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Robust Output-feedback Discrete-Time Sliding Mode Control Utilizing
Disturbance Observer

Ahmadreza Argha, Li Li, Steven W. Su* and Hung Nguyen

Abstract— This paper is devoted to the problem of designing
a robust dynamic output-feedback discrete-time sliding mode
controller (ODSMC) for uncertain discrete-time systems. The
basic idea behind this scheme comes from the fact that output
feedback discrete-time sliding mode control (ODSMC), unlike
its continuous-time counterpart, does not require to exploit a
discontinuous term including the sliding function. Therefore, it
is not a vital requirement that the sliding function is expressed
in terms of the system outputs only. Furthermore, our observer-
based discrete-time sliding mode controller (DSMC) leads to a
considerably larger region of applicability. Besides, with the
assumption of dealing with slow exogenous disturbances, a
methodology is developed which aims to reduce the thickness
of the boundary layer around the sliding surface. Moreover,
the boundedness of the obtained closed-loop system is analyzed
and the bound on the underlying system state is derived.

I. INTRODUCTION

Mainly, sliding-mode control has been designed for the
cases that the system states are assumed to be entirely avail-
able, which is not clearly very realistic for many of practical
problems. Hence, this fact has motivated the researchers to
design controllers which exploit only output information. The
literature which have explored output-feedback discrete-time
sliding mode control (ODSMC) includes both the dynamic
and static output-feedback controllers [1] - [2]. Reference
[3] proposes an observer-based sliding mode controller for
continuous-time MIMO systems. Different frameworks and
discussions for the design of static output-feedback sliding
mode controller are given in [4], [5], [2]. Moreover, in
order of designing direct torsion control of flexible shaft,
[6] develops an observer-based discrete-time sliding mode
control (DSMC) scheme.

The early DSMC publications have focused on creating a
discrete-time counterpart to the continuous-time reachability
condition [7] - [8]. However, it is stated that DSMC does
not necessarily require the use of a variable structure discon-
tinuous control (VSDC) strategy [9] - [10]. References [9],
[11] have shown that using the pure linear control law can
ensure that the state trajectories stay within a neighbourhood
of the sliding surface in the presence of the bounded matched
uncertainty. Moreover, according to the results presented in
[9], [11], the use of a switching function in the control
law may not necessarily improve the performance. Indeed,
thanks to this fact that the sliding function is not required
to be exploited in the ODSMC, this paper assumes a sliding
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surface in the state space rather than state estimate space or
state estimation error space [12] and [13]. This fact leads us
to establish a considerably less conservative LMI condition.
In other words, the feasibility region of the LMI condition of
the proposed scheme or equivalently its applicability region
is interestingly improved compared to that of presented in
e.g. [12] and [13].

Specifically in the proposed scheme, with the smoothness
and boundedness conditions of the external disturbance, the
ODSMC exploits a disturbance estimator in the controller
rather than VSDC. Note that the idea of using disturbance
estimator in the DSMC has been developed in [14] in order
to reduce the ultimate bound on the discrete-time system
state. In other words, with this assumption that the maxi-
mum frequency component of the exogenous disturbance is
slower than the sampling rate, a special controller can be
designed with utilizing disturbance estimator in the sliding
mode controller. This can considerably reduce the boundary
layer thickness. However, the disturbance estimator in [14]
has been designed for the cases that the system states are
entirely available and the system does not involve unmatched
uncertainties. A framework by exploiting output informa-
tion only for discrete-time MIMO systems with unmatched
disturbances and without uncertainties has been proposed
in [15]. Indeed, the idea is to use an integral term of
the estimation output error, in addition to the well-known
Luenberger observer which observes the system state with a
proportional loop, to make more degrees of freedom. This
matter is referred to as proportional integral observer (P10)
in the literature [15]. Nevertheless, the underlying system
in [15], unlike the system considered in this paper, does
not involve unmatched uncertainties. The proposed scheme
here extends the problem of utilizing disturbance observer in
the ODSMC to the uncertain discrete-time systems using an
innovative LMI based framework.

The rest of this paper is organized as follows: Section
IT describes the problem formulation. In Section III, the
proposed scheme to design an observer-based ODSMC with
disturbance estimator is given. Effectiveness of the proposed
ODSMC is shown by a numerical example in Section IV.
Finally, Section V concludes this paper.

II. PROBLEM FORMULATION

Consider the following uncertain linear discrete-time sys-
tem,

¥(k) = Cx(k), %



where x(k) € R”, u(k) € R™ and y(k) € RP. Without loss
of generality, it is assumed that m < p < n, rank(B) =
m, rank(C) = p. Besides, it is assumed that (A,B) is control-
lable and (A,C) is observable. The uncertain matrix AA(k)
has the form of AA(k) = MR(k)N, where matrices M and
N are known and R(k) is an unknown matrix satisfying
RT (k)R(k) <1,Vk > 0; f(k) denotes the external disturbance.

In what follows, it is assumed that the exogenous distur-
bance in the system (1) is smooth and bounded.

Assumption 1: The exogenous disturbance f(k) in (1)
satisfies the Lipschitz continuity condition,

[fa(R)| < LsTs,  Vk =0, 2)

where f;(k) = f(k) — f(k—1), Ly > 0 denotes Lipschitz
constant and 7 is the sampling time.
Here, it is supposed that Ly has a small value. To this end,
the sampling rate of the discrete signal processing system is
assumed to be a big enough value compared to the maximum
frequency component of the exogenous disturbance f(k).
Also, the following assumption is required to be considered
in the sequel of this paper.
Assumption 2: The matrices A, B and C in the system (1)
satisfies
A-I, B
C 0
Notice that the above assumption requires that m < p < n,
which has already been assumed in this paper. Consider the
following system state and disturbance observer

£(k+1) = A%(k) + Bu(k) 4+ Ly [y(k) — $(k)] + Bf (k)

Fle+1) = (k) + La[y(k) — 9(k)]
(k) = Cx(k),

rank =n-+m.

3)
where L; € R"™? and L, € R™*P are observer gains. The
following lemmas are useful in the sequel.

Lemma 1 ( [16]): Let E, F(k) and H be real matrices of
appropriate dimensions with FT (k)F (k) <1,Vk > 0, then, for
any scalar € > 0, we have

EF(k)H+H"F"(k)ET <eEE" + ¢ 'H"H.

Lemma 2: Let E and H be real matrices of appropriate

dimensions, then, for any matrix > 0, we have

ETA+ATE<ETZE+H"="'4.
Proof: Note that & = EZ57 > 0, where Z is an invertible
matrix. Then it can easily be proved by

(ETE—AT(ET)ETE-EA] > 0.

|
Lemma 3 ( [17]): The feasibility of

r(X)—JTX)P'(X)J(X) <0 (4)
in the variable X, is equivalent to the feasibility of
LX)+ F"YX)F+FTIX)+TT(X)F <0 (5)

in the variables X and f, where I'(X), ¥(X) and J(X) are
functions of X, ¥(X) > 0, and F is an introduced auxiliary
variable with appropriate dimension.

Lemma 4 ( [18]): For a given B € R with rank(B) =

m, and
I P
B_U{O}V ,

where U € R™" and V € R™*"™ are two orthogonal matrices
and X := diag(oy,--+,0m), 0;,(i=1,--- ,m) denote nonzero
singular values of B, suppose that 0 < P € R**" is a real
symmetric matrix, then there exists a real matrix Z € R™*™
such that

PB=BZ, (6)

if and only if P has the following structure

TV & TR U
pufty Oer

where 0 < Pjj € R™™ and 0 < Py, € Rir=m)x(n=m),
In the following of this paper, for simplification, we use the
brief AA instead of AA(k).

III. DESIGNING OBSERVER-BASED OUTPUT-FEEDBACK
DISCRETE-TIME SMC

In this section, the objective is to design a linear sliding
function in the state space, such as

o (k) = Sx(k), (7)

where S =BTP, e R™" and P, >0 is a symmetric matrix
that will be designed later. As seen, this structure of S would
result in the non-singularity of SB. During the ideal sliding
motion the sliding function satisfies

o(k)=0, Vk> ks, (8)

where kg > 0 denotes the time that sliding motion starts.
Remark 1: In the case of CSMC, since the sliding func-
tion plays an important role in the discontinuous component
of the controller, the switching function should be an entirely
known one. Due to this fact, in the literature; e.g. [12], [13]
and [19], the sliding function (7) has been supposed to satisfy

BTP =GC, 9

in which G € R™*P, Then, the sliding surface (7) can be
rewritten as
o (k) = GCx(k) = Gy(k),

which is in the output space. However, since this switching
function would not be used in the discrete-time sliding mode
controller, such an equality as (9) is unnecessary here. In
fact, for the output-feedback DSMC, the sliding surface is
not required to be a known one, so, it will only need to be
proved that system state trajectories could be steered into a
boundary layer around the sliding surface and be kept there
thereafter. The same manner can be seen in [20] for the static
ODSMC.

Note that reaching the ideal sliding surface (8) in one time
step (6(k+ 1) = o(k) = 0) has frequently been used in the
literature. However, this may cause excessive control action,
which is not usually applicable. To overcome this, we exploit



a reaching law referred to as linear reaching law [10] as
follows,
ok+1)=

®o(k), Vk>0, (10)

where @ € R™*"™ is a stable matrix. Accordingly, the con-
troller is assumed to be of the following structure

u(k) =

A

—fk).  an

The term (SB)~'®S#(k) would govern the rate of conver-
gence to the sliding manifold, in cooperation with nonlinear
controller u,(k). Note that, unlike CSMC in which the so-
called equivalent controller —(SB)~'SA%(k) alone could not
steer the closed-loop system state trajectories on the ideal
sliding surface, in the case of discrete-time systems the
equivalent controller is able to drive the state trajectories of
the discrete-time system into a neighbourhood of the sliding
manifolds and keeps them there thereafter [9]. However, with
® = 0 the control input aims at steering the system state
to the sliding surface in one time step. In the case of a
large initial distance from the sliding surface, this could lead
to excessively large control input referred to as high-gain
controller. Here, similar to [21], it is assumed that ® = A1,
where 0 < A < 1 is a given constant value which would not
belong to the spectrum of A. Due to the special form of &,
it can commute with S and then the control law (11) could
be written as

—(SB) " (SA — @) (k)

u(k) = —(SB)~'SA,£(k) — f(k), (12)

where A; = A — Al,. Besides, we have
w; (k) = —(SB)~'SA, £(k). (13)
Defining the state estimation error e(k) = x(k) — £(k) and

disturbance estimation error e (k) = f(k) — f(k), the overall
closed-loop system is obtained by applying the controller in
(12) to (1), which is

{ x(k+1) = [A+AA —A]x(k) + B(SB) 'S [, B]eq(k)
ea(k+ 1) = [A(?]x(k)""'(Aa _LaCa)ea(k)+fd(k+ 1)714

s e(k
where fu(k+ 1) = | e |, ea) = [Jig |- A= (31,
La= m and C, = [ 0]. Then from (7) and (14) it can be
found

ok+1)=

Lemma 5 ( [15]): If the matrix pair (A, C) is observable
and A, B and C satisfies the rank condition in Assumption 2,
then the matrix pair (A,, C,) is observable.

Remark 2: Note that exploiting the disturbance estimate
in the ODSMC requires that the exogenous disturbances do
not vary too much in one time step. This cannot only reduce
the thickness of the boundary layer, but also relax the upper
bound restriction on the exogenous disturbances, which can
be seen in many references in the literature. Alternatively,
this restriction is now on the maximum frequency component
of the change of disturbance in terms of the sampling rate
(see the continuity assumption in (2)).

Ao (k) + SAAx(K) + S[42 Blea(k).  (15)

The sequel of this section aims to consider the boundedness
of the system (1) using the controller (12). The following
lemma is given to characterize the boundedness of the system
state.

Lemma 6 ( [22]): Let V({(k)) be a Lyapunov candidate
function. In the case that there exist real scalars v >0, o > 0,
B >0and 0 < p < 1 such that

al|ER)I1* < V(EK) < BIEHEI,

and

V(E(k+1)) -
then § (k) will satisfy

2_ B 2 \4
IS < IS O (1 —P)"+OT-
The following theorem analyzes the boundedness of the
overall closed-loop system in (14) and the sliding function
in (15).

Theorem 1: The control law (12) can drive the system
state into a boundary layer around the ideal sliding surface
o(k) =0, where o (k) is defined in (7) and, thus, the system
state is ultimately bounded if there exist symmetric matrices
P = U[P” 0 ]UT >0, Q> > 0, real matrices X, X, and X3,
and scalars € > 0, p > 0 satisfying the following LMI,

V(E(K) <v—pV(E(K),

M * * * * * *
0 - +pl * * * * *
V2ABTP,  \2B'P (48] —B'PB * * * *
0 QA —X3C, 0 —0» * * * | <0,
PA+ BX; 0 0 0 P * *
BX, 0 0 0 0 —P *
0 0 V2MTPB  [uT0]Q2 MR, 0 —el

(16)

where 0 < Pyj € R™, 0 < Py € RO=m*=m) and U ¢

R™" js defined in Lemma 4, .41, = —P; +X] BT +BX, +

pl 4+ eNTN. Besides, S = BT P; and the observer gains are
given by

)=
a7
Proof: Define

V(@ (k) = x" (k) Prx(k) + e, (k) Qaea(k) + 07 (k)(SB) '@ (k)(’lg)
where @ (k) = [x" (k) el (k) © (k)] ,P,>0and Q, >0
are symmetric matrices and S = BT P,. Hence, we have

AV(@(k) =V(@(k+1)) - V(o (k))
=xT (k+ 1)Pix(k+ 1)+ el (k+1)Qaeq(k+1)
ol (k+1)(SB) ‘o (k+1) —xT (k)Px(k)
—el (k) Qyeq(k) — o™ (k) (SB) o (k). (19)
It can be followed then
X! (k+ 1D)Px(k+1)
=xT (k)[A+AA —B(SB)~'S(A +AA) + B(SB) "' S(AL, + AA)]T
X P{[A+AA — B(SB)"'S(A+ AA) + B(SB) " 'S(AL, + AA)]x(k)
+2x" (k) (AL, +AA)TST(SB) 'S Ay B]ea(k)
+el(k)[A, BT ST(SB)'S[A;  B]ea(k)



=xT (k)[A+AA —B(SB)"'S(A+AA)|T P,
X [A+AA — B(SB) "' S(A + AA)]x(k)
+xT (k) (AL, +AA)T ST (SB) " S(AL, + AA)x(k)
+2x7 (k) (AL, +AA)TST (SB)T'S[Ay  B]ea(k)
+el(k)[Ay B]"ST(SB)"'S[Ay Blea(k). (20)
Besides,

el (k+1)Qseq(k+1) @1)
)| ‘o, kSEC

+ ec{ (k) (Aa - LaCa)TQZ (Aa - Laca)ea (k)

T
@ DRk 1) 427 (1) ] 0ala - LiCuleatt)

T
2 (0| ] Qafuther 1)+ 26 (0~ LG Qa4 1),

ol (k+1)(SB) 'o(k+1)
=xT (k) (AL, + AA)T ST (SB)~'S(AL, + AA)x (k)
+el (k) [Ay B]"ST(SB)"'S[Ay B]ea(k)
+2x" (k) (AL, +AA) ST (SB) 'S Ay Blea(k). (22)
From (19)-(22), we have

x(k) X1 X2 X3 x(k)
AV(w(k))—[_ea(k) ] [xlf X2 m] _ea(k) ] (23)
fa(k+1) Xi3 %23 33| |Jalk+1)
where
211 =(A+AA)T P (A+AA) — (A+AA)T ST (SB) "' S(A+AA)

—ST(SB)~'S — Py +2(AL, +AA)T ST (SB)~'S(AL, + AA)

T
+[o] e[5].
AA T
x12 =2(Al, +AA) ST (SB)"'S[A; B+ [ 0 } 02(Ay — LoCy),
T
%13:[%4} 0o,

x2=2[A, B]'ST(sB)'s[A, B]
+(Ag — LaCa) " 02(Au — LaCy) — 02,

223 =(Aa—LaCa)" 02,
233 =Q2.
Letting
X1 X2
T:= < —pl, 24
[Xsz %22} p 24)
where p > 0 is a scalar variable. Then, defining (k) =

[T (k) el (k)]T and using Lemma 2 it can be shown that

T
T X13| 7 -T 13| -1 [X13| =
2% (k) L&J falk+1) <z" (k) [123} I L&J x(k)
+ fi (k4 DI (k+ 1), (25)
where IT > 0. It then follows from (23) and (25) that

AV(@(k)) <—x" (k) {pl— ng m! [ﬁj T}x(k)

+ f (k+ D) [+ x33) fa(k+ 1). (26)

Choosing IT > 0 subject to

X13} -

1|{X13 ’
X23 { } ’ @n

i 11—
pl=p { X23

where 0 < p < p, which is clearly always possible if 1 >0
exists, it follows from (26) that

AV(@(k)) < — px" (k)x(k) + f (k+ DI+ xa3] fa(k+1).  (28)
On the other hand, it can be seen that
V@) = " 5] ww
25T (k)Wx(k),

(29)

where Mp = PiB(BTP,B)"'BT P, + Py, then

Aanin (W) [[E(K) > < V(@(K)) < Amax (W) [EK)[1*. (30)
Furthermore, it can be shown that
Amin(diag(P1, 02, (SB)™1)) @ (k)[|* < V(@ (k))
< Amax (diag(P1, Q2. (SB)™1)) | @(k)|*.

Hence, from (28) and (30), also the continuity assumption
in (2), we have

A

p

AV(o(k)) < — V(o(k))+7y. 31

(@(k)) < )vmax(w)(()) Y €10

where ¥ = ||TI+ O || L%TYZ. Note that from (24) it is known
that

F(R)Y2(k) = V(@ (k+ 1) 7,y 1120 = V(@(K) < —px" (k)x(K).
(32)

It is obvious that V(@ (k+1))| 7 (., 1)—o > 0. and thus, from

(32) and (30), we have p < Amax(W). Therefore, y pw < 1.
Eventually, from Lemma 6 and (31), it can be illustrated that
Ve >0, 3k* >0, s.t. Vk > k*,

Afmax(
l@(k)|* < P Amin (diag(Py, 02, (SB)~1))

Now it remains to consider the feasibility of Y < —pI in
(24). With the aid of Schur complement, (24) is equivalent
to

) Y+E. 33)

X1 * * *
0 X22 * *
V2BTP (AL, +AA) V2BTP[4,B] —B'PB x | < 0,
[0/} [AOA] QZ(Aa _LaCa) 0 -
(34

where
211 =(A+AA)T P (A+AA) — (A+AA)T ST (SB)"'S(A+AA)
—ST(SB)~'s—P +pl,
X0 =—0x+pl

Therefore, using Lemma 3 it can be shown that the feasi-
bility of the inequality in (34) is equivalent to that of

2 * * *
0 122 * * 0
V2BTP{(AL,+AA)  V2BTP (A B] —BTPB  « | =V
0> [Aéq] 10)) (Aa - LaCa) 0 )

(35)



with
%11 =(A+AA+BF;)" P((A+AA+BF;) — Py
+F (B"PB)Fy+F]B" P+ PBF, +pI,  (36)

where F3 and Fy are two auxiliary variables [17]. Hence,
using Lemma 4, §;; in (36) can be rearranged as

A11 =[PL(A+AA) +BZF;)" P [PL(A+ AA) + BZF;] — Py
+Fl 7" BT P 'BZFy + F 72" BT + BZFy +pI, (37)

where Z satisfies P|B = BZ. Using the Schur complement it
can be shown that (35) is equivalent to

,//i“ * * * * *
0 X2 * * * *
V2B'P (AL, +AA)  V2BTP (43 B] —B"PB % * * | 2o
0 [%] DA, —X3C, 0 -0 * * ’
Pi(A+AA) +BX, 0 0 0 -n
BX, 0 0 0 0 —P

. (38)
where .41 = —P, + X1 BT +BX> +pl, X) = ZF3, X, = ZF,
and X3 = O»L,. With the help of Lemma 1 and the Schur
complement, (38) is sufficed by the LMI in (16).
Besides, to find IT > 0 in (27), for given Py >0, 0> >0, L,
and p > 0, by utilizing Lemma 1 and the Schur complement,
(27) is sufficed by,

(p—p)[+ENTN * * *
0 (b—p)I x «
0 0)Ay—X:Co  —T1 o | <039
0 0 [MT0]Qr —EI
where € > 0 is a scalar variable. ]

Some remarks:

1) The solution of the LMI in (39) does not have direct
influence on the controller design and the actual ultimate
bound on the system state and/or sliding function, however,
these parameters would lead us to determine a more accurate
bound. Therefore, to obtain the minimum value of the bound
in (33) the LMIs in (16) and (39) could be solved subject
to a specific criteria. This issue is beyond the scope of this
paper and remains for the future works.

2) Due to the full column rank of B, the columns of
matrices B and P;B are linearly independent if Py > 0.
Consequently, if (6) holds for P; > 0 and Z, we have

rank(Z) > rank(BZ) = rank(P|B) > rank(B) =m, (40)

which clearly denotes the non-singularity of Z. Also, it can
easily be shown that

z'=vz ezt (41)

3) Furthermore, unlike [23], [12] and [13] which use
Lemma 2 to eliminate the cross terms between the system
state (state estimate), the estimation error and even distur-
bance which obviously imposes some conservatism on the
problem, here instead, it has been shown that the mentioned
cross terms would not influence the feasibility region of the
final LMI condition. Moreover, this paper, unlike [23] which
uses Lemma 2 to deal with the negative terms in AV (£ (k)) to
make a convex problem, exploits Lemma 3 which is clearly
a lossless technique and imposes no additional conservatism
on the LMI condition.

4) It should be noticed that the parameter ® = A1, 0 < A <

1 plays a significant role in the magnitude of the thickness
of the boundary layer around the sliding surface [9]. From
(15) it can be shown that

k—1
oi(k) =A*ci(0)+ Y A g(j), i=1,m, (42)
j=0

where Z(j) = SAAx(j) + SAje(j) + SBey(j). Supposing
2; = max(Z;(k)), it follows then from (42),

1 -
Ve >0, Ik >0, st Vk> k', oi(k) < —=Di+&, i=1,---,m.

1-2
(43)
Assuming Ys; £ 1y 7; + €, the boundary layer is
m
Yo=Y Yei (44)
i=1

As seen, the smallest boundary layer could be obtained by
setting A to zero. In that case, the discrete-time sliding mode
controller steers the system state into the qguasi sliding mode
band only in one time step. As mentioned, this would result
in a high-gain or excessively large control input which is
not desirable for most of the practical systems since it can
saturate the actuators of the control system. Hence, there is
a tradeoff to be considered between the level of the control
input and the thickness of the boundary layer.

5) The sliding surface in this scheme is set to be in the state
space, this matter is significantly different from the sliding
surface in [12] and [13] which is in the estimation error
space or the state estimate space. The Lyapunov functional
candidate also, in these references, contains the state estimate
and the state estimation error. Here, instead we have used
the system state directly in addition to the state estima-
tion error and sliding function in the Lyapunov functional
candidate. Roughly speaking, the main drawback of the
schemes, given in [12] and [13], comes from the fact that in
order to formulate an LMI problem, it is inevitable to use
same positive definite decision variable P for both quadratic
terms x” (k)Px(k) and e’ (k)Pe(k), otherwise, a BMI problem
would be arisen, which is not easy to handle. For example,
[19] utilizes two different positive definite decision variables
in its Lyapunov-based scheme for the design of a dynamic
output-feedback CSMC (OCSMC), which naturally leads to
a BMI problem. Note that, as mentioned earlier, since a
variable structure discontinuous controller is not provided for
the proposed ODSMC by the means of the sliding function,
the introduced sliding function, here, can be defined to be
in the state space. Furthermore, in this case we would not
struggle with a BMI problem.

IV. SIMULATION RESULTS
Consider the system (1) with the following parameters:

06 0 05 1 03
A=|0 07 03|,B=106 0 7C:{001 0()5 ﬂ
0 0 15 0 1 '

mM=1[03 01 —01]", N=[-02 -02 03],
R(k) = 0.3sin(k).
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Note that the open-loop system is unstable. Suppose f(k) =
[0.9e] [2—sin(35)].  Solving the LMI (16), the following
results are obtained:

[0.83 —0.88 —0.27

P = |—0.88 22470 024 |, P, = {8'8% 8'2?} , Py =2.72,
—027 024 057 : :
r1.68 —171 013 —0.12 —0.61
~171 699 040 —450 0.07

0,=1]013 040 615 008 —4.23
—0.12 —450 008 957 032
|—0.61 007 —423 032 10.67
[ 230 —1.11

Li=|240 —105|, 1,= [j(';‘gz ‘003724},
—024 1.17 : :
[0.31 047 —0.13

S=1-002 -003 048 } , p=008, £=252.

Applying the controller in (12) with given P; above to the
system, the results are given in Figs. 1. Fig. 2 shows the
performance of the disturbance estimator f(k) in (3).

V. CONCLUSIONS

In this note, a novel dynamic output-feedback LMI based
robust DSMC for the systems involving unmatched uncer-
tainties and matched disturbances has been developed. The
proposed scheme is applicable to general systems including
unstable systems. The boundedness of the obtained closed-
loop system has been analyzed and a bound has been derived
for the closed-loop system state, estimation error and also
sliding function. With the assumption of dealing with slow
exogenous disturbances, a unified scheme has been designed
which includes an extra proportional integral estimator for
estimating the disturbance. The framework presented in this

paper are less conservative compared to the existing literature
for the robust DSMC and also OCSMC. Additionally, the
sliding mode controllers in this paper do not fall into the
category of the high-gain controllers.
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