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Abstract 

Unobserved industry-wide common shocks cause issue of cross-sectional dependence (CSD) 

in panel data modelling of stock returns. In this study we apply two econometric techniques: 

SUR approach and a Bayesian estimator for panel data model with factor structural errors, to 

allow for CSD within a particular industry. By applying these models to monthly stock 

returns of S&P100 companies from six industries over 10 years, we can capture and measure 

the heterogeneous impacts of not only observed individual company accounting fundamentals 

and market-wide common shocks, but also the unobservable industry-wide common shocks. 

Results from the empirical study show that the impacts from both observed factors and 

unobserved industry-wide common shocks vary markedly across companies. After 

controlling observed accounting fundamentals and market-wide common factors, 

considerable proportions of variations in stock returns can be attributed to unobservable 

industry-wide common shocks.   
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1. Introduction  
There are a considerable amount of factors that can influence stock price movements. Both 

practitioners and academics have devoted much time to explaining and predicting stock price 

movements. Fundamental analysts primarily use accounting information to study a 

company’s underlying indicators of profit, such as earnings, dividends, new products and 

research and development (R&D). They investigate the financial statements of a company 

and its competitors to estimate the company’s future value. The advantage of fundamental 

analysis is that it has an intuitive explanatory link to stock price movements. It ought to 

characterize the long-term, fundamental value of a stock, at least in theory. If the information 

on financial statements accurately reveals the fundamental value of a company, the 

accounting information should explain a significant proportion of stock price movements.  

From another aspect, the Capital Asset Pricing Model (CAPM) theory states that the 

market excess return captures the systematic exposure of individual stock’s excess return. 

Therefore, market index return is likely to have statistical significance in explaining stock 

price movements (see Lessard, 1974). If market-wide common shocks exist and are 

represented by market index return, the same could happen within an industry. In fact, results 

from previous studies show that the capability of accounting variables, together with market-

wide impact, such as S&P500, is limited in explaining stock price movements (c.f. Chen and 

Zhang, 2007; Bettmanet, et al., 2009). This, to some extent, demonstrates the existence of 

other factors, such as industry-wide common shocks, that influence stock price movements.     

By applying an extended Cournot and Bertrand competition model, Hao et al. (2011)  

theoretically and empirically found that stock price movements are sensitive to industry-level 

news, and that the returns of less profitable companies in an industry are more sensitive to 

industry-level news than those of the more profitable companies. In the empirical analysis, 

they used equally weighted returns of all companies in a particular industry as a proxy for 

industry-level news. Harford (2005) also noted the existence of industry-specific economic 

shocks, and found that the proxy variables for industry-specific economic shocks are highly 

correlated within an industry, which may cause multicollinearity, if simultaneously included 

in a regression model. To address this, Harford (2005) extracted the first principal component 

from seven observable economic shock variables.  

In practice most, if not all, common shock variables are unobservable or have no 

reasonable proxy, so the proxy variable method or principal component analysis may not 

work. These unobserved industry-wide common shocks cause the issue of cross-sectional 
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dependence (CSD) in panel data modelling of stock price movements. However, to the 

authors’ best knowledge, very few studies in the literature have ever considered it. To fill in 

the gap of literature, in this study we apply different econometric techniques to allow for the 

CSD when modelling stock price movements within a particular industry.        

One of the classic models to allow for CSD in econometrics is the Seemingly 

Unrelated Regression (SUR) approach, first introduced by Zellner (1962). In SUR model all 

regressors are assumed exogenous and the asymptotic properties of estimates are derived for 

fixed N (the number of cross-sectional individuals) and large T (the number of time periods). 

Therefore, neglecting CSD has no impact on the first-order properties of standard panel 

estimators. 

In the last decades, considerable research has been devoted to characterizing CSD in 

panel data using the factor structure approach, which assumes that the disturbance term 

contains a finite number of unobserved factors that influence each individual but with 

different intensities, that is, all individuals are influenced by some unobserved common 

shocks but they have heterogeneous reactions to such common shocks. For an excellent 

review, see Sarafidis and Wansbeek (2012). A range of estimators are available in the 

literature. For example, Pesaran (2006) proposed the common correlated effects (CCE) 

estimator, which does not require estimating the number of unobserved common factors and 

tries to eliminate the effects of the common factor. Bai (2009) proposed an iterative principle 

component (IPC) estimator. Both Pesaran’s CCE estimator and Bai’s IPC estimator require N 

and T to jointly go to infinity so that consistency and asymptotic normality are achievable.  

In this study, we aim to (1) identify and quantify the heterogeneous impacts of both 

observable factors and unobservable common shocks on stock price movements; and (2) 

identify companies within a particular industry that are more sensitive to industry-wide 

common shocks than others. Besides applying existing econometric methods in the literature, 

we propose a new Bayesian estimator for factor structure models. The Bayesian algorithm, 

using Gibbs sampling with data augmentation, makes estimating the common shocks at each 

time period, as well as the reactions of each individual company to these common shocks, 

more straightforward. Estimating these unobservable common factors and factor loadings of 

each company allows us to investigate the sensitivity of stock returns to commonly shared 

unobservable shocks, which has significant implications for the proper valuation of 

companies. The sensitivity of a stock return to unobserved common shocks could indicate 

how prone the company stock is to industry-wide trend or cyclicality. As companies in the 
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same industry are often direct competitors, investigating the sensitivity of the industry would 

enhance our ability to understand the industry-wide competitive relationship.  

The rest of this paper is organized as follows. In Section 2 we review the empirical 

model, i.e. the equity valuation model, and generalize it to take into account of panel data 

structure. Section 3 discusses the data issues and conducts formal CSD tests for our data. In 

Section 4, we propose a Bayesian estimator for panel data model with factor structural error 

terms. Section 5 presents results from different models. Section 6 summarizes and concludes 

the paper.  

 
2. Fundamental Equity Valuation Model  
In order to capture the company-specific factors that influence stock returns, we employ the 

equity valuation model of Zhang (2000). Chen and Zhang (2007) extended the model to 

establish the theoretical relationship between stock returns and accounting fundamentals. The 

model measures the characteristics of underlying operations of a company using the links 

between the future cash flows and observed accounting data in valuing equity. Equity value is 

a function of two basic operational attributes: scale and profitability.  

Let Vt be the value of an all-equity finance company at date t. The variable Vt 

represents the present value of future cash flows, hence the equity value of a firm. We are 

interested in the equity value of a firm, using accounting information; hence model the value 

of a firm, net of any debts. Bt is the corresponding book value of equity. Xt is the earnings 

generated in period t, and tg  is the company’s growth opportunities as perceived at t. tg  is 

defined as the percentage by which capital invested may grow. The variable tr  is discount 

rate at t. Let tq ≡ Xt / Bt-1 be profitability at time t. Let Et(Xt+1) be the expected next period 

earnings, k is the earnings capitalization factor, and P( tq ) and C( tq ) are the put option to 

abandon operations and the call option to expand operations, respectively. P( tq ) and C( tq ) 

are normalized by the book value, Bt. To simplify the analysis, assume that profitability 

follows a random walk, 1 1t t tq q e+ += +  . Chen and Zhang (2007) derived the valuation 

function of equity as 

 [ ]/ ( ) ( ) ( , , )t t t t t t t t t t tV B q r P q g C q B q g rυ= + + ≡ ,  (1) 

where ( , , ) / ( ) ( )t t t t t t t tq g r q r P q g C qυ ≡ + + . Now consider ΔVt+1, the change in equity value 

from date t to date t+1. Define υ1≡ dυ/dqt and υ3≡ dυ/drt. dυ/dgt is E(qt) and need not be 

defined again. Let Dt be the dividends paid in period t+1. Chen and Zhang (2007) derived the 
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period t+1 stock return, denoted Rt+1 as 

 1 1
1 1 1 1 1 11 ( )t t t t t t

t t t t t
t t t t t t

X B B B B BR q C q g r
V V V B V V

υ υ+ +
+ + + +

  ∆
= + ∆ + − + ∆ + ∆ 

 
.  (2) 

For more details of this valuation model, please see Chen and Zhang (2007). Based on (2), 

Chen and Zhang (2007) ran the following approximated regression. 

 ˆˆ ˆ ˆit it it it it it itR x q b g r eα β γ δ ω φ= + + ∆ + ∆ + ∆ + ∆ + , (3) 

where Rit is the annual stock return; xit = Xit / Vit-1 is the earnings yield, divided by the 

beginning-of-period market value of equity; 1 1 1ˆ ( ) /it it it it itq q q B V− − −∆ = −  is the change in 

profitability, adjusted by the beginning-of-period ratio of the book value of equity to the 

market value of equity, with profitability defined as the return on equity; 

1 1 1 1
ˆ [( ) / ](1 / )it it it it it itb B B B B V− − − −∆ = − −  is capital investment, adjusted by one minus the 

beginning-of-period book-to-market ratio; 1 1 1ˆ ( ) /it it it it itg g g B V− − −∆ = −  is the change in 

growth opportunities, adjusted by the beginning-of-period book-to-market ratio; 

1 1 1ˆ ( ) /it t t it itr r r B V− − −∆ = −  is the change in the discount rate, adjusted by company’s beginning-

of-period book-to-market ratio; and 'ite s  are random error terms and independent of each 

other. 

Growth opportunities, g, are often predicted using long-term analysts’ forecasts. The 

availability of these forecasts for an individual company is severely limited. To avoid loss of 

observations, we drop g from our empirical model, and take the four accounting variables as 

our fundamental variables. We adopt S&P500 index as a proxy for market-wide common 

shocks, and the empirical model is: 

 5ˆˆ ˆ 00 .it it it it it t itSR q b r ePxα β γ δ φ ζ= + + ∆ + ∆ + ∆ + +   (4) 

This model specification takes a form of arbitrage pricing theory (APT) and includes a stock 

market return as an explanatory variable. Therefore, it could be seen as an extension of 

Capital Asset Pricing Model (CAPM). However, equation (4) is different from CAPM in 

that the market return is not the only factor that explains the dependent variable. It is closer to 

a multifactor explanatory model, which extends that of Chen and Zhang (2007). The ex-ante 

expectation of the signs of β is positive in general as stock return would decrease when 

earnings decrease. Therefore, if there is a dramatic decrease in earnings, stock return is 

expected to drop significantly. We expect γ to be positive in general because change in 

profitability is positively related to stock price movements. The sign of φ  is expected to be 
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negative, as increase in the discount rate would reduce the future cash flow of a company. In 

our empirical analysis, we further allow coefficients in Equation (4) to vary across individual 

companies to capture heterogeneous impacts of observed factors; and 'ite s  to be correlated 

across individuals, i.e. cov( , ) 0it jte e ≠  for i j≠ , to allow for CSD.  

 
3. Data and Preliminary Tests 

3.1 Data Description and Data Issues 

Excluding industries that have less than three1 companies and companies that do not have 

data available for the entire sample period, our analyses are based on the monthly returns of 

56 stocks across six industries in the S&P100 index between January 2003 and December 

2012. In particular, we have 11 companies from the IT industry, 13 from the industrial 

industry, 8 from the energy industry, 10 from the financial industry, 11 from the health care 

industry and 3 from the utilities industry. Stock prices are sourced from Bloomberg. The 

company-level accounting data is available from the Compustat North America database and 

Thomson Reuters’ Worldscope database. We use analyst long-term forecasts from the 

Institutional Broker Estimate System (IBES). We follow the approach of Hong and Wu 

(2014) in our sample construction except that we do not adopt portfolios for our analyses. We 

assume that companies from the same industries are more likely to be correlated with each 

other due to unobserved industry-wide common shocks (e.g. news or policies) compared to 

companies from different industries. Therefore we conduct the analysis for each industry 

separately.   

Many existing studies of using accounting information to explain stock returns become 

event studies as they collected stock returns on or around the earnings announcement date 

(see Chen and Zhang, 2007; Clement et al., 2011). As our main interest is in the industry-

wide factors, we use monthly stock return data based on calendar dates. Although this yields 

much lower statistical significance for the estimated coefficients of the accounting variables, 

such structure allows us to overcome the restrictions of the event study framework. 

Mixed-frequency problem is another issue in our dataset, since accounting data is 

produced quarterly, while stock price data is produced monthly. In order to overcome this, we 

follow the method of Hong and Wu (2014). There are two different types of data in our 

sample: stock and flow. Stock data is snapshots of the measured variable at a given point in 

1 At least three companies are needed to identify one industry-wide common factor. Details are discussed in 
Section 4. 
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time, whereas flow data represents an accumulation over a given period. Stock return, 

profitability, growth opportunity and discount rate are stock variables, but earnings, yield and 

capital investments are flow variables. By accumulating monthly observations of flow 

variables over a quarter, they could then become the end of the quarter observation. This 

means the end of quarter observation for flow variables could be, at least in theory, reverse 

engineered and decomposed into monthly observations. Since all of our quarterly observed 

variables are flow variables, weighted average is used under this assumption. 

Such reverse engineering allows us to only investigate ex-post explanatory power of 

accounting fundamentals, observed market-wide common shocks and unobserved industry-

wide common shocks. This is consistent with the focus of the paper, i.e. the contemporaneous 

relationship between stock returns and the given explanatory factors. Investigation of the 

contemporaneous regression analysis also has another benefit of being consistent to the 

existing literature including Zhang (2000) and Chen and Zhang (2007). 

3.2 Cross-Sectional Dependence Test and Number of Common Factors 

We first conduct a formal cross-sectional dependence (CSD) test to our data set to see if CSD 

exists. For each industry, our panel data set has small N and relatively large T, therefore we 

adopt the CSD test proposed by Breusch and Pagan (1980). This test is based on the 

following Lagrange multiplier (LM) statistic 

 
1

2

1 1

ˆ
N N

LM ij
i j i

CSD T ρ
−

= = +

= ∑ ∑ , (5)       

where ˆijρ  is the sample estimated pair-wide correlation of the residuals. Specifically, 

 1
1 1

2 2
2 2

1 1

ˆ ˆ
ˆ ˆ

ˆ ˆ

T

it jt
t

ij ji
T T

it jt
t t

e e

e e

ρ ρ =

= =

= =
   
   
   

∑

∑ ∑
, (6) 

where îte  is the estimate of ite  in equation (4) by running OLS regression for each 

individual i . Breusch and Pagan (1980) show that under the null hypothesis of CSD, 

LMCSD  is asymptotically a chi-squared distribution with ( 1) 2N N −  degrees of freedom.  

(Insert Table 1 here) 

We conduct the CSD test for each of the six industries, with Table 1 presenting the 

degree of freedom, the LM statistic of LMCSD , and the corresponding p-value for each 
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industry. The test results indicate that CSD exists in all industries. 

 
4. Econometric Frameworks 
There are a range of estimators proposed to take into account CSD in the literature. For an 

excellent review, see Sarafidis and Wansbeek (2012). SUR approach, due to Zellner (1962), is 

the most classical econometric model of CSD for panel data with small N and large T. 

Pesaran (2006) proposed the common correlated effects (CCE) estimator and Bai (2009) 

introduced the iterative principal components (IPC) estimator. For both the CCE and IPC 

estimators, large N and T are required. This requirement implies that applying these two 

methods to capture industry-wide common shocks may not perform well, given we only have 

a small number of companies within each industry.  

In this study we propose a new Bayesian estimator to allow for CSD in panel data with 

large T and small N, which is specifically suitable to capture the impacts of unobserved 

industry-wide common shocks on stock price movements. For each industry, we specify a 

factor structure model as  

  
1 1 1 11 1

,   where   .i it ti it
s m

t it it iy ee ε
× × × ×

+′ ′= = +z fθ λ  (7) 

So it allows for heterogeneous impacts of observed regressors through individual specific iθ  

and CSD through factor structure error terms. Note that same to other panel data models with 

multifactor structure error terms, imposing such structure causes loss of unrestricted error 

covariance matrix in the SUR model. However, it allows us to see how companies respond to 

the industry-wide common shocks heterogeneously. Model in Equation (7) is a 

generalization of that proposed by Geweke and Zhou (1996) through introducing z regressors. 

For the sake of identification, it is required that ( 1) 2m N≤ −  (Geweke and Zhou, 1996, p. 

565). For simplicity, we write the model in matrix form as  

 
11 1 1

t tN mNsNs m N
t t

N N ××× × × ×
+ += fY Z θ εΛ , (8) 

where 

 

1
11

1

1 1 1

,    ,          and  ,   

t
t

t t

Nt N

s t

t

N N N
s
t t

y

y

ε

ε

×

×

   
  

′  ′    
    = = Λ =       ′ ′

= =   
   

    
 

   

  

θ
θ ε

θ

λ

λ

z

Y Z
z

. 

Then the following conditions are standard and necessary for the Bayesian analysis (Geweke 

and Zhou, 1996; Chan et al., 2013). 
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Assumption 1: The error terms and factors are independent and identically distributed 

across t. Specifically, 

 ( ) ( )2 2 2
1 2~ 0, ,        an

0
, , ,  0 d  

mt
N

t N N

N diagε
ε

σ σ σ
×

 
 = = …
 
 

 
 
 ε

If
Σ Σ ΣΣ . 

Moreover, tf  and tε  are independent of tZ . 

Follow the spirit of the Bayesian algorithm presented in Geweke and Zhou (1996) we 

propose a Bayesian Gibbs sampler for the model of (8). Both 'siλ  and 'stf  are treated as 

unknown parameters with the values being drawn from their conditional posterior densities. 

Then, conditional on 'siλ  and 'stf , the model of (8) reduces to the standard linear 

regression model, facilitating draws from the conditional posterior densities for the 

parameters. Note that the above set-up rules out the correlation between regressors and 

factors (or regressors and factor loadings), which is a drawback of this study. 

For prior densities of individual-varying slope coefficients and variances of random 

error terms, we consider a standard diffuse prior, that i s∝ 1θ  and 1
i

i

h
h

∝ , where 

2

1 0i
i

h
σ

= > . For prior densities of unobservable factor loadings, we follow Geweke and Zhou 

(1996) to have i m∝ 1λ  for the case with large T and small N. Under these prior distributions 

and model specifications, the joint posterior density for all unknown parameters (such that iθ , 

ih , iλ  and tf ) can be written as  

 
( ) ( )

( )

1 2 1 2 2
1: 1:

1 1

/2

1 1

( | ) 2 exp
2

1 1                 2 exp ,
2

N T
i

T T i it it i i t
i t

N T
m

t t
i ti

hp , h y

h

π

π

= =

−

=

−

=

 ′ ′= − − − 
 
 ′⋅ ⋅ − 
 

∏∏

∏ ∏

θ λY Z z f

f f

Θ
  (9) 

where Θ  represents for all unknown parameters.  

From the joint posterior density (9) we can derive the full conditional posterior 

densities that can be used for Gibbs sampling. Particularly, we assume that all the rank 

conditions needed below are satisfied. 

The conditional posterior densities of the parameter 'siθ  for , ,1i N= …  are normal 

distributions, given by 

 ( )1
1

1: :
1ˆ| , ~, ,

ii i i i
i

T T N
h

−
−

 
′ 

 
θθ θY Z ZZ Θ , (10) 

8 
 



where 

 ( ) ( )
1 1 1

1

1

ˆ ,     and     
i i i

i i i i i i
T

iT iT i T

i
T s

y

y

−

× ×

′ ′−   
   ′ ′= = =   
   ′ ′−   

 

 

z λ f
θ Z Z Z Y Y

z λ f
Z . 

The conditional posterior densities of 'sih  for , ,1i N= …  are gamma distributions as 

follows. 

 ( )1: 1:| , ~ ,
ii hT T ch, Gh ss−ΘY Z , (11) 

where the shape and scale parameters are 
2h
Ts =  and ( )2

1
2 /

T

it it i i tc
t

ys
=

′ ′− −= ∑ θz λ f  

respectively. Specifically, if ( )~ ,h cz G s s , then 
1

( | , ) exp( / )
( )

h hs s
c

h c c
h

s zp z s s z s
s

− −

= −
Γ

.  

The conditional posterior densities of 'stf  for , ,1t T= …  are normal distributions, 

given by 

 ( )( )1

1: 1:
ˆ~ ,| , , '

tt tT T mY Z IN
−

−Θ + Λ Λff f   , (12) 

where 

 ( )
( )

( )

1/2 1/2
1 1 1 1

1/2

1

2

1

1/

1

ˆ ,     .,   
t t

t t t

N N N N

m

Nt Nt

h h

h h

y
I Y Y

y

−
′   −

   ′ ′= + Λ Λ Λ = Λ =   
   ′−

′⋅ ⋅

′⋅ ⋅   

z

z
f      

 

θ λ

θ λ
 

For the purpose of identification (Geweke and Zhou, 1996), we set the first m  rows 

of 
( )

1

2
m

m

N m

m×

×−

Λ 
 Λ =  Λ 
 

 as  

  

21 22

1 2

11

1     and   

0 0

0    for   1, ,
0

.ii

m m mm

i m

λ
λ λ

λ

λ λ λ

 
 
 Λ =
 
 
 

> = …



   

   

Thus, for the first m factor loadings 

 ( ) 1
1: 1:

ˆ 1| ~ ,, ,
iT T ii i

i
iN

h
Y Z F Fγ−

− 
 
 

′Θλ λ , (13) 
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where ( )
1 ,1

1
1 1

1
,

ˆ ,    ,       ˆ and ˆ   ,
i i

i i i i

t i i

i ti
T i

Ti t i i

i i

T T ii
i

f y
F

f
F F F

y
Y Y−

× ×

′ ′  −   
    = = =    

    ′ ′−  

′ ′=



f z
f

f z
 λ

θ

θ
 for , ,1i m= … . For 

the rest factor loadings ( 1 ,, Ni m= + … ), 

 ( ) 1
1: 1:

1ˆ,| ~ ,,
iT Ti i

i

Y NZ F F
hγ

−
−Θ 


′

 



λ λ , (14) 

where ( )
1

1
1 1 '

,       and   
'

ˆ ˆ ˆ
i i

T iT iT

i

i i i

i

F F F Y Y
y

F
y

−

′ −   
   = =   
   ′ −   

′ ′=
f z

f z


θ
λ

θ
.  

5. Empirical Results 
To capture the impact of industry-wide common shocks on stock price movements, we apply 

both the SUR approach and our Bayesian estimator to each industry. Since both Pesaran’s 

(2006) CCE estimators and Bai’s (2009) IPC estimator require large N and large T, they are 

not suitable to capture industry-wide common shocks given that we only have relatively a 

small number of companies in each industry. Alternatively we can pool all companies 

together regardless of industry classification, then the CCE estimator and IPC estimator can 

be applied to account for more general market-wide unobserved common shocks. However 

stock returns of companies from the same industries are more likely to be correlated with 

each other, compared to those from different industries. Therefore in this study, we focus on 

applying the two former methods, i.e. the SUR approach and the Bayesian estimator, to 

capture industry-wide common shocks. Results for pooled data from all four methods without 

discussion are presented in Appendix for the sake of space limitation.    

5.1 Impact of Observable Factors on Stock Returns 

We first estimate factor structure model (i.e. (7)) using our Bayesian estimator separately for 

all six industries. As stated in Section 4, the highest number of common factors that can be 

identified is less than half of the number of individual companies. Since there are only three 

companies in the industry of utilities, only one common factor can be identified. For the sake 

of comparison, we first set the number of common factors as one for all six industries. For 

each model, we generate 15,000 draws from the posterior conditional distributions and 

discard the first 5,000 as a “burn-in”.  

 (Insert Table 2 here) 
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Due to space limitations, we present the estimated coefficients for IT industry2 only. 

Table 2 presents the posterior statistics, including posterior mean, standard deviation and 95 

per cent credible interval (CI) for coefficients of observable accounting variables and the 

S&P500 index, proxy for market-wide common shocks, for each company from the IT 

industry. In order to assess the Gibbs sampler’s performance, we present the sampled paths 

and auto-correlation functions (ACFs) of these sample paths for all estimated coefficients of 

Apple Inc. in Figure 1. These plots show that the sample paths are mixed well. In particular, 

the time series sample paths for all estimated parameters are randomly distributed within a 

small range without any time trend. Second, the auto-correlation plots for all parameters 

decrease to zero rapidly within 10 draws. The sampled paths and ACF’s of estimated 

coefficients for the other companies are very similar, and are not included here. 

(Insert Figure 1 here) 

In general, we find that market-wide common shock, represented by the S&P500 index, 

has statistically significant positive impacts, with none of the 95 per cent CIs containing zero, 

on stock returns. On the other hand, most CIs of estimated coefficients for accounting 

fundamentals include zero, indicating no significant impact from accounting fundamentals on 

stock returns. In addition, we find that the impacts of observed market-wide common shock 

and accounting fundamentals on stock returns vary across companies. For example, the 

impact of market S&P500 index, varies across companies from 0.7510 (for IBM) to 1.3613 

(for Dell). The adjusted capital investment, b∆ , only has significantly positive impact on 

stock returns for three companies: Apple Inc., Intel Corporation and Qualcomm Inc., but has 

no significant impact for the other eight IT companies. Furthermore, the magnitudes of such 

significant impacts are different, ranging from 1.5060 (for Intel Corporation) to 2.0254 (for 

Apple Inc.). Therefore, the model specification of individual-varying coefficients of 

observable accounting fundamentals and market-wide common factors can be justified.   

For model comparison, we also estimate SUR models for all industries separately. 

Results for all companies from the IT industry are presented in Table 33. We observe three 

major findings by comparing the estimated results from SUR model and Bayesian common 

factor model. 

2 Results for all the other industries have consistent implications to those for IT industry. They are ava
ilable from the authors upon request. 
3 SUR models are estimated by the feasible GLS (FGLS) method rather than Bayesian MCMC method. Results 
for other industries are available upon request. 
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(Insert Table 3 here) 

First, the results from SUR models show that almost all of the account fundamentals, 

except for the change in profitability, have significant impacts on IT companies’ stock returns. 

In particular, the earnings yield (x) has a significant affect on stock returns for eight out of 

eleven IT companies. The impact of capital investment ( b∆ ) is significant for all IT 

companies except for EMC Corporation. Eight IT companies’ stock returns are significantly 

impacted by the change in the discount rate ( r∆ ). But such significant impacts almost all 

disappear, when the unobserved industry-wide factor is taken into account, as by the 

Bayesian common factor model. However, it is worthwhile to note that the point estimations 

by the SUR model are very close to the posterior mean estimations for any single parameters 

of accounting fundamentals.  

Second, estimated impacts of S&P500 index on stock returns by the SUR model and 

those by Bayesian common factor model are almost identical. Therefore, the explaining 

power of S&P500 index to stock price movement is robust.  

     Third, results from the SUR model also show considerable variations in estimated 

coefficients across companies, which demonstrates that there exists strong individual 

heterogeneity within the IT industry. For example, the estimated impacts of S&P500 index on 

stock returns range from 0.7433 (for IBM) to 1.3732 (for Dell). The significant impacts of 

earnings yield (x) on stock returns have an even higher range, from -1.9016 (for Qualcomm 

Inc.) to 0.5332 (for Accenture Plc.)   

5.2 Impact of Unobservable Common Shocks on Stock Returns 

In this section, we first compare the explaining power of observed factors, i.e. accounting 

fundamentals and market-wide common factor, versus that of unobserved common shocks in 

the Bayesian common factor model. In doing so, we calculate two variance ratios indicating 

explaining power of observed factors and unobserved common shocks, respectively. In 

particular the explaining power of observed factors can be expressed as ' ˆ( ) ( )it i itVar Var yz θ , 

and that of unobserved common shocks is ˆ ˆ( ) ( )i t itVar Var yfλ , given that it is assumed tf  is 

independent of itz . Table 4 presents these two variance ratios for each IT companies.  

(Insert Table 4 here) 

Two findings emerge from these results. First, we can see that unobserved common 

shocks explain considerable proportions of variation in stock returns for IT companies, after 
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controlling the impacts from observed factors. For example, on individual basis, unobserved 

common shocks can explain more than 15% of variation in stock returns for EMC 

Corporation. More than 6% of the overall variation in stock returns in the IT industry can be 

attributed to the unobserved common shocks within this industry. Second, the extents to 

which each IT company was exposed to unobserved industry-wide common shocks are 

different. That is to say, some companies are more sensitive to industry-wide common shocks 

than other companies. For example, the results show that the most sensitive company is EMC 

Corporation with 15.7% variation in stock returns attributed to occurrence of industry-wide 

common shocks, while the least sensitive company is Microsoft with only around 1% 

variation in its stock returns can be explained by unobserved common shocks.  

5.3 Robustness Check: Number of Common Factors 

So far we set the number of unobserved industry-wide common factors as one because 

only one common factor can be identified for the industry of utilities. To check the robustness 

of this assumption for the other five industries (IT, industrial, energy, finance and health care), 

we estimate the Bayesian common factor models with two and three4 common factors, 

respectively, for each of the five industries. To show how well each model specification fits 

the data, we report the overall Mean Squared Errors (MSE’s) estimated by Bayesian factor 

models with the specification of one, two or three common factors for each of the five 

industries. Specifically, the MSE can be calculated as 

 2

1 1

1 ˆMSE = ( )
N T

it it
i t

y y
NT = =

−∑∑ , (15) 

where ˆity  are the stock returns estimated by Bayesian common factor model, i.e. 

ˆ ˆ ˆˆit it i i ty ′ ′= +z fθ λ .  

(Insert Table 5 here) 

Table 5 reports MSE’s from each Bayesian common factor model for each of the five 

industries. The results show that increasing the number of common shocks cannot make 

Bayesian common factor models fit the data in any significantly better way. In particular, for 

the IT industry, an increase in the number of common shocks has almost no impact on MSE 

of the model. For the other four industries, there is a minor improvement in MSE when the 

4 Three is the highest number of common factors that can be identified for the industry of energy.  
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number of common shocks is increased from one to two, such as a decrease in MSE from 

0.0030 to 0.0026 for the industrial industry. Increasing the number of common factors from 

two to three has almost no impact, and in some industries, such as energy, MSE is even 

increased. These results imply that our specification of one common factor is reasonable, and 

that increasing the number of shocks does not dramatically improve the model’s performance. 

It is worthwhile to note that we are not using MSE as a criterion for model selection in terms 

of specification on the number of common factors. In Bayesian framework, such model 

selection is still a research area requiring further study and is out of the scope of this paper.  

 

6. Conclusion 
This paper applies two different econometric models, i.e. SUR approach and a Bayesian 

estimator for panel data regression model with multi-factor structural error terms, to examine 

the causes of stock price movements. Differing from previous methods applied in this 

literature, these two methods allow for cross-sectional dependence existing among companies 

from the same industry, caused by unobserved industry-wide common shocks. In the factor 

structure model, we assume that the industry-wide common shocks impact on all companies 

in the industry but with different intensities. We propose a new Bayesian estimator 

specifically for the factor structure model for panel data with small N and large T.  

The empirical results from this study show that the impacts of observed accounting 

fundamentals and market-wide common shocks are heterogeneous across companies within 

the same industry. That is to say, the same factor has very different impacts on stock returns 

for different companies. Market-wide common shocks have stronger and more significant 

impacts on stock returns compared to accounting fundamentals. After controlling observed 

accounting fundamentals and market-wide common factors, considerable proportions of 

variations in stock returns can be attributed to industry-wide common shocks. We also find 

reactions of different companies to unobserved industry-wide common shocks are different. 

Some companies’ stock returns are more sensitive to industry-wide common shocks than 

others’.  
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Table 1 Breusch and Pagan’s Test of Cross-Section Dependence 
 

 

IT Industrial Energy Finance Health Care Utilities 

Degree freedom 55 78 28 45 55 3 

LMCSD  183 234 371 441 346 55 

p-value  0.00 0.00 0.00 0.00 0.00 0.00 
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Table 2 Estimated Coefficients of Observed Factors for the IT Industry from Bayesian 
Common Factor Model 

 
Apple Inc.   Accenture Plc. 

  Mean Std 95% CI      Mean Std 95% CI 

x -1.6936 1.7674 (-5.1657, 1.7444)    x 0.4542 0.3473 (-0.2254, 1.1313)  

Δq -4.6425 6.5265 (-17.579, 8.3076)    Δq -0.7904 3.3818 (-7.3441, 5.7851)  

Δb 2.0254 0.3939 (1.2574, 2.7924)    Δb -0.0217 0.0924 (-0.2028, 0.1577)  

Δr 0.1426 0.2886 (-0.4243, 0.7073)    Δr -0.0871 0.2839 (-0.6469, 0.4608)  

SP500 1.2218 0.2237 (0.7758, 1.6576)    SP500 0.9257 0.1144 (0.7001, 1.1511)  

Cisco System 

 

Dell 

  Mean Std 95% CI      Mean Std 95% CI 

x -0.3379 0.4660 (-1.2696, 0.5722)    x -0.8304 0.7502 (-2.3010, 0.6343)  

Δq 10.3445 6.7426 (-2.8156, 23.708)    Δq -0.8990 3.9800 (-8.6342, 6.9031)  

Δb -0.0902 0.1559 (-0.3958, 0.2159)    Δb -0.0994 0.1209 (-0.3406, 0.1398)   

Δr -0.1777 0.1384 (-0.4508, 0.0946)    Δr -0.0868 0.3423 (-0.7469, 0.5861)  

SP500 1.3435 0.1367 (1.0779, 1.6098)    SP500 1.3613 0.1642 (1.0379, 1.6801)  

EMC Corporation 

 

Hewlett Packard 

  Mean Std 95% CI      Mean Std 95% CI 

x 0.3083 1.0673 (-1.7994, 2.4126)    x 0.2591 0.2746 (-0.2703, 0.8001)  

Δq -3.2525 5.9631 (-14.793, 8.4963)    Δq 0.6026 0.3785 (-0.1338, 1.3421)  

Δb -0.0840 0.3460 (-0.7604, 0.5939)    Δb -0.3546 0.2698 (-0.8817, 0.1792)  

Δr -0.0667 0.0969 (-0.2554, 0.1228)    Δr -0.0302 0.0865 (-0.1972, 0.1396)  

SP500 1.3198 0.1561 (1.0108, 1.6270)    SP500 1.1709 0.1343 (0.9072, 1.4375)  

IBM 

 

Intel Corporation 

  Mean Std 95% CI      Mean Std 95% CI 

x 0.3211 0.3658 (-0.4112, 1.0421)    x -0.5264 0.4407 (-1.3925, 0.3307)  

Δq -2.1763 1.3670 (-4.8392, 0.5149)    Δq 4.6541 2.9327 (-1.0709, 10.441)  

Δb 0.0044 0.0979 (-0.1885, 0.1986)    Δb 1.5060 0.7528 (0.0288, 2.9841)  

Δr -0.0869 0.1265 (-0.3326, 0.1645)    Δr -0.0968 0.1007 (-0.2940, 0.1017)  

SP500 0.7510 0.0956 (0.5617, 0.9386)    SP500 1.1706 0.1345 (0.9016, 1.4339)  

Microsoft 

 

Oracle Corporation 

  Mean  Std 95% CI      Mean Std 95% CI 

x -0.2348 0.3546 (-0.9304, 0.4510)    x 0.3819 0.4432 (-0.5117, 1.2434)  

Δq 1.1018 2.2772 (-3.3573, 5.5670)    Δq 1.4581 2.6409 (-3.5877, 6.6771)  

Δb 0.3644 0.2323 (-0.0993, 0.8194)    Δb -0.1382 0.1720 (-0.4681, 0.2028)  

Δr 0.1579 0.1890 (-0.2152, 0.5212)    Δr -0.0787 0.1525 (-0.3802, 0.2237)  

SP500 0.9204 0.1158 (0.6889, 1.1447)    SP500 1.1977 0.1236 (0.9521, 1.4385)  

Qualcomm Inc.    

  Mean Std 95% CI          

x -1.9100 1.1160 (-4.1181, 0.2935)          

Δq -0.1622 6.3623 (-12.703, 12.321)          

Δb 1.8329 0.5274 (0.8054, 2.8707)          

Δr -0.4439 0.1869 (-0.8079, -0.0794)          

SP500 1.0112 0.1721 (0.6695, 1.3405)          
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Table 3 Estimated Coefficients of Observed Factors for the IT Industry from the SUR Model 
 

Apple Inc.  Accenture Plc.  Cisco System 

 Estimate Std   Estimate Std   Estimate Std 
x -1.7051 1.9512  

x 0.5332 0.0840**  
x -0.2343 0.1501 

Δq -4.3511 37.5507  
Δq 0.1886 9.4579  

Δq 11.3222 38.7183 
Δb 1.9415 0.5924**  

Δb -0.0312 0.0071**  
Δb -0.1029 0.0215** 

Δr 0.1013 0.0731  
Δr -0.0782 0.0729  

Δr -0.1836 0.0174** 

SP500 1.2361 0.0498**  
SP500 0.9312 0.0131**  

SP500 1.3407 0.0178** 
Dell  EMC corporation  Hewlett Packard 

 Estimate Std   Estimate Std   Estimate Std 
x -0.9095 0.1270**  

x 0.3842 0.3846  
x 0.3121 0.0146** 

Δq -1.9775 13.9225  
Δq -4.0140 31.6886  

Δq 0.4549 0.1590** 
Δb -0.1330 0.0124**  

Δb -0.0690 0.1097  
Δb -0.3817 0.0731** 

Δr -0.0998 0.1083  
Δr -0.0590 0.0078**  

Δr -0.0217 0.0059** 
SP500 1.3732 0.0248**  

SP500 1.3175 0.0238**  
SP500 1.1698 0.0168** 

IBM  Intel Corporation  Microsoft 

 Estimate Std   Estimate Std   Estimate Std 
x 0.3421 0.0454**  

x -0.5096 0.1018**  
x -0.2681 0.0808** 

Δq -1.9477 1.7203  
Δq 4.9098 7.2429  

Δq 1.4689 4.4320 
Δb 0.0318 0.0100**  

Δb 1.6362 0.4953**  
Δb 0.4137 0.0428** 

Δr -0.0836 0.0151**  
Δr -0.0979 0.0093**  

Δr 0.1699 0.0363** 
SP500 0.7433 0.0091**  

SP500 1.1644 0.0177**  
SP500 0.9195 0.0132** 

Oracle Corporation  Qualcomm Inc.     
 Estimate Std   Estimate Std     

x 0.3610 0.1575*  
x -1.9016 0.8116*     

Δq 1.9328 6.3625  
Δq -1.4696 34.7751     

Δb -0.1515 0.0298**  
Δb 2.0253 0.4528**     

Δr -0.0793 0.0203**  
Δr -0.4426 0.0349**     

SP500 1.1964 0.0150**  
SP500 1.0009 0.0339**     

Note: ** indicates 1% significant, * indicates 5% significant. 
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Table 4 Explaining Power of Observed Factors vs. Unobserved Factors for IT Companies 
 

Company ' ˆ( ) ( )it i itVar Var yz θ  ˆ ˆ( ) ( )i t itVar Var yfλ  

Apple Inc. 0.2689 0.0514 

Accenture Plc. 0.3733 0.0208 

Cisco System 0.4788 0.0844 

Dell 0.4086 0.0808 

EMC Corporation 0.3877 0.1570 

Hewlett Packard 0.4350 0.0337 

International Business Machines 0.3645 0.0532 

Intel Corporation 0.4345 0.0921 

Microsoft 0.3861 0.0157 

Oracle Corporation 0.4610 0.0846 

Qualcomm Inc. 0.2984 0.0273 

Overall 0.3850 0.0655 

 
Table 5 MSE’s from Bayesian Common Factor Model with Different Specifications on a 

Number of Industry-Wide Common Factors 
 

Model  IT Industrial Energy Finance Health Care 
      One factor 0.0034 0.0030 0.0045 0.0053 0.0031 
Two factors 0.0034 0.0026 0.0038 0.0045 0.0029 
Three factors 0.0034 0.0025 0.0040 0.0044 0.0028 
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Figure 1 MCMC Sample Paths and ACFs of Coefficients Estimated from Model CF for 

Apple Inc. 
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Appendix 

Table A1 Estimated Heterogeneous Coefficients of Observed Factors for Selected Companies 

by SUR Model, Bayesian estimator and CCE Estimator  

 
Apple Inc 

 
Accenture plc 

 
SUR Bayesian CCE 

 
SUR Bayesian CCE 

 
Estimate Std Mean Std Estimate Std Estimate Std Mean Std Estimate Std 

x -1.6696 1.1038 -1.6359 1.5244 -2.6884 0.2602 
 

0.5422 0.0658 0.4839 0.2987 0.7606 0.1991 

Δq -4.2656 21.1166 -6.1337 6.7439 -4.0974 0.9005 
 

0.2473 5.0042 -1.2173 3.3469 -1.9954 1.1302 

Δb 1.9589 0.3298 2.0587 0.8394 2.6320 0.3010 
 

-0.0861 0.0038 -0.0218 0.091 -0.0203 0.2876 

Δr 0.1672 0.0632 0.1205 0.2852 0.3176 0.2540 
 

-0.0202 0.0679 -0.0179 0.2889 -1.1053 0.3591 
SP500 1.2213 0.0487 1.2289 0.2324 1.3854 0.2971 

 
0.9380 0.0128 0.9212 0.1222 0.8575 0.3657 

 
Cisco System Dell 

 
SUR Bayesian CCE SUR Bayesian CCE 

 
Estimate Std Mean Std Estimate Std 

 
Estimate Std Mean Std Estimate Std 

x -0.1095 0.1172 -0.2699 0.4291 -0.1595 0.1225 
 

-0.8803 0.0943 -0.8146 0.3695 -0.7549 0.1468 

Δq 10.4641 19.6241 9.4803 7.4226 15.7637 1.3514 
 

-4.7782 7.4491 -1.2980 4.2309 -2.3558 0.5900 

Δb -0.0813 0.0112 -0.0587 0.1678 -0.0490 0.2799 
 

-0.0738 0.0064 -0.0327 0.1262 -0.0414 0.2449 

Δr -0.1677 0.0159 -0.1483 0.1415 0.2091 0.3978 
 

-0.0438 0.0969 0.0531 0.3498 1.2513 0.3167 
SP500 1.3364 0.0177 1.3387 0.1379 1.1892 0.1486 

 
1.3726 0.0245 1.3523 0.1692 1.3523 0.0858 

 
EMC corporation Hewlett Packard 

 
SUR Bayesian CCE 

 
SUR Bayesian CCE 

 
Estimate Std Mean Std Estimate Std 

 
Estimate Std Mean Std Estimate Std 

x 0.321 0.242 0.4298 0.6745 0.7228 0.1751 
 

0.3132 0.0105 0.2843 0.1317 0.2900 0.1608 

Δq -0.7026 12.9062 -3.4268 6.6569 0.1105 0.8384 
 

0.318 0.1151 0.6293 0.4351 0.6012 0.5729 

Δb 0.182 0.044 -0.1064 0.3969 -0.1010 0.1911 
 

-0.3043 0.0528 -0.3518 0.2893 -0.3198 0.1877 

Δr -0.0531 0.0068 -0.0443 0.0966 -2.1527 0.3327 
 

-0.0091 0.0056 -0.0198 0.0804 0.0378 0.3392 
SP500 1.2778 0.0231 1.3144 0.1627 1.8336 0.1838 

 
1.165 0.0167 1.1701 0.134 1.1073 0.0893 

 
IBM Intel Corporation 

 
SUR Bayesian CCE 

 
SUR Bayesian CCE 

 
Estimate Std Mean Std Estimate Std 

 
Estimate Std Mean Std Estimate Std 

x 0.461 0.0337 0.3494 0.228 0.5567 0.1312 
 

-0.2949 0.073 -0.5731 0.3487 -0.4807 0.1751 

Δq -1.9821 0.758 -2.2755 1.451 -1.3162 0.8502 
 

2.1777 3.5171 5.3219 3.1013 4.6142 0.6048 

Δb 0.0739 0.0043 -0.0163 0.1109 -0.0242 0.1363 
 

1.2987 0.2349 1.7903 0.8358 2.1150 0.1814 

Δr -0.0947 0.0129 -0.0637 0.1295 -1.0885 0.4102 
 

-0.074 0.0083 -0.095 0.1044 -0.5603 0.3868 
SP500 0.7324 0.0089 0.7509 0.099 0.7953 0.1021 

 
1.1748 0.0175 1.1588 0.1395 1.3721 0.0804 

 
Microsoft Oracle Corporation 

 
SUR Bayesian CCE 

 
SUR Bayesian CCE 

 
Estimate Std Mean Std 

0.2982 

Estimate Std 
 

Estimate Std Mean Std Estimate Std 
x -0.1358 0.0625 -0.1813 -0.0936 0.1190 

 
0.5932 0.1278 0.4872 0.4203 0.6012 0.2452 

Δq 1.5736 2.4885 0.9321 2.2964 1.4372 1.6971 
 

1.2871 3.6599 1.3907 2.8346 0.3800 1.9910 

Δb 0.5562 0.024 0.3217 0.2264 0.2574 0.5374 
 

-0.1251 0.0178 -0.1601 0.1942 -0.1045 0.4604 

Δr 0.3058 0.0326 0.145 0.2014 -0.2969 0.1804 
 

-0.0412 0.0191 -0.0323 0.1532 -0.6384 0.1848 
SP500 0.9003 0.0131 0.9205 0.1191 0.9440 0.0748 

 
1.1823 0.0148 1.1895 0.1305 1.2495 0.0915 

 
Qualcomm Inc 

      
 

SUR Bayesian CCE 
       

 
Estimate Std Mean Std Estimate Std 

       
x -1.7919 0.525 -1.874 0.975 -1.7383 0.2031 

       
Δq -2.9526 19.3467 -0.8893 6.5453 1.5794 0.5973 

       
Δb 2.1703 0.2445 1.8571 0.7332 1.8297 0.5237 

       
Δr -0.4706 0.0313 -0.4144 0.1976 -1.2066 0.2639 

       
Note: The three models are estimated for pooled data. Results reported in this table are for selected IT companies.   
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Table A2 Estimated Homogeneous Coefficients of Observed Factors for all companies by 

CCEP Estimator, CCEMG estimator and IPC estimator for Factor Structure Model 

 

CCEP CCEMG IPC (one factor) IPC (two factors) IPC (three factors) 

 

Estimate Std Estimate Std Estimate Std Estimate Std Estimate Std 

x 0.0640 0.3174 -0.0755 0.2795 0.0108 0.0162 -0.0264 0.2325 0.0281 0.0344 

Δq 0.1024 1.3262 -1.3843 1.8118 -0.0036 0.0129 -0.0158 0.5376 0.0557 0.0068 

Δb 0.0360 0.2920 0.0705 0.3086 0.0007 0.0001 0.0008 0.2476 0.0013 0.0001 

Δr -0.0822 0.2619 -0.2073 0.2813 -0.0246 0.0020 -0.0234 0.0165 -0.0129 0.0015 

SP500 1.1001 0.0864 1.1924 0.0766 1.0465 0.0009 1.0398 0.0228 0.9254 0.0026 
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