
hops increases with the growth of L. Due to the space limit,
we omit the simulation results of other forwarding probability
functions.

Since the design of functions guarantee that the number
of relay nodes are same under the four forwarding probabil-
ity functions, we only compare the successful transmission
probability under the four forwarding functions. From Fig. 3,
we can see that the increasing n results in higher Psuc(L)
for all the four forwarding probability functions at the cost
of more transmissions. Moreover, it is clear that the constant
forwarding probability and the two periodical functions are of
the similar performance, while the linear function performs
poor. This provides an interesting result that the constant
forwarding probability function is a potential one for the unco-
ordinated multi-path and multi-hop forwarding transmission. It
is also shown in Fig. 4 that reducing the period of periodic
function can further improve Psuc(L) and an extreme case
is the period approaches to 0, i.e., the constant probability
forwarding function. The result in Fig.4 further verifies that the
constant forwarding probability function is the most potential
one in uncoordinated multi-hop multi-path forwarding.
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Fig. 3. Psuc(L) on different number of relay nodes n under four forwarding
probability functions
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Fig. 5 compares the successful transmission probability
using a linear function under the fixed transmission range
and the random transmission range respectively. The fixed

transmission range R = E[r] =
Rmin +Rmax

2
, which has

same average value with the random transmission range. The
network under the random transmission range has a higher
probability of successful transmission probability than that
under a fixed transmission range. The result verifies that
the randomness of transmission range can improve Psuc(L),
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Fig. 5. Psuc(L) on fixed and random transmission range

which is consistent with our earlier work in [10].

V. CONCLUSIONS

This paper proposes an uncoordinated cooperative for-
warding scheme, where each node with random transmission
range. The exact analytical result on successful transmission
probability and the expected number of forwarding nodes are
derived considering the correlation between multi-path and
multi-hop transmissions from the source to the destination. On
this basis, an optimum uncoordinated cooperative forwarding
probability function is proposed. The simulations and the
corresponding discussions show that the constant forwarding
probability function is the most potential one.
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