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Summary: Spatial data have become increasingly common in epidemiology and public health research thanks to

advances in GIS (Geographic Information Systems) technology. In health research, for example, it is common for epi-

demiologists to incorporate geographically indexed data into their studies. In practice, however, the spatially-defined

covariates are often measured with error. Naive estimators of regression coefficients are attenuated if measurement

error is ignored. Moreover, the classical measurement error theory is inapplicable in the context of spatial modelling

because of the presence of spatial correlation among the observations. We propose a semi-parametric regression

approach to obtain bias corrected estimates of regression parameters and derive their large sample properties. We

evaluate the performance of the proposed method through simulation studies and illustrate using data on Ischemic

Heart Disease (IHD). Both simulation and practical application demonstrate that the proposed method can be

effective in practice.
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1. Introduction

With the rapid growth of Geographic Information Systems (GIS), it is now common for epi-

demiologists to incorporate spatially indexed data into their studies (Elliott and Wartenberg,

2004). Analysis of such data, however, is complicated by correlations among neighbouring

observations. Although there are well known statistical methods to adjust for spatial corre-

lation, relatively little has been done in the context of spatial modelling when the covariate

of interest is measured with error. In the case study that motivates this study, Australian

researchers explored the relationship between the SEIFA index (an area-based measure of

socio-economic status produced by the Australian Bureau of Statistics) and acute hospitaliza-

tion for Ischemic Heart Disease (IHD) in New South Wales, Australia (Burden et al., 2005).

Multivariate regression models suggest a significantly negative association between SEIFA

and IHD, implying that heart disease rates increase with social disadvantages. However,

the strength of association might be attenuated due to the fact that the SEIFA index is

constructed using principal component analysis, therefore, is highly likely to be measured

with error (Huque et al., 2014).

Many papers have appeared in the literature over the years on covariate measurement error

in the context of independent data (Carroll et al., 2006; Fuller, 1987). However, relatively

few have addressed the specific context of spatial modelling. Bernadinelli et al. (1997) and

Xia and Carlin (1998) presented a spatio-temporal analysis of spatially correlated data with

errors in covariates, in the context of disease mapping. They empirically studied several

alternative measurement error models using a Gibbs algorithm. Li et al. (2009) derived

asymptotic bias expressions for estimated regression coefficients in the context of a spatial

linear mixed model. They showed that the regression estimates obtained from naive use of

an error prone covariate are attenuated, while variance component estimates are inflated.

Recently, Huque et al. (2014) confirmed the findings of Li et al. (2009) and derived
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expressions for the bias when measurement error is ignored. They proposed two different

strategies for obtaining consistent estimates: (i) correcting the estimate using an estimated

attenuation factor; and (ii) using an appropriate transformation of the error prone covariate.

They showed that both bias correction methods work reasonably well, however, the standard

error is underestimated in the case when measurement error variances are estimated from

the data. Moreover, their approach is fully parametric. Indeed, Ruppert et al. (2009) argued

that penalized splines are the most effective method for correcting the covariate measurement

error in case of independent data. So it is of natural interest to extent the spatial regression

model with measurement error to a semi-parametric framework.

In this paper we propose a joint modelling approach to assess the relationship between a

covariate with measurement error and a spatially correlated outcome in a semi-parametric

regression context. Our approach contrasts with what is commonly assumed in the measure-

ment error context, namely that some form of validation data are available. Underlying our

approach is the critical assumption that the true, but unobserved covariate is smooth and

that any random fluctuations from this smooth surface represent measurement error. This

assumption makes our model identifiable by representing the unknown true covariate with

a linear combination of spline basis functions (Yu and Ruppert, 2002; Xun et al., 2013).

We use penalized least squares which makes the estimation of parameters and inference

straightforward. We develop asymptotic theory for the estimated parameters and provide

both model based and simulation based standard error estimates. Our simulation results

reveal that the proposed method works well in obtaining consistent estimates of the true

regression coefficient in the presence of measurement error. Our approach is computationally

efficient and stable and can be implemented using standard nonlinear least squares software.

The structure of the paper is as follows: Section 2 describes our model formulation,

estimation and inference procedures. Section 3 presents the data generation process and
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results from the simulation study. In section 4 we present an application of the proposed

method to data on Ischemic Heart Disease (IHD). We conclude with general discussion in

section 5. The Web Appendix (http:www.tibs.org/biometrics) gives detailed proofs, as

needed.

2. Model

Suppose that Xi represents the true covariate of interest measured at geographical location,

Si ∈ R2, i = 1, ..., n and suppose that Xi is related to an outcome Yi, according to a spatial

linear model:

Yi = β0 + β1Xi +G1(Si) + εi, (1)

where ε = (ε1, ....εn)T ∼ N(0, σ2
ε ) and {G1(Si) : Si ∈ R2} is an unknown function that

captures the spatial correlation, for now kept arbitrary. Further assume that εi and G1(Si)

are independent of each other and of the true covariate Xi (Cressie, 1993). In practice, the

outcome might also be related to other covariates and it is straight forward to extent model

(1) to include these. However, for simplicity, we only consider a single covariate in model (1).

In the presence of measurement error, measurements on the true covariate X are not

observed directly, instead an error contaminated version is available. Let Wi be the observed

covariate for location Si ∈ R2, i = 1, ..., n, related to the true covariate Xi according to a

classical measurement error model:

Wi = Xi + Ui, (2)

where Ui ∼ N
(
0, σ2

u

)
. Note that in the case of independent data, a consistent estimate of

the true regression coefficient β1 can be obtained if either the measurement error variance

is known or can be estimated using a validation data set on the true covariate (X) without

measurement error (Carroll et al., 2006). However, in the spatial epidemiology setting such
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validation data are relatively rare. We develop an alternative approach assuming that the

true covariate X is smooth and can be modelled by a second smooth function, G2(Si).

Many different choices of smoothers have been discussed in the literature, including locally-

weighted running line smoothers (loess), Kernel smoothers or splines (Hastie and Tibshirani,

1990). In general, techniques based on regression splines are robust in approximating the

true underling smooth functions and are relatively straight forward from a computational

perspective, but have rigorous mathematical properties (Ruppert et al., 2003; Wood, 2006).

In this paper we also adopt such a technique, specifically, cubic thin plate splines (Wood,

2006).

Within this framework, the unknown smooth functions, Gj(Si), for j = 1, 2 are represented

by linear combination of thin plate spline basis functions i.e., Gj(Si) = BT
j (Si)θj. Here B1(Si)

and B2(Si) are two sets of thin plate splines basis functions with dimensions (q1 + 3)× 1 and

(q2 + 3)× 1, respectively, where q1 and q2 are the corresponding number of knots and θ1 and

θ2 are vectors of corresponding basis coefficients.

Under the above specifications model (1) and (2) can be rewritten as

Yi = BT
2 (Si)θ2β1 +BT

1 (Si)θ1 + εi; (3)

Wi = BT
2 (Si)θ2 + Ui. (4)

Since these equations are linear with respect to a set of unknown parameters, we use penalized

least squares techniques for estimation (Yu and Ruppert, 2002; Xun et al., 2013). In this

method, the data, (Y, W), are fitted to two different sets of spline basis functions B1(Si)

and B2(Si) by least squares where parameters are estimated by minimizing the usual sum

of squares plus roughness penalties. That is, we minimize

J(β, θ1) = n−1
∑n

i=1{Yi −B
T
2 (Si)θ2β1 −BT

1 (Si)θ1}2 + δ1θ
T
1D1θ1; (5)

J(θ2) = n−1
∑n

i=1{Wi −BT
2 (Si)θ2}2 + δ2θ

T
2D2θ2, (6)
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where the terms δ1θ
T
1D1θ1 and δ2θ

T
2D2θ2 are roughness penalties associated with models

(3) and (4). These involve unknown regression coefficients θj, j=1,2, penalty parameters δj

and penalty matrices Dj of dimension (qj + 3) × (qj + 3). The penalty matrices map the

spline basis functions to the data whereas the penalty parameters control the amount of

smoothing (Ruppert et al., 2003; Wood, 2006). Given knot locations {x∗j(i) : 1, 2, ..., qj},

penalty matrices have zeroes everywhere except in its lower right qj × qj block with Dj(ik) =∥∥∥x∗j(i) − x∗j(k)∥∥∥2 log
∥∥∥x∗j(i) − x∗j(k)∥∥∥, for i, k 6 qj.

Note that the intercept term β0 in the model (1) is set to 0 in (3), because it is not

identifiable in the presence of a nonparametric function G1(·). Even so, the parameters of

these models are not completely identifiable without some additional assumptions outlined

in the next section.

2.1 Identifiability

From the above models (3) and (4), it is evident that if B1(·) ≡ B2(·), then these models are

not identifiable because in this case (3) becomes

Yi = BT
2 (Si)(θ2β1 + θ1) + εi.

Thus, we can identify only θ2 and θ2β1 + θ1, and cannot separate out β1 and θ1. To make

these models identifiable, we assume that the asymptotic variability, Λ1 and Λ2 of two sets

of basis functions B1(.) and B2(.), respectively, are different. The asymptotic variability Λj

for j=1, 2, are the limiting values of Λnj, where

Λnj = {n−1
∑n

i=1Bj(Si)B
T
j (Si)− δjDj}−1. (7)

In practice, this requirement can be easily achieved by ensuring that the numbers of knots

q1 and q2 are unequal.
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2.2 Parameter estimation

In addition to the assumption that Λ1 6= Λ2, we also assume that the penalty parameters

are small relative to the sample size, i.e., n1/2δj → 0 for j = 1, 2. This means that with large

sample sizes, the estimated regression coefficients obtained using penalized least squares will

be close to the OLS estimates. Thus minimizing the penalized sum of squares (6) and solving

for θ2, we have

θ̂2 = Λn2n
−1∑n

i=1B2(Si)Wi, (8)

where Λn2 is defined in equation (7). A detailed derivation of θ̂2 along with it’s asymptotic

distribution is given in Web Appendix A.1. Similarly, we can estimate θ1 and β1 by mini-

mizing the corresponding penalized sum of squares (5). This yields (see the Web Appendix

A.2 & A.3)

θ̂1 = Vn −Rnθ̂2β̂1 (9)

β̂1 =
n−1
∑n

i=1Yi{BT
2 (Si)−BT

1 (Si)Rn}θ̂2
θ̂T2 (Tn −RT

nΛ−1n1Rn)θ̂2
, (10)

where

Vn = Λn1n
−1∑n

i=1B1(Si)Yi;

Rn = Λn1n
−1∑n

i=1B1(Si)B
T
2 (Si);

Tn = n−1
∑n

i=1B2(Si)B
T
2 (Si).

Although the above estimator of β1 was estimated using pseudolikelihood, it is consistent

for β1. In the next section we will establish the asymptotic properties of the estimator.

2.3 Asymptotic Theory

Asymptotic theory for the estimators β̂1 is based on treating the spatial locations Si ∈ R2 as

fixed constants. Following Yu and Ruppert (2002), if δj → 0 as n → ∞, then the bias also
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tends to 0 and consistency can be established. Asymptotic normality is established by the

following theorem, whose proof appears in Web Appendix A.4.

THEOREM 1: Assume that the smoothing parameters are small relative to the sample

size, i.e., n1/2δj → 0, and the spatial correlation G1(.) and unknown covariate X are correctly

represented by a finite number of splines basis functions. Then the estimate of β1 is consistent

and asymptotically normally distributed with

n1/2
(
β̂1 − β1

)
d−→ N

(
0, σ2

)
, (11)

where

σ2 = limn→∞ n
−1∑n

i=1(σ
2
εG2ni + σ2

uH2
ni);

Gni = Dni(θT2 Cnθ2)−1;

Hni = AnΛn2B2(Si)(θ
T
2 Cnθ2)−1 −Anθ2Fni(θT2 Cnθ2)−2;

An = n−1
∑n

i=1{G2(Si)β1 +G1(Si)}{B2(Si)−RT
nB1(Si)}T;

Cn = Tn −RT
nΛ−1n1Rn;

Dni = {B2(Si)−RT
nB1(Si)}Tθ2;

Fni = θT2 C2Λn2B2(Si) +BT
2 (Si)Λn2Cnθ2.

Rn = Λn1n
−1∑n

i=1B1(Si)B
T
2 (Si);

Tn = n−1
∑n

i=1B2(Si)B
T
2 (Si).

(12)

Using this asymptotic expression we can also estimate the standard error of the estimated

regression coefficient β̂1. The next section will discuss two such options.

2.4 Estimating the standard error of β̂1

We first consider a model based estimate of the standard error of β̂1 using the asymptotic

theorem discussed in the previous section and then suggest a more robust estimate of

standard error using simulation.
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2.4.1 Model based standard error. The model based standard errors of the estimated β̂1

can be estimated by substituting corresponding consistent estimates of σ2
ε and σ2

u (defined

below) into expression (12). Specifically,

σ̂2
ε =

∑n
i=1{Yi −B2(Si)θ̂2β̂1 −B1(Si)θ̂1}2

n− 2trace{L1(δ1, δ2)}+ trace{L1(δ1, δ2)LT
1 (δ1, δ2)}

σ̂2
u =

∑n
i=1{Wi −B2(Si)θ̂2β̂1}2

n− 2trace{L2(δ2)}+ trace{L2(δ2)LT
1 (δ2)}

,

where the denominators are the residual degrees of freedom associated with model (3) and

model (4) with smoother matrices L1(δ1, δ2) and L2(δ2), respectively (Ruppert et al., 2003).

Define Bj = {Bj(S1), ..., Bj(Sn)}T for j=1,2 and Dn = {Dn1, ..., Dnn)}T. Then the smoother

matrices have the following expressions (see Web Appendix A.5)

L1(δ1, δ2) = n−1
{
DnD

T
n (θ̂T2 Cnθ̂2)−1 +B1Λn1B

T
1

}
(13)

L2(δ2) = n−1B2Λn2B
T
2 . (14)

2.4.2 Simulated Standard error. From (10), the expression for β̂1 can be written as (see

the Web Appendix A.4)

β̂1 =
Anθ2 + n−1

∑n
i=1{AnΛn2B2(Si)Ui +Dniεi}

θT2 Cnθ2 + n−1
∑n

i=1FniUi
+ op(n

−1/2),

where εi and Ui are the random errors defined in models (1) and (2). Since these quantities

are not directly observed, we can estimate the variance of β̂1 by a residual bootstrap (Carroll

et al., 2006).

Let M be a fairly large number, say 100, and for b = 1, ...,M , generate independent

random samples εbi ∼ Normal(0, σ̂2
ε ) and Ubi ∼ Normal(0, σ̂2

u) for i = 1, 2,...n. Define the

b’th bootstrap estimates of β1 as

β̂b1 =
Ânθ̂2 + n−1

∑n
i=1{ÂnΛn2B2(Si)Ubi + D̂niεbi}

θ̂T2 Ĉnθ̂2 + n−1
∑n

i=1F̂niUbi
,

where Ân, D̂n, Ĉn and F̂ni can be estimated by substituting the appropriate quantities into

expression (12). These estimated quantities preserve the underlying spatial structure. There-
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fore, the sample variance of β̂1
1 , ..., β̂

M
1 is a consistent estimate of the variance of β̂1 (Efron

and Tibshirani, 1993).

2.5 Smoothing parameter selection

Our main objective is to obtain a consistent estimate of the regression parameter β1 such

that it accounts for the measurement error in the covariate. However, selecting a suitable

combination of the smoothing parameters (δ1, δ2) is a prerequisite to a good model fit. All

discussion so far has assumed that these parameters are fixed and known.

To choose smoothing parameters that attempt to minimize the mean square error (pre-

diction error), three common approaches have been discussed in the literature (Ruppert

et al., 2003) (a) Generalized Cross Validation (GCV); (b) Mallow’s Cp; and (c) Akaike

Information Criterion (AIC). Among these methods, minimization of GCV scores is more

attractive because of being invariant and computationally efficient (Wood, 2006). We use

the GCV criterion to estimate the smoothing parameters (δ1, δ2) in a two-step procedure

(Wood, 2006). We first obtain an optimum value of δ2 by minimizing the GCV score based

on model (2) and then substitute this estimated value of δ2 into (8) to obtain an estimate of

θ2. We then use these estimates of δ̂2 and θ̂2 in (13) to obtain an expression for the smoothing

matrix, L1(δ1, δ̂2). Finally, we minimize the following GCV score associated with the outcome

model to get an optimum value of δ1:

GCV (δ1) =
n−1

∑n
i=1{Yi − Ŷi}2

{1− n−1trace{L1(δ1, δ̂2)}}2
,

where L1 is defined in section 2.4.

3. Simulation study

In this section we discuss a simulation study designed to evaluate the finite sample properties

of our proposed method in the presence of covariate measurement error in spatial linear

regression.
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3.1 Data generation

We simulate n sample locations randomly within a square, where n is the sample size.

Specifically, the ith random sample location Si is generated by simulating two coordinates

(e.g., latitude and longitude) from a Uniform[0,1] distribution. Given a set of simulated Si’s,

the unobserved true covariate X is generated using a bivariate bump function. Specifically,

the bivariate bump function is generated using the product of two univariate bump functions

generated separately for each co-ordinate. That is, for each coordinate, k, we generate Xik =

1
1+aik

+ 3e−50(aik−0.3)
2

+ 2e−25(aik−0.7)
2
, k = 1, 2, where ai1 and ai2 are the first and second

coordinates of simulated ith sample location, respectively. The observed error contaminated

versions, W , of the true covariate is generated by adding independent Gaussian noise with

varying the measurement error variance σ2
U as 0, 0.25 and 0.50 to X. The contour plot

associated with the true and error prone covariate is given in Figure 1.

[Figure 1 about here.]

As shown in the Figure 1, presence of measurement error adds noises to the true distribution

of the smooth covariate. As a result the underlying true covariate distribution becomes

obscured for higher degrees of measurement error.

The smooth spatial surface, G1(Si), is generated to have a normal distribution with

mean 0 and variance-covariance matrix σ2
G1
R, where σ2

G1
= 0.2 and R has an exponential

correlation structure with range parameter τG1 (Pinheiro and Bates, 2000). This implies that

the correlation between two observations with distance h units apart is exp(−h/τG1). We

considered three different range parameters (τG1= 0.1, 0.3 and 0.5) resulting in minimal,

moderate and high correlation among the values of G1’s.

Outcome data, Y , were then generated according to equation (1), with intercept and slope

parameters are (β0, β1)
T = (1, 2)T and the variance parameter for the independent residual

error assumed to be 0.5. We used the nlme package (Pinheiro et al., 2013) in R to generate
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exponential spatial correlation for our simulated data and in model fitting. The R code for

the simulation and implementation of the proposed method is available with this paper at

the Biometrics website on Wiley Online Library. .

3.2 Generating bi-variate splines basis functions

We now describe the steps used to fit our proposed semi-parametric model. We generated

two sets of basis functions B1(·) and B2(·) using bivariate thin plate spline regression basis

with 125 and 150 knots for response and covariate model, respectively. We choose thin plate

splines because they are not sensitive to knot locations, perform reasonably well for a basis

of any given lower rank, are computationally efficient and more importantly rotationally

invariant (Wood, 2006; Ruppert et al., 2003). Unequal number of knots were chosen for

B1(.) and B2(.) to make the model identifiable, (see Section 2.1). The number of knots for the

response model (1) were analogous to the default number of knots [max{20,min(n/4,150)}]

suggested by Ruppert et al. (2003). For the covariate model (2) we increased the default

number of knots by 20%. Knot positions were automatically selected using the cluster

separation method ”clara” (Kaufman and Rousseeuw, 2005) in R (R Core Team, 2013).

Of course one could select the number of knots by another algorithm such as space

filling algorithm (Nychka and Saltzman, 1998). However, implementation of this algorithm is

computationally intensive. Nychka and Saltzman (1998, page-169) argued that the number of

knots is flexible in the context of geo-spatial model and one needs to select large enough knots

to accurately represent the underlying function while keeping the computational burden

as low as possible. Furthermore, Ruppert (2002) suggest that given the GCV criteria, the

number of knots is not crucial for penalized regression splines once it reaches a certain

minimum value.
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3.3 Simulation Results

The average of estimated regression coefficients along with their estimated standard errors

based on 1000 simulation runs are presented in Table 1, assuming a sample size of 500 and

varying the measurement error variance σ2
U between 0, 0.25 and 0.50. We estimated three

different standard errors of the estimated regression coefficients, including, (i) empirical

standard errors obtained by taking the standard deviation of the 1000 simulated regression

coefficient estimates, (ii) the average of model based standard errors and (iii) the average

of simulated standard errors defined in section (2.4). We considered three different range

parameters (τG1=0.1,0.3 and 0.5) to represent minimal, moderate and high level of spatial

correlation in G1(Si). The first column of Table 1 specifies the range parameter used in that

particular simulation. The next four columns list the estimated regression coefficient using

ordinary least squares (OLS), linear mixed models with spatial correlation structure (LME),

generalized additive models (GAM) and our proposed method when the true covariate is

measured without error. The second and thirds sets of four columns also list estimates

obtained using the above four methods (OLS, LME, GAM and proposed method) with

measurement error variances 0.25 and 0.50, respectively. Except for our proposed method,

all of these methods produce naive estimates of regression coefficient.

[Table 1 about here.]

In the absence of measurement error, OLS, LME, GAM and our method all give similar

answers. As the degree of measurement error increases, OLS, LME and GAM all exhibit

bias, though the degree of bias varies. All naive standard error estimates ignoring covariate

measurement error severely underestimate the empirical standard errors. In contrast, our

proposed bias correction method performs well even if the degree of bias for generalized

additive model with error prone covariate varies (range: 0.99-1.32) with the strength of the

spatial correlation structure. Both model based and simulation based estimates of the stan-
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dard error appear to be working well. In all cases, the average of the estimated measurement

error variances are very similar to the true values (not shown in the table).

To evaluate the performance of the proposed method under small sample settings, we

also conducted simulations with sample sizes of 250 and 100 assuming a measurement error

variance σ2
U of 0.5. The results are given in Table 2.

[Table 2 about here.]

With the size of 250 samples our proposed method still provides reliable estimates of

the true regression coefficient. However, with small sample sizes (say, n=100) the variance

of estimated regression coefficients tends to be slightly inflated. To explore the impact of

number of knots on our proposed method we conducted additional simulation study by

varying the number of knots for covariate model as 130, 140 and 170 with measurement

error 0.025, sample size of 500 and varying range parameters, where the number of knots for

the residual error model was fixed as 125. The results are presented in the Web Table 1 in

the supplementary materials available at the Biometrics website on Wiley Online Library.

These results indicate that the proposed methods is robust for the selection of number of

knots for covariates models.

4. Application

4.1 Analysis of Ischemic Heart Disease Data

We applied our proposed methodology to re-analyse data on Ischemic Heart Disease (IHD).

One of the key objectives of the analysis is to assess the relationship between IHD rates and

area level measures of socio-economic status. These data were collected from all hospitals in

New South Wales, Australia between July 1, 1994 to June 30, 2002. A detailed description of

the data has been given elsewhere (Burden et al., 2005). Briefly, patients who were admitted

to the hospitals via the emergency room and discharged with IHD were defined as acute IHD
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cases. Data also includes patient age, gender and geographic location reported via postcode

of residence. Data from 579 postcodes were included in the analysis. IHD event data were

linked with the Census data which contains age and gender-specific population counts. SEIFA

(Socio-Economic Indexes For Areas) scores and centroid co-ordinates (latitude and longitude)

for each postcode were obtained from Australian Bureau of Statistics. We calculated age-sex

adjusted standardized incidence ratios (SIR) by dividing the observed number of IHD cases

by the age-sex adjusted expected number of IHD cases (Breslow and Day, 1987).

The results of our analysis are given in Table 3.

[Table 3 about here.]

The naive analysis ignoring spatial correlation, suggests a significant protective effect associ-

ated with higher SEIFA values (β̂SEIFA=-0.062, SE=0.014). Our proposed semi-parametric

approach that account for measurement error in the covariates result in an estimated slope

parameter β1 of -0.273 with measurement error variance estimated as 0.52. We choose 145

knots to represent the spatial correlation in the outcome model and 180 knots to represent

the covariate model. The model and simulation based standard errors were estimated as

0.045 and 0.045, respectively. Thus, accounting for the measurement error in the covariate

reflects a high magnitude of protective effect of higher SEIFA scores on IHD rates, compared

with naive analysis.

5. Discussion

In this paper, we develop a semi-parametric framework to obtain a consistent estimate of the

true regression coefficients when covariates are measured with error in spatial regression mod-

elling settings. Asymptotic theory establishes that our approach provides consistent, asymp-

totically normal estimates for the regression coefficient. The theory yields both model based

and simulation based standard error estimates. Our empirical simulation results confirm that
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ignoring measurement error and conducting naive analysis using both generalized additive

model and linear mixed model attenuates the estimated regression coefficient towards the

null hypothesis of no effect. Our results also confirm the results of Huque et al. (2014) that

the degree of measurement error bias depends on the assumed correlation structure. It is

interesting that the bias appears to be least with OLS. This is likely because the covariate

spatial structure and residual spatial structure compete to explain the variability in the

response (Waller and Gotway, 2004). Our proposed semiparameteric bias correction method

performs very well and provides comparable estimates of the regression parameters to the

parametric methods described by Huque et al. (2014) when applied to Ischemic Heart Disease

(IHD) data. Our approach is computationally efficient and stable because it involves direct

estimation using least squares and can be implemented using standard nonlinear least squares

software.

Although Huque et al. (2014) and Li et al. (2009) reported similar results for the bias

associated with covariate measurement error in spatial regression settings, their approaches

requires correct specification of the true covariate measurement error variance. In addition,

Huque et al. (2014) reported under estimation of standard error when measurement error

variances are estimated from the data. In contrast, our approach is robust because it neither

assumes that the covariate measurement error is known nor depends on any particular kind of

spatial correlation structure. Our method is analogous to the popular regression calibration

method where we estimate the true underlying covariate following smoothing assumption

and replace the error prone covariate with this estimate in the outcome model.

Measurement error theory makes it very clear that without some kind of information

regarding the magnitude of measurement error, models will not be identifiable. Broadly

speaking there are two possibilities: (i) measurement error varianace is known or can be

estimated using some form of validation data (ii) assumptions are made regarding the
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nature of the measurement error process. By assuming that the true unobserved covariate

is smooth, our paper is using the second approach. Because our approach is assumption

based and not an empirical measurement error adjustment, our solution will not be robust

to this particular assumption. Nevertheless, because we use a semi-parametric approach to

quantifying the spatial correlation in our regression model, our approach should be more

robust than parametric alternatives, such as those proposed by Huque et al. (2014). In

practice, there will often be situations where it makes sense that spatially-defined covariates

are smooth. Air pollution epidemiology might be a good example. In general, however, we

recommend that our proposed method be used in the spirit of sensitivity analysis to assess

the impact of measurement error.

One of the additional assumptions required by our approach is that the basis functions

for the covariate and the spatial residual term are unequal. In practice, this can be achieved

through ensuring more knots for the basis function representing covariate than the spatial

residuals. This ensures estimation of variability in covariate in a smaller scale than the resid-

ual error. In many spatial epidemiology contexts, measurement error becomes an increasing

concern at small scales because of limitations in measurement resources. As a result, the

covariate measurement bias reduction relies in estimating variability in covariate at scale

smaller than the residual error (Paciorek, 2010) .

In our simulation, we have considered only a single covariate measured with error in a

spatial linear mixed model with Gaussian error. It would be of interest to explore the effect

of covariate measurement error in the presence of multiple covariates and also omitted covari-

ates. Future work should also consider extensions of our formulation to the setting of spatial

generalized linear mixed model with non-Gaussian outcomes. However, such explorations are

beyond the scope of this present paper.

Our heart disease example demonstrated a substantial increase in the rates of IHD as the
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level of SEIFA measured at the postcode level decreased, with the magnitude of the effect

increasing after adjustment for measurement error. Our results are consistent with broader

literature suggesting a relationship between low socio-economic status and adverse health

outcomes (see systematic review by Pickett and Pearl 2001).

Because the SEIFA Index is measured at a group level, it is tempting to think that Berkson

measurement error theory should be in operation. However, this argument doesn’t apply

since we are considering measurement error in a group level covariate applied at a group

level analysis. It is also important to note that our results can only be interpreted at a

group level. Interpretation at the individual level may result in ecological bias (Sheppard,

2003). While it might be ideal to use individual level data, in many research areas, group-

level data are the only available source for analysis. Air pollution epidemiology provides a

classic example, because individual measurements of air pollution studies are rarely collected,

instead, they are estimated based on neighbourhood monitoring and other sources (Sheppard

et al., 2012). Consequently, air pollution exposures are typically measured with error.

In spatial data settings, for example, in environmental epidemiology, with the increasing

popularity of the semi parametric/multilevel models to account for the observed data corre-

lations, it is important that practitioners be aware of the consequences of measurement error.

Furthermore, it is useful to quantify its potential effect on the estimating exposure-outcome

relationship. The approach presented in this paper provides one way of achieving this.

6. Supplementary Material

Web Appendix A, referenced in Section 2, Web Table 1, referenced in Section 3.3 and a

version of R codes for implementing the proposed method are available with this paper at

the Biometrics website on Wiley Online Library.



18 Biometrics, 000 2014

Acknowledgements

The authors thank the co-editor and the associated editor for constructive comments which

led to considerable improvement of the manuscript. HDB was partially supported as a visitor

at the School of Mathematical and Physical Sciences, University of Technology Sydney,

and by grants NSF DMS-1308400 and NIH P01-CA142538. RC was partially supported by

the National Cancer Institute grant U01-CA057030. LR and HH were supported by the

University of Technology Sydney and by the ARC Centre of Excellence for Mathematical

and Statistical Frontiers (ACEMS). The authors thank the NSW Ministry of Health for

making the data available.

References

Bernadinelli, L., Pascutto, C., Best, N., and Gilks, W. (1997). Disease mapping with errors

in covariates. Statistics in Medicine 16, 741–752.

Breslow, N. and Day, N. (1987). Statistical Methods in Cancer Research. Volume II–The

Design and Analysis of Cohort Studies. International Agency for Research on Cancer

,Oxford University Press, New York, U.S.A.

Burden, S., Guha, S., Morgan, G., Ryan, L., Sparks, R., and Young, L. (2005). Spatio-

temporal analysis of acute admissions for ischemic heart disease in nsw, australia.

Environmental and Ecological Statistics 12, 427–448.

Carroll, R. J., Ruppert, D., Stefanski, L. A., and Crainiceanu, C. M. (2006). Measurement

error in nonlinear models: a modern perspective. Chapman and Hall/CRC, Florida,

U.S.A.

Cressie, N. A. C. (1993). Statistics for spatial data. Wiley series in probability and

mathematical statistics: Applied probability and statistics. John Wiley & Sons, New

York, U.S.A.



On the impact of covariate measurement error 19

Efron, B. and Tibshirani, R. J. (1993). An introduction to the bootstrap. Chapman & Hall,

Florida, U.S.A.

Elliott, P. and Wartenberg, D. (2004). Spatial epidemiology: current approaches and future

challenges. Environmental Health Perspectives 112, 998–1006.

Fuller, W. (1987). Measurement Error Models. Wiley Series in Probability and Statistics.

John Wiley & Sons, New York, U.S.A.

Hastie, T. and Tibshirani, R. (1990). Generalized Additive Models. Chapman & Hall/CRC

Monographs on Statistics & Applied Probability. Chapman and Hall/CRC, Florida,

U.S.A.

Huque, M. H., Bondell, H. D., and Ryan, L. M. (2014). On the impact of covariate

measurement error on spatial regression modelling. Environmetrics 25, 560–570.

Kaufman, L. and Rousseeuw, P. (2005). Finding Groups in Data: An Introduction to Cluster

Analysis. Wiley Series in Probability and Statistics. John Wiley & Sons, New Jersey,

U.S.A.

Li, Y., Tang, H., and Lin, X. (2009). Spatial linear mixed models with covariate measurement

errors. Statistica Sinica 19, 1077–1093.

Nychka, D. and Saltzman, N. (1998). Design of air-quality monitoring networks. In Nychka,

D., Piegorsch, W., and Cox, L., editors, Case Studies in Environmental Statistics, volume

132 of Lecture Notes in Statistics, pages 51–76. Springer, U.S.A.

Paciorek, C. J. (2010). The importance of scale for spatial-confounding bias and precision

of spatial regression estimators. Statistical science: a review journal of the Institute of

Mathematical Statistics 25, 107–125.

Pickett, K. E. and Pearl, M. (2001). Multilevel analyses of neighbourhood socioeconomic

context and health outcomes: a critical review. Journal of Epidemiology & Community

Health 55, 111–122.



20 Biometrics, 000 2014

Pinheiro, J., Bates, D., DebRoy, S., Sarkar, D., and R Core Team (2013). nlme: Linear and

Nonlinear Mixed Effects Models. R package version 3.1-109.

Pinheiro, J. C. and Bates, D. M. (2000). Mixed-effects models in S and S-PLUS. Springer

Science & Business Media, New York, U.S.A.

R Core Team (2013). R: A Language and Environment for Statistical Computing. R

Foundation for Statistical Computing, Vienna, Austria.

Ruppert, D. (2002). Selecting the number of knots for penalized splines. Journal of

computational and graphical statistics 11, 735–757.

Ruppert, D., Wand, M., and Carroll, R. J. (2009). Semiparametric regression during 2003–

2007. Electronic Journal of Statistics 3, 1193–1256.

Ruppert, D., Wand, P., and Carroll, R. (2003). Semiparametric Regression. Cambridge

Series in Statistical and Probabilistic Mathematics. Cambridge University Press., New

York, U.S.A.

Sheppard, L. (2003). Insights on bias and information in group-level studies. Biostatistics

4, 265–278.

Sheppard, L., Burnett, R. T., Szpiro, A. A., Kim, S.-Y., Jerrett, M., Pope III, C. A., and

Brunekreef, B. (2012). Confounding and exposure measurement error in air pollution

epidemiology. Air Quality, Atmosphere & Health 5, 203–216.

Waller, L. A. and Gotway, C. A. (2004). Applied spatial statistics for public health data,

volume 368. John Wiley & Sons, New Jersey, U.S.A.

Wood, S. (2006). Generalized additive models: an introduction with R. Chapman and

Hall/CRC., Florida, U.S.A.

Xia, H. and Carlin, B. P. (1998). Spatio-temporal models with errors in covariates: mapping

ohio lung cancer mortality. Statistics in Medicine 17, 2025–2043.

Xun, X., Cao, J., Mallick, B. K., Maity, A., and Carroll, R. J. (2013). Parameter estimation



On the impact of covariate measurement error 21

of partial differential equation models. Journal of the American Statistical Association

108, 1009–1020.

Yu, Y. and Ruppert, D. (2002). Penalized spline estimation for partially linear single-index

models. Journal of the American Statistical Association 97, 1042–1054.

Received: May 9, 2015. Revised: September 11, 2015. Accepted xxxx xxxx.



22 Biometrics, 000 2014

Figure 1. Contour plots of covariates (X and W ) with different specification of measure-
ment error variance
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Table 2
Simulation results using different combinations of range parameters and sample sizes. Reported numbers are

averaged over 1000 simulations with measurement error variance 0.5.

Range* Sample size 250 Sample Size 100
(τG1) OLS LME GAM Proposed OLS LME GAM Proposed

Estimated coefficient

0.1 1.860 1.511 0.976 1.952 1.859 1.831 1.037 1.947
0.3 1.861 1.495 0.975 1.951 1.859 1.824 1.045 1.948
0.5 1.860 1.522 0.980 1.950 1.860 1.831 1.036 1.949

Empirical standard error

0.1 0.045 0.536 0.217 0.046 0.066 0.088 0.344 0.069
0.3 0.047 0.541 0.207 0.048 0.067 0.099 0.349 0.072
0.5 0.046 0.530 0.209 0.046 0.066 0.095 0.342 0.068

Average of estimated standard errors

0.1 0.038 0.051 0.083 0.046 0.061 0.064 0.132 0.099
0.3 0.038 0.051 0.081 0.045 0.060 0.064 0.130 0.099
0.5 0.037 0.050 0.081 0.045 0.060 0.063 0.130 0.098

Average of simulated standard errors

0.1 — — — 0.046 — — — 0.101
0.3 — — — 0.046 — — — 0.101
0.5 — — — 0.045 — — — 0.099

τG1 : values of the range parameter following exponential correlation in G1(si).
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Table 3
Analysis of Ischemic Heart Disease Data in NSW, Australia under different specification of measurement error

Methods Estimates for SEIFA
model based simulated

β̂ se(β̂) se(β̂)
Ordinary Least Squares -0.062 0.014 —
Generalized additive model -0.145 0.014 —

Proposed semiparametric approach -0.273 0.045 0.045

Huque et al. (2014) approach
Method I: Method of Moments -0.377 0.041 —
Method II: Transformation of covariate -0.278 0.015 —


