Scalable Subgraph Enumeration in MapReduce

Longbin Lai¢, Lu Qin*¥, Xuemin Lin%, and Lijun Chang?

§ The University of New South Wales, Australia
Centre for QCIS, University of Technology, Sydney, Australia
“East China Normal University, China

§{llai, 1xue, ljchang}@cse .unsw.edu.au; ‘lu. gin@uts.edu.au

ABSTRACT

Subgraph enumeration, which aims to find all the subgraphs of a
large data graph that are isomorphic to a given pattern graph, is
a fundamental graph problem with a wide range of applications.
However, existing sequential algorithms for subgraph enumeration
fall short in handling large graphs due to the involvement of compu-
tationally intensive subgraph isomorphism operations. Thus, some
recent researches focus on solving the problem using MapReduce.
Nevertheless, exiting MapReduce approaches are not scalable to
handle very large graphs since they either produce a huge number
of partial results or consume a large amount of memory. Motivated
by this, in this paper, we propose a new algorithm TwinTwigJoin
based on a left-deep-join framework in MapReduce, in which the
basic join unit is a TwinTwig (an edge or two incident edges of
a node). We show that in the Erdds-Rényi random graph model,
TwinTwiglJoin is instance optimal in the left-deep-join framework
under reasonable assumptions and we devise an algorithm to com-
pute the optimal join plan. Three optimization strategies are ex-
plored to improve our algorithm. Furthermore, we discuss how our
approach can be adapted in the power-law random graph model,
and can be extended to other distributed systems. We conduct ex-
tensive performance studies in several real graphs, one of which
contains billions of edges. Our approach significantly outperforms
existing solutions in all tests.

1. INTRODUCTION

In this paper, we study subgraph enumeration, which is a funda-
mental problem in graph analysis. Given an undirected, unlabelled
data graph G and a pattern graph P, subgraph enumeration aims to
find all subgraph instances of GG that are isomorphic to P. Subgraph
enumeration is widely used in a lot of applications. For example,
subgraph enumeration is used for network motif computing [28} 5]
to facilitate the design of large network from biochemistry, neuro-
biology, ecology, and bioinformatics. Subgraph enumeration is uti-
lized to compute the graphlet kernels for large graph comparison
[[29} 132] and property generalization for biological networks [27].
Subgraph enumeration is considered as a key operation for the syn-
thesis of target structures in chemistry [34]. Subgraph enumeration
can also be adopted to illustrate the evolution of social networks
[[19]] and to discover the information trend in recommendation net-
works [23]]. In addition, as a special case of subgraph enumeration,
triangle enumeration is a preliminary operation in cluster coeffi-
cient calculation [42]] and community detection [41].

Motivation. Despite a large variety of applications, enumerating
subgraphs in a big data graph is very challenging. The reasons are
twofold. First, subgraph enumeration is computationally intensive
since determining whether a data graph contains a subgraph that is
isomorphic to a given pattern graph, known as subgraph isomor-
phism, is NP-hard. Second, the lack of label information makes it
hard to filter infeasible partial answers in early stages, rendering a
large number of partial results, whose size can be much larger than
the size of the data graph and the final results. Due to these chal-
lenges, existing sequential algorithms for subgraph enumeration (8}
15]] are not scalable to handle big graphs. Some other studies try
to find approximate solutions [S| |14} |46] to reduce the computa-
tional cost, however, they only estimate the count of the matched
subgraphs rather than locate all the subgraph instances.
MapReduce [11], as one of the most popular parallel comput-
ing paradigms for big data processing, has been widely used in
both industry and academia. MapReduce embodies the advantages
of high scalability, reliability, and fault-tolerance. Its easy-to-use
programming model allows developers to develop highly scalable
data-driven algorithms in a distributed environment. Therefore,
MapReduce has recently been used for subgraph enumeration in
big graphs to pursue both scalability and efficiency. In the litera-
ture, two existing approaches focus on subgraph enumeration using
MapReduce, namely, edge-based join [31] and multiway join [/1]].
In edge-based join [31]l, the pattern graph is decomposed into
an ordered list of edges, and the algorithm proceeds in multiple
MapReduce rounds where each round grows one edge using the
join operation. Edge-based join is inefficient as joining one edge
in each round cannot fully make use of the structural information,
which may render numerous partial results.In multiway join [1],
only one MapReduce round is needed for subgraph enumeration.
In the algorithm, each edge is duplicated in multiple machines such
that each machine can enumerate the subgraphs independently and
no match is missed. However, multiway join usually encounters
serious scalability problems by keeping almost the whole graph in
the memory of each machine when the pattern graph is complex.
Considering the drawbacks of edge-based join and multiway join,
in this paper, we propose a new approach for subgraph enumeration
in MapReduce. We introduce a left-deep-join framework that gen-
eralizes the edge-based join to allow the right join argument to be
a star (a tree of depth 1) rather than a single edge in each round.
However, joining a star is sometimes inefficient as well. Thus, we
propose the TwinTwigJoin which uses a simple TwinTwig (an
edge or two incident edges of a node) as the right join argument
in each round. TwinTwigJoin, as a tradeoff between edge-based
join and star-based join, has several advantages. First, based on a
well-defined cost model and the Erdds Rényi random graph model,
we show that under reasonable assumptions, TwinTwigJoin can
ensure instance optimality in the left-deep-join framework. Sec-
ond, the simple structure of a TwinTwig makes it easy to devise

an optimal join plan based on the A* algorithm. Third, many op-
timization strategies can be designed on top of TwinTwiglJoin, in-
cluding order-aware cost reduction, workload skew reduction, and
early filtering.

Note that most real-life data graphs are far from random. In
this paper, we will first deliver the result of instance optimality of
TwinTwigJoin by assuming that the data graph is a random graph.
This not only provides the theoretic guarantee of the paradigm pre-
sented in the paper but also gives the foundation of our analysis
of the power-law graphs. Later, we extend the results to the power-
law graphs with the aim to cover many real applications since many
real-life large graphs are power-law graphs.

Contributions. We make the following contributions in this paper.

(1) A left-deep-join framework to join multiple edges in each round:
We introduce a framework based on left-deep join for subgraph
enumeration in MapReduce, which generalizes the edge-based join
to allow multiple edges (in the form of stars) to join in each round.

(2) A novel algorithm to ensure instance optimality: We propose a
novel TwinTwigJoin algorithm following the left-deep-join frame-
work, which uses TwinTwig as the right argument of the join in
each MapReduce round. We analyze the cost of TwinTwigJoin
based on the Erdos-Rényi random graph model, upon which we
prove that under reasonable assumptions, TwinTwigJoin is instance
optimal in the left-deep-join framework.We further develop an A*-
based algorithm to compute the optimal join plan by defining a cost
upper bound for any partial join. The algorithm can be adapted to
any other graph model given that the cost upper bound for a partial
join can be computed in the graph model.

(3) Three optimization strategies to further improve the algorithm:

‘We explore three optimization strategies, namely, order-aware cost
reduction, workload skew reduction, and early filtering, to further
improve the TwinTwigJoin algorithm. Order-aware cost reduction
considers three types of TwinTwigs based on a predefined order
of nodes in the data graph and pattern graph, which can be utilized
to reduce the total computational cost. Workload skew reduction
is used to reduce the workload skew caused by a few high-degree
nodes in the data graph by partitioning their neighbors into multiple
machines. Early filtering makes use of the free memory to further
filter invalid partial results in early stages of the algorithm.

(4) Extension to power-law random graphs and other distributed
systems: We show how our algorithms and theoretical results can
be adapted to the power-law graph model and discuss how to extend
our algorithm to other distributed systems in the cloud.

(5) Extensive performance studies using web-scale real graphs:
We conduct extensive performance studies in six real graphs with
different graph properties, and the largest one of them contains
billions of edges. The experimental results demonstrate that our
TwinTwigJoin algorithm can achieve high scalability and outper-
forms all other state-of-the-art algorithms in all datasets.

Outline. Section [2| presents the preliminaries and gives the for-
mal problem definition. Section [3]shows the left-deep-join frame-
work. Section [] introduces three state-of-the-art algorithms for
subgraph enumeration in MapReduce. Section [3] studies a new
TwinTwiglJoin algorithm, proves its instance optimality using the
Erdos-Rényi random graph model, and provides an optimal join
plan based on the A* algorithm. Section[6]explores three optimiza-
tion strategies to further optimize the TwinTwigJoin algorithm.
Section |/| shows how our algorithm can be extended to deal with
the power-law graph model and to handle other distributed plat-
forms in cloud. Section[§]evaluates all introduced algorithms using
extensive experiments. Section E] reviews the related work, and
Section[I0]concludes the paper.

2. PROBLEM DEFINITION

Subgraph Enumeration. We model a data graph as an undirected
and unlabelled graph G(V, E), where V(G) represents the set of
nodes and E(G) represents the set of edges each of which con-
nects two nodes in V(G). We let [V(G)| = N and |E(G)| =
M. Without loss of generality, we assume M > N. We use
{u1,u2,...,un} to denote the set of nodes in G. For each u; €
V(G), we use N (u;) to denote the set of neighbor nodes of w;, and
we use d(u;) to denote the degree of u;, i.e., d(u;) = [N (u;)|, and
dmaz = Max,,cv(c) d(ui). We define d = 2M /N as the aver-
age degree of the data graph. A subgraph g of G is a graph such
that V(g) C V(G), E(g) C E(G), and for any (u,u’) € E(g),
u € V(g)andu' € V(g).

A pattern graph is an undirected, unlabelled and connected graph,
denoted P(V, E), where V(P) represents the set of nodes and
E(P) represents the set of edges, and we let |V(P)| = n and
|E(P)| = m. We use {v1,v2,...,v,} to denote the set of nodes
in P. For each v; € V(P), N (v;) and d(v;) are defined analogous
to those defined in the data graph . Note that it is trivial when P
is a node or an edge, thus we assume |V (P)| > 3 in this paper.

Definition 2.1: (Match) Given a pattern graph P and a data graph

G, a match f of P in G is a mapping from V (P) to V(G) such

that the following two conditions hold:

e (Conflict Free) For any pair of nodes v; € V(P) and v; € V(P)
(i #). f(v:) # ;).

e (Structure Preservation) For any edge (v;, v;) € E(P), (f(vi),
f(v,) € E(G).

We use f = (uk,, Uky, - - - , Uk,) to denote the match f, i.e., f(v;)

=y, forany 1 <i < n. O

Definition 2.2: (Graph Isomorphism) Given two graphs g; and
gj, gi and g; are isomorphic, if and only if there exists a match of

giin gj, and [V(g:)| = [V (g;)| and | E(g:)| = |E(g;)]- O

Definition 2.3: (Subgraph Enumeration) Given a pattern graph
P and a data graph G, subgraph enumeration is to enumerate all
subgraphs g of GG such that g is isomorphic to P. a

Definition 2.4: (Automorphism) Given a graph g, an automor-
phism of g is a match from g to itself. We use .A(g) to denote the
set of automorphisms for a graph g. a

Given a pattern graph P and a data graph G, suppose the to-

tal number of enumerated subgraphs is s, then the total number of
matches of P in G is |A(P)| x s. Since then, if P has only one
automorphism, i.e., [A(P)| = 1, the problem of subgraph enu-
meration is equivalent to enumerating all matches of P in G. In
the following, for ease of analysis, we first assume that the pattern
graph P has only one automorphism, i.e., |[A(P)| = 1, and thus
we focus on enumerating all matches of P in G. In Section[5.4] we
will discuss the general cases when | A(P)| > 1.
Graph Storage. We assume the data graph G is stored in a dis-
tributed file system using adjacency lists, that is, for each node
u € V(G), we store the adjacency list of u as a key-value pair
(u; M (u)) in the distributed file system.

Assumptions. In this paper, our theoretical results are derived
based on the following assumptions:

e A;: The data graph follows the Erdés Rényi random graph
model, which will be introduced in Section[5.2]

e Ajs: The algorithm follows a left-deep-join framework, where
the right join argument is a star. It will be further discussed in
Section[3]

e Ajs: The data graph is sparse, more specifically, the average
degree d = 2M/N < +/N.

Algorithm 1 SubgraphEnum(data graph G, pattern graph P)

1: compute a graph decomposition {pg, p1, - - . , pt } of P;

2: for i = 1totdo))

3: R(P;) + R(P;_1) X R(p;); (using map® and reduce®)

4: return R(P;);

5: function map®(key: @; value: either a match f € R(P;_1) wheni > 1 or
(u, N'(u)) foranode u € V(G))

6: {Vky s Vkoy - sV } = V(Pim1) NV (pi)s

7: if i = 1 then

8: G, <+ a graph formed by edges (u, v) forv € N (u);

9: Ry, (Po) < all matches of Py in G

10: for all match f € R, (Po) do

11: Ompm((f(vkl)7f(vk2)a'"’f(vkl))§f);

12: if value is a match f € R(P;_1) then

130 output ((f(vry), f(Vkg)s -+ Fvry)); £

14: else

15: G,, <+ agraph formed by edges (u, v) forv € N (u);
16: R, (pi) < all matches of p; in Gy;

17: for all match h € R, (p;) do

18: output ((h(vk,), h(vky),s .- -, h(vi,)); h);

19: function reduce’ (key: r = (up,, Uy, - - -, uk,); values: F' = {f1, fa,
...}, H=A{h1,h2,...})
20: forall (f,h) € (F x H)st. (f —)N (h—r) = 0 do

21: output (@; f U h);

|
Y 4 Vi Yy
v |
| Vil vy v, vl—v, v,
Lo P P,
!
v, Kw ViV, V, v,
i X
k Vsiiv, Vi vy V3 VzA V3
p | P P, p,

Figure 1: Pattern Decomposition and Query Processing

a match in R(P)) along with the corresponding join key (lines 7-
11). Then, if the input of map® is a match f € R(Pi_1), we
simply output f along with the corresponding join key (lines 12-
13). Otherwise, we compute the matches of p; associated with u,
R.(p:), as we do when we compute P, (lines 15-18).

(Function reduce’): The set of key-value pairs with the same key
r = (Uky, Uky, - .., Uk,) are processed using the same function
reduce’. There are two types of values, F' = {fi, f2, ... } and
H = {hy, ho, ... }, generated by R(P;_1) and R(p;) respec-
tively. For each (f,h) € (F x H) that shares the same join key,
we output f U h with the condition that (f —r) N (h —7) = 0
to avoid node conflict (refer to the conflict free condition in Defini-
ton2.T)(lines 20-21).

Discussion. In the map’ phase of Algorithm we need to compute

Problem Statement. Given a data graph G stored in a distributed
file system, and a pattern graph P, the purpose of this work is to
enumerate all subgraphs of G that are isomorphic to P (based on
Definiton[2.3) using MapReduce.

3. ALGORITHM FRAMEWORK

In this section, we introduce a left-deep-join-based framework
for subgraph enumeration in MapReduce. Generally speaking, given
a data graph G and a patten graph P, subgraph enumeration is pro-
cessed using a list of left-deep join operations, each of which is
evaluated using one round of MapReduce. Before introducing the
framework for subgraph enumeration, we first give the definitions
of pattern decomposition, partial pattern, and partial result.
Definition 3.1: (Pattern Decomposition) Given a pattern graph P,
a pattern decomposition of P, D = {po, p1,...,pt}, is a disjoint
partition of the edges of P. m|
Definition 3.2: (Partial Pattern P;) Given a pattern decomposi-
tion {po, p1,...,pt} of P, a partial pattern P; (0 < i < t)isa
subgraph of P, such that V(P) = U<, <, V(p;) and E(P;) =
Uo<j<i E(p;). We have Py = po and Py = P. We use D; = {po,
D1, ..., pi} to denote a partial pattern decomposition of partial
pattern P; forany 0 < ¢ < ¢. O

Definition 3.3: (Partial Result R(S)) Given a subgraph S of the
pattern graph P, and a data graph G, the partial result w.rt. S,
denoted as R(S), is the set of matches of S in G. Obviously, R(P)
is the final result of the subgraph enumeration problem. O

The Framework. The framework of subgraph enumeration using
MapReduce is shown in Algorithm[I] Given a graph G and a pat-
tern P, we first compute a graph decomposition {po,p1,...,p:}
of P which indicates a join plan (line 1). Then the algorithm is
processed in ¢ MapReduce rounds. Each round (lines 2-3) com-
putes the partial result R(P;) by joining R(P;_1) with R(p;), and
obviously, E(P;) = E(P;—1) U E(p;) for 1 <4 < t. Each join
operation is processed using MapReduce with map® and reduce’.

(Function map®): The function map® is shown in lines 5-18 of
Algorithm The input of map® is either a match f € R(P;_1) if
¢ > 1, or (u;N(u)) foranode u € V(G) (line 5). Both R(P;—_1)
and G are stored in the distributed file system. We first calculate
the join key {vk,, Vk,, ..., Uk, } using V(P;_1) N V(p;) (line 6).
If i = 1, we need to compute the matches of Py, R, (Fo), based
on node w and its neighbors A (u), and output each such match (as

R(P,) fori = 1 (line 9) and R(p;) for 1 < ¢ < ¢ (line 16) in G.
Note that R(Py) = R(po), thus overall we need to compute R(p;)
for 0 < ¢ < tin G. We now discuss assumption As. Recall that
G is stored as a set of key-value pairs (u; N'(u)) foru € V(G) in
the distributed file system, and each key-value pair is processed by
map’ separately according to the MapReduce framework. In this
framework, each p; should be a star (a tree of depth 1). As taken
(u; N'(u)) as input, each map® function can generate the matched
stars rooted at u separately by enumerating the leaf nodes from
N (u).

Example 3.1: In Fig.|1| we decompose the pattern graph into {po,
p1, p2}. The corresponding partial patterns Py, P;, and P> are also
presented. Based on the framework in Algorithm[I] the subgraph
enumeration algorithm is processed in two MapReduce rounds. In
the first round, we compute R(P:) using R(FPo) X R(p1) with
V(Po)NV (p1) = {v2,vs,va} as the join key. In the second round,
we compute R(P,) using R(Py) X R(p2) with V(P1) NV (p2) =
{vs, v4} as the join key. O
Remark. In Algorithm[T] we evaluate P using left-deep join based
on the pattern decomposition D. In addition to left-deep join, we
can also use bushy join to process the tasks. Bushy join actually
provides more varieties for an optimal join plan than its special
case, left-deep join. However, we choose left-deep join in this paper
due to the following aspects. First, as indicated in [35]], left-deep
join can still provide optimal solutions in many cases, especially
when the join graph is highly connected. Second, left-deep join
requires keeping much fewer partial results than bushy join. The
partial results we need to keep are generated from only one iteration
(the iteration prior to current one) in left-deep join but multiple
iterations in bushy join. Finally and more importantly, it is much
less expensive to compute an optimal join plan for left-deep join
given its simpler computation structure.

4. EXISTING SOLUTIONS

In this section, we introduce three state-of-the-art algorithms for
subgraph enumeration in MapReduce: EdgelJoin, StarJoin, and
MultiwayJoin. Both EdgeJoin and StarJoin follow the left-deep-
join framework (Algorithm[T) with different pattern-decomposition
strategies. MultiwayJoin uses a new framework that enumerates all
subgraphs in only one MapReduce round by duplicating edges of
the data graph G.

Algorithm EdgeJoin. The EdgeJoin Algorithm is proposed by

Plantenga [31]. In EdgeJoin, each pattern graph P is decomposed
into {po, p1, ..., p+}, where each p; is an edge in E(P). Thus,
we have ¢ = m — 1. The main drawback of EdgeJoin Algorithm
is that it may generate a large number of partial results since it can-
not make full use of the structural information of the pattern graph,
which can be explained via the following example.

Example 4.1: For a square pattern P where V (p) = {v1,v2,v3,v4}
and E(P) = {(v1,v2), (v2,v3), (v3,v4), (va,v1)}, the optimal
pattern decomposition based on EdgeJoin is po = {(v1,v2)},p1 =
{(v2, vs)}, p2 = {(vs, va)}, ps = {(va, v1)}. However, using
this pattern-decomposition strategy, the algorithm executes in three
MapReduce rounds, and the partial pattern Ps is a path {(v1, v2),
(v2, v3), (v3, v4)} with length 3, which may result in a large num-
ber of partial results. A better strategy is to decompose P into two
parts: po = {(v1,v2), (v2,vs)} and p1 = {(vs,v4), (va,v1)},
which can be processed in only one MapReduce round, and we can
avoid processing Ps as that in EdgeJoin. m|

Algorithm StarJoin. The StarJoin algorithm decomposes the pat-
tern graph into stars, where a star is a tree of depth 1. The star
decomposition strategy is proposed by Sun et al. [36]]. Given a pat-
tern graph P and a node v € V(P), we denote star(v) the star
rooted at v with A/(v) as its child nodes. According to [36], a star
decomposition of P is defined as follows.

Definition 4.1: (Star Decomposition) Given a pattern graph P,
a star decomposition is a decomposition {po, p1, ..., p+} of P,
such that there exists {vigy, Vs -+ ., Vi, } C V(P) with po =
star(vk,), and p; = star(vg,;) \ E(Pi—1) forany 1 <i <¢. O

Compared to EdgeJoin, StarJoin can finish in fewer MapRe-
duce rounds, however, StarJoin still suffers from the scalability
problems due to the generation of numerous data when evaluating
a star with many edges.

Example 4.2: Fig. [l| shows an example of star decomposition for
a 4-clique pattern graph P, in which po is a star with three edges.
In a social network such as Twitter, it is very common for a node
to have more than 10,000 followers. As a result, this node with its
followers will contribute to over 10*? matches of po. O

Algorithm MultiwayJoin. The MultiwayJoin algorithm is pro-
posed by Afrati et al. [1]. MultiwayJoin enumerates subgraphs in
the data graph using only one MapReduce round, while in order to
do so, MultiwayJoin has to duplicate the edges several times in the
map phase, and the number of duplications grows enormously with
the size of the pattern graph. It is shown in [37] that MultiwayJoin
can be efficient when P is a triangle. However, it will suffer from
scalability problem when P becomes more complex. For ease of
analysis, we suppose P is a clique (complete graph) with n nodes.
Let b = %/#r, where #r is the number of reducers. With the
optimal settings according to [1]], the number of duplications for
each edge of G is O(m - b"~?) = O(n? - b"?), resulting in
©(M - n? - b""?) as a whole. Each reducer will hence receive

@(%) =0(M - 2—22) by average. There are two cases:

e (Case-1: b < mn) A reducer will receive ©(M - 2‘—22) > 0O(M)
edges, which is equivalent to holding the whole graph G.

e (Case-2: b > n) The total number of edge duplications is
O(M -n®-b""2%) > O(M - n™), which is too large.

Obviously, both case-1 and case-2 are not scalable for either large
data graph G or complex pattern graph P. Similar result can be
derived when P is a general graph.

5. A NEW APPROACH

As discussed above, EdgeJoin, StarJoin, and Multiway Join will
encounter scalability problems when the data graph is large or the

pattern graph is complex. In this section, we propose a new al-
gorithm TwinTwigJoin that follows the left-deep join framework
introduced in Section [3| with a new pattern decomposition strat-
egy, namely, TwinTwig decomposition. We first introduce the
TwinTwig decomposition strategy, and analyze its optimality based
on a variant of the random graph model. Then we propose an op-
timal TwinTwig decomposition algorithm based on the A* frame-
work. Finally, we discuss symmetry breaking to allow the pattern
graph to have multiple automorphisms.

5.1 TwinTwig Decomposition

Definition 5.1: (TwinTwig Decomposition) A TwinTwig decom-
position is a decomposition D = {po, p1, ..., pt} of pattern P
such that each p; (0 < ¢ < t) is a TwinTwig, where a TwinTwig
is either a single edge or two incident edges of a node. a

Our algorithm TwinTwigJoin is a left-deep-join algorithm (fol-
lowing Algorithm [T) based on TwinTwig decomposition. Obvi-
ously, TwinTwigJoin is a generalization of EdgeJoin. Compared
to EdgeJoin, TwinTwigJoin can make use of more structural in-
formation of the pattern graph to reduce the size of the partial re-
sults. Compared to StarJoin, TwinTwigJoin can avoid joining a
star with many edges by restricting the number of edges to be at
most 2, and it is more flexible to select which one or two edge(s) of
a star to join in a certain round to minimize the overall cost. Next,
we introduce a special TwinTwig decomposition, namely, strong
TwinTwig decomposition.

Definition 5.2: (Strong TwinTwig Decomposition) Let D = {po,
..., p¢} be a TwinTwig decomposition of P, a TwinTwig p;
(1 < ¢ < t)is astrong TwinTwig if |V (p:) N V(Pi—1)| > 2,
otherwise p; is a non-strong TwinTwig. D is a strong TwinTwig
decomposition if each p; (1 < ¢ < t) is a strong TwinTwig. The
pattern P is strong TwinTwig decomposable, denoted SDEC, if
there exists a strong TwinTwig decomposition of P. |

In the following, we will introduce the cost model and graph
model, based on which we can prove the instance optimality of
TwinTwigJoin under the assumptions introduced in Section 2]

5.2 Cost Analysis

Cost Model. Following the framework in Algorithm |1} for each
MapReduce round ¢ (1 < ¢ < t), we consider three types of data,
denoted M;, S;, and R;, which are defined as follows:

e M, is the input of the i-th map phase. M; includes all edges
of graph G, and the partial result R(P;—1) generated in the pre-
vious round (if ¢ > 1). Thus, we have |M;| = |E(G)| and
M| = |R(Pi—1)| + |E(G)| for i > 1.

e S, is the data transferred in the i-th shuffle phase, which is also
the output of the i-th map phase as well as the input of the ¢-th
reduce phase. S; includes two parts, R(P;—1) and R(p;), thus
we have |Si[= [R(Pi—1)| + [R(p:)]-

e R, is the output of the i-th reduce phase. R; includes the set of
partial matches R(F;), thus we have |R;| = |R(F;)|.

There are many factors that can affect the efficiency of Algo-
rithm [T} including I/O cost, communication cost, computational
cost, number of MapReduce rounds, and workload balancing. We
hence consider an overall cost C as follows:

t
C= D (M| +Si| + [Ril)

i=1
t

3 IR(P)| + |R(Po)| + D |R(pi)| +t|E(G)| — 2|R(P)]

=1 1=1

t t
3) IR(P)|+ D [R(pi)| + 1 E(G)| — 2| R(PY)]
=1 =0

Obviously, C is a comprehensive measurement of I/O cost, com-
munication cost and computational cost, and it also implies the im-
pact of the number of MapReduce rounds. Note that the last term
2|R(P;)| = 2|R(P)| is independent of the decomposition strategy,
thus it can be removed from the cost function. Therefore, given any
pattern decomposition D = {po, p1, - . ., P+ }, the cost function, de-
noted as cost(D), can be defined as:
t

t
cost(D) =3 |R(P)|+ Y _ |R(pi)| + t|E(G)] M
=1 =0
Similarly, for any 0 < i < ¢, we can define the cost of a partial
pattern decomposition D- as:

cost(D;) —SZ|R \+Z|R pj)| + | E(G)] (2)

j=1 7=0
For any 1 < ¢ < t, given that D; = D;_1 U {p; }, we have:

cost(D;) = cost(D;—1) + 3|R(FP;)| + |R(pi)| + |E(G)] (3)

Our aim is to find a decomposition D of the pattern graph P so that
cost(D) is minimized.

Graph Model. In order to analyze the cost of different pattern-
decomposition strategies, we will use two graph model to depict the
data graph GG, namely the Erdos-Rényi random graph model [12]],
denoted ER model, and the power-law random graph model [4],
denoted PR model. In this paper, unless otherwise specified, we
will use random graph to represent a graph constructed using ER
model, and power-law random graph for a graph constructed via
PR model. As indicated by assumption A;, we first focus on the
case that the data graph is a random graph. Then we will extend our
algorithm to handle the power-law random graphs in Section

In the ER model, a graph is constructed by connecting nodes
randomly. Each edge is included in the graph with probability w
independently from every other edges. Thus, for a data graph with
N nodes and M edges, the probability w can be calculated as: w =
%, which can be approximated as 2M when N is large.

For simplicity, we use |R(P)| to denote the expected number of
matches for a pattern P in a random graph. Recall that given a
data graph G and a pattern graph P, a match f of P in G should
satisfy two conditions, namely, conflict free and structure preserva-
tion. With the two conditions, we can derive the following lemma
on the expected number of matches of P in a random graph.

Lemma 5.1: Given a pattern graph P and a random graph G, if

P is a connected graph, we have |R(P)| = 1(\,22%),2 O
Proof Sketch: According to [7], we have | R(P)| = (N%'n), X w™
Considering n < N , we have |R(P)| = N"w™ = 1(\;221\;):1 ad

Results on SDEC Pattern Graph P. In order to show the instance
optimality of the TwinTwig decomposition, we first study a special
case, in which the pattern graph P is strong TwinTwig decompos-
able (SDEC). We have the following lemma.

Lemma 5.2: Given an SDEC pattern graph P, suppose D = {po,
D1y .., Dt} Is a strong TwinTwig decomposition of P, then for
any partial pattern P; (1 < i < t), we have:

[R(P)| < |R(Pi1)| x 2% < |R(po)|
Proof Sketch: Sue P- contains n; nodes and m; edges, ac-

2M)2 \i
(%) O

| we have |R(Pi—1)| = @M)™i-d

N2Mi—1—7"i—1 and
Let Am; = m;

cording to Lemma
R(P)| = =

N2 —ng
n; — n;—1, we have:

(R(P)| = |R(P)| * (o

— Mi—1 and Ani =

)Ami x NA"H)

Since D is a strong TwinTwig decomposition, there are three cases
forp; (1 <i<t):

i I

2y kK

D rl rt rl }"i rr‘

I R 4

4 “Ro kK Tk k’+2t -

Strong TwinTwigs Non-Strong TwinTwigs

Figure 2: Constructing D based on D’

e (|E(pi)| =1and |V(p;) N V(Pi—1)| = 2): In this case, Am; = 1
and An; = 0. It follows that:
(2M)?

IR = [R(Pi)| % 2 < R x 20

e (|E(pi)| = 2and |V(p;) N V(P;—1)| = 2): In this case, Am; = 2
and An; = 1. It follows that:
(2M)?

IR(P))| = [R(P1)| x Cog)? x N = [R(P1)] x

o (|[E(pi)| = 2and |V(p;) N V(P;—1)| = 3): In this case, Am,; = 2
and An; = 0. It follows that:
(2M)?

R(P))| = |R(Pi)| % (Cp)? < [R(P) % g

In all the above three cases, we have | R(P;)| < |R(P;—1)] x (2M>
R(P)| < |R(P,1)| x 23 <|R(P:- 2)|><(%)2
<< |R(p0)| x (2 o
By assumption As, we know that the average degree d = 2M /N <
V/N. It is immediate that in strong TwinTwig decomposition:

[R(P)| < |R(Pi-1)| < ... <[R(Po)| = |R(po)])
In other words, the number of partial matches |R(P;)| decreases

when i increases. With Lemma 5.2} we can prove the instance op-
timality of a general TwinTwig decomposition.

The General Case. We prove the instance optimality of the gen-
eral TwinTwig decomposition by showing that given any pattern
decomposition D’ = {p, p, - - ., P} }, where each p} (0 <i < t')
is a star, we can construct a corresponding TwinTwig decomposi-
tion D = {po, p1, - - ., p+ } with cost(D) < O(cost(D’))

We first introduce how to construct D based on D’. For any
pi € D', 1et D' = {pi, p5, ..., pi, } be a TwinTwig decomposition

of p} which is constructed as follows: Suppose r* is the root of p;

and {I1,15, ..., Iy } is the set of leaves of p; sorted by putting those

nodes I} with l; € V(P/_;) in the front (P/_; is the i — 1-th partial

pattern w.r.t. D), i.e., there exists a number kl, st if 1 < j < Ky,

lj € V(Pl1),andif ki < j < t;. 15 & V(P[_1). D' = {p1, p2,

.., Pt, } is constructed as follows:

t; i . .

: s andp; (1< j<t)isa
TwinTwig with root 7* and two leaves [5;_; and I5;.

e If ¢} is an odd number, then ¢; = ti2+1, L1<j<ti—1)
is a TwinTwig with root 7 and two leaves léj,l and léj, and
pi. is a TwinTwig with only one edge (r*,1},).

e If t; is an even number, then ¢; =

In other words, D" is constructed by generating strong TwinTwigs
followed by non-strong TwinTwigs. After constructing D" for all

0 < i < t/, we have D by combining all D%, ie., D = U
The construction of D from D’ is illustrated in Fig. l

We show the instance optimality of a general TwinTwig decom-
position using the following theorem:

Theorem 5.1: Under the assumption Az (d < /N), given a
pattern decomposition D' = {py, pi, ..., py } where each p; (0
< i < t')is a star;, let D be the TwinTwig decomposition con-
structed based on D' using the above method, then cost(D) <
O(cost(D")). o

Proof Sketch: For any pattern decomposition D, we divide cost(D)
=33, |R(P)| + Si—o|R(pi)| + t|E(G)| (Eq.[1) into two parts:

o cost1(D) = Xi_o |R(pi)| + t|E(G)|.

e cost2(D) =3 i, |R(P;)|.

Accordingly, we divide the proof into two parts:

(Part 1): We prove cost; (D) < O(cost1(D’)). We only need to
prove cost1(D*) < O(cost; ({p;})) for each 0 < ¢ < t’. Note
that when |E(p;)| < 2, cost1(D*) = costi({p}}), thus, we only
consider |E(p;)| > 3. In this case, we have:

e cost;(D') < O(t; - d* - N). According to Lemma we
know that each pattern p; € D* is a TwinTwig with |R(p})| <
% = O(d? - N). Hence, we have:

[t;/21
cost1 (DY) = D (IR(p})| + |E(G)]) < ©(¢; - d* - N)
j=1
e costi ({p}}) > O(t} - d* - N). This is because:
cost1 ({p}}) > |R(p))| = d' x N > (t; —2) x d® x N
2 t;/3xd® x N (by t; = |E(p})| > 3)
=0O(t,-d*- N)
Thus, cost1 (D?) < O(cost1 ({p})).
(Part 2): We prove costy (D) = O(costz(D')). We reformulate

/ t / / /
COStQ(D/) as 3(1’?70 + 21:1|R(P1_21)\~HR(P1)\ + |R(12Dt/)|) Thus:
'
costa (D) = O3 J(IR(P{_y)| + [R(P))]) ©)

=1
Note that in D that is constructed based on D', we will gradually
combine pi, pb, ..., p;, to P/_; in order to get P;. Hence, the
term |R(P{_,)| + |R(P;)| for each 1 < ¢ < t’ in costa(D’) is
replaced by:
costy(D) = |R(P_y)| + [R(P{_y Up})|
4+ [R(P_y UpLU---Upy, 1)l + [R(P)]
Recall that there exists a k; such that, when 1 < 5 < k4, p} is
a strong TwinTwig, and when k; < 7 < ¢, p§~ is a non-strong
TwinTwig. Letz = k; and y = t; — k;, then there are x +y + 1
terms in costs (D). We have,

(O]

e (S1): The sum of the first 241 terms in cost} (D) is O (| R(P_1)|).

Since each pj is a strong TwinTwig, according to Lemma ,
when j increases, the size of the j-th term decreases exponen-

<2]]\‘,43) 2 < 1 (by assumption Ags), thus, state-

tially with a rate <
ment S7 holds. ,
e (S2): The sum of the last y terms in costb (D) is O(|R(F;)]).
Since each pj is a non-strong TwinTwig, according to Eq.ﬁ]
when j increases, the size of the j-th term increases exponen-
tially with a rate > d > 1, thus, statement S» holds.
Based on .S; and Sa, we have costz (D) = O(cost2(D’)), and ac-
cording to Part 1 and Part 2, Theorem[5.1] holds. o

5.3 Optimal Decomposition by A*

In this subsection, we will show how to construct an optimal
TwinTwig decomposition for any pattern graph P using an A*-
based algorithm.

The Cost Function. The key of the A*-based algorithm is to find
a cost function for each partial solution, which defines the priority
of the partial solution to be expanded to form the final solution.
In the subgraph enumeration problem, for any partial TwinTwig
decomposition D; of P (refer to Definiton [3.2), we need to define
a cost function cost(D;, P), which is the cost lower bound for any
TwinTwig decomposition of P expanded from D;. We compute
cost(D;, P) using dynamic programming. Given a partial pattern
P;, we use Acost(P;, Am, An) to denote the lower bound of the

Algorithm 2 Optimal-Decomp(data graph G, pattern graph P)
I: H <« 0;
2: for all TwinTwig p in P do

3: H.push((p, {p}, cost({p}, P)));
1 (P, D', cost(D’, P)) + H.pop();

4
5: while P’ # P do

6: forall TwinTwig p with V(p) N V(P’) # @ and E(p) N E(P’) = (do
7 if H.find(P’ U p) # 0 then

8 H.update(P' U p, D’ U{p},cost(D’ U {p}, P));

9 else H.push((P’ U p, D’ U {p}, cost(D’ U {p}, P)));

10: (P, D', cost(D’, P)) + H.pop();

11: return D’;

increased cost when adding any Am edges and An nodes into the
partial pattern P;. Let card(m,n) = |R(P)| be the number of
matches of any connected pattern graph P with m edges and n
nodes, according to Lemma@ we have:
card(m,n) = (2M)™ /N?™m—n ®)
In the dynamic programming, the initial state is Acost(P;,0,0) =
0, and according to Eq.[3] the transaction function is formulated as:
Acost(P;, Am, An) = min{Acost(P;, Am — a, An — b)
+ 3 x card(|E(F;)| + Am, |V (P;)| + An) + card(a, b)
+M|Vi<a<20<b<a,a<Am,b< An}
The conditions 1 < a < 2and 0 < b < a are required to guarantee
that we join a TwinTwig each time. Accordingly, cost(D;, P) can
be calculated as:

cost(D;, P) = cost(D;)
+ Acost(P;, |E(P)| — |E(P;)|, [V(P)| — [V (P;))

Note that Acost(P;, Am, An) is only dependent on |E(F;)| and
|V (P;)|, thus we can use Acost(m’, n’, Am, An) to denote Acost(
P;, Am, An) for any P; with m’ edges and n’ nodes. As a result,
given a data graph G, we can precompute Acost(m’, n', Am, An)
for all possible m’, n’, Am, and An, given that Acost(m’, n’,
Am, An) is query independent. The time complexity and space
complexity for the precomputation are both O((7 - 7)?), where
m and 7 are the upper bounds of m’ and n’ respectively. In such
a way, given any D; and P, suppose cost(D;) is computed, then
cost(D;, P) can be computed in O(1) time.

The Algorithm. The A* algorithm to compute the optimal decom-
position is shown in Algorithm [2]| Let H be a heap in which each
entry has the form (P’, D’, cost(D’, P)), where P’ is a partial pat-
tern and D’ is the corresponding partial TwinTwig decomposition.
The top entry in H is a pattern decomposition D’ with the mini-
mum cost(D’, P). The algorithm follows a typical A* framework
that (1) iteratively pops the minimum entry (line 4 and line 10), (2)
expands the entry with one TwinTwig (line 6), and (3) updates the
new entry if the corresponding partial pattern is already in H and
current cost is smaller than the existing one (line 7-8), or (4) pushes
the new entry into H if the corresponding partial pattern is not in
‘H (line 9). The algorithm stops when the popped partial pattern is
the pattern graph P (line 5) and returns the last popped D’ as the
optimal TwinTwig decomposition (line 11).

©

Lemma 5.3: The space complexity and time complexity of Algo-
rithm |2| are O(2™) and O(d - m - 2™) respectively, where d =
max,cv(p) d(v). a
Proof Sketch: We first prove the space complexity. Each entry
(P, D', cost(D’, P)) in H is uniquely identified by the partial pat-
tern P’, and there are at most 2" partial patterns, which consumes
at most O(2™) space. Note that each P’ and D’ can be stored using
constant space by only keeping the last TwinTwig p that generates
P’ and D’, and a link to the entry identified by P’ — p.

Next we prove the time complexity. Let s be the possible number
of TwinTwigs in P, we have s = X, cv (p) d(v)? < Yoev(p) d(v)
x d = 2m x d. When an entry is popped out from #, it can be
expanded by at most s times. Using Fibonacci heap, pop works in

log(|#|) time, and update and push both work in O(1) time. Thus
the overall time complexity is O(2™ - (s +log(|H[))) = O(2™ -
(s +10g(2™))) =0O(d-m-2™). O

Discussion. In practice, the processing time for Algorithm [2] is
much smaller than O(d - m - 2™) since H only keeps connected
subgraphs of P that can potentially result in the optimal solution.
Note that Algorithm [2] can be independently studied as long as
cost(D;, P) can be calculated given any partial TwinTwig decom-
position D;.

5.4 Symmetry Breaking

In this subsection, we show how to use symmetry-breaking to
remove the assumption that the pattern graph P has only one au-
tomorphism. We assume that there is a total order (defined by <
) among all nodes in the data graph G. When P has multiple au-
tomorphisms, i.e., [A(P)| > 1, by directly applying Algorithm I}
each enumerated subgraph will be duplicated for | A(P)| times. To
remove such duplications, symmetry-breaking is performed by as-
signing a partial order (defined by <) among some pairs of nodes
in the pattern graph P.

Given such a partial order, a match is redefined from Defini-
ton by adding a new order preservation constraint, that is, for
any pair of nodes v; € V(P) and v; € V(P), if v; < vj, then f(v;)
< f(vy).

The algorithm to compute the partial order for symmetry-breaking
has been introduced in details in [[15]]. Since it is not the main focus
of this paper, we omit the algorithm due to lack of space.

Given the partial order, Algorithm [T] can be extended to handle
the partial order as follows: In the map® phase, when computing
R(p:) (line 9, line 16), we make sure that each match satisfies the
order preservation constraint. In the reduce’ phase, in line 21, we
only output those f U h that satisfy the order preservation con-
straint. In Section [6.1] we will discuss how to use the partial order
to further optimize pattern decomposition.

6. OPTIMIZATION STRATEGIES

In this section, we discuss three optimization strategies to further
improve our subgraph enumeration algorithm, namely, order-aware
cost reduction, workload skew reduction, and early filtering.

6.1 Order-aware Cost Reduction

In this subsection, we discuss how to make use of the partial
order to further reduce the computational cost. We first consider a
motivating example: Let the pattern graph P be a triangle of three
nodes v1, v2, and vs, with v1 < v2 < w3 for symmetry-breaking.
By TwinTwig decomposition, P is decomposed into D = {p, e},
where p is a two-edge TwinTwig, and e is a single edge. According
to Eq.[1} we can derive cost(D) = 3| R(P)| + |R(p)| + 2M. Since
|R(P)| and M are fixed, cost(D) is only dependent on p which has
3 choices: p1 = {(v1, v2), (v1, v3)}, p2 = {(v1, v2), (v2, v3)},
and ps = {(v1, v3), (v2, v3)}. Let the data graph G be a star with
a root node r and N — 1 leaf nodes. Obviously, in such a case
|R(P)| = 0. Consider the following 3 cases C1, C'2 and Cs:

e Ci: r has the largest order in V(G). In this case, |R(p1)| =
|R(p2)| = 0and |R(ps)] = O(N?).

e C: 1 has the smallest order in V' (G). In this case, |R(p1)| =
O(N?) and | R(p2)| = | Rlps)| = 0.

e ('3: 7 has the median order in V(G). In this case, |R(p1)| =
R(p2)| = [R(ps)| = O(N?). o

In both C; and Ca, we can find a p with |[R(p)|] = 0 which is

optimal. This extreme example motivates us to link the order of

nodes in V' (G) to their degrees. Specifically, we assign a new total

order of nodes in V(G) by redefining the operator < as follows:

Definition 6.1: (Operator <) For any two nodes u; and u; in
V(G), u; < uj if and only if one of the two conditions holds:

D'V v v, ¥ |V
vl V4 Zan 4 : 4 1 4

|

3

|

i i, otV oL "s
‘ 2

| ERY v Vv, W

v, v, Q_ 1 1\’ 4 17}4
: 3

Lo <y, <y <y, v, T V3 7-1‘)3 V, T,

Figure 3: Order-Aware Decomposition
° d(ul) < d(uj),
o d(u;) = d(u;) and id(u;) < id(u;j).
Where id(u) is the unique identity of node u (€ V(G)). Obviously,
the operator < specifies a total order for nodes in V' (G). O

Given the new total order for V(G), for any v € V(G), we
let NT(u) = {u/ | v € N(u), u < v} and N~ (u) = {u | v
€ N(u), v < u}. Accordingly, we have d* (u) = [N (u)| and
4~ (u) = N~ (w)] and dfpe = max,ey (a) d* (u) and dy,q, =
maxycv(g) d (u). For a two-edge TwinTwig p = {(v, v1), (v,
v2) }, we consider the following three types of orders:

o Ti:v<v <vaorv<ve <vi;

e To:vp <v<weorve <v < vi;

o T5: vy <wy <vorve <wp <.

Let pTl, pTZ, and pT3 be TwinTwigs of types 711, T», and T3 re-
spectively. We have the following results:

o |[R(p™)| = O(Suev(c)(d'(u))?) = O(a - M);

o |[R(p™)] = O(Suev(e)(d" (u) - d™ (w))) = O(d s - M);

o |[R(p™)| = O(Suev(c)(d (w)?) = O(dpaz - M).

Where « is the arboricity of the graph G and o < dt ., < dipas
= dmaa according to [8]. Thus, when selecting TwinTwigs for
joining, p”! is preferable to p™2, followed by p™®. We give an
example below to show the three types of TwinTwigs.

Example 6.1: Fig.[3shows a 4-clique pattern graph P with order
v1 < v2 < v3 < w4, and two decomposition plans D! and D2,
both of which are strong TwinTwig decompositions. However, D*
contains two pT's and one p?2, and D? contains two pZ2s and one
pT3. Obviously, D* is better than D?. |

Order-aware TwinTwig Decomposition. We discuss how to mod-
ify Algorithm[2[for TwinTwig decomposition by taking the partial
order into consideration. Recall that Algorithm [2]only depends on
the cost function cost(D;, P) (Eq.[9) for any partial TwinTwig de-
composition D;, and cost(D;, P) is calculated based on cost(D;
and Acost(P;, Am, An), both of which are originated from Eq.
Thus, we only need to reestimate |R(p;)| and |R(P;)| for any p;
and partial pattern P; by taking the partial order into consideration.
(Reestimate | R(p;)|): Let p; = {(v, v1), (v, v2)}. In order to cal-
culate | R(p;)|, we precompute |R(p™)|, |[R(p™2)|, and |R(p™?)|.
If p; only contains 1 edge, then |R(p;)| = M; otherwise, |R(p;)|
can be calculated from |R(p™)|, |R(p*2)|, and |R(p™®)| depend-
ing on the partial orders defined on V' (p;). For instance, if the
partial order is only defined on one pair v < vy in p;, then |R(p;)|
can be calculated as 2 x |R(p™)| + |R(p™2)].

(Reestimate |R(P;)|): |R(F;)| is hard to calculate when the par-
tial order is involved, however, after each round of join, we try
to make use of the updated information to better estimate |R(P;)|
at runtime. Specifically, after the j-th round of join, suppose the
current partial pattern is P;, and |R(P;)| has been accurately cal-
culated, then for any possible future partial pattern P; which is a
supergraph of P;, according to Eq.[4} | R(P;)| can be estimated as:

|R(P;)| = |R(Pj)‘X(%)\E(HH*W(PJ)\XN\V(Pi)l*\V(Pj)\ (10)

Based on the reestimating technique, Algorithm [I]is modified as
follows: In the first round, it computes the optimal decomposition
plan using the A* algorithm (Algorithm [2) directly, and then pro-
cesses the first MapReduce round accordingly. In the following

round ¢ (2 > 1), before processing MapReduce, the algorithm re-
computes the optimal decomposition using the A* algorithm with
the reestimating technique where each |R(P;)| for 0 < j < i is
replaced by the accurate value. In this way, the partial order is in-
volved in Algorithm [T}

6.2 Workload Skew Reduction

For many real graphs, it is very common that a small number of
nodes in a graph have very high degrees. Given a data graph G,
we denote such high-degree nodes by V¥ (e.g., nodes with degree
larger than v/M). Recall that G is stored in a distributed file system
using adjacency lists in the form (u; N (u)) for each u € V(G).
For a two-edge TwinTwig p, evaluating p on the adjacency list
(u; N (w)) will generate ©(d(u)?) matches, rendering very high
workloads in the machines that are processing high-degree nodes.
This motivates us to consider the workload balancing issue. In the
following, we discuss our strategy to reduce such workload skew.

Suppose there are A machines in the system, for any v € V',
instead of using (u, N'(u)), we divide N (u) uniformly into 3 parti-
tions: N (u) = {N1(u), Na(u), ..., Ng(u)}. Note that we cannot
simply distribute the S partitions into the A machines. Because if
so, given a TwinTwig p = {(v, v1), (v, v2)}, the match f = (u,
u1, uz) € R(p) with u1 € N;(u) and uz € Nj(u) (i # j) cannot
be generated by any machine. To handle this, we create w
partitions in the following two sets S1 (u) and Sz (), and distribute
the partitions uniformly into the A machines.

o« Si(u) = {(wN)1 <i<fy
o So(u) = {(u; (N:(w). N ()1 < i < j < B},

With S1(u) and Sz(u), when evaluating a TwinTwig with one
edge, only S1(u) needs to be used; and when evaluating a TwinTwig
with two edges, both S1(u) and S2(u) need to be used. By setting
B = ©(v/)), the number of partitions becomes ©()). As a re-
sult, each machine just keeps a constant number of partitions in
S1(u) U Sa2(u) uniformly. It is easy to verify that the total space

used to keep S1(u) and Sz (w) is ©(vV/X - [N (u))).

6.3 Early Filtering

Recall that Algorithm[Tjonly requires very small memory in both
map"’ and reduce’. This motivates us to make use of the remain-
ing memory for further optimization. Specifically, we use bloom
filter [|6] to prune the invalid partial matches in early stages of
the algorithm to reduce the total computational and communica-
tion cost. Generally speaking, given a set S and a memory budget
M , a bloom filter for S denoted as G(.S), can be created using no
more than M memory such that given any element e, it can answer
whether e € S with no false negatives and a small probability of
false positives denoted as fp . There is a trade-off between the size
of the memory M and the probability of false positives fp.

In our approach, we create a bloom filter G(E(G)) in every ma-
chine of the system, and we use the bloom filter G(F(G)) for the
following two types of early filtering mechanisms in Algorithm [T}

o (Map Side Filtering): When evaluating R(p;) for any TwinTwig
pi = {(v, v1), (v, v2)} in the map phase, if (v1,v2) € E(P),
then any match (u, w1, uz) with (u1, uz) ¢ E(QG) is pruned by
G(E(G)) with probability 1 — fp.

® (Reduce Side Flltermg) When evaluating R(P;) for any par-
tial pattern P; in the reduce phase, for any (v1, v2) € E(P)
— E(P;) withv; € V(F;) and v € V(F;), any partial match

[€ R(P;) with (f(v1), f(v2)) ¢ E(G) is pruned by G(E(G))
with probability 1 — fp.

Obviously, early filtering does not affect the correctness of Algo-
rithm [T since only invalid partial patterns are pruned by the bloom
filtler G(E(G)). Note that early filtering can be applied for all

the three algorithms EdgeJoin, StarJoin, and TwinTwigJoin since
they all follow the same framework in Algorithm T}

Example 6.2: Suppose the pattern graph P is a triangle of three
nodes. We can decompose P into D = {p, e} where p is a two-
edge TwinTwig and e is a single edge. According to Eq. [1| we
have cost(D) = 3|R(P)| + |R(p)| + 2M. Without early filtering,
it is possible that | R(p)| dominates the whole cost with | R(p)| >>
|R(P)| and |R(p)| >> M. Suppose we use G(E(G)) with fp =
0.1, then R(p) is filtered in the map phase with only 0.1 ratio of
false positives, i.e., |R(p)| = 1.1|R(P)], as a result |cost(D)| =
O(|R(P)| + M), which is optimal since M is the size of the input
and |R(P)| is the size of the final output.]

7. EXTENSION

In this section, we will show the adaptations of our algorithm
when handling the power-law graph model, followed by the discus-
sions of implementing our algorithm on other distributed platforms.

7.1 Handling Power-Law Graphs

We model the data graph G of N nodes and M edges as a power-
law random graph according to [4]. We consider a non-increasing
degree sequence {wi,ws,...,wy} that satisfies the power-law
distribution, that is, the number of nodes with a certain degree x
is proportional to z~”, where 3 is the power-law exponent. For
any pair of nodes u; and u; in a power-law random graph, the
edge between u; and u; is independently assigned with probability
P;; = wiw;p, where p = 1/SN jw; = 1/2M. It is easy to verify
that the expected degree of u; is equal to w; forany 1 < ¢ < N.
We define the average degree as d = (X, w;)/N, and the maxi-
mum degree as dmaq- In case that P; ; < 1 holds, it must satisfy
that dymas < V/N. Note that we only consider 2 < 8 < 3in
this paper as many real graphs have the power-law exponent in this
range [9,[10]. Given 3, d, dmaz, and N, we can compute w; as [9]:

wi = (i + i) TP (11

wherec—dﬁ 2Nﬁ 1 andzofN(%%)ﬂ_l—l.

Instance Optlmallty. In order to show the instance optimality, we
will prove that Theorem [5.1] holds in a power-law random graph,
following the same proof structure as that in the proof of Theo-
rem[5.1] Similarly, we divide the proof into the following two parts:
In part 1, we prove that cost; (D) < ©(cost1(D’)), and in part 2,
we prove that costa (D) = O(cost2(D’)). In order to prove part
2, we still compare Eq. [6]and Eq.[7} and then prove the two cases,
namely, Si: the size of the results decreases after joining a strong
TwinTwig; S2: the size of the results increases after joining a non-
strong TwinTwig. The detailed proof is as follows.

(Part 1): Let p be a two-edge TwinTwig, we have:

cost1 (DY) = O(|R(p)| - t}) and,

cost1 ({p}) = O(R()| - Eld(w)"~2)) ,
> O(|R(p)| - E[d(u)]*~2) = O(|R(p)]| - d*i~2?)

where E[d(u)] is the expected degree for an arbitrary node in
V(Q@). Giventhatd > 2 and t; > 3, itis easy to see that cost; (D*)
< costy ({pj}) for each 0 < i < #/, which results in cost; (D) <
©(costy (D")). Therefore, part 1 is proved.

(Part 2): For a certain pattern decomposition, we consider gen-
erating R(P;) using R(P;—1) and R(p;). Suppose 7y is the ex-
pected number of matches in R(P;) that are generated from a cer-
tain match in R(P;—1), we have:

[R(P,)| = 7[R(Pi—1)| (12)

The value of v depends on how p; is joined with P;_;. Suppose
pi = {(v,7v), (v,v")}, in order to prove part 2, we need to prove
the following S and S2 accordingly.

(S1): We prove that v < 1 when p; is a strong TwinTwig with
v € V(Pi—1) and v"” € V(Pi—1). Whenv € V(Pi_1), v < 1

0.6
0.5
=04
0.3
0.2
0.1

B
b
B
B

npppp
oW

-+

< 0.6

- 0.5

=~0.4
0.3
0.2
0.1

0.6

poNND
[SIAIEN

0.5
=04 |
03 &
0.2
0.1

TOOTR
e

0.5

0.4

10K 100K ™ 10M 100M ° 10k 100k ™ 10M 100M

(a) Vary N: d =5 (b) Vary N: d = 10

M am 16M 2Mm am 8M 16M

(c) Vary N: d = 100 (d) Vary N: d = 500

Figure 4: The values of v in different parameter combinations

can be easily proved smce no new node is added into V' (F;). When
v & V(P;_1), suppose u’ and u'" are arbitrary matches of v’ and
v respectively, we have:

v:ErZ v 4 dw)p x A)i
Eld(a)d(a")] % p* 37

In order to calculate 7, we srmphfy the calculatron of E[d(u)d(u")]
by only considering the relationship between v’ and u”. There are
two cases:

First, there is no edge between v’ and v’ in P;_1, and we con-
sider that their matches, v’ and u”, are independent. In this case,
E[d(v))d(u")] = E[d(u’)]E[d(u”)] = d?. We have:

2., 2 i, w?
According to [9)], w; < dmaz < \/ therefore v < "““ <1.

Second, there is an edge between v and v” in Pi_1. In this case,
u’ and u” must have an edge in the data graph. Using the Bayes
equation, we can derive the equation:

P(u' = ui,u”
_ P(u/,u” form an edge |u' = u;,
o P/,

Py j x (1/N?)
= 5 = PPi,j

2M/N
As aresult, we have:

Eld()d(w")] = 3

1,]= 1

N
:P Zz 1 QZ] 1 j _p Zz:lw%)2

Therefore, « can be calculated as:
Ziv 1 w2)3

= p? N 2 <
v=0Q ., lez N

It is hard to compute an upper bound for v in this case. However,
we show that v < 1 for most real-world graphs. In order to do so,
we vary f3 from 2.1 to 2.9, d from 5 to 500, and N from 10, 000 to
100, 000, 000. Since -y increases with dy,qa, We set dmae = V'N.
With 8, d, N, and dmqz, We can calculate w;(1 < i < N) via
Eq. and thus 7 can be calculated via Eq. The results are
shown in Fig. [in which we can see that v < 1 for all practical
cases.

(S2): We prove that v >

13)

= u;|u’, v form an edge)

u” =wuj) X P(u = u;, v’ = uy)

u/! form an edge)

PP jwiw;

14

when p; is a non-strong TwinTwig

withw € V(Pi—1), u' ¢ (—1), and v’ ¢ V(P;_1). In this
situation, we have
V=EIY L ey A0 x d(w)d(u)]
21 2V 2 N9 (15)
= E[d(u)?]p Ziﬁjzlwiwj =Eldw)? =) wi/N

Obviously, v > E[d(u)]? = d* > 1. Now according to S1 and Sa,
part 2 is proved when p; is a two-edge TwinTwig. When p; only
contains one edge, part 2 can be proved similarly.

According to Part 1 and Part 2, the instance optimality of the
TwinTwig decomposition holds for a power-law random graph.
Optimal Decomposition. We show how to compute the optimal
TwinTwig decomposition using A* for power-law random graph.
Recall that Algorithm [2]is independent of the graph model. It only
requires to compute cost(D;, P), which is a cost lower bound for

any TwinTwig decomposition of P expanded from D;. In or-
der to do so, we can simply set cost(D;, P) = cost(D;), where
cost(D;) can be computed using Eq. [3] which depends on |R(P)|
and |R(p;)|. Here, |R(p;)| can be precomputed, and |R(P;)| can
be computed recursively using Eq.[I2] where the value of each ~y
depends on how p; is joined with P;_;. Three typical cases for
calculating v are given in Eq.[13] Eq.[14] and Eq.[T3} respectively.
In this way, Algorithm |2| can be adopted to compute the optimal
TwinTwig decomposition for the power-law random graph. The
space and time complexities of the algorithm are the same as those
shown in Lemmal[5.3]

Optimization. In the three optimization strategies proposed in Sec-
tion[B] workload skew reduction and early filtering are independent
to the graph model. In order-aware cost reduction, reestimating
| R(p;)| is also independent to the graph model. Therefore, we only
discuss how to reestimate | R(P;)| in the power-law random graph.
In order to do so, suppose for a partial pattern P; with 7 < ¢,
| R(P;)| has been accurately calculated, then for any future partial
pattern P; that is a supergraph of P;, | R(P;)| can be estimated us-
ing Eq. [I2] by considering adding TwinTwigs into P; iteratively.
Here how to compute v after joining specific TwinTwigs is dis-
cussed in the above paragraph.

7.2 Extending to other Platforms

In addition to MapReduce, one of the most popular parallel model
is the bulk synchronous parallel (BSP) model, which targets itera-
tive computing. The BSP model is supported by a lot of distributed
platforms, such as Pregel 26|, Giraph (http://giraph.apache.org),
HAMA (https://hama.apache.org), Spark (https://spark.apache.org).
The main difference between BSP and MapReduce is that, in MapRe-
duce, the output of each iteration is materialized in the distributed
file system, and all needed data are reloaded into the memory at
the beginning of each iteration; In BSP, all needed data are kept
in the main memory throughout iterations. Compared to MapRe-
duce, BSP can largely reduce the number of I/Os in iterative com-
putation, however, it usually requires a large amount of aggregated
memory to keep the data. In this paper, we use MapReduce because
subgraph enumeration usually generates significant number of par-
tial results. Thus the BSP-based systems will encounter scalability
problems when the aggregated memory cannot afford all data.

Our framework (Algorithm [T) can be implemented under BSP
model as follows. In the first round, the algorithm loads the ad-
jacency lists of graph G into the main memory of the machines
and processes mapl. Then for each 1 < i < t, after each reduce
round reduce’, instead of outputting the partial results R(P;) to the
distributed file system (line 21), the algorithm invokes map‘** di-
rectly by accessing R(P;) and the adjacency lists from the memory.
The shuffle phase remains the same. We then discard R(P;) after
computing R(P;+1). Finally, the results are written back to the
distributed file system. It is worth noting that using BSP, the cost
can still be formulated as Eq. [T] Therefore, all the techniques we
propose for TwinTwigJoin in MapReduce can be directly adapted
to handle the BSP model.

8. PERFORMANCE STUDIES

In this section, we show our experimental results. We deploy a
cluster of up to 15 computing nodes including one master node and

| dataset [name | N=[V[| M=[E]]
as-skitter sk 1,696,415 11,095,298
youtube vt 3,223,589 12,223,774
live-journal lj 4,847,571 42,851,237
com-orkut | orkut 3,072,441 117,185,083
uk-2002 uk 18,520,486 261,787,258
friendster fs 65,608,366 1,806,067,135

Table 1: Datasets used in Experiments

14 slave nodes and we use 10 slave nodes by default. Each of the
computing nodes has one 3.47GHz Intel Xeon CPU with 6 cores
and 12GB memory running 64-bit Ubuntu Linux. We allocate a
JVM heap space of 1024MB for each mapper and 2048MB for each
reducer, and we allow at most 3 mappers and 3 reducers running
concurrently in each machine. The block size in HDFS is set to be
128MB, the data replication factor of HDFS is set to be 3, and the
I/0 sort size is set to be 512MB.

Datasets. We use five real-world data graphs (see Table [T) for
testing. Among them, sk, [j, orkut, and fs are downloaded from
SNAP (http://snap.stanford.edu), yz is downloaded from KONECT
(http://konect.uni-koblenz.de), and uk is downloaded from WEB
(http://law.di.unimi.it).

Algorithms. We implement and compare seven algorithms:

Edge: EdgeJoin (Section[d) with early filtering (Section[6.3).
Mul: MultiwayJoin (Section[d).
Star: StarJoin (Section) with early filtering (Section [6.3).
TTBS: TwinTwigJoin (Section[5) without optimization.
TTOA: TTBS + order-aware cost reduction (Section [6.1).
TTLB: TTOA + workload skew reduction (Section [6.2).
e TT: TTLB + early filtering (Section|[6.3).
All algorithms are implemented using Hadoop (version 1.2.1) with
Java 1.6. Note that the early filtering strategy (Section[6.3) is also
applied in Edge and Star, and all the optimization strategies intro-
duced in [1] are applied in Mul. We set the maximum running time
to be 12 hours. If a test does not stop in the time limit, or fails due to
out-of-memory exception, we denote the running time as INF. The
time for computing the join plan using Algorithm [2]for TwinTwig
decomposition is less than one second for all test cases, thus it is
omitted in the total processing time.
Queries. The five queries denoted by g1 to g5 are illustrated in
Fig. | with edge number varying from 3 to 10 and node number
varying from 3 to 5. We show the vertex order for symmetry break-
ing under each query graph. Here, we only consider n < 5 for
fair comparison, because when n is larger than 5, except for our
TwinTwiglJoin algorithm with all optimization strategies, namely
TT, all other algorithms cannot terminate in the time limit in most
cases. For n = 4, we vary the edge number from 4 to 6 to test
the influence of edge number to the performance of different algo-
rithms.
Exp-1: Vary Algorithms. In this experiment, we evaluate the per-
formance of all seven algorithms using two query graphs ¢z and g4
as representatives on the two datasets yr and /j. The experimental
results are shown in Fig. [f] We also list the size of the output (see
Table [2) generated by mappers and reducers in each round when
we process gs on [j. Here we use “NA” to denote that the algorithm
crashes due to out-of-memory exceptions, and use “-” to denote that
no extra MapReduce round is needed. Note that we only present
the results of the first three rounds for Edge which actually finishes
in five rounds. The sizes of the output produced by TTLB and
TTOA are the same, and thus we only show one of them. When
evaluating g3 on yt, we find that without early filtering, none of the
algorithms can terminate in the time limit because yf contains a lot
of high-degree nodes, thus we apply early filtering for both TTBS
and TTOA in this case. The experimental results support our moti-
vation to minimize the cost discussed in Section[5.2] as lower cost

v Il

% v, v v, v, V4V2@v5
v_A V; VY, V3 v, V3 V; vV V,

3

v, <V, Y <V v <vy V<V, <y, Y <y, <y
Vl <V2 <V3
v, <V, v, <V, v, <V, v, <, vy <V, <V
a9 q, 9 4q, qs
Figure 5: Queries
[m/r H Edge [Mul [Star [TTBS [TTLB [TT]

map! 0.09 | 0.90 | 10.20 2.77 1.36 0.57
reduce! 029 | NA | 9.93 16.34 14.9 9.93

map? 0.33 - 998 [21.55 | 1627 | 10.22
reduce? || 9.94 - 9.93 | 9.93 9.93 | 9.93
map® 9.98 - - - - -

reduce® || 9.94 - - - - -
[total [9029 | NA | 40.07 | 5059 | 42.49 | 30.67 |
Table 2: Size of Output for processing ¢4 on [; (in billions)

generally results in better performance.

As shown in Fig.[6] Mul fails in evaluating g3 on yt and Jj, and
g4 on [j due to out-of-memory exceptions. We analyze the reason
below. Take the evaluation of g4 on /j for example. Mul outputs 0.9
billion data, which is approximately 20 times larger than the size of
the data graph. Since we need to use auxiliary data structures such
as hash tables to index these data, each of which is represented by
around 20 integers, leading to a 70GB memory consumption as a
whole. However, we only configure 60GB memory for all reducers
in the cluster (2GB per reducer for 30 reducers). Therefore, Mul
runs out of memory.

Edge is slow and cannot finish in the time limit when evaluating
g3 on both yt and /j. This is because Edge often generates numer-
ous partial results in early stages even after filtering. As shown in
Table [2} Edge has to deal with over 9.9 billion data from the third
round, yet there are two more rounds to complete the task, in which
more partial results are generated.

In most cases, Star is slower than TTBS, which demonstrates
the instance optimality of TwinTwig decomposition in Theorem[5.1]
However, TTBS spends much longer time than Star when evaluat-
ing g4 on yt. This is because yr contains many high-degree nodes,
and TTBS (without any optimization) can generate large number
of partial results, while Star can avoid this issue by applying the
early filtering strategy.

TTOA performs better than TTBS in all cases, which verifies
the effectiveness of the order-aware cost reduction strategy, and
TTLB outperforms TTOA in all cases, which is consistent with
the analysis in Section[6.2] TT consistently outperforms all other
algorithms for all test cases. Comparing TT to TTLB, we ob-
serve from Table[2]that TTLB generates 10 billion more data than
TT, which shows the effectiveness of early filtering. In the rest
of the experiments, we exclude the results of TTBS, TTOA, and
TTLB, since their relative performances are similar to those shown
in Fig.[6] Therefore, we focus on comparing Edge, Star, and Mul
with our algorithm TT.

Exp-2: Vary Datasets. In this experiment, we test the algorithms
on all the five datasets shown in Table [Tl and show our results for
query g1 and g4 for algorithms Edge, Mul, Star, and TT.

Fig. shows the testing results for query ¢;. Note that for g1,
star decomposition is the same as TwinTwig decomposition, hence
Star has the same performance as TT, which outperforms Edge
and Mul for over an order of magnitude. Generally, Mul performs
slightly worse than Edge, except that Mul spends much longer time
on orkut. This is because orkut contains too many edges, which
results in a large number of edge duplications in Mul. Edge and
Mul cannot handle large data graphs uk and fs.

The testing results for g4 are shown in Fig. TT is 5 times

@

"

TTOA TTLB

TTLB

I

TT e—

Running Time (min)

218.170.92
L

(a) Query g3 (b) Query qa
Figure 6: Vary Algorithms

Running Time (min)
8

» Z
S T

n
=]
Running Time (min)

(=)

(b) Query qa
Figure 7: Vary Datasets

(2) Query 1

Edge ——
r\?ul PR

Star ez
TT —

Hunning Timgn(rmn)

SN

yt

(a) Query g1

INF

z
Z

Running Time (min)
o
o

INF

= =
£ £ 500
Py Py
£200 2 400
= =300
2 2
<100 £200
5 so <

= 5 < 109

20% 40% 60% 80% 100% 20% 40% 60% 80% 100% 11 22 33 44 55 11 22 33 44 55

(a) Query g1 on fs (b) Query g4 on fs

Figure 9: Vary Graph Size
faster than Star on orkut, and is only 2 times faster than Star on
[j. This is because that the larger the average degree of the data
graph is, the better performance TT has over Star. The average
degree of orkut, which is 76, is larger than that of /j, which is 28.
Hence, such an experimental result is expected. Another interesting
observation is that, when evaluating g4, it takes longer time on uk
than fs, while uk is much smaller than fs. The reason is that, uk is
a web graph, which contains a lot of large cliques, since webpages
in the same domain tend to link each other. On the contrary, fs is
a social network, which contains fewer large cliques than a web
graph.

Exp-3: Vary Queries. We evaluate all queries g1 to g5 in Fig.
The results are illustrated in Fig. [8(a)]to Fig.[8(e)]respectively. Note
that Star is the same as TT when processing ¢; and g2 since no
node in g1 and g2 has degree larger than 2. Generally, the more
complex the pattern graph is, the more time it takes to evaluate
the query for all algorithms. TT performs the best in all test cases.
Note that all the tests are conducted on yz and /j except for g5, which
is conducted on yr and sk. The reason is that, the number of results
of g5 on [j is over 400 billion, which surpasses the processing ability
of our current cluster. However, we can scale to handle such a case
by deploying more slave nodes.

Exp-4: Vary Graph Size. We extract subgraphs of 20%, 40%,
60%, 80%, and 100% nodes from the original graph of fs, and test
the algorithms using queries ¢1 and q4. The results are shown in
Fig. and Fig. P(b)| respectively. We omit the curve of Star in
Fig. since Star is the same as TT when evaluating ¢;. When
the graph size increases, the running time of Edge, Mul and Star
grow much sharper than TT. When the graph size is over 80%,
only TT can finish in the time limit. The testing results show the
high scalability of our TT algorithm.

Exp-5: Vary Average Degree. We fix the set of nodes and ran-
domly sample 20%, 40%, 60%, 80% and 100% edges from the
original graph fs to generate graphs with average degrees from 11
to 55, and test the algorithms using queries ¢1 and q4. The results
are shown in Fig. [[0(a)] and Fig. [I0(b)| respectively. We omit the
curve of Star in Fig.[I0(a)]since Star is the same as TT when eval-
uating ¢;. Edge and Mul fail at the very beginning. In Fig.
TT is 3, 5, 8 and > 9 times faster than Star when the average
degree varies from 11 to 55, which shows the advantage of TT

(a) Query g1 onfs (b) Query g4 on fs
Figure 10: Vary Averge Degree

_INF [3 =) =] =] £] __INF
= =
Ea00 Edge X~ E800
o Star & o
E 300 A E
£ E200
2200 E
< <100
S 100 <> o S
c A A hoe ® < T

<)
o

(a) Query g4 on [j (b) Query g4 on fs
Figure 11: Vary Slave Nodes

14

for dense data graphs. The trend is consistent with our theoretical
analysis in Section 5]

Exp-6: Vary Slave Nodes. In this experiment, we vary the num-
ber of slave nodes from 6 to 14, and evaluate our algorithms on
the /j and fs dataset using query q4. The testing results are shown
in Fig. [I1(a)| and Fig. [T1(b)| respectively. As shown in Fig. [[1(a)]
when the number of slave nodes increases, the processing time of
all algorithms decreases, and the running time drops more sharply
when the number of slave nodes is small. This is because that
the increment of slave nodes, on the one hand, contributes to the
performance improvement as workloads are more largely shared,
on the other hand, introduces extra communication cost as more
data transmissions are involved among slave nodes. As shown in
Fig. TT is still the only algorithm that can evaluate the 4-
clique on fs even when 14 slave nodes are deployed. We also test
the algorithms using other queries when varying slave nodes. The
curves are similar to those in Fig. [I0] thus are omitted due to lack
of space.

9. RELATED WORK

MapReduce Framework. MapReduce, introduced by Google, has
attracted plenty of attentions is academia. A lot of researches fo-
cus on optimizing MapReduce framework. For example, Multi-
query and iterative query optimization in MapReduce are studied
by Wang et al. [40] and Onizuka et al. [30] respectively.Cost anal-
ysis of MapReduce is given by Afrati et al. [2]]. MapReduce classes
are discussed by Karloff et al. [20] and Tao et al. [38|]. Some other
researches focus on solving specific types of queries in MapRe-
duce. For example, Theta joins in MapReduce are discussed by
Zhang et al. [44]. Multiway joins are optimized by Afrati et al. [3]].
Other work can be found in the survey on data processing using
MapReduce given by Li et al. [24].

Subgraph Matching. Most subgraph matching approaches work
in a label-aware context, where vertices (and/or edges) are assigned
labels in both data graph and query graph. For example, node la-
bels in the neighborhood are utilized to filter unexpected candidates
in [17]] and [45]. In [[16], the authors observe that a good matching
order can significantly improve the performance of subgraph query.
Inexact subgraph matching is also studied in [43], [21], and [13].
Lee et al. [22]] provide an in-depth comparison of subgraph isomor-
phism algorithms. A survey on exact and inexact graph matching
can be found in [33]. Subgraph enumeration in a centralized en-
vironment is also studied in exact and approximate settings. The
exact solutions including [8|] and [[15] are not scalable to handle
large data graphs. The approximate solutions [J5, |14} 46| only esti-
mate the count of the matched subgraphs rather than locate all the
subgraph instances.

Subgraph Matching in Cloud. Due to the NP-hardness of the
subgraph isomorphism problem, a lot of recent researches focus on
solving subgraph matching in cloud. Zhao et al. [46] introduce a
parallel color coding method for subgraph counting. Ma et al. [25]]
study inexact graph pattern matching based on graph simulation in
a distributed environment. Gonzalez et al. report an experimen-
tal result on triangle counting in PowerGraph [[18]]. Recently, Sun
et al. [36] propose a subgraph matching algorithm to utilize node
filtering to handle labelled graphs in the Trinity memory cloud.

Subgraph Enumeration in MapReduce. MapReduce has been
shown to be scalable to handle a lot of graph related problems,
among which subgraph enumeration has attached lots of interests.
Tsourakakis et al. [39] propose an approximate triangle counting
algorithm using MapReduce. Suri et al. [37] introduce a MapRe-
duce algorithm to compute exact triangle counting. Afrati et al. [1]
propose multiway join in MapReduce to handle subgraph enumera-
tion. Plantenga [31]] introduces an edge join method in MapReduce
which can be used for subgraph enumeration. Both [[1] and [31]
have been introduced in details in Section 4

10. CONCLUSIONS

In this paper, we study scalable subgraph enumeration in MapRe-
duce, considering that existing solutions for subgraph enumeration
are not scalable enough to handle large graphs. We propose a new
TwinTwigJoin algorithm based on a left-deep-join framework in
MapReduce. In the Erdos-Rényi random graph model, we show
that under reasonable assumptions, TwinTwigJoin is instance opti-
mal in the left-deep-join framework. An A*-based solution is given
to compute the optimal join plan. We further improve our approach
using three novel optimization strategies and extend our approach
to handle the power-law random graph model and other distributed
systems. We conduct extensive performance studies on real large
graphs with up to billions of edges to demonstrate the effectiveness
of our approach.

11. REFERENCES

[1] E N. Afrati, D. Fotakis, and J. D. Ullman. Enumerating subgraph instances
using map-reduce. In Proc. of ICDE’13, 2013.

[2] E. N. Afrati, A. D. Sarma, S. Salihoglu, and J. D. Ullman. Upper and lower
bounds on the cost of a map-reduce computation. PVLDB, 6(4), 2013.

[3] F. N. Afrati and J. D. Ullman. Optimizing multiway joins in a map-reduce
environment. [EEE Trans. Knowl. Data Eng., 23(9), 2011.

[4] W. Aiello, F. Chung, and L. Lu. A random graph model for massive graphs. In
Proc. of STOC ’00, 2000.

[5] N. Alon, P. Dao, I. Hajirasouliha, F. Hormozdiari, and S. C. Sahinalp.
Biomolecular network motif counting and discovery by color coding. In Proc.
of ISMB’08, 2008.

[6] B. H. Bloom. Space/time trade-offs in hash coding with allowable errors.
Commun. ACM, 13(7), 1970.

[7]1 B. Bollobds. Random graphs. Springer, 1998.

[8] N. Chiba and T. Nishizeki. Arboricity and subgraph listing algorithms. SIAM J.
Comput., 14(1), 1985.

[9] E R. K. Chung, L. Lu, and V. H. Vu. The spectra of random graphs with given
expected degrees. Internet Mathematics, 1(3), 2003.

[10]
(1]
[12]
[13]
[14]
[15]

[16]

[17]
(18]
[19]
[20]
[21]
[22]
(23]
[24]
[25]

[26]

[27]

(28]

[29]
(30]
[31]
(32]
(33]

[34]

(351
[36]
(371
(38]
(391
[40]
[41]
[42]
[43]
[44]
[45]

[46]

A. Clauset, C. R. Shalizi, and M. E. J. Newman. Power-law distributions in
empirical data. SIAM Rev., Nov. 2009.

J. Dean and S. Ghemawat. Mapreduce: Simplified data processing on large
clusters. In Proc. of OSDI’04, 2004.

P. Erdos and A. Renyi. On the evolution of random graphs. In Publ. Math. Inst.
Hungary. Acad. Sci., 1960.

W. Fan, J. Li, S. Ma, N. Tang, Y. Wu, and Y. Wu. Graph pattern matching: From
intractable to polynomial time. PVLDB, 3(1), 2010.

M. Gonen, D. Ron, and Y. Shavitt. Counting stars and other small subgraphs in
sublinear time. In Proc. of SODA’10, 2010.

J. A. Grochow and M. Kellis. Network motif discovery using subgraph
enumeration and symmetry-breaking. In Proc. of RECOMB’07, 2007.

W.-S. Han, J. Lee, and J.-H. Lee. Turboiso: Towards ultrafast and robust
subgraph isomorphism search in large graph databases. In Proc. of
SIGMOD’13,2013.

H. He and A. K. Singh. Graphs-at-a-time: Query language and access methods
for graph databases. In Proc. of SIGMOD’08, 2008.

J.Gonzalez, Y.Low, H.Gu, D.Bickson, and C.Guestrin. Powergraph:distributed
graph-parallel computation on natural graphs. In Proc. of OSDI’12, 2012.

S. R. Kairam, D. J. Wang, and J. Leskovec. The life and death of online groups:
Predicting group growth and longevity. In Proc. of WSDM’12, 2012.

H. Karloff, S. Suri, and S. Vassilvitskii. A model of computation for
mapreduce. In Proc. of SODA’10, 2010.

A. Khan, Y. Wu, C. C. Aggarwal, and X. Yan. Nema: Fast graph search with
label similarity. PVLDB, 6(3), 2013.

J. Lee, W.-S. Han, R. Kasperovics, and J.-H. Lee. An in-depth comparison of
subgraph isomorphism algorithms in graph databases. PVLDB, 6(2), 2012.

J. Leskovec, A. Singh, and J. Kleinberg. Patterns of influence in a
recommendation network. In Proc. of PAKDD’06, 2006.

E. Li, B. C. Ooi, M. T. Ozsu, and S. Wu. Distributed data management using
mapreduce. ACM Comput. Surv., 46(3), 2014.

S.Ma, Y. Cao, J. Huai, and T. Wo. Distributed graph pattern matching. In
WWW, 2012.

G. Malewicz, M. H. Austern, A. J. Bik, J. C. Dehnert, I. Horn, N. Leiser, and
G. Czajkowski. Pregel: A system for large-scale graph processing. In Proc. of
SIGMOD’10, 2010.

T. Milenkovic and N. Przulj. Uncovering biological network function via
graphlet degree signatures. Cancer Inform, 6, 2008.

R. Milo, S. Shen-Orr, S. Itzkovitz, N. Kashtan, D. Chklovskii, and U. Alon.
Network motifs: Simple building blocks of complex networks. Science,
298(5594), 2002.

N.Shervashidze, S.Vishwanathan, T.Petri, K.Mehlhorn, and K.Borgwardt.
Efficient graphlet kernels for large graph comparison. In AISTATS, 2009.

M. Onizuka, H. Kato, S. Hidaka, K. Nakano, and Z. Hu. Optimization for
iterative queries on mapreduce. PVLDB, 7(4), 2013.

T. Plantenga. Inexact subgraph isomorphism in mapreduce. J. Parallel Distrib.
Comput., 73(2), 2013.

N. Przulj. Biological network comparison using graphlet degree distribution.
Bioinformatics, 23(2), 2007.

K. Riesen, X. Jiang, and H. Bunke. Exact and inexact graph matching:
Methodology and applications. In Managing and Mining Graph Data. 2010.
G. Riicker and C. Riicker. Substructure, subgraph, and walk counts as measures
of the complexity of graphs and molecules. Journal of Chemical Information
and Computer Sciences, 41(6), 2001.

M. Steinbrunn, G. Moerkotte, and A. Kemper. Optimizing join orders.
Technical report, 1993.

Z. Sun, H. Wang, H. Wang, B. Shao, and J. Li. Efficient subgraph matching on
billion node graphs. PVLDB, 5(9), 2012.

S. Suri and S. Vassilvitskii. Counting triangles and the curse of the last reducer.
In Proc. of WWW’11, 2011.

Y. Tao, W. Lin, and X. Xiao. Minimal mapreduce algorithms. In Proc. of
SIGMOD’13, 2013.

C. E. Tsourakakis, U. Kang, G. L. Miller, and C. Faloutsos. Doulion: Counting
triangles in massive graphs with a coin. In Proc. of KDD’09, 2009.

G. Wang and C.-Y. Chan. Multi-query optimization in mapreduce framework.
PVLDB, 7(3), 2013.

J. Wang and J. Cheng. Truss decomposition in massive networks. PVLDB, 5(9),
2012.

D. Watts and S. Strogatz. Collective dynamics of *small-world’ networks.
Nature, 6684(393), 1998.

S. Zhang, J. Yang, and W. Jin. Sapper: Subgraph indexing and approximate
matching in large graphs. PVLDB, 3(1), 2010.

X. Zhang, L. Chen, and M. Wang. Efficient multi-way theta-join processing
using mapreduce. PVLDB, 5(11), 2012.

P. Zhao and J. Han. On graph query optimization in large networks. PVLDB,
3(1-2), 2010.

Z.Zhao, M. Khan, V. S. A. Kumar, and M. V. Marathe. Subgraph enumeration
in large social contact networks using parallel color coding and streaming. In
Proc. of ICPP’10, 2010.

	Introduction
	Problem Definition
	Algorithm Framework
	Existing Solutions
	A New Approach
	TwinTwig Decomposition
	Cost Analysis
	Optimal Decomposition by A*
	Symmetry Breaking

	Optimization Strategies
	Order-aware Cost Reduction
	Workload Skew Reduction
	Early Filtering

	Extension
	Handling Power-Law Graphs
	Extending to other Platforms

	Performance Studies
	Related Work
	Conclusions
	References

