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The dimensionless kinetic energy dissipation rateC« is estimated from numerical simulations of statistically
stationary isotropic box turbulence that is slightly compressible. The Taylor microscale Reynolds numbersReld
range is 20&Rel&220 and the statistical stationarity is achieved with a random phase forcing method. The
strong Rel dependence ofC« abates when Rel<100 after whichC« slowly approaches<0.5, a value slightly
different from previously reported simulations but in good agreement with experimental results. IfC« is
estimated at a specific time step from the time series of the quantities involved it is necessary to account for the
time lag between energy injection and energy dissipation. Also, the resulting value can differ from the en-
semble averaged value by up to ±30%. This may explain the spread in results from previously published
estimates ofC«.
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I. INTRODUCTION

The notion that the mean turbulent kinetic energy dissipa-
tion rate« is finite and independent of viscosityn was origi-
nally proposed by Taylor[1]. Its existence was assumed by
von Kármán and Howarth, Loitsianskii, and also, signifi-
cantly, Kolmogorov[2] in establishing his celebrated simi-
larity hypotheses for the structure of the inertial range of
turbulence. Kolmogorov assumed the small scale structure of
turbulence to be locally isotropic in space and locally station-
ary in time—which implies the equality of turbulent kinetic
energy injection at the large scales with the rate of turbulent
kinetic energy dissipation at the small scales[3]. Although
this view should be strictly applied only to steady turbulence,
the mechanism of the dissipation of turbulent kinetic energy
can be considered the most fundamental aspect of turbulence
not only from a theoretical viewpoint but also from a turbu-
lence modeling viewpoint. Indeed, the mechanism that sets

the level of turbulent dissipation in flows that are unsteady is
a difficult, if not intractable, aspect of turbulence modeling.

The rate of turbulent kinetic energy dissipation is deter-
mined by the rate of energy passed from the large scale ed-
dies to the next smaller scale eddies via a forward cascade
until the energy is eventually dissipated by viscosity. Thus,
C« defined as

C« = «L/u83 s1d

(here,« is the mean energy dissipation rate per unit mass,L
and u8 are characteristic large length and velocity scales,
respectively) should be independent of the Reynolds number
and of order unity. An increase in Reynolds number should
only result in an increase in the typical wave number where
dissipation takes place[4]. In the past few years there have
been a number of numerical(see Ref.[5] and references
therein) and experimental(see Refs.[6–8] for recent results)
efforts to determine the value ofC« and its dependence on
the Reynolds number. Perhaps the most convincing of these
are the numerical attempts since there is no recourse to one-
dimensional surrogacy as there is for experiments. Notwith-
standing this fact, there is good agreement, both numerically
and experimentally, with the long held view thatC« is
,Os1d when the Reynolds number is sufficiently high. The
collection of isotropic simulation results forC« shown in
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Ref. [5] indicates that “high enough” Reynolds number ap-
pears to be Rel,Os100d. This is the same Rel range where
an inertial subrange, with statistics showing non-Gaussian
tails and nontrivial conditional statistics, start to appear[9].
Here, Rels=u82f15/n«g1/2d is the Taylor microscale Reynolds
number. At higher Rel, slow Rel dependencies forC«, such
as that proposed by Lohse[10], cannot be ruled out. Mea-
suring such Rel dependencies, either numerically or experi-
mentally, will be close to impossible.

One unresolved issue is that raised by Sreenivasan[11].
After assembling all the then known experimental decaying
grid turbulence data[12] and numerical data for both decay-
ing and stationary isotropic turbulence he concludes that “the
asymptotic value(of C«) might depend on the nature of large
scale forcing, or, perhaps, on the structure of the large scale.”
He also demonstrates[13] in homogeneously sheared flows
that the large structure does influenceC«. However, it might
be argued that these results were obtained at low Reynolds
numbers and the issue of a universal asymptotic value forC«

could still be considered open. Alternatively it could be ar-
gued that homogeneous shear flows and the like are strictly
unsteady turbulent flows andC«, in its simplest guise, should
not be expected to apply to such flows. The possibility of
some characteristics of large scale turbulence being universal
should not be ruled out. The recent observation that input
power fluctuations, when properly rescaled, appear universal
[14] may be construed to suggest the possibility of univer-
sality for C«. The aim of the present work is to estimateC«

from direct numerical simulations(DNS’s) of statistically
stationary isotropic turbulence and compare with previously
reported DNS results(summarized in Fig. 3 of Ref.[5]) and
experiments carried out in regions of lowsdU/dy
<dU/dyumax/2d or zero mean shear. The present DNS
scheme differs from methods already reported in that a high-
order finite difference method is used. To our knowledge,
these are the first finite difference results forC«. Hence, it is
worthwhile to test if different numerics and forcing at the
large scales result in vastly different values forC« from those
already reported.

II. NUMERICAL METHODS

The data used for estimatingC« are obtained by solving
the Navier-Stokes equations for an isothermal fluid with a
constant kinematic viscosityn and a constant sound speedcs.
The governing equations are given by

s]t + u · = du = − cs
2 = ln r + fvisc + f , s2d

s]t + u · = dln r = − = ·u. s3d

The viscous force is

fvisc = ns¹2u + 1
3 = = ·u + 2nS · = ln rd , s4d

whereSi j = 1/2sui,j +uj ,id− 1/3di j = ·u is the traceless rate
of strain tensor. In the numerical simulations the system is
forced (stirred) using random transversal waves given by

fsx,td = f0ecosfikstd ·x + ifstdg, s5d

wherekstd is a wave number with magnitude between 1 and
2, while fstd is a phase between −p and p. Both fstd and
kstd are chosen randomly at each time step giving a forcing
that is d correlated in time. The random unit vectore is
perpendicular tok and the forcing amplitudef0 is chosen
such that the root mean square Mach number for all runs is
between 0.13 and 0.15 which is not too dissimilar to that
found in the wind-tunnel experiments to be discussed in the
next section. For these weakly compressible simulations, the
energies of solenoidal and potential components of the flow
have a ratioEpot/Esol<10−4–10−2 for most scales; only to-
ward the Nyquist frequency(henceforthkmax) does the ratio
increase to about 0.1. It is thus reasonable to assume that
compressibility is irrelevant for the results presented here
while at the same time the present results can be considered
more comparable and relevant to experimental wind-tunnel
flows than the perfectly incompressible simulations pub-
lished so far. The code has been validated in previous turbu-
lence studies and the reader is referred to Refs.[15–17] and
the code website[18] for more information.

The simulations are carried out in periodic boxes with
resolutions in the range of 323–5123 grid points. The box
size isLx=Ly=Lz=2p, which discretizes the wave numbers
in units of 1. The viscosityn is chosen such that the maxi-
mum resolved wave numberkmax is always greater than
1.5/h, whereh=sn3/«d1/4 is the Kolmogorov length scale.

To be consistent with previously published DNS studies,
the total kinetic energyE is defined as

Etot =
1

2
ku2l =

3

2
u82 =E

0

kmax

Eskddk, s6d

the integral length scaleL is defined as

L =
p

2u82E
0

kmax

k−1Eskddk, s7d

and the average turbulent energy dissipation rate is defined
as

« = 2nE
0

kmax

k2Eskddk. s8d

Angular brackets denote averaging over the box volume. Af-
ter each run has become statistically stationary(typically 1–2
eddy turnoversT;L /u8) the average statistics are estimated
for the remaining total run time. Table I summarizes the av-
erage statistics for each run. Comparing runs C and D in
Table I indicates that there is little difference in the average
C« for simulations resolved up tohkmax=1.5 fromhkmax=3.

III. RESULTS

A. Numerical results

In this section results for the higher-order finite difference
numerical simulations are presented. The simulations began
with N=323 and each subsequent larger box size began with
a velocity field interpolated from the previous box size. Fig-
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ures 1(a)–1(d) show example time series from run EsN
=2563d for the fluctuating velocityu, the fluctuating integral
length scaleL, the fluctuating kinetic energy dissipation rate
«, and the fluctuating Reynolds number Rel, respectively.
Initially, the turbulence takes a short amount of time to reach
a statistically stationary state—a consequence of stabilizing
the new run from the previously converged run. The fluctu-
ating quantities shown in Figs. 1(a)–1(d) are not unlike those
encountered in a wind tunnel. Indeed, Fig. 1(a) could easily
be mistaken for a hot-wire trace of a turbulent flow. This is in
stark contrast to some pseudospectral methods that use nega-
tive viscosity to maintain a constant energy level. For ex-
ample, it is worth comparing Figs. 1(b)–1(d) with those
shown in Ref.[19] (i.e., their Figs. 2–7). The pseudospectral
results show that the same quantities only fluctuate with a
comparatively long period.

Given that the statistics are fluctuating, although they are
statistically stationary, it is tempting to plot the instantaneous
C« as a function of Rel. Figure 2 showsC« calculated in such
a way. The Rel dependent trends are obviously not as ex-
pected. However, it is worth noting the apparent range forC«

when Rel*50 is<0.3–0.7 which is the range of previously

published DNS results. This may explain the scatter in pre-
viously published DNS results ifC« is calculated from a
subjective choice of« , L, andu8 at a single time step, e.g.,
as in Ref.[5]. The reason for the incorrect Rel dependence
for C« can be gleaned from Figs. 1(a) and 1(b). Figure 1(a)
shows that an intense burst in turbulent kinetic energyu2 (an
example is noted by the arrow) can be observed some maxi-
mum time lagtmax later in the turbulent kinetic energy dis-
sipation rate[Fig. 1(b), again noted by an arrow]. More
about the significance oftmax will be discussed later in Sec.
III B. By noting that there is a strong correlation between
intense events ofu2 andL on the one hand and« on the other
hand it is possible to estimatetmax from the maximum in the
correlation betweenu83/L and« by

ru83/L,«std =
fu83std/Lstdgf«st + tdg
u83std/Lstd «st + td

. s9d

Figure 3 shows an example for run E. The maximum time
lag tmax corresponding to the maximum inru83/L,« is indi-
cated by the up arrow↑.

With this done for all runs it is possible to shift the time
series of«std for each run by its respectivetmax and correctly
calculate the instantaneous magnitude ofC« (see Fig. 4). Fig-
ure 5 shows the newly calculated Rel dependence ofC«

using the correct time lagtmax for each of the runs. A number
of comments can be made. First, the dimensionless dissipa-
tion rate C« appears to asymptote when Rel*100. The
asymptotic magnitudeC«<0.5 is in good agreement with the
consensus DNS results published so far, i.e.,C«<0.4 to 0.5
(see Ref.[5] and references therein). Having said this and

TABLE I. Examples of DNS parameters and average turbulence characteristics.N is the number of grid points in each of the Cartesian
directions, Rel is the Taylor microscale Reynolds number;u8l /n , Ttot is the total run time after the run became statistically stationary,T
is the eddy turnover time;L /u8 , Dt is the run time increment,tk is the Kolmogorov time scale;n1/2«−1/2, l is the Taylor microscale
;u8Î15n /« , tmax is the average time for the energy cascade from large to small scales, andh is the Kolmogorov length scale;n3/4«−1/4.

Run N Rel Ttot/T ns3104d «s3105d Dt / tks3102d L l u8s3102d tmax/T C« hs3103d kmaxh

A 32 20 31 40 24 1.9 1.9 1.2 7.1 0.15 1.2 128 2.1

B 64 42 30 15 22 1.5 1.6 0.81 7.8 0.37 0.75 63 2.0

C 128 90 11 4.0 24 1.5 1.3 0.43 8.4 0.62 0.54 23 1.5

D 256 92 19 4.0 21 0.71 1.4 0.45 8.1 0.69 0.53 24 3.0

E 256 152 20 1.6 21 1.1 1.4 0.29 8.4 0.74 0.49 12 1.5

F 512 219 7 0.80 25 0.86 1.3 0.20 8.9 0.67 0.47 7 1.7

FIG. 1. Example time series from run E,N=2563, average
Rel<152.(a) u8; (b) «; (c) L; (d) Rel. Here, the eddy turnover time
T=L /u8. The up arrows↑ indicate correlated bursts ofu8 and«.

FIG. 2. Incorrectly estimatedC« as a function of Rel. +, run A;
,, run B; 3, run C; h, run D; L, run E; n, run F. Ensemble
averages can be found in Table I.
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given the present demonstration that it is incorrect to esti-
mateC« from a single time snapshot it would be interesting
to recalculate previously published results based on subjec-
tive choices of the quantities involved for estimatingC« by
using the entire time series. Last, the present results verify
the use of a high-order finite difference scheme and also
prove thatC« is independent of Re in slightly compressible
turbulence.

Having estimatedtmax and assuming it approximates the
average timet for the energy to cascade from the large en-
ergetic scales to the small dissipative scales it is worth com-
paring the present results with a simple cascade model such
as that discussed by Lumley[4]. Using a forward cascade
model, whereby the spectrum is divided logarithmically into
eddies which have the same width in wave number space as
their center wave number, the total time taken for energy to
cross the spectrum, assuming that all energy is passed di-
rectly to the next wave number, is

t = tmax= 2S L

u8
Ds1 − 1.29Î15/fRel

2 C«gd .

Here, we have substituteds15/fRel
2 C«gd1/2 for Lumley’s

large scale Reynolds number dependence ReL
−1/2. In nondi-

mensional form,

t+ = 2s1 − 1.29Î15/fRel
2 C«gd . s10d

As noted by Lumley, little attention should be paid to the
numerical values of the coefficients, although attention
should be paid to the exponent for Rel. For small values of
t+, e.g.,t+,1, the large scale energy is directly affected by
viscosity and has little chance of transferring energy in a
classical cascade manner, while for large values oft+, e.g.,
t+.1, the large scales have the time for grinding down en-

ergy unaffected by viscosity. The asymptotic assumption of
Eq. (10) is two eddy turnovers. Figure 6 shows the Rel de-
pendence oft+ compared with Eq.(10). The present results
are much lower than the prediction of Eq.(10) and this is
probably indicative of the fact that the energy cascade is not
a simple full transfer of energy between neighboring wave
numbers, for low Rel at least. It is more likely that, while
most of the energy is passed to neighboring wave numbers, a
diminishing amount of the energy is passed to all higher
wave numbers. What is noticeable from the present results is
that t+<1 will not occur until Rel<300 which is an Rel at
which the Rel dependence ofC« will become, either numeri-
cally or experimentally, unmeasurable. There is no reason
not to expect that at high enough Rel full energy transfer
may occur between neighboring wave numbers. Using Eq.
(10), Fig. 6 indicates that not until Rel,Os103d will t+<2.

B. Experimental results reconsidered

Results for the present experiment, originally published in
Ref. [6], are updated here with more data within the range
170&Rel&1210. Detailed experimental conditions can be
found in Refs.[6,8] and need not be repeated here. The main
group of measurements are from a geometry called a Nor-
man grid which generates a decaying wake flow. The geom-
etry is composed of a perforated plate superimposed over a
biplane grid of square rods. The flow cannot be classed as
freely decaying as the extent of the wind-tunnel cross section
s1.832.7 m2d is approximatelys7311dL2. For all the flows
presented in Ref.[6], signals of the fluctuating longitudinal
velocity u are acquired, for the most part, on the mean shear
profile centerline. For the Norman grid, some data are also
obtained slightly off the center line at a transverse distance of

FIG. 3. An example of the correlationru83/L,«, Eq.(9), for run E,
N=2563. The up arrow↑ indicates the location oftmax/T<0.74.

FIG. 4. Example of the offset time series for run Estmax
+

<0.74d ,N=2563, average Rel<150. Note that the peak events are
now well correlated. —,u83/Lst /Td; - - -, «sft−tmaxg /Td.

FIG. 5. Correctly estimatedC« as a function of Rel. +, run A;
,, run B; 3, run C; h, run D; L, run E; n, run F. Ensemble
averages can be found in Table I.

FIG. 6. Rel dependence of inertial range quantities.L, the non-
dimensional time lagtmax

+ =tmax/T;—, Eq. (10).
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one mesh height wheredU/dy<dU/dyumax/2.
All data are acquired using the constant temperature an-

emometry hot-wire technique with a single-wire probe made
of 1.27 µm diameter Wollaston(Pt–10% Rh) wire. The in-
stantaneous bridge voltage is buck-and-gained and the am-
plified signals are low-pass filteredf lp with the sampling fre-
quency fs always at least twicef lp. The resulting signal is
recorded with 12-bit resolution. Time lagst and frequencies
f are converted to streamwise distances;tUd and one-
dimensional longitudinal wave numberk1s;2p f /Ud, re-
spectively, using Taylor’s hypothesis. The mean dissipation
rate« is estimated assuming isotropy of the velocity deriva-
tives, i.e., «;«iso=15nks]u/]xd2l. We estimateks]u/]xd2l
from the average value ofE1Dsk1d [the one-dimensional 1(D)
energy spectrum ofu such thatu2=e0

`E1Dsk1ddk1 and from
finite differencesks]u/]xd2l=kui+1−uil2/ sUfsd2].

No corrections for the decrease in wire resolution associ-
ated with an increase in Rel are made since all methods
known to us rely on an assumed distribution for the three-
dimensional energy spectrum. For most of the data, the worst
wire resolution is<2h where h is the dissipative length
scale;n3/4«iso

−1/4. The present investigation is limited to one-
dimensional measurements and suitable surrogates for Eq.
(1). Although caution should be exercised when higher-order
moments of a one-dimensional surrogate are substituted for
the three-dimensional equivalent, the use of the mean quan-
tity «iso for « should not be too problematic here. The char-
acteristic length scale of the large scale motionsL is Lp and
is estimated from the wave numberk1,p at which a peak in
the compensated spectrumk1E1Dsk1d occurs, i.e.,Lp=1/k1,p

[4,20]. As well as the Norman grid data, the recent cryogenic
decaying grid turbulence of White[7] measured using the
particle image velocimetry(PIV) technique are included.

Figure 7 showsC« for the present data and those of Ref.
[7]. For all of the data, a value ofC«<0.5 appears to be the
average value. It should be noted that estimates ofC« from

the cryogenic decaying grid data are based on the transverse
equivalents of the quantities that constitute Eq.(1). The ma-
jority of the scatter for the cryogenic data is due to the un-
certainty ofL which is extremely difficult to estimate from
PIV data. Figure 7 confirms thatC«, albeit a one-dimensional
surrogate, measured in a number of different flows is inde-
pendent of Rel. It could be argued that the rate of approach
to an asymptotic value depends on the flow, e.g., proximity
to initial and boundary conditions. The asymptotic value
C«<0.5 is in excellent agreement with the present DNS re-
sults. These experimental results are encouraging consider-
ing that wind-tunnel turbulence is always relatively young
compared to DNS turbulence, e.g., the Norman grid turbu-
lence has only of the order of six eddy turnover times in
development by the time it reaches the measurement station.

IV. FINAL REMARKS AND CONCLUSIONS

The present work has confirmed the notion that the dissi-
pation rate of mean turbulent kinetic energy is independent
of viscosity for both numerical simulations of statistically
stationary isotropic turbulence and experiments. The numeri-
cal simulations are slightly compressible isotropic turbulence
and the statistical stationarity is achieved with a random
phase forcing applied at low wave numbers. The main result
of the numerical simulations is the demonstration thatC«

should be estimated only with ensemble averaged quantities
from the entire time series for which the statistics are station-
ary. If C« is to be estimated at each time snapshot it is nec-
essary to correctly account for the time lag that occurs from
the large scale energy injection to the fine scale energy dis-
sipation. Even after correctly correlating the energy injection
with the energy dissipation, the instantaneous value ofC«

can vary quite considerably(e.g., ±30%) over the extent of
the simulation. Such a variation may account for the scatter
in magnitude ofC« in previously published results. Both the
present numerical and experimental results suggest that the
asymptotic value forC« is <0.5. In light of this, the previ-
ously held view that the asymptotic value ofC« may be
dependent on the large scale energy injection could be sus-
pect. Last, the results presented are strictly applicable only to
isotropic turbulence that is stationary in time. However, it
would be interesting to estimateC« for simulations of turbu-
lence unsteady in space and/or time, e.g., anisotropic turbu-
lence or anisotropic homogeneous turbulence with a mean
shear, because there is little known for these flows about how
the turbulent kinetic energy is dissipated.
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FIG. 7. Normalized dissipation rateC« for different experimen-
tal flows. h, circular disk, 154&Rel&188; s, golf ball, 70
&Rel&146; ,, pipe, 70&Rel&178; L, normal plate, 79&Rel

&335; n, Norman gridN1,152&Rel&506; 3, Norman gridN2
(slight mean sheardU/dy<dU/dyumax/2), 607&Rel&1215; x,
Norman gridN2 (zero mean shear), 388&Rel&1120;v, decaying
cryogenic grid turbulence, 127&Rel&376 [7].
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