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Abstract Social contagion depicts a process of information
(e.g., fads, opinions, news) diffusion in the online social net-
works. A recent study reports that in a social contagion pro-
cess the probability of contagion is tightly controlled by the
number of connected components in an individual’s neigh-
borhood. Such a number is termed structural diversity of an
individual and it is shown to be a key predictor in the so-
cial contagion process. Based on this, a fundamental issue
in a social network is to find top-k users with the highest
structural diversities. In this paper, we, for the first time, s-
tudy the top-k structural diversity search problem in a large
network. Specifically, we study two types of structural di-
versity measures, namely, component-based structural di-
versity measure and core-based structural diversity measure.
For component-based structural diversity, we develop an ef-
fective upper bound of structural diversity for pruning the
search space. The upper bound can be incrementally refined
in the search process. Based on such upper bound, we pro-
pose an efficient framework for top-k structural diversity
search. To further speed up the structural diversity evalua-
tion in the search process, several carefully devised search
strategies are proposed. We also design efficient techniques
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to handle frequent updates in dynamic networks and main-
tain the top-k results. We further show how the techniques
proposed in component-based structural diversity measure
can be extended to handle the core-based structural diver-
sity measure. Extensive experimental studies are conducted
in real-world large networks and synthetic graphs, and the
results demonstrate the efficiency and effectiveness of the
proposed methods.
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search · Dynamic graph

1 Introduction

Recently, online social networks such as Facebook, Twit-
ter and LinkedIn have attracted growing attention in both
industry and research communities. Online social network-
s are becoming more and more important media for users
to communicate with each other and to spread information
in the real world [17]. In an online social network, the phe-
nomenon of information diffusion, such as diffusion of fads,
political opinions, and the adoption of new techniques, has
been termed social contagion [25], which is a similar pro-
cess as epidemic diseases.

Traditionally, the models of social contagion are based
on analogies with biological contagion, where the probabil-
ity that a user is influenced by the contagion grows monoton-
ically with the number of his or her friends who have been
affected already [10,3,26]. However, such models have re-
cently been challenged [22,25], as the social contagion pro-
cess is typically more complex and the social decision can
depend more subtly on the network structure. Ugander et al.
[25] study two social contagion processes in Facebook: the
process that a user joins Facebook in response to an invi-
tation email from an existing Facebook user (recruitment),
and the process that a user becomes an engaged user after
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joining (engagement). They find that the probability of con-
tagion is tightly controlled by the number of connected com-
ponents in a user’s neighborhood, rather than by the number
of friends in the neighborhood. A connected component rep-
resents a distinct social context of a user, and the multiplici-
ty of social contexts is termed structural diversity. A user is
much more likely to join Facebook if he or she has a larg-
er structural diversity, i.e., a larger number of distinct social
contexts. This finding reveals that the structural diversity of
a user is an important factor in the social contagion process.
As suggested in [25], the analysis of structural diversity in
a social network can be beneficial to a wide range of ap-
plication domains. For example, in a political campaign, to
convince individuals to change their attitude, it is obvious-
ly more important that they receive messages from multiple
directions than that they receive many endorsements [25].
In the promotion of health practices, we can find such top
users with the highest structural diversity, and inject vac-
cine for them for reducing their influenced probability. In
the marketing, to promote a new product, we can find such
top customers as the first priority.

Among all of these applications, a fundamental problem
is to find the individuals in a social network with high struc-
tural diversity [25]. Motivated by this, in this paper, we s-
tudy a problem of finding top-k individuals with the highest
structural diversity in a social network. Following the defini-
tion in [25], the structural diversity of a node u is the number
of connected components in a subgraph induced by u’s im-
mediate neighbors. Take the network in Figure 1 (a) as an
example. The structural diversity of vertex f is 2, as the in-
duced subgraph by f ’s neighbors shown in Figure 1 (b) has
two connected components. This structural diversity defini-
tion has been shown to be a good predictor for the recruit-
ment study on Facebook in [25]. However, it may fall short
in some other scenarios. For example, in the engagement
study, the friendship neighborhoods on Facebook are sig-
nificantly larger than the email contact neighborhoods from
the recruitment study. In such a situation, a large number
of one-node components, or “singletons”, is not an accurate
reflection of social context diversity.

To address this problem, [25] proposed two distinct para-
metric generalizations of the component count. First, it mea-
sures diversity simply by counting only components over
a certain size t. This is called component-based structural
diversity. Second, it measures diversity by the componen-
t count of the t-core of the neighborhood graph, where a
t-core is the subgraph formed by repeatedly deleting all ver-
tices of degree less than t. This measure is called core-based
structural diversity. We have studied the problem of top-
k component-based structural diversity search in our previ-
ous work [14]. To have a comprehensive investigation of the
structural diversity search problem, we further extend our s-
tudy by adopting the core-based structural diversity in this
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Fig. 1 An example of component-based structural diversity

work. The core-based structural diversity measure has been
proven effective through case studies in [25], as the t-core
notion can exclude small and loose components more effec-
tively.

To solve the top-k structural diversity search problem,
a naive method is to compute the structural diversity for all
the vertices and then return the top-k vertices. Clearly, such
a naive method is too expensive. To efficiently find the top-k
vertices, the idea of traditional top-k query processing tech-
niques [15] can be used, which finds the top-k answers ac-
cording to some search order, and prunes the search space
based on some upper bound score. Following this frame-
work, in our problem, we have to address two key issues: (1)
how to develop an effective upper bound for the structural
diversity of a vertex, and (2) how to devise a good search
order in the computation.

In this paper, we propose several efficient and effective
techniques to address these issues. For the component-based
structural diversity measure, we find that for two vertices
connected by an edge, some structural information of them
can be shared. For example, in Figure 1 (b), vertex e form-
s a component of size 1 in f ’s neighborhood. From this
fact, we can infer that vertex f also forms a component
of size 1 in e’s neighborhood. Based on this important ob-
servation, the structural diversity computation for differen-
t vertices can also be possibly shared. To achieve this, we
design a Union-Find-Isolate data structure to keep track of
the known structural information of a vertex so as to avoid
the computation of structural diversity for every vertex. A
novel upper bound of the structural diversity is developed
for pruning unpromising vertices effectively. Interestingly,
the upper bound can be incrementally refined in the search
process to become increasingly tighter. Based on the upper
bound and the Union-Find-Isolate data structure, we propose
a novel Top-k-search framework for top-k structural diver-
sity search.

Beyond this, we explore how to apply our Top-k-search
framework to support the core-based structural diversity mea-
sure. We find that this definition brings new structural prop-
erties which are different from those of the component-based
definition. Thus our proposed Union-Find-Isolate data struc-
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ture and upper bound are not applicable to the core-based
structural diversity measure. We study new properties of this
measure and leverage it to design a new upper bound. We
also propose an efficient algorithm for computing the core-
based structural diversity score, and finally integrate these
new techniques into our Top-k-search framework. This s-
tudy demonstrates that our Top-k-search framework can be
generalized to handle different instantiations of the struc-
tural diversity measure.

The main contributions of our study are summarized as
follows.

– We study top-k structural diversity search for the first
time by adopting two measures, i.e., the component-based
and core-based structural diversity. Structural diversity
has been proven to be a positive predictor in social conta-
gion [25]. We develop a novel Top-k-search framework
to efficiently identify the individuals that play a key role
in social contagion.

– For the component-based structural diversity measure,
we design a Union-Find-Isolate data structure to keep
track of the known structural information during the com-
putation, and an effective upper bound for pruning. We
devise a useful search order to traverse the components
in a vertex’s neighborhood. According to this search or-
der, we propose a novel A∗ search based algorithm to
compute the structural diversity of a vertex.

– We also design efficient techniques to handle frequen-
t updates in dynamic networks and maintain the top-k
results. We use the Union-Find-Isolate structure and a
spanning tree structure to efficiently handle edge inser-
tions and deletions respectively.

– For the core-based structural diversity measure, a new
upper bound and an efficient search algorithm are de-
signed.

– We conduct extensive experimental studies on large real
networks to show the efficiency of our proposed meth-
ods. We also conduct case studies on DBLP and a word
association network, which show that structural diversi-
ty is useful for identifying ambiguous names in DBLP
and finding words with diverse meanings in the word as-
sociation network.

The rest of this paper is organized as follows. We for-
mulate the top-k structural diversity search problem in Sec-
tion 2, and then discuss and compare the component-based
and core-based structural diversity measures in Section 3.
For the component-based measure, we first present a sim-
ple degree-based algorithm in Section 4, and then design a
novel and efficient Top-k-search framework in Section 5.
We design two useful search strategies in Section 6 and dis-
cuss update in dynamic networks in Section 7. For the core-
based measure, we design a new upper bound and an effi-
cient search algorithm in Section 8. Extensive experimental

results are reported in Section 9. We discuss related work in
Section 10 and conclude this paper in Section 11.

2 Problem Definition

Consider an undirected and un-weighted graph G = (V,E)

with n = |V | vertices and m = |E| edges. Denote by N(v)
the set of neighbors of a vertex v, i.e., N(v) = {u ∈ V :
(v, u) ∈ E}, and by d(v) = |N(v)| the degree of v. Let
dmax be the maximum degree of the vertices in G. Given a
subset of vertices S ⊆ V , the induced subgraph of G by S
is defined as GS = (VS , ES), where VS = S and ES =

{(v, u) : v, u ∈ S, (v, u) ∈ E}. The neighborhood induced
subgraph is defined as follows.

Definition 1 (Neighborhood Induced Subgraph) For a ver-
tex v ∈ V , the neighborhood induced subgraph of v, denot-
ed by GN(v), is a subgraph of G induced by the vertex set
N(v).

Consider the graph in Figure 1 (a). For vertex f , the set
of neighbors is N(f) = {a, e, g, i}. The neighborhood in-
duced subgraph of f is GN(f) = ({a, e, g, i}, {(a, g), (g, i)}),
as shown in Figure 1 (b). We define the structural diversity
of a vertex as follows.

Definition 2 (Component-based Structural Diversity [25])
Given an integer t where 1 ≤ t ≤ n, the structural diversi-
ty of a vertex v ∈ V , denoted by score(v), is the number
of connected components in GN(v) whose size measured by
the number of vertices is larger than or equal to t. t is called
the component size threshold.

GN(f) in Figure 1 (b) contains a size-1 connected com-
ponent {e} and a size-3 connected component {a, g, i}. If
t = 1, then score(f) = 2. Alternatively, if t = 2, score(f) =
1 as there is only one component {a, g, i} whose size is no
less than 2.

Ugander et al. [25] gave another definition of structural
diversity based on the core subgraph concept [6]. Their s-
tudy showed that, the core subgraph based definition suffices
to provide a positive predictor of future long-term engage-
ment in a social network.

A t-core of a graph is the largest subgraph in which ev-
ery vertex is connected to at least t vertices within the sub-
graph. Note that a t-core subgraph may be disconnected and
have several components. For instance, consider a graph G
in Figure 2 (a). The entire graph is a 2-core, and the subgraph
inside the dashed circle is a 3-core. As another example, the
neighborhood induced subgraph GN(e) in Figure 2 (b) is a
1-core containing 2 connected components {a, b, c, d} and
{f, g, h}. Based on the t-core subgraph, we define the struc-
tural diversity of a vertex as follows.
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Fig. 2 An example of core-based structural diversity

Definition 3 (Core-based Structural Diversity [25]) Giv-
en an integer t where 1 ≤ t ≤ n, the structural diversity
of vertex v ∈ V , denoted by score∗(v), is measured by the
number of connected components in the t-core of GN(v). t
is called the core value threshold.

Consider GN(e) in Figure 2 (b). If t = 1, there are t-
wo connected components {a, b, c, d} and {f, g, h} in the 1-
core, so score∗(e) = 2. But if t = 2, there is only one com-
ponent {a, b, c, d} in the 2-core of GN(e), so score∗(e) = 1
in this case.

Based on the two different structural diversity definition-
s above, we can formulate our top-k component-based and
core-based structural diversity search problems, which are
respectively denoted as CC-TopK and Core-TopK.

Problem 1 (CC-TopK): Given a graph G and two integers k
and t where 1 ≤ k, t ≤ n, top-k structural diversity search
is to find a set of k vertices in G with the highest structural
diversity w.r.t. the component size threshold t.

Let us re-consider the example in Figure 1 for CC-TopK.
Suppose that k = 1 and t = 1. Then, {e} is the answer, as e
is the vertex with the highest structural diversity (score(e) =
3).

Problem 2 (Core-TopK): Given a graph G and two integers
k and t where 1 ≤ k, t ≤ n, top-k structural diversity search
is to find a set of k vertices in G with the highest core-based
structural diversity w.r.t. the core value threshold t.

It is important to note that although we focus on the top-
k structural diversity search, the proposed techniques can
also be easily extended to process the iceberg query, which
finds all vertices whose structural diversity is greater than
or equal to a pre-specified threshold. Unless otherwise spec-
ified, in the rest of this paper, we assume that a graph is
stored in the adjacency list representation. Each vertex is as-
signed a unique ID. In addition, for convenience, we assume
that m ∈ Ω(n), which does not affect the complexity analy-
sis of the proposed algorithms. Similar assumption has been
made in [18].

3 Problem Comparison

In this section, we discuss and compare the problems of CC-
TopK and Core-TopK in terms of measure definition, com-
putational cost, and result quality.

Measure definition: For the core-based structural diversi-
ty, every component of a t-core subgraph has at least t + 1
vertices, i.e., it forms a size-(t + 1) connected component.
When t = 0, the core-based structural diversity score is e-
quivalent to the component-based structural diversity, which
is simply the component count of the original graph; when
t = 1, the core-based structural diversity score is equivalen-
t to the component-based structural diversity (with a com-
ponent size of at least 2) in Definition 2; when t > 1, a
component in a t-core subgraph is more cohesive than a
size-(t + 1) connected component in Definition 2, due to
the t-core definition that every vertex is connected to at least
t vertices in the t-core. Thus, all tree-like components will
be discarded and the remaining components are counted for
the core-based structural diversity score. On the other hand,
the tree-shaped structure may exist and be counted for the
component-based structural diversity for any t.

Computational cost: Compared with the component-based
structural diversity, the core-based structural diversity addi-
tionally requires to compute the t-core and remove unquali-
fied components. Thus, computing Core-TopK is more cost-
ly than CC-TopK.
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Fig. 3 Comparison of Core-TopK and CC-TopK

Result quality: Compared with the component-based struc-
tural diversity which only imposes a constraint of connec-
tivity, the core-based structural diversity considers both the
size and cohesiveness of each component. Thus the core-
based definition can help identify densely connected and
more meaningful and distinct social contexts among a us-
er’s friends. For example, Figure 3(a) shows the GN(v) of
node v containing 15 nodes, 11 of which are connected in
one component. If we apply the component-based structural
diversity on GN(v) with t = 3, the component with the 11
nodes is counted. However, this large component is loosely
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connected through node w. But if we apply the core-based
structural diversity on GN(v) with t = 3, two components A
and B in the 3-core of GN(u) can be discovered as shown in
the shadow regions of Figure 3(a). Each node in A and B has
at least 3 neighbors in the corresponding component, which
are densely connected. Obviously, in such a case, the core-
based structural diversity can capture the two dense social
contexts A and B more precisely than the component-based
structural diversity.

On the other hand, the component-based structural di-
versity is more suitable for analyzing the social context di-
versity for nodes whose neighbors are not densely connect-
ed, since very few results can be discovered by the core-
based structural diversity in this case. For example, Figure 3(b)
shows the GN(u) of node u containing 8 nodes. If we ap-
ply the component-based structural diversity with t = 2, we
can find three connected components of size no less than
2 in GN(u) as marked in the shadow regions. However, if
we apply the core-based structural diversity with t = 2, no
component can be found. Therefore, the component-based
diversity is better than the core-based structural diversity in
such a case.

In summary, CC-TopK is simpler. However, it does not
consider the closeness of members in each component. Core-
TopK has more constraints by considering both cohesive-
ness and size. However, it is more difficult to compute and
may lose the information of vertices that do not participate
in a cohesive subgraph. Therefore, both definitions have ad-
vantages and disadvantage, and they can be jointly used to
discover more social context diversity information in a large
network. More comparisons and meaningful results for both
CC-TopK and Core-TopK using real-world networks can be
found in the case studies in our experiments.

4 A Simple Degree-Based Approach for CC-TopK

In this section, we present a simple degree-based algorith-
m for top-k component-based structural diversity search. To
compute the structural diversity score(v) for a vertex v, we
can perform a breadth-first search in GN(v) to find connect-
ed components and return the number of components whose
sizes are no less than t. We call this procedure bfs-search,
the pseudocode of which is omitted for brevity.

Next we introduce a useful lemma which leads to a prun-
ing strategy in the degree-based algorithm.

Lemma 1 For any vertex v in G, score(v) ≤ ⌊d(v)
t ⌋ holds.

Proof We prove this lemma by contradiction. Suppose to the
contrary that score(v) > ⌊d(v)

t ⌋. By the definition of struc-
tural diversity, GN(v) has ⌊d(v)

t ⌋ + 1 or more components
whose size is greater than or equal to t. Then, the total num-
ber of vertices in these components is ≥ (⌊d(v)

t ⌋ + 1) · t >

d(v)
t · t = d(v), which contradicts to the fact that the num-

ber of vertices in GN(v) is d(v). Hence, the lemma is estab-
lished.

We denote ⌊d(v)
t ⌋ by bound(v). Equipped with Lemma

1 and the bfs-search procedure, we present the degree-based
approach in Algorithm 1, which computes the structural di-
versity of the vertices in descending order of their degree.
After initialization (lines 1-2), Algorithm 1 sorts the ver-
tices in descending order of their degree (line 3). Then it
iteratively finds the unvisited vertex v∗ with the maximum
degree, and calculates bound(v∗) (lines 5-6). If the answer
set S has k vertices and bound(v∗) ≤ minv∈S score(v),
the algorithm terminates (lines 7-8). The rationale is as fol-
lows. By Lemma 1, we have score(v∗) ≤ bound(v∗) ≤
minv∈S score(v). For any vertex w ∈ V with a smaller
degree, we have score(w) ≤ bound(w) ≤ bound(v∗) ≤
minv∈S score(v). Therefore, we can safely prune the re-
maining vertices and terminate. On the other hand, if such
conditions are not satisfied, then the algorithm computes
score(v∗) by invoking bfs-search, and checks whether v∗

should be added into the answer set S (lines 10-13). Finally,
the algorithm outputs S.

Algorithm 1 degree (G, k, t)
Input: G = (V,E), an integer k, the component size threshold t.
Output: Top-k search result S.

1: S ← ∅;
2: for v ∈ V do score(v)← −1;
3: sort all vertices in descending order of their degree;
4: while ∃v ∈ V s.t. score(v) = −1
5: v∗ ← argmaxv∈V, score(v)=−1 d(v);

6: bound(v∗)← ⌊ d(v
∗)

t
⌋;

7: if |S| = k and bound(v∗) ≤ minv∈S score(v) then
8: break;
9: score(v∗)← bfs-search (G, t, v∗);

10: if |S| < k then S ← S ∪ {v∗};
11: else if score(v∗) > minv∈S score(v) then
12: u← argminv∈S score(v);
13: S ← (S − {u}) ∪ {v∗};
14: return S;

The following example illustrates the working of Algo-
rithm 1.

Example 1 Consider the graph in Figure 1 (a). Suppose that
k = 1 and t = 1. The top-k running process is illustrat-
ed in Figure 4. The sorted vertex list is c, a, b, f, h, i, d, e,
g in descending order of their degree. The algorithm com-
putes the structural diversity of these vertices in turn, and
terminates before computing score(g). This is because we
have minv∈S score(v) = score(e) = 3 and bound(g) =
3 ≤minv∈S score(v). Therefore, Algorithm 1 can save one
structural diversity computation.
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Fig. 4 Illustration of the degree algorithm

Theorem 1 For 1 ≤ k ≤ n and 1 ≤ t ≤ n, Algorithm 1
performs top-k structural diversity search in O(

∑
v∈V (d(v))

2)
time and O(m) space.

Proof The algorithm first sorts all vertices in O(n) time us-
ing the bin-sort algorithm [9]. It has to calculate the struc-
tural diversity for every vertex to answer a top-k query in
the worst case. Consider a vertex v. When the algorithm
computes score(u) for each neighbor u ∈ N(v), it has to
scan the adjacency list of v in O(d(v)) time. Since there are
|N(v)| = d(v) neighbors, the total cost for scanning v’s ad-
jacency list is O((d(v))2). Thus, it takes O(

∑
v∈V (d(v))

2)
time to calculate the structural diversities for all vertices. In
addition, one can maintain the top-k results in O(n) time
and O(n) space using a variant of bin-sort list. Thus the time
complexity of Algorithm 1 is O(

∑
v∈V (d(v))2).

In terms of the space consumption, the graph storage
takes O(n + m) space, and S takes O(n) space. Thus, the
space complexity of Algorithm 1 is O(n+m) ⊆ O(m).

Remark 1 The worst-case time complexity of Algorithm 1
is bounded by O(

∑
v∈V d(v) · dmax) = O(mdmax) ⊆

O(mn).

5 A Novel Top-K Search Framework for CC-TopK

The degree algorithm is not very efficient for top-k search
because the degree-based upper bound in Lemma 1 is loose.
To improve the efficiency, the key issue is to develop a tighter
upper bound. To this end, in this section, we propose a novel
framework with a tighter pruning bound and a new algorith-
m called bound-search to compute the structural diversity
score. Before introducing the framework, we present two
structural properties in a graph, which are very useful for
developing the new bound.

5.1 Two Structural Properties

Property 1 For any vertex v ∈ V , if a vertex u ∈ N(v) and
u forms a size-1 component in GN(v), then v also forms a
size-1 component in GN(u).

Proof We prove it by contradiction. Suppose that in GN(u),
v is connected with another vertex w in a component. Then
we can infer that w ∈ N(u) and w ∈ N(v). As u and w

are connected and both are in N(v), u and w form a size-
2 component in GN(v), which contradicts to the fact that
u forms a size-1 component in GN(v). This completes the
proof.

As an example, in Figure 1 (b), vertex e forms a size-1 com-
ponent in GN(f). Symmetrically, vertex f also forms a size-
1 component in GN(e).

Property 2 If three vertices u, v, w form a triangle in G,
then we have the sets {u, v}, {v, w}, and {u,w} belong to
the same component in GN(w), GN(u), and GN(v) respec-
tively.

Proof This property can be easily derived by definition, thus
we omit the proof for brevity.

For instance, in Figure 1 (a), vertices a, f, g form a triangle
in G. We can observe that {a, g} belong to a connected com-
ponent in GN(f) in Figure 1 (b). Similarly, {a, f} ({f, g})
belong to a connected component in GN(g) (GN(a)).

Remark 2 Property 2 is based on the structure of a trian-
gle (a clique of 3 nodes). We can extend the property to k-
cliques for any k ≥ 3. The following property can be sim-
ilarly obtained: “In a clique C = {v1, ..., vk} of k (k ≥ 3)
nodes in G, for each node vi ∈ C, all other nodes in C\{vi}
belong to the same component in GN(vi)”. Based on a k-
clique with k > 3, we can obtain more structural infor-
mation than using a triangle. However, computing k-cliques
is more costly than computing triangles. In [7], it mentions
that the time complexity to list all k-cliques for a constant
k is O(kρk−2m), where ρ is the arboricity of the graph G.
This indicates that enumerating 4-cliques is more costly than
enumerating 3-cliques (triangles), while our algorithm fast-
bound-search algorithm which will be introduced in Section
6.1, can achieve O(ρm) time which is the same as enumer-
ating all 3-cliques. In addition, for a fixed k ≥ 3, there may
be Θ(m

k
2 ) k-cliques in graph, since the graph may contain a

clique of
√
m vertices (thus containing

(√
m

k

)
∈ Θ(m

k
2 )

k-cliques. Θ(m
k
2 ) is low bound for time complexity of any

k-cliques listing algorithms (the theorem for k = 3 is shown
in [18] of this paper). Hence, even the low bound of time
complexity for enumerating all 4-cliques as Θ(m2) is high-
er than the time complexity of our algorithms shown in Re-
mark 3 and 4. Therefore, the extra cost taken by computing
k-cliques is much larger than the cost saving obtained by us-
ing the new property based on k-cliques. Based on the above
discussion, in this paper, we only make use of triangles oth-
er than larger cliques in order to guarantee the efficiency of
our algorithms.

Based on these two properties, we can save a lot of com-
putational costs in computing the structural diversity scores.
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For example, if we find that vertex u forms a size-1 com-
ponent in GN(v), then we know that v also forms a size-1
component in GN(u) by Property 1. Thus, when we compute
score(u), we do not need to perform a breadth-first search
from v, because we already know v forms a size-1 compo-
nent in GN(u). If we can efficiently record such structural
information of v’s neighbors when we compute score(v),
we can save a lot of computational costs. More importantly,
such structural information can help us to get a tighter upper
bound of the structural diversity. In the following subsec-
tion, we shall introduce a modified disjoint-set forest data
structure to maintain such structural information efficiently.

5.2 Disjoint-Set Forest Data Structure

Intuitively, for the vertices in the same component, we can
simply regard them as elements in the same set, while for
the vertices in different components, we can represent them
as elements in different sets. Thus we modify the classical
disjoint-set forest data structure and the Union-Find algo-
rithm [9] to maintain the structural information for each ver-
tex efficiently. The modified structure consists of four opera-
tions: Make-Forest, Find-Set, Union, and Isolate. Compared
to the classical disjoint-set forest data structure, the new
structure includes an additional operation Isolate which is
used to record the structural information described in Prop-
erty 1, i.e., a vertex forms a size-1 component. Thus the
modified structure is called Union-Find-Isolate. Algorithm 2
describes the four operations.

Make-Forest: For each vertex v ∈ V , we create a disjoint-
set forest structure, denoted as g[v], for its neighbors N(v)
using the Make-Forest (v) procedure in Algorithm 2. Specif-
ically, for each u ∈ N(v), we build a single-node tree T [u]
with three fields: parent, rank and count. The parent is ini-
tialized to be u itself, the rank is set to 0 and the count is set
to 1, as there is only one vertex u in the tree. In addition, we
also create a virtual node T [0] which is used to collect all
size-1 components in GN(v). The parent of T [0] is set to 0
and the count is set to 0 because there is no size-1 compo-
nent identified yet. For convenience, we refer to the opera-
tion of creating a single-node tree (line 4) or a virtual node
(line 5) as a Make-Set operation.

Find-Set: The Find-Set (x) procedure is to find the root
of T [x] using the path compression strategy. The path com-
pression strategy is a way of flattening the structure of the
tree T [x] whenever Find-Set (x) is used on it. Specifically,
the idea is that each node visited on the path to a root node
may as well be attached directly to the root node, because
they are all in the same set and share the same representa-
tive. As a result, the obtained tree is much flatter, which can
speed up future operations not only on these elements but on
those referencing them, directly or indirectly.

Union: The Union(x, y) procedure applies the union by
rank strategy to union two trees T [fx] and T [fy] which x
and y belong to respectively. The union by rank strategy is
to always attach the smaller tree to the root of the larger
tree. For example, fx and fy are the roots of these two trees
T [fx] and T [fy]. If fx and fy have unequal rank, the one
with a higher rank is set to be the parent of the other with
a lower rank. Otherwise, we arbitrarily choose one of them
as the parent and increase its rank by 1. For both cases, we
update the count of the root of the new tree.

Isolate: Procedure Isolate(x) unions a size-1 tree T [x]
into the virtual tree T [0]. It sets T [x].parent to 0, and in-
creases T [0].count by 1. Isolate(x) essentially labels x as
a size-1 component if we find x is not connected with any
other node in a neighborhood induced subgraph.

We can apply the disjoint-set forest structure to main-
tain the connected components in GN(v). For any vertex
v ∈ V , we create a rooted tree for every neighbor u ∈
N(v) initially. If we find that u and w are connected in
GN(v), we process it by g[v].Union(u,w). If we identify
that u forms a size-1 component in GN(v), we process it by
g[v].Isolate(u). Take GN(f) in Figure 1 (b) as an example
again. First, we create g[f ] by Make-Forest (f) as shown in
Figure 5 (a). Since vertices a and g are connected, we in-
voke g[f ].Union(a, g) and the resulted structure is shown in
Figure 5 (b). The combined tree is rooted by g and has 2
vertices. Vertex e forms a size-1 component, thus we invoke
g[f ].Isolate(e) and the result is shown in Figure 5 (c).

T[a] = {   a    ,  0    ,     1    }

parent rank count

T[e] = {   e    ,  0    ,     1    }

T[g] = {   g    ,  0    ,     1    }

T[0] = {   0    ,  0    ,     0    }

T[i] = {   i  ,      0 ,     1    }

T[a] = { g ,      0 ,     1    }

parent rank count

T[e] = {   e ,      0 ,     1    }

T[g] = {   g    , 1 , 2 }

T[0] = {   0 ,      0 ,     0    }

T[i] = {   i  ,      0 ,     1    }

T[a] = {   g ,      0 ,     1    }

parent rank count

T[e] = { 0 ,      0 ,     1    }

T[g] = {   g    ,      1 ,     2    }

T[0] = {   0    ,    0    ,     1 }

T[i] = {   i     ,   0    ,     1    }

(a) Make-Forest(f) (b) g[f].Union(a,g) (c) g[f].Isolate(e)

Fig. 5 Disjoint-Set Forest Data Structure g[f]

The time complexity of the Union-Find-Isolate algorith-
m is analyzed in the following lemma.

Lemma 2 A sequence of M Make-Set, Union, Find-Set and
Isolate operations, N of which are Make-Set operations,
can be performed on a disjoint-set forest with “union by
rank” and “path compression” strategies in worst-case time
O(Mα(N)). α(N) is the inverse Ackermann function, which
is incredibly slowly growing and at most 4 in any conceiv-
able application. Thus, the time complexity of the Union-
Find-Isolate algorithm can be regarded as O(M).

Proof The proof is similar to that in [9], thus is omitted.

In the following, for simplicity, we treat α(N) as a con-
stant in the complexity analysis.
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Algorithm 2 Union-Find-Isolate

1: procedure Make-Forest (v)
2: g[v] = {T [u] : u ∈ N(v)} ∪ {T [0]};
3: for u ∈ N(v) do
4: T [u].(parent, rank, count)← (u, 0, 1);
5: T [0].(parent, rank, count)← (0, 0, 0);

6: procedure Find-Set (x)
7: if x ̸= T [x].parent then
8: T [x].parent← Find-Set (T [x].parent);
9: return T [x].parent;

10: procedure Union (x, y)
11: fx←Find-Set (x); fy ←Find-Set (y);
12: if fx ̸= fy then
13: if T [fx].rank > T [fy].rank then
14: T [fy].parent← fx;
15: T [fx].count← T [fx].count+ T [fy].count;
16: else
17: T [fx].parent← fy;
18: T [fy].count← T [fx].count+ T [fy].count;
19: if T [fx].rank = T [fy].rank then
20: T [fy].rank ← T [fy].rank + 1;

21: procedure Isolate (x)
22: T [x].parent← 0;
23: T [0].count← T [0].count+ 1;

5.3 A Tighter Upper Bound

With the disjoint-set forest data structure g[v], we can keep
track of the structural information of the connected compo-
nents in GN(v) and derive a tighter upper bound of score(v)
than the degree-based bound in Lemma 1. Before introduc-
ing the upper bound, we give a definition of the identified
size-1 set as follows.

Definition 4 (Identified Size-1 Set) In the disjoint-set for-
est structure g[v], if u ∈ N(v) and T [u].parent = 0, we
denote Su = {u} as an identified size-1 set, and |Su| = 1.
If u ∈ N(v), T [u].parent = u, we denote Su = {w ∈
N(v) : Find-Set(w) = u} as an unidentified set, and |Su| =
T [u].count.

By Definition 4, we know that each identified size-1 set
is resulted from an Isolate operation, and the total number of
the identified size-1 sets is T [0].count. According to Prop-
erty 1, all these sets do not union with other sets. On the
other hand, unidentified sets may further union with other
sets or become an identified size-1 set. Consider the exam-
ple in Figure 5 (c). Se = {e} is an identified size-1 set and
T [0].count = 1. Both Sg = {a, g} and Si = {i} are uniden-
tified sets.

Let S = {Su : u ∈ N(v), T [u].parent = u or T [u].
parent = 0} denote all disjoint sets in g[v], excluding the
virtual set T [0]. After traversing all the vertices and edges
in GN(v), S contains all actual sets corresponding to the
connected components in GN(v), and we have score(v) =

|{Su : Su ∈ S, |Su| ≥ t}|. However, before traversing

the neighborhood induced subgraph GN(v), S may not con-
tain all the actual sets corresponding to the connected com-
ponents, but includes some intermediate results. Even with
such intermediate results maintained in S, we can still use
them to derive an upper bound. Specifically, we have the
following lemma.

Lemma 3 Let S = {S1, . . . , Sl} be the disjoint sets of g[v],
a be the number of identified size-1 sets, b be the number
of sets whose sizes are larger than or equal to t, and c be
the total size of these b sets. Then, we have an upper bound
of score(v) as follows. If t = 1, bound(v) = b; if t > 1,
bound(v) = b+ ⌊d(v)−c−a

t ⌋.

Proof First, it is important to note that the current disjoint
sets in S are not final, if we have not traversed all vertices
and edges of GN(v). That is, some of them may be further
combined by the Union operation and the number of sets
may be reduced.

Next, we consider the following two cases.
If t = 1, we have bound(v) = b, as the current number

of sets whose sizes are greater than or equal to 1 is b and this
number can only be reduced with the Union operation.

If t > 1, the current number of sets whose sizes are
greater than or equal to t is b and this number can only be
reduced with the Union operation. In addition, besides a i-
dentified size-1 sets and c vertices from the above b sets,
there are still d(v) − c − a vertices which may form sets
whose sizes are greater than or equal to t. The maximum
number of such potential sets is ⌊d(v)−c−a

t ⌋. Thus we have
bound(v) = b+ ⌊d(v)−c−a

t ⌋.

For any vertex v ∈ V , at the initialization stage, each
neighbor vertex u ∈ N(v) forms a size-1 component. Thus
bound(v) = 0 + ⌊d(v)−0−0

t ⌋ = ⌊d(v)
t ⌋, the same as the

bound in Lemma 1. As the disjoint sets are gradually com-
bined, bound(v) is refined towards score(v) and becomes
tighter. For example, in Figure 5 (c), suppose t = 2, we ob-
tain S = {Se, Sg,Si} and the three parameters in Lemma 3
are a = 1, b = 1 and c = 2. It follows that bound(f) =
1 + ⌊ 4−2−1

2 ⌋ = 1, which is equal to score(f) = 1. This
bound based on the disjoint-set forest is obviously tighter
than the degree-based bound ⌊ 4

2⌋ = 2 derived in Lemma 1.

5.4 Top-K Search Framework

Based on the disjoint-set forest data structure and the
tighter upper bound, we propose an advanced search frame-
work in Algorithm 3 for top-k structural diversity search.

Advanced top-k framework: For each vertex v ∈ V , the al-
gorithm initializes the disjoint-set forest data structure g[v]
by invoking Make-Forest (line 4). It also pushes each vertex
v with the initial bound ⌊d(v)

t ⌋ into H which is a variant of



Top-K Structural Diversity Search in Large Networks 9

Algorithm 3 Top-k-search
Input: G = (V,E), an integer k, the component size threshold t,
gradient ratio θ ≥ 1.
Output: Top-k search result S.

1: H ← ∅; S ← ∅;
2: for v ∈ V do
3: score(v)← −1;
4: Make-Forest (v);
5: H.push((v, ⌊ d(v)

t
⌋));

6: whileH ̸= ∅
7: (v∗, topbound)←H.pop();
8: compute bound(v∗) according to Lemma 3;
9: if θ · bound(v∗) < topbound then

10: if |S| < k or bound(v∗) > minv∈S score(v) then
11: H.push((v∗, bound(v∗)));
12: continue;
13: if |S| = k and topbound ≤ minv∈S score(v) then
14: break;
15: score(v∗)← bound-search (G, t, v∗);
16: if |S| < k then S ← S ∪ {v∗};
17: else if score(v∗) > minv∈S score(v) then
18: u← argminv∈S score(v);
19: S ← (S − {u}) ∪ {v∗};
20: return S;

bin-sort list. Then the algorithm iteratively finds the top-k
results (lines 6-19). It first pops the vertex with the largest
upper bound value from H. Such a vertex and its bound are
denoted as v∗ and topbound respectively (line 7). The algo-
rithm re-evaluates bound(v∗) from g[v∗] based on Lemma
3, as the component information in g[v∗] may have been up-
dated. And then, it compares the refined bound bound(v∗)
with the old bound topbound.

In order to avoid frequently calculating the upper bounds
and updating H, we introduce a new parameter θ ≥ 1, and
compare θ · bound(v∗) with topbound.

If θ ·bound(v∗) < topbound, it suggests that bound(v∗)
is substantially smaller than topbound. That is, the old bound
topbound is too loose. Under this condition, if |S| < k
or bound(v∗) > minv∈S score(v), the algorithm pushes v∗

back to H with the refined bound bound(v∗) (lines 10-11).
Otherwise, the algorithm can safely prune v∗. In both cas-
es, the algorithm continues to pop the next vertex from H
(lines 9-12).

If θ ·bound(v∗) ≥ topbound, it means that bound(v∗) is
not substantially smaller than topbound. In other words, the
old bound is a relatively tight estimation. Then the algorithm
moves to lines 13-14 to check the termination condition. If
|S| = k and topbound ≤ minv∈S score(v), the algorithm
can safely prune all the remaining vertices in H and termi-
nate, because the upper bound of those vertices is smaller
than topbound.

If the early termination condition is not satisfied, the
algorithm invokes the bound-search algorithm (line 15) to
compute score(v∗). bound-search is shown in Algorithm 4

and will be described later. After computing score(v∗), the
algorithm uses the same process to update the set S by v∗ as
the degree algorithm does (lines 16-19).

Bound-Search: Algorithm 4 shows the bound-search pro-
cedure to compute score(v). Based on the disjoint-set forest
g[v], we know that any vertex u ∈ N(v) with T [u].parent =
0 corresponds to an identified size-1 component resulted
from an Isolate operation. So bound-search does not need to
search them again. It only adds the vertices whose parent ̸=
0 into an unvisited vertex hashtable R (lines 1-2). This is
an improvement from bfs-search, as bound-search avoid-
s scanning the identified size-1 components. For each ver-
tex u ∈ R, the algorithm invokes the procedure bound-bfs
(lines 5-18) to search u’s neighborhood in a breadth-first
search manner. For u’s neighbor vertex w, if w ∈ R, i.e.,
w ∈ N(v), the algorithm unions u and w into one set in g[v].
According to Property 2, we also union v and w into one set
in g[u], and union v and u into one set in g[w] (lines 11-15).
If u does not union with any other vertex, the algorithm in-
vokes an Isolate operation on u to mark that u forms a size-1
component in g[v] (lines 16-18). Symmetrically, by Proper-
ty 1, the algorithm invokes an Isolate operation on v to mark
that v forms a size-1 component in g[u] too. After the BFS
search, the algorithm can compute score(v) using the pro-
cedure count-components (lines 19-25) to count the number
of sets in g[v] whose sizes are at least t. The following exam-
ple illustrates how the Top-k-search framework (Algorithm
3) works.

5 4 3 2H
(a,4)(c,5)

(b,4)

(i,4)

(e,3)

(g,3)

(d,3)

(h,4)

(f,4)

S=Ø

H
(a,4)

(b,4)

(i,4)

(e,3)

(g,3)

(d,3)

(h,4)

(f,4)

(c,5)

S={c}

score(c)=1

5 4 3 2H

(a,3)

(b,4)

(i,4)

(e,3)

(g,3)

(d,3)

(h,4)

(f,4)

S={c}

(a,4)

H

(a,3)

(b,2)

(i,4) (e,3)

(g,3)

(d,3)(h,4)

S={f}

(f,4)

5 4 3 2H

(a,3)

(b,2)(e,3)

(g,3)

S={f}

(d,3)

score(f)=2

5 4 3 2 5 4 3 2 5 4 3 2H

(a,3)

(b,2)(g,3)

S={e}

(e,3)

score(e)=3

(a) Initialization

(b) Compute score(c), 

and add c into S

(d)  Compute score(f), 

and update S by f

(e) Pop out h, i, d from H

(f) Compute score(e), 

and update S by e

(c) Update bound(a) into H

Fig. 6 Illustration of Top-k-search with bound-search running on the
graph in Figure 1 (a). k = 1, t = 1, and θ = 1.

Example 2 Consider the graph shown in Figure 1 (a). Sup-
pose that t = 1 and k = 1. We apply the Top-k-search
algorithm with θ = 1 and the running steps are depicted in
Figure 6. For initialization, we push each vertex v with the
upper bound ⌊d(v)

t ⌋ into H, as shown in Figure 6 (a).
In the first iteration, as shown in Figure 6 (b), we pop

vertex c from H with topbound = 5. We calculate bound(c) =
5 according to Lemma 3. Then, we compute score(c) by
bound-search. In GN(c), there is a single path connecting
all vertices a, b, d, h, i in N(c), so score(c) = 1. When the
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Algorithm 4 bound-search (G, t, v)
Input: G = (V,E), the component size threshold t, vertex v.
Output: score(v).

1: R← ∅;
2: for u ∈ N(v) and T [u].parent ̸= 0 do R← R ∪ {u};
3: for u ∈ R do bound-bfs (u);
4: return count-components (g[v], t);

5: procedure bound-bfs (u)
6: Q← ∅; UnionF lag ← false;
7: Q.EnQueue(u); R← R− {u};
8: while Q ̸= ∅
9: u← Q.DeQueue();

10: for w ∈ N(u) do
11: if w ∈ R then
12: Q.EnQueue(w); R← R− {w};
13: g[v].Union (u,w); UnionF lag ← true;
14: if score(u) = −1 then g[u].Union (v, w);
15: if score(w) = −1 then g[w].Union (v, u);
16: if UnionF lag = false then
17: g[v].Isolate (u);
18: if score(u) = −1 then g[u].Isolate (v);

19: procedure count-components (g[v], t)
20: score← 0;
21: for u ∈ N(v) do
22: if T [u].parent = u and T [u].count ≥ t then
23: score← score+ 1;
24: if t = 1 then score← score+ T [0].count;
25: return score;

algorithm traverses the edge (a, b), we perform two opera-
tions g[a].Union (c, b) and g[b].Union (c, a) in g[a] and g[b]
respectively according to Property 2. Then we push vertex c

into S.

In the next iteration, as shown in Figure 6 (c), we pop
vertex a from H which has topbound = 4. Then we up-
date bound(a) = 3 as we know that vertices b and c are
in the same set in g[a]. Since θ · bound(a) < topbound and
bound(a) > minv∈S score(v), we push (a, 3) into H again.

When the algorithm goes to process vertex f in Figure 6
(d), we have θ·bound(f) = topbound = 4 and topbound >
minv∈S score(v). And then we compute score(f) = 2 and
replace vertex c in S with f .

After that, we pop vertices h, i, d from H in turn, as
shown in Figure 6 (e). One can easily check that none of
them satisfies the condition in line 10 of Algorithm 3. Thus,
we do not push h, i, d back into H again.

Next we pop vertex e, compute score(e) = 3 and update
S by e, as shown in Figure 6 (f). Since topbound in H is
no greater than score(e) = 3, we can safely terminate. In
this process, we only invoke bound-search three times to
calculate the structural diversity score, while the previous
degree algorithm calculates the structural diversity score of
eight vertices, which is clearly more expensive.

5.5 Complexity Analysis

Lemma 4 The upper bound bound(v) defined in Lemma 3
for any vertex v ∈ V can be updated in O(1) time in Algo-
rithm 3.

Proof We need to maintain a, b and c in g[v] to recompute
bound(v). Obviously, a = T [0].count, and b, c can be easily
maintained in the Union operation of g[v] without increasing
the time complexity. Thus bound(v) can be updated in O(1)
time.

Lemma 5 The total time to compute bound for all vertices
in Algorithm 3 is O(mt ).

Proof According to Lemma 4, bound(v) for a vertex v can
be computed in O(1) time. The initial upper bound of v

is ⌊d(v)
t ⌋, and bound(v) is updated in non-increasing or-

der. In line 9 of Algorithm 3, we compare θ · bound(v) and
topbound to check whether v should be pushed into H. S-
ince topbound ≤ ⌊d(v)

t ⌋, bound(v) can be updated for at
most ⌊d(v)

t ⌋ times. Thus the total time cost is O(
∑

v∈V
d(v)
t )

= O(mt ).

Lemma 6 In Top-k-search, H can be maintained in O(mt +
n) time using O(n) space.

Proof H can be implemented by a variant of bin-sort list
which supports a push operation in constant time and l pop
operations in O(l + n) time (illustrated in Figure 6). Each
time, estimating the upper bound bound in line 8 causes at
most one push operation (line 11) in H. By Lemma 5, we
know that for each vertex v ∈ V , there are at most ⌊d(v)

t ⌋
bound refinements. Thus, there are at most

∑
v∈V ⌊

d(v)
t ⌋

bound refinements in total for all vertices. In addition, there
are n initial push operations. Therefore, the algorithm uses
O(

∑
v∈V

d(v)
t + n) = O(mt + n) time for all the push op-

erations. The number of pop operations is no larger than the
number of push operations. Put it all together, the time com-
plexity to maintain H is O(mt + n). The space complexity
of H is O(n).

Theorem 2 Algorithm 3 takes O (
∑

v∈V (d(v))2) time and
O(m) space.

Proof Since the time to access the adjacency lists in bound-
search is O(

∑
v∈V (d(v))

2), and all Union operations are in
the loop of accessing adjacency lists (lines 13-15 of Algo-
rithm 4), the number of Union operations is O(

∑
v∈V (d(v))

2).
The algorithm invokes n Make-Forest operations (line 4 of
Algorithm 3), which includes

∑
v∈V (d(v) + 1) = 2m +

n Make-Set operations. Next, all Isolate operations are in
the procedure bound-bfs (lines 17-18 of Algorithm 4). The
number is no greater than

∑
v∈V 2d(v) = 4m. No Find-Set

operation is directly invoked. Thus, Union-Find-Isolate in-
cludes O(

∑
v∈V (d(v))

2)Make-Set, Union, Find-Set, Isolate
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Algorithm 5 fast-bound-search (G, t, v)
Input: G = (V,E), the component size threshold t, vertex v.
Output: score(v).

1: R← ∅;
2: for u ∈ N(v) and T [u].parent ̸= 0 do R← R ∪ {u};
3: for u ∈ R do fast-bound-bfs (u);
4: return count-components (g[v], t);

5: procedure fast-bound-bfs (u)
6: Q← ∅; UnionF lag ← false;
7: Q.EnQueue(u); R← R− {u};
8: while Q ̸= ∅
9: u← Q.DeQueue();

10: if d(u) > d(v) then MinAdjL← N(v);
11: else MinAdjL← N(u);
12: for w ∈MinAdjL do
13: if (w, u) ∈ E and w ∈ R then
14: Q.EnQueue(w); R← R− {w};
15: g[v].Union (u,w); UnionF lag ← true;
16: if score(u) = −1 then g[u].Union (v, w);
17: if score(w) = −1 then g[w].Union (v, u);
18: if UnionF lag = false then
19: g[v].Isolate (u);
20: if score(u) = −1 then g[u].Isolate (v);

operations, 2m+n of which are Make-Set. By Lemma 2, the
time complexity of Union-Find-Isolate is O(

∑
v∈V (d(v))

2).
By Lemma 6, H takes O(mt + n) time. S maintains the

top-k results using O(n) time. By Lemma 5, updating the
upper bounds for all vertices takes O(mt ) time. Therefore,
the time complexity of Algorithm 3 is O (

∑
v∈V (d(v))2).

Next, we analyze the space complexity. For v ∈ V , g[v]
contains d(v) + 1 initial disjoint singleton trees, in which
each node takes constant space. Hence, the disjoint-set forest
structure takes O(m) space for all vertices. S and H both
consume O(n) space. In summary, the space complexity of
Algorithm 3 is O(m).

Hence, Theorem 2 is established.

6 Fast Computation of Component-based Structural
Diversity Score

In this section, on top of the Top-k-search framework, we
propose two methods for fast computing the structural di-
versity score for a vertex. The first method is fast-bound-
search which improves bound-search and achieves a better
time complexity using the same space. The second is an A∗

search method which uses a new search order and a new ter-
mination condition.

6.1 Fast Bound-Search

We present fast-bound-search in Algorithm 5, which is
built on bound-search. The major difference is in procedure
fast-bound-bfs for traversing a connected component. When

accessing the adjacency list of vertex u having d(u) > d(v),
we will access the adjacency list of v instead (lines 10-13),
i.e., we always select the vertex with a smaller degree to
access. Checking whether (w, u) ∈ E in line 13 can be done
efficiently by keeping all edges in a hashtable. Moreover, R
can also be implemented by a hashtable. Thus line 13 can be
done in expected constant time by hashing.

To show the effectiveness of this improvement, we con-
sider an example GN(r) in Figure 7. Suppose that r has two
neighbors p and q with degree 1 and 100 respectively. To
compute score(r), bound-search needs to access the adja-
cency lists of p and q, and check |N(p)|+|N(q)| = 101 ver-
tices. In contrast, fast-bound-search accesses N(r) instead
of N(q) because d(q) > d(r), thus the number of visited
vertices is reduced to |N(p)|+ |N(r)| = 3.

r
d(q)=100d(p)=1

p q

Fig. 7 GN(r) has two vertices p and q with degree 1 and 100

Complexity Analysis: Using fast-bound-search to compute
structural diversity scores, we achieve a better time com-
plexity of the Top-k-search framework shown in the follow-
ing theorem.

Theorem 3 The Top-k-search framework using fast-bound-
search takes O(

∑
(u,v)∈E min{d(u), d(v)}) time and O(m)

space.

Proof For a vertex v, the time cost of accessing the adja-
cency lists is

∑
u∈N(v) min{d(u), d(v)} for computing it-

s score. To compute scores for all vertices, accessing the
adjacency lists consumes O(

∑
v∈V

∑
u∈N(v) min{d(u),

d(v)}) = O(
∑

(u,v)∈E min{d(u), d(v)}).
Since the number of Union operations is bounded by the

number of accessing adjacency lists, the number of Union
operations is O(

∑
(u,v)∈E min{d(u), d(v)}). Moreover, there

are 2m + n Make-Set operations, O(m) Isolate operations
and no direct Find-Set operation invoked by the algorithm.
By Lemma 2, Union-Find-Isolate takes O(

∑
(u,v)∈E min

{d(u), d(v)}) time in total. The other steps in the loop of ac-
cessing adjacency list take constant time. Therefore, it takes
O(

∑
(u,v)∈E min{d(u), d(v)}) time to calculate all ver-

tices’ structural diversity scores using the fast-bound-search
algorithm.

By Lemma 5, the total time of estimating upper bound is
O(mt ) ⊆ O(m), and by Lemma 6, the total time to maintain
H is O(mt + n) ⊆ O(m).

The remaining steps in Algorithm 3 using fast-bound-
search totally cost O(m) time.
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Compared with bound-search, fast-bound-bfs needs ex-
tra O(m) space for storing the edge hashtable. Thus, the s-
pace consumption is still O(m).

Hence, Theorem 3 is established.

Remark 3 According to [7], we have

O(
∑

(u,v)∈E

min{d(u), d(v)}) ⊆ O(ρm),

where ρ is the arboricity of a graph G and ρ≤min {⌈
√
m ⌉,

dmax} for any graph G. Thus the worst-case time complex-
ity of the Top-k-search framework using fast-bound-search
is bounded by

O(
∑

(u,v)∈E

min{d(u), d(v)}) ⊆ O(ρm) ⊆ O(m1.5).

6.2 A*-Based Bound-Search

In this subsection we design a new search order and a new
termination condition to compute the structural diversity s-
core for a vertex.

p3

p1 p2

p4

r q

Fig. 8 GN(r) containing two components P and Q

Take Figure 8 as an example which shows the neighbor-
hood induced subgraph of r. Suppose that before examining
GN(r), the algorithm has computed the structural diversity
scores for r’s neighbors p1, . . . , p4. Then, by Property 2, the
vertices p1, . . . , p4 are combined into one component P in
GN(r). There is another component Q in GN(r) with only
one vertex q. To compute score(r), the algorithm needs to
further check whether the components P and Q are connect-
ed or not. If the algorithm first checks vertex q in the com-
ponent Q, then it will go through q’s adjacency list N(q) to
verify whether q connects with any vertices in p1, . . . , p4. If
q is not connected with any one of them, we can conclude
that Q forms a size-1 component and P forms a size-4 com-
ponent in GN(r). Thus, the algorithm does not need to tra-
verse the adjacency lists of p1, . . . , p4, and it can terminate
early. In contrast, if the algorithm first checks the component
P , then it needs to go through the adjacency lists of vertices
p1, . . . , p4 to verify whether they connect with q or not. This
is clearly more expensive than starting from the component
Q. Motivated by this observation, we propose an A∗ search
strategy to efficiently compute the structural diversity in the
neighborhood induced subgraph of a vertex. Below, we first

give the definition of component cost which is used as a cost
function to determine the component visiting order in the A∗

search process.

Definition 5 (Component Cost) Given a component S in a
neighborhood induced subgraph, the component cost of S is
the sum of degree of the unvisited vertices in S, denoted as
cost(S) =

∑
unvisited v∈S d(v).

Suppose that in Figure 8 all vertices in N(r) are unvisit-
ed. The component costs are cost(P ) = 16 and cost(Q) =

1. The component cost measures the cost of accessing the
adjacency lists of a component. If we check the low-cost
components first and the high-cost components later, we can
potentially save more computation. Thus in A∗ search, we
always pick a component T [x] in GN(v) which has the least
cost to traverse.

To record the cost, we add the component cost as a field
in the Union-Find-Isolate data structure. Specifically, for a
vertex u, when we create a single-node component T [u], we
initialize T [u].cost = d(u). When we union two compo-
nents T [u] and T [v], we add up their costs, i.e., T [u].cost+
T [v].cost.

The Algorithm: A∗-bound-search uses the component cost
for determining a fast search order to traverse the compo-
nents in GN(v) until there is only one unvisited component
left. In traversing a component, the algorithm accesses the
adjacency lists of the unvisited vertices in increasing order
of their degrees until the component is connected with other
components or traversed.

Algorithm 6 shows A∗-bound-search. For a vertex v, the
algorithm uses a minimum heap T C to maintain all the u-
nidentified components in GN(v) ordered by their compo-
nent costs. For a component rooted by a vertex u, the al-
gorithm makes use of a minimum heap C[u] to maintain all
vertices in this component ordered by their degree. Initially,
for each vertex u whose parent is not 0, the algorithm push-
es u with cost d(u) into the minimum heap C[T [u].parent],
and adds u into the hashtable R which stores all the unvis-
ited vertices (line 5). Moreover, if u is the root of T [u], the
algorithm pushes the component of u and its component cost
T [u].cost into the heap T C (lines 6-7).

Let us consider an example. Figure 9 (a) shows the neigh-
borhood induced subgraph GN(r), and Figure 9 (b) shows
the degree and the parent in T [.] for each vertex in N(r).
We know that p1, p2, p3 are in a component rooted by p1,
and q1, q2 are in a component rooted by q1, and s is in a
component rooted by s itself. After initialization, the mini-
mum heaps T C, C[s], C[p1], C[q1] and the hashtable R are
illustrated in Figure 9 (c).

The algorithm iteratively pops a component with the min-
imum cost from T C, denoted as x with cost tcostx (line 9).
If the component is rooted by vertex x and tcostx = T [x]
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Algorithm 6 A∗-bound-search (G, t, v)
Input: G = (V,E), the component size threshold t, vertex v.
Output: score(v).

1: R← ∅; T C ← ∅;
2: for u ∈ N(v) do C[u]← ∅;
3: for u ∈ N(v) do
4: if Find-Set (u) ̸= 0 then
5: C[T [u].parent].push((u, d(u))); R← R ∪ {u};
6: if T [u].parent = u then
7: T C.push((u, T [u].cost));
8: while T C ̸= ∅
9: (x, tcostx)← T C.pop(); UnionF lag ← false;

10: if x ̸=Find-Set (x) then continue;
11: if tcostx ̸= T [x].cost then
12: T C.push((x, T [x].cost)); continue;
13: if |R| = |C[x]| then goto Step 33;
14: while C[x] ̸= ∅ and UnionF lag = false
15: (u, costu)← C[x].pop(); R← R− {u};
16: T [x].cost← T [x].cost− costu;
17: w.l.o.g, we assume d(u) < d(v);
18: for w ∈ N(u) do
19: if (w, v) ∈ E and w ∈ R then
20: fu←Find-Set (u); fw ←Find-Set (w);
21: if fu ̸= fw then
22: Q ← Heap Merge(C[fu], C[fw]);
23: g[v].Union (u,w);
24: C[Find-Set (x)]← Q; UnionF lag ←true;
25: if score(u) = −1 then g[u].Union (v, w);
26: if score(w) = −1 then g[w].Union (v, u);
27: if UnionF lag = true and Find-Set (x) = x then
28: T C.push((x, T [x].cost));
29: if UnionF lag = false and C[x] = ∅ then
30: if T [x].count = 1 then
31: g[v].Isolate (x);
32: if score(x) = −1 then g[x].Isolate (v);
33: return count-components (g[v], t);

.cost, the algorithm will examine the vertices in the compo-
nent of x. Otherwise, if the component is no longer rooted
by x or tcostx ̸= T [x].cost, it means that the component
of x has been combined with another component in a previ-
ous iteration. Then, the algorithm pops the next component
from T C. If |R| = |C(x)| holds, then all the unvisited nodes
in R are from the same component rooted by x, and this
component is the last to be traversed in GN(v) (line 13). By
the early termination condition, the algorithm does not need
to traverse this component and can directly go to count the
number of components in GN(v) (line 33).

For a popped component rooted by x, the algorithm iter-
atively examines the vertices in the component in increasing
order of their degree (lines 14-26). For such a vertex u, we
will access its adjacency list N(u) to find out those vertices
denoted as w that are also in N(v). Then we will union the
components which contain u and w respectively into one.
This process is very similar to the previous algorithms. So
we omit the details for brevity.

Continuing with our example in Figure 9. After initial-
ization, we pop the first component (s, 8) from T C, as shown
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Fig. 9 A∗-bound-search example for computing score(r)

in step 1 (Figure 9 (d)). Then, we examine vertex s in this
component and find that it is not connected with other com-
ponents in GN(r). Next, we move to step 2 (Figure 9 (e))
to pop the component (p1, 12). In this component, we first
examine the adjacency list of p1, i.e., N(p1). We find that
p1 is connected with q1, so we union the components rooted
by p1 and q1. Assume that the new component is rooted by
p1. Then we set T [q1].parent = p1 and merge C(q1) into
C(p1). We push the new component (p1, 24) into T C again.
In step 3 (Figure 9 (f)), we pop the component (q1, 15) and
find that T [q1].parent ̸= q1, as the component of q1 has
been combined with that of p1 in step 2. In this step, there is
only one component in T C, which meets the early termina-
tion condition.

Complexity Analysis: In the component union process (line
22 of Algorithm 6), we need to merge two heaps C[fw] and
C[fu] into one. We can implement C[.] by the mergeable
heap such as leftist heap or binomial heap [9], which support
the merge of two heaps in O(log n) time and a push/pop
operation in O(log n) time for a heap with n elements.

Lemma 7 In Algorithm 6, the operations for T C and all
C[.] take O(d(v) log d(v)) time and O(d(v)) space in total.

Proof Since the number of components in GN(v) is no greater
than d(v), we perform at most d(v) − 1 Union operations
before termination. Hence, there are at most d(v) − 1 new
components to be pushed into T C (lines 12 and 28). In ad-
dition, for initialization |T C| ≤ d(v) holds, which indicates
that |T C| ≤ 2d(v) always holds. As there are at most 2d(v)
push and pop operations respectively, and each operation
takes O(log d(v)) time, overall T C takes O(d(v) log d(v))

time using O(d(v)) space.
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For initialization, all C[.] heaps take d(v) push opera-
tions in total (line 5), and the time cost of each operation is
O(log d(v)) as the size of the largest heap is smaller than
d(v). Hence, the initialization time is O(d(v) log d(v)). As
analyzed above, there are at most d(v)−1 heap merging op-
erations and each operation costs O(log d(v)), the total time
cost in line 22 is O(d(v) log d(v)). Moreover, there are at
most d(v) pop operations in line 15, the time cost of which
is O(d(v) log d(v)). All C[.] heaps contain at most d(v) ver-
tices totally costing O(d(v)) space. As a result, all C[.] heaps
take O(d(v) log d(v)) time and O(d(v)) space.

Theorem 4 The Top-k-search framework using A∗-bound-
search takes O(

∑
(u,v)∈E(min{d(u), d(v)} + (log d(u) +

log d(v)))) time and O(m) space.

Proof The proof is similar to the proof of Theorem 3. A dif-
ference is that we use the Find-Set operations in A∗-bound-
search. Since the Find-Set operations in lines 20 and 24 are
in the loop of accessing adjacency list, the total number of
such operations is O(

∑
(u,v)∈E min{d(u), d(v)}) for the w-

hole process. Consider the process of computing score(v)
for a vertex v, we perform d(v) Find-Set operations in line 4.
Since lines 10 and 27 are both in the outer while loop (line 8),
and T C has at most 2d(v) pop operations according to Lem-
ma 7, the algorithm performs at most 2d(v) Find-Set opera-
tions in lines 10 and 27 respectively. Hence, it performs

O(
∑

(u,v)∈E

min{d(u), d(v)}+
∑
v∈V

5d(v))

= O(
∑

(u,v)∈E

min{d(u), d(v)})

Find-Set operations. By Lemma 2, Union-Find-Isolate takes
O(

∑
(u,v)∈E min{d(u), d(v)}) time in total.

Another difference is that we maintain two types of heap-
s T C and C[.]. By Lemma 7, the total time of T C and C[.]
are

O(
∑
u∈V

d(u) log d(u))

= O(
∑
u∈V

∑
v∈N(u)

log d(u))

= O(
1

2

∑
(u,v)∈E

(log d(u) + log d(v)))

= O(
∑

(u,v)∈E

(log d(u) + log d(v))).

The additional space overhead is O(m).
Hence, Theorem 4 is established.

Remark 4 The worst-case time complexity of Top-k-search
framework using A∗-bound-search is bounded by

O(
∑

(u,v)∈E

(min{d(u), d(v)}+ (log d(u) + log d(v))))

⊆ O((ρ+ log dmax)m)

⊆ O(m1.5),

where ρ is the arboricity of the graph as mentioned in Re-
mark 3.

6.3 Complexity Comparison

We compare the time complexity of algorithms degree and
Top-k-search, to understand why the proposed Top-k-search
framework is more efficient.

According to Theorem 1, degree takes O(
∑

v∈V (d(v))
2)

time, which can be equivalently rewritten as

O(
∑
v∈V

(d(v))2)

= O(
∑
v∈V

∑
u∈N(v)

d(u))

= O(
∑

(u,v)∈E

(d(u) + d(v)))

= O(
∑

(u,v)∈E

(max{d(u), d(v)}+min{d(u), d(v)}))

= O(
∑

(u,v)∈E

max{d(u), d(v)})

For Top-k-search using fast-bound-search, according to
Theorem 3, it takes O(

∑
(u,v)∈E min{d(u), d(v)}) time,

obviously better than O(
∑

(u,v)∈E max{d(u), d(v)}), the
time complexity of degree. The two algorithms have the
same complexity only if all vertices in the graph have the
same degree. In a power-law graph such as a social net-
work, the degrees of vertices have a large variance, thus
Top-k-search using fast-bound-search is much better than
degree in such networks. For example, on a star graph with
n nodes, Top-k-search using fast-bound-search takes O(n)

time while degree takes O(n2) time.
For Top-k-search using A∗-bound-search, its time com-

plexity, which is O(
∑

(u,v)∈E (min{d(u), d(v)}+ (log d(u)

+ log d(v)))), is also better than O(
∑

(u,v)∈E max{d(u),
d(v)}) of degree. This is because the first part O(

∑
(u,v)∈E

min{d(u), d(v)}) is better for the same reason as stated
above, and the second part O(

∑
(u,v)∈E (log d(u)+log d(v)))

is also better since O(log d(u) + log d(v)) ≤ O(max{d(u),
d(v)}) holds.

7 Handling Update for CC-TopK in Dynamic Networks

Many real-world networks undergo frequent updates. When
the network is updated, the top-k structural diversity results
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Fig. 10 Illustration of updates in a dynamic graph

also need to be updated. The challenge, however, is that in-
serting or deleting a single edge (u, v) can trigger updates
in a series of neighborhood induced subgraphs including
GN(u), GN(v) and GN(w) where w ∈ N(u) ∩ N(v). This
can be a costly operation because the corresponding struc-
tural diversity scores need to be recomputed, and the top-k
results need to be updated too.

In the following, we will show that our Top-k-search
framework can be easily extended to handle updates in dy-
namic graphs. We consider two types of updates: edge in-
sertion and edge deletion. Vertex insertion/deletion can be
regarded as a sequence of edge insertions/deletions preced-
ed/ followed by the insertion/deletion of an isolated vertex,
while it is trivial to handle the insertion/deletion of an iso-
lated vertex.

7.1 Handling Edge Insertion

Consider the insertion of an edge (u, v). Let L = N(u) ∩
N(v) denote the set of common neighbors of u and v. The
insertion of (u, v) causes the insertions of vertex v and a set
of |L| edges {(v, w)|w ∈ L} into u’s neighborhood induced
subgraph GN(u). For each w ∈ L, we perform a Union
operation g[u].Union(v, w) to update the components and
score(u). For vertex v, GN(v) is updated in a similar way.

The insertion of (u, v) also affects GN(w) for each w ∈
L. We check the disjoint-set forest structure g[w]. If u, v be-
long to the same connected component before the edge in-
sertion, then all components remain unchanged and so does
score(w). If u, v are in different components before the edge
insertion, we merge the two components into one with a
Union operation g[w].Union(u, v) and update score(w) ac-
cordingly.

Consider the graph G in Figure 10 (a) as an example.
Suppose that t = 2 and the inserted edge is (r, q). L =
N(r) ∩ N(q) = {s, p1}. Figure 10 (c) shows the updated
GN(r) with the edge insertion. GN(r) has two new edges
(p1, q) and (s, q), but score(r) = 1 remains unchanged.

For vertex s ∈ L, vertices r, q are now connected in the
same component in GN(s) with the insertion of (r, q), so we
update score(s) from 0 to 1.

7.2 Handling Edge Deletion

Consider the deletion of an edge (u, v). To handle the edge
deletion, we maintain a spanning tree for each connected
component in the affected subgraphs GN(u), GN(v) and GN(w)

where w ∈ L. For example, consider the component P =

{p1, . . . , p5} of GN(r) in Figure 10 (b) and the correspond-
ing spanning tree TP in Figure 10 (d). The edges in the s-
panning tree are called tree edges, and other edges in the
component are called non-tree edges, e.g., (p1, p2) is a tree
edge and (p1, p5) is a non-tree edge.

For each w ∈ L, we consider updating GN(w) with the
deletion of (u, v). We check whether (u, v) is a tree edge
in the spanning tree of the component. If (u, v) is a non-tree
edge, score(w) remains unchanged because vertices u, v are
still in the same component connected by the corresponding
spanning tree. Continuing with the example above, the dele-
tion of the non-tree edge (p1, p5) will not split the compo-
nent P in GN(r), and p1, p5 are still in the same componen-
t. If (u, v) is a tree edge, then the deletion of (u, v) splits
the spanning tree into two trees denoted as Tu and Tv. We
will search for a replacement edge so as to reconnect Tu and
Tv . If a replacement edge (u′, v′) exists, we insert (u′, v′)
to connect Tu, Tv into a new spanning tree. Then the origi-
nal component is still connected, and score(w) remains un-
changed. If the replacement edge does not exist, the deletion
of (u, v) splits the original connected component into two
components, and the corresponding spanning trees are Tu

and Tv . So we update score(w) accordingly. Maintaining
the spanning tree can be implemented easily with the Union
operation by keeping track of the bridge edge between two
different components. In the example above, if a tree edge
(p1, p2) is deleted, we can find a replacement edge (p1, p4)

to reconnect the spanning tree in Figure 10 (d).
The deletion of (u, v) also affects GN(u) and GN(v).

Consider u as an example. For all w ∈ L, we remove those
non-tree edges (v, w) from GN(u), and remove those tree
edges (v, w) from the spanning tree which is then split into
multiple trees. Then we search for replacement tree edges
to reconnect the spanning tree. Finally, we remove v from
GN(u) and update score(u). Figures 10 (e) and (f) show the
updates of GN(r) and TP with the deletion of (r, p2).

The above techniques apply to updating both the actual
score and the upper bound in our Top-k-search framework
given edge insertions/deletions. In updating an upper bound
bound(v) for vertex v, given an edge deletion as a tree edge,
we only split the original spanning tree into two, but do not
have to search for the replacement edge. This will only re-
lax bound(v) without affecting the result correctness. This
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strategy can avoid the cost of finding the replacement edge
and achieve higher efficiency.

Summary: Handling edge insertion is trivial using our disjoint-
set forest structure, while handling deletion is more costly
as it maintains the spanning tree. In the real-world network-
s, edge insertions are usually more frequent than deletions.
Our update techniques do not increase the space complexity
of Top-k-search.

8 Top-K Core-based Structural Diversity Search

Ugander et al. [25] gave another definition of structural di-
versity based on the core subgraph concept [6]. Their study
showed that, the core-based structural diversity suffices to
provide a positive predictor of future long-term engagement
in a social network. In this section, we further study top-k
structural diversity search using this definition.

Due to the different definition of structural diversity, the
structural properties for the component-based measure (Def-
inition 2) may not hold for the core-based measure. For ex-
ample, in Figure 2 (a), vertices e, b and d form a triangle, and
b, d belong to the same component in the 2-core of GN(e),
as depicted in Figure 2 (b). But vertices e and d do not be-
long to the same component in the 2-core of GN(b), neither
do vertices e and b belong to the same component in the
2-core of GN(d). This shows that Property 2 does not hold
for the core-based definition. In addition, the Union-Find-
Isolate data structure is designed for keeping the information
of components that vertices belong to, however, we can not
know whether two vertices belong to the same component
in a t-core beforehand. Hence, our proposed Union-Find-
Isolate structure and the upper bound which leverage such
property can not be directly applied to the top-k core-based
structural diversity search. In the following, we will derive
a new upper bound and a new algorithm for computing the
core-based structural diversity score.

8.1 Upper Bound of Core-based Structural Diversity

Similar to Lemma 1, a simple upper bound of the core-based
structural diversity can be derived based on the vertex degree
and the parameter t.

Lemma 8 For any vertex v ∈ V , score∗(v) ≤ ⌊d(v)
t+1 ⌋ hold-

s.

Proof First, the t-core subgraph of GN(v) has at most d(v)
vertices. Second, every vertex of t-core is connected with at
least t other vertices, thus every component of the t-core has
a size of at least (t+ 1). Then the number of components in
the t-core is no greater than ⌊d(v)

t+1 ⌋, and score∗(v) ≤ ⌊d(v)
t+1 ⌋

holds.

However, this upper bound can be too loose for efficient
pruning. In the following, we introduce an important struc-
tural property, which is useful for designing a tighter upper
bound. First we give a definition of core value.

Definition 6 (Core Value) The core value of a vertex v ∈ V
in a graph G, denoted by φ(v), is the maximum integer t
such that there exists a t-core subgraph of G that contains v.

Continue with the above example. For the graph in Fig-
ure 2 (a), vertex f has a core value of 2, and the other ver-
tices have a core value of 3. Based on the core value, we can
derive a new structural property as follows.

Property 3 If a vertex v ∈ V has φ(v) ≤ t, then for each
vertex u ∈ N(v), v is not in the t-core of GN(u).

Proof We prove this property by contradiction. Suppose to
the contrary that there exist two vertices v and u such that the
t-core subgraph of GN(u), denoted as H , contains vertex v
with φ(v) ≤ t. By the definition of t-core, each vertex in H
has degree at least t. Since each vertex w ∈ H is a neighbor
of u, we can form a new graph H ′ by adding u and the edge
(w, u) for every vertex w ∈ H into H ′. Then each vertex in
H ′ has degree at least t+1, and H ′ is a seed of (t+1)-core
of the graph G. Then, for vertex v ∈ H ′, v has φ(v) > t by
the definition of core value, which is a contradiction.

A tighter upper bound is derived in Lemma 9 based on
Property 3.

Lemma 9 For any vertex v ∈ V , we have an upper bound
of score∗(v) as

bound(v) = ⌊d(v)−w(v)−q(v)
t+1 ⌋,

where w(v) and q(v) are defined as follows:

w(v) = |{u : u ∈ N(v), φ(u) ≤ t}|,

q(v) = |{u : u ∈ N(v), φ(u) > t, |N(v) ∩N(u)| < t}|.
Proof First, according to Property 3, these w(v) vertices
with φ(u) ≤ t is not in the t-core of GN(v).

Next, we prove that any vertex u ∈ N(v) with φ(u) > t
and |N(v)∩N(u)| < t is not in the t-core of GN(v), because
u has less than t neighbors in GN(v). Therefore, these q(v)

vertices are not in the t-core of GN(v).
Therefore, the maximum possible number of vertices in

the t-core is d(v) − w(v) − q(v). Similar to the proof of
Lemma 8, we can derive bound(v) = ⌊d(v)−w(v)−q(v)

t+1 ⌋ as
an upper bound of score∗(v).

For example, in Figure 2 (b), let t = 2. We have w(e) =
1 because there is one vertex, f , with φ(f) = 2 ≤ t. We
also have q(e) = 1 because there is one vertex, h, with
φ(h) = 3 > t and |N(e) ∩ N(h)| = 1 < t. It follows that
bound(e) = ⌊ 7−1−1

2+1 ⌋ = 1, which is equal to score∗(e) =

1. This bound is tighter than the degree-based bound ⌊ 7
2+1⌋ =

2.
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Algorithm 7 Core Decomposition
Input: G = (V,E)
Output: φ(v) for each v ∈ V

1: Sort the vertices in G in ascending order of their degree;
2: while (G is not empty)
3: let d be the minimum vertex degree in G;
4: while (there exists a vertex v with degree of at most d)
5: φ(v)← d;
6: remove v and all edges incident to v from G;
7: reorder the remaining vertices in ascending order

of their degree;
8: return φ(v) for each v ∈ V ;

8.2 Core-based Structural Diversity Computation

8.2.1 Top-K Search Framework

For top-k core-based structural diversity search, we adopt
the Top-k-search framework in Section 5 with the new up-
per bound in Lemma 9. To assign an initial upper bound
to every vertex, we apply core decomposition [4] on G to
compute the core value of every vertex in G. For the self-
completeness of this paper, the core decomposition algorith-
m [4] is outlined in Algorithm 7. The algorithm first sorts
the vertices in G in ascending order of their degree. Then
the algorithm iteratively removes from G a vertex v with the
minimum degree, together with all the edges incident to it,
and assigns d, the current minimum degree in G, as its core
value φ(v). Upon the removal of v, we also update the de-
gree of the remaining vertices and reorder them according
to their new degree. The algorithm terminates when all ver-
tices are removed from G. In this way, we compute the core
value of all vertices in G.

Next we initialize the upper bound of each vertex v ∈
V as bound(v) = ⌊d(v)−w(v)

t+1 ⌋ = ⌊ |{u:u∈N(v),φ(u)>t}|
t+1 ⌋ by

Lemma 9, where we set the parameter q(v) = 0 at this stage.
Note that bound(v) can be incrementally refined during the
top-k search process, because the vertex u ∈ N(v) with
φ(u) > t and |N(v) ∩ N(u)| < t can be identified when
computing score∗(u).

In summary, we make the following modifications in the
Top-k-search framework (Algorithm 3) to adapt it to the
core-based structural diversity search.

1. For initialization, we compute the core value φ(v) for
every v ∈ V using Algorithm 7.

2. We initialize the upper bound in line 5 using bound(v) =

⌊d(v)−w(v)
t+1 ⌋.

3. We compute bound(v∗) according to Lemma 9 in line 8.
4. In line 15, a new A∗-core-search algorithm is invoked,

which will be introduced in details in Section 8.2.2.

8.2.2 A∗-based Search Algorithm

Next we propose an efficient method for computing the core-
based structural diversity score for a vertex. This new method,
called A∗-core-search, is shown in Algorithm 8. It has two
main steps: (1) for a vertex v, it first applies core decompo-
sition on GN(v) and computes the t-core of GN(v); and (2)
it then invokes A∗-bound-search (Algorithm 6) to efficiently
compute the number of components in the t-core and returns
score∗(v).

In the first step for computing the t-core, a graph H is
initialized to be GN(v). Since any vertex u ∈ N(v) with
φ(u) ≤ t is not in the t-core of GN(v) by Lemma 3, u is
removed from the graph H , together with all the incident
edges (lines 1-3). Then, for each vertex u in H , we com-
pute the degree d(u). If d(u) < t, the algorithm inserts u
into the queue Q, which keeps the candidate vertices for re-
moval from H , and updates bound(u) according to Lem-
ma 9 (lines 4-13). Next, it performs core decomposition by
iteratively removing vertex u in Q from H , and inserting
new vertices with degree less than t into Q. This process
terminates when Q is empty (lines 14-21). The remaining
graph H is the t-core of GN(v).

In the second step, the algorithm applies the A∗ strate-
gies in Algorithm 6 for computing the number of connected
components in the t-core of H as score∗(v), and returns
it. Specifically, we modify Algorithm 6 by removing lines
25-26 (designed according to Property 2) and lines 29-32
(designed according to Property 1), since neither property
is applicable for core-based structural diversity search. The
other parts of Algorithm 6 remain unchanged.

8.2.3 Complexity Analysis

We analyze the time and space complexity of the core-based
Top-k-search framework as follows.

Theorem 5 The core-based Top-k-search framework using
A∗-core-search takes O(

∑
(u,v)∈E (min{d(u), d(v)}+ (log

d(u) + log d(v)) )) time and O(m) space.

Proof First, in the initialization step, the algorithm applies
core decomposition (Algorithm 7) on the whole graph G,
which can be done in O(m) time [4]. The total time cost of
estimating the upper bound for all vertices is O(m).

Second, for a vertex v, we consider the time cost of
computing score∗(v). Compared with A∗-bound-search, it
takes extra O(

∑
u∈N(v) min{d(u), d(v)}) time for comput-

ing the degree of vertices in N(v). Moreover, performing
core decomposition on GN(v)(lines 14-21) also takes extra
O(

∑
u∈N(v) min{ d(u), d(v)}) time. Finally, it invokes Al-

gorithm 6 for computing the number of components in the t-
core of GN(v). By Theorem 4, the top-k search process takes
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Algorithm 8 A∗-core-search (G, t, v)
Input: G = (V,E), the core value threshold t, vertex v.
Output: score∗(v).

1: Q← ∅; H ← GN(v);
2: for u ∈ N(v) do
3: if φ(u) ≤ t then H.delete(u);
4: for u ∈ VH do
5: d(u)← 0;
6: if d(u) > d(v) then MinAdjL← N(v);
7: else MinAdjL← N(u);
8: for w ∈MinAdjL do
9: if (w, u) ∈ E and w ∈ VH then

10: d(u)← d(u) + 1;
11: if d(u) < t then
12: Q.push(u);
13: Update bound(u) by Lemma 9;
14: while Q ̸= ∅
15: u← Q.DeQueue(); H.delete(u);
16: if d(u) > d(v) then MinAdjL← N(v);
17: else MinAdjL← N(u);
18: for w ∈MinAdjL do
19: if (w, u) ∈ E and d(w) ≥ t then
20: d(w)← d(w)− 1;
21: if d(w) < t then Q.push(w);
22: Invoke Algorithm 6 to compute score∗(v) from H;
23: return score∗(v);

O(
∑

(u,v)∈E (min{d(u), d(v)} +(log d(u) + log d(v))))
time.

Compared with A∗-bound-search, A∗-core-search needs
extra O(n) space for storing the core value for all vertices.
Thus, the space complexity is still O(m).

Hence, Theorem 5 is established.

8.3 Network Structural Properties Analysis

In this subsection, we discuss the impact of real world net-
work properties on the performance of the proposed algo-
rithms for CC-TopK and Core-TopK. We consider three well-
known structural properties, namely, power-law degree dis-
tribution, average path length, and clustering coefficient.

Power-law Degree Distribution: Social networks usually
follow a power-law degree distribution, that is, a small per-
centage of nodes are high-degree ones and the vast major-
ity of nodes are low-degree ones. According to our upper
bound definition which depends on the node degree, those
high-degree nodes will be examined first in the top-k search
framework. As the degree difference between the high-degree
and low-degree nodes can be quite large, we can easily find
that many low-degree nodes are impossible to be the top-k
answers simply based on their upper bound estimate; thus
they can be pruned at an early stage. Therefore, our algo-
rithms are expected to work more efficiently on graphs with
power-law degree distribution than those with uniform de-
gree distribution.

Average Path Length: Social networks usually have a small
average path length, that is, the small-world effect. For a n-
ode in such a network, the neighbors of the node are more
likely to be closely connected, leading to few large compo-
nents. As a result, the node tends to have a low structural di-
versity score. In contrast, for a node in a network with a large
average path length, the neighbors of the node are loosely
connected or even scattered far apart, leading to many com-
ponents. Thus the node tends to have a high structural diver-
sity score. In the latter case, the upper bound estimate of the
nodes tends to be tighter and thus provides more effective
pruning for top-k search.

Clustering Coefficient: Social networks often have a high
clustering coefficient, in which nodes tend to cluster togeth-
er with high density of ties. Obviously, in a graph with a
larger clustering coefficient, the probability of a triplet to
form a triangle is higher. As a result, for the component-
based structural diversity, Property 2 is easier to be satisfied
and thus will be more frequently used for upper-bound re-
finement to reduce the overall computational cost. The clus-
tering coefficient has no obvious impact on the algorithms
for the core-based structural diversity since it does not make
use of triangles for upper-bound refinement.

9 Experiments

We conduct extensive performance study to evaluate the al-
gorithms proposed in this paper. All algorithms are imple-
mented in C++ and all the experiments are conducted on
the Linux operating system with 2.67GHz six-core CPU and
50GB main memory.
Evaluation metrics: We use the running time and the num-
ber of vertices whose structural diversity scores are comput-
ed in the search process as two metrics. The latter evaluates
the number of vertices that are pruned by the algorithm.
Datasets: We use 13 real-world networks covering social,
communication, collaboration, location-based networks and
webgraphs. The network statistics are shown in Table 1. Ex-
cept for Epinions, Digg and KDDTrack11 which are from
their respective websites, the other 10 networks are down-
loaded from the Stanford Network Analysis Project(snap.
stanford.edu). We treat all the networks as undirected.

9.1 Connected Component-based Structural Diversity

Comparison methods: To the best of our knowledge, we
are the first to study top-k structural diversity search. In
the literature, no algorithms have been proposed to address
this problem yet. Thus, we compare our algorithms with
the degree-based approach (Algorithm 1) which serves as a

1 https://www.kddcup2012.org
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Table 1 Network statistics (K = 103 and M = 106)

Name |VG| |EG| dmax Description
WikiVote 5K 104K 1065
Epinions 76K 509K 3044
Slashdot 82K 948K 2552 Social
Gowalla 196K 1.9M 14730 networks

Digg 771K 7.3M 17643
KDDTrack1 1.9M 100.2M 456907
EmailEnron 37K 368K 1383

CommunicationEmailEuAll 265K 420K 7636
WikiTalk 2.4M 5.0M 100029 networks
HepPh 12K 237K 491 Collaboration

AstroPh 19K 396K 504 networks
NotreDame 326K 1.5M 10721 Web graph

Flickr 80K 11.8M 5706 Flickr

baseline. Compared with the baseline method, our proposed
algorithms produce exactly the same true top-k results. We
evaluate four algorithms.

– Deg: The degree-based approach in Algorithm 1.
– Bou: Top-k-search equipped with bound-search (Algo-

rithm 4) and θ = 1.
– FB: Top-k-search equipped with fast-bound-search (Al-

gorithm 5) and θ = (nt )
1√
m .

– A∗-B: Top-k-search equipped with A∗-bound-search (Al-
gorithm 6) and θ = (nt )

1√
m .

In our experiments, we find that θ = (nt )
1√
m which is

close to 1 always yields a good performance in the Top-k-
search framework. For FB and A∗-B, their performances are
not very sensitive to the value of θ as long as θ ∈ (1.001, 1.05)
on all datasets.

9.1.1 Efficiency Comparison

In this experiment, we compare the efficiency of different
methods over all networks. We set k = 100 and t = 2. Sim-
ilar results can be observed for other k and t values. Table 2
reports the results. We can see that A∗-B is the most efficient,
followed by FB, Bou, and Deg. Notice that the performance
of A∗-B, FB, and Bou which adopt the Top-k-search frame-
work is substantially better than that of the degree-based
algorithm Deg. The speedup ratio between Deg and A∗-B
defined as Rs = tDeg/tA∗−B is between 2.1 and 69.1 (col-
umn 6 in Table 2). The result conforms with the complexity
analysis in Section 6. In addition, we define the pruning ra-
tio between Deg and A∗-B as Rp = SDeg/SA∗−B, where
SDeg and SA∗−B denote the number of vertices whose struc-
tural diversity scores are computed by the respective meth-
ods. The pruning ratio is between 2.1 and 11.1 over all net-
works (column 11 in Table 2). This result suggests that the
upper bound derived in Lemma 3 is indeed tighter than the
degree-based upper bound in Lemma 1.

When we compare Bou and Deg, the reduction of run-
ning time and search space by Bou demonstrates the effec-
tiveness of the tighter upper bound in Lemma 3 and the
Union-Find-Isolate data structure. When we compare Bou
and FB, the reduction of running time by FB shows the ef-
fectiveness of the fast-bound-search method. Finally we ob-
serve that A∗-B is more efficient than FB, which proves the
effectiveness of the A∗ search order.

9.1.2 Performance Evaluation by Varying k

In this experiment, we evaluate the performance of all the
methods by varying the parameter k. We set t = 2 and
focus on six networks Digg, WikiTalk, AstroPh, Gowalla,
NotreDame and Flickr. Similar results can be observed for
other t values and on other networks. Figures 11 (a)-(f) de-
pict the running time of different algorithms. Again, we can
see that A∗-B is the most efficient and Deg is the least ef-
ficient in most networks. The running time of A∗-B is very
stable as k increases.

Figures 12 (a)-(f) show the number of vertices whose
structural diversity scores are computed by different meth-
ods on the six networks. A∗-B is the clear winner by pruning
the largest number of vertices, and Deg performs worst. In
addition, we find that FB and Bou achieve very similar per-
formance in terms of the number of vertices that are pruned.
This is because θ = (nt )

1√
m in FB is very close to 1 (as list-

ed in the last column of Table 2), and θ in Bou is set to 1 in
our experiment. Thus, the pruning condition in FB and Bou
is very similar. But on the other hand, FB runs much faster
than Bou as shown in Figure 11, which conforms with the
time complexity analysis in Theorems 2 and 3.

9.1.3 Performance Evaluation by Varying t

We evaluate the performance of all methods by varying the
parameter t. In this experiment, we set k = 100 and sim-
ilar results can be observed for other k values. Figures 13
(a)-(f) show the running time of different algorithms. Once
again, A∗-B is the most efficient algorithm, and Deg is the
least efficient one. We also observe that in many cases, the
running time of all methods increases with increasing t at
first, but it may drop slightly when t further increases. A
possible reason is that when t is large, the number of the
qualified components (i.e., the components whose sizes are
no less than t) reduces. Thus, by the estimated upper bound,
the search space can be quickly pruned.

Figures 14 (a)-(f) show the number of vertices whose
structural diversity scores are computed in different network-
s by varying t. We observe that A∗-B prunes the most num-
ber of vertices, and Deg prunes the least number of vertices.
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Table 2 Comparison of running time (wall-clock time in seconds) and search space (the number of vertices whose structural diversity
score are computed in search process) of different algorithms. Here k = 100 and t = 2.

Network Running Time Number of Computed Vertices
θ = (n

t
)

1√
m

Deg Bou FB A∗-B Rs Deg Bou FB A∗-B Rp

WikiVote 9.3 8.7 6.6 3.1 3.0 3362 2110 2111 1612 2.1 1.027
Epinions 37.6 35.9 24.9 10.4 3.6 11546 6349 6314 4875 2.4 1.017
Slashdot 31.4 26.9 19.7 11.5 2.7 12278 6459 6459 5968 2.1 1.015
Gowalla 83.8 60.3 28.3 17.3 4.9 36192 17883 17883 12777 2.8 1.012
Digg 2090.6 1670.1 1075.9 253.0 8.3 66403 30221 31866 23465 2.8 1.005
KDDTrack1 155087.0 7661.3 4370.0 2244.1 69.1 59163 7689 7668 5333 11.1 1.002
EmailEnron 10.6 10.1 6.9 3.6 3.0 6365 3031 3032 1545 4.1 1.023
EmailEuAll 12.5 11.1 7.9 5.9 2.1 4426 2045 2045 1774 2.5 1.020
WikiTalk 1153.7 642.1 331.0 102.1 11.3 44476 16156 16064 14592 3.0 1.007
HepPh 14.4 13.9 12.5 2.3 6.3 3988 2480 2480 1394 2.9 1.026
AstroPh 9.1 8.2 7.2 3.9 2.4 8439 4613 4613 2352 3.6 1.021
NotreDame 86.6 66.9 34.9 16.0 5.4 28347 16421 16417 8976 3.2 1.012
Flickr 3254.6 3136.9 2451.6 270.1 12.0 62814 38475 38460 21544 2.9 1.004
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9.1.4 Handling Update in Dynamic Networks

In this experiment, we evaluate the time for incremental-
ly maintaining the top-k results when the input network is
updated. For each network, we randomly insert/delete 1K
edges, and update the top-k results after every edge inser-
tion/deletion. The average update time per edge insertion/deletion
is reported in Table 3. In addition, we report the batch update
time for the 1K edge insertions/deletions. We repeat this ex-
periment for 50 times and report the average performance.
For comparison, we also report the time for computing the
top-k results from scratch when the network is updated with
an edge insertion/deletion.

The result in Table 3 shows that handling edge inser-
tions is highly efficient. The update time per edge insertion
is 0.01 or 0.02 millisecond on most networks, and the batch
update time for 1K edge insertions is within 10 milliseconds
on most networks. Handling edge deletions is more costly,
because an edge deletion may trigger to check whether the t-
wo endpoints of the deleted edge are still in the same compo-
nent or not in a number of neighborhood induced subgraphs.
The update time per edge deletion is within 1 millisecond on
most networks, and the batch update time for 1K edge dele-
tions is less than 1 second on most networks. Finally we can
see the incremental update (per edge as well as batch up-
date of 1K edges) is several orders of magnitude faster than
recomputing the top-k results from scratch.

9.2 Core-based Structural Diversity

Comparison methods: In this experiment, we focus on e-
valuating the top-k core-based structural diversity search,
and compare two proposed algorithms.

– Core-Deg: a simple degree method with the degree-based
upper bound in Lemma 8. Specifically, we adapt Algo-
rithm 1 with the following changes: (1) in line 6, the
upper bound is changed using the new upper bound in
Lemma 8; and (2) in line 9, we compute the t-core of
GN(v∗) and count the number of connected components
in the t-core as score∗(v∗).

– Core-A∗: the core-based Top-k-search framework intro-
duced in Section 8.2.1 equipped with A∗-core-search (Al-
gorithm 8) and θ = (nt )

1√
m .

Compared with the baseline Core-Deg, Core-A∗ produces
exactly the same true top-k results. For all datasets, we al-
so find that θ = (nt )

1√
m which is close to 1 always yields

a good performance in the core-based Top-k-search frame-
work. For Core-A∗, its performances is not very sensitive to
the value of θ as long as θ ∈ (1.001, 1.05).

9.2.1 Performance Evaluation by Varying k

In this experiment, we evaluate the performance of Core-
Deg and Core-A∗ by varying the parameter k. We set the
parameter t = 2 by default and test on six networks Digg,
WikiTalk, AstroPh, Gowalla, NotreDame and Flickr. Simi-
lar results can be observed for other t values and on other
networks. Figures 15 (a)-(f) show the running time of differ-
ent algorithms on the six networks. We can see that Core-A∗

is the clear winner by running much faster than Core-Deg
on all networks, which demonstrates the advantage of the
core-based Top-k-search framework and the A∗-core-search
method.

Figures 16 (a)-(f) show the number of vertices whose
structural diversity scores are computed by different meth-
ods on the six networks. Core-A∗ prunes many more ver-
tices than Core-Deg. This result shows that the upper bound
derived in Lemma 9 is indeed much tighter than the degree-
based upper bound in Lemma 8.

9.2.2 Performance Evaluation by Varying t

In this experiment, we evaluate the performance of all meth-
ods by varying the core number t on the six networks above.
In this experiment, we set k = 100 and similar results can
be observed for other k values. Figures 17 (a)-(f) show the
running time of different algorithms. The running time of
Core-A∗ is 2-4 times shorter than that of Core-Deg on all
networks. In addition, the performance of Core-A∗ remains
very stable as t increases.

Figures 18 (a)-(f) show the number of vertices whose
structural diversity scores are computed in different network-
s by varying t. Again Core-A∗ prunes many more vertices
than Core-Deg.

9.3 Comparison Between A∗-B and Core-A∗

In this experiment, we evaluate the efficiency and memo-
ry usage of two different methods as component-based A∗-
B and core-based Core-A∗ with the same parameter setting
k = 100 and t = 2 on the six networks Digg, WikiTalk, As-
troPh, Gowalla, NotreDame and Flickr. Figure 19 (a) shows
the running time of two algorithms on the six networks. A∗-
B is more efficient than Core-A∗ on all networks. It is be-
cause Core-A∗ additionally requires to compute the t-core
and discard unqualified components. Figure 19 (b) shows
the memory usage of two algorithms on the six networks.
A∗-B consumes more memory space than Core-A∗ on al-
l networks, due to the additional Union-Find-Isolate data
structure by A∗-B. On the largest dataset KDD Track1, the
memory consumption by our method A∗-B is 15.3 GB.
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Table 3 Update Time (wall-clock time in milliseconds). Here k = 100 and t = 2.

Network Insertion Insertion Deletion Deletion Computing
Per Edge 1K Edges Per Edge 1K Edges from scratch

WikiVote 0.02 11.5 0.77 576 3100
Epinions 0.01 9.2 0.49 347 10400
Slashdot 0.01 7.3 0.35 317 11500
Gowalla 0.01 7.3 1.51 1179 17300
Digg 0.01 7.2 1.47 1404 253000
KDDTrack1 0.05 44.8 800 660139 2244100
EmailEnron 0.01 6.9 0.59 440 3600
EmailEuAll 0.01 5.2 0.16 162 5900
WikiTalk 0.01 6.6 1.52 1513 102100
HepPh 0.02 8.2 0.45 292 2300
AstroPh 0.02 10.7 0.38 326 3900
NotreDame 0.01 6.2 0.85 696 16000
Flickr 0.08 61.5 7.81 4943 270100
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Fig. 15 Running time (in second) of different algorithms versus parameter k
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Fig. 17 Running time (in second) of different algorithms versus parameter t

9.4 Performance Evaluation on Synthetic Datasets

In this experiment, we generate a series of synthetic graph
datasets, and evaluate the performance of our best methods
A∗-B and Core-A∗ by varying three different structural prop-
erties, namely, power-law degree distribution, average path
length, and clustering coefficient. We set the same default

parameter k = 100 and t = 2 for A∗-B and Core-A∗ method
on all the following synthetic graphs.

9.4.1 Performance Evaluation by varying Power-law
Degree Distribution

The first tested synthetic networks are power-law graphs, in
which the degrees of nodes follow a power-law distribution.



Top-K Structural Diversity Search in Large Networks 23

20K

40K

60K

80K

100K

120K

1 2 3 5 7

Core-Deg
Core-A*

(a) Digg

0

20K

40K

60K

80K

1 2 3 5 7

Core-Deg
Core-A*

(b) WikiTalk

4K

6K

8K

10K

1 2 3 5 7

Core-Deg
Core-A*

(c) AstroPh

10K

20K

30K

40K

50K

1 2 3 5 7

Core-Deg
Core-A*

(d) Gowalla

0

20K

40K

60K

80K

1 2 3 5 7

Core-Deg
Core-A*

(e) NotreDame

20K

40K

60K

80K

1 2 3 5 7

Core-Deg
Core-A*

(f) Flickr

Fig. 18 Number of vertices whose structural diversity scores are computed versus parameter t
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Fig. 19 Comparison of running time (wall-clock time in seconds) and main memory usage (in Megabytes) of two algorithms A∗-B and Core-A∗.
Here k = 100 and t = 2 for both methods.

That is, the fraction P (c) of nodes in the network having c

neighbors goes for large values of c as P (c) ∼ c−γ , where
γ is a parameter of power-law whose value is typically in
the range 2 < γ < 3. The smaller the γ is, the smaller the
fraction of high-degree nodes is in all nodes. We generate
a series of graphs using a preference attachment method in
[11]. We set the node size |V | = 100, 000 and edge size
|E| = 1, 000, 000, and vary the different parameter γ from
2.2 to 2.8.

Figure 20 (a) shows the running time of two algorithms
on power-law graphs by varying γ. As we can see that both
our methods take a slight less time with the increase of pa-
rameter γ. Therefore, the performance of our methods can
be regarded as stable on the graphs with different degree
distributions. Figure 20 (b) shows the number of vertices
whose structural diversity scores are computed by the two
methods on different power-law graphs. With the increasing
γ, both methods reduce the number of vertices whose struc-
tural diversity scores are computed. Moreover, A∗-B is more
efficient than Core-A∗ in terms of both running time and the
pruning efficiency in all test cases.

9.4.2 Performance Evaluation by varying Average Path
Length

In this experiment, we test a series of graphs with different
average path length. The average path length of a graph can
be defined as the average length of the shortest distance be-
tween all possible pairs of nodes in the graph. The average
path length is a measure of the efficiency of information or
mass transport on a network. We generate 5 random graphs
with 100, 000 nodes and 500, 000 edges with different pa-
rameters of average path length from 2 to 5.5.

Figure 21 (a) and Figure 21 (b) show the running time
and search space of two methods A∗-B and Core-A∗ re-
spectively. With the increasing of average path length in the
graph, the running time and search space for both A∗-B and
Core-A∗ decrease slightly, which is consistent with the anal-
ysis for average path length in Section 8.3. Thus, in term of
running time evaluation, the efficiency performance of both
algorithms can be regarded as stable in Figure 21 (a) when
varying the average path length.
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Fig. 20 Comparison of running time (wall-clock time in seconds) and search space (number of vertices whose structural diversity scores are
computed) of two algorithms A∗-B and Core-A∗ versus parameter γ on power-law graphs.
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Fig. 21 Comparison of running time (wall-clock time in seconds) and search space (number of vertices whose structural diversity scores are
computed) of two algorithms A∗-B and Core-A∗ versus the parameter average path length.
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Fig. 22 Comparison of running time (wall-clock time in seconds) and search space (number of vertices whose structural diversity scores are
computed) of two algorithms A∗-B and Core-A∗ versus the parameter clustering coefficient.

9.4.3 Performance Evaluation by varying Clustering
Coefficient

In this experiment, we test the performance of our method-
s on the graphs with different global clustering coefficient.
The global clustering coefficient of a graph is the number
of closed triplets over the total number of triplets, which can
be computed as

2·
∑

(v,u)∈E |N(v)∩N(u)|∑
v∈V d(v)∗(d(v)−1) . The clustering coef-

ficient is a measure of the degree to which nodes in a graph
tend to cluster together. We generate 5 random graphs with
100, 000 nodes and 500, 000 edges with different clustering
coefficients from 0.13 to 0.63.

Figure 22 (a) and Figure 22 (b) show the running time
and search space of two methods A∗-B and Core-A∗ respec-
tively. When the clustering coefficient increases, the pro-
cessing time for A∗-B decreases. Both two methods have a
stable performance of running time and search space on all
test cases by varying the clustering coefficient. Such results
are consistent with the analysis for clustering coefficient in
Section 8.3.

Summary: In above experiments, we can see that for graph-
s with the same number of nodes and edges, both A∗-B and
Core-A∗ have relatively stable performance when varying
any of the three structural properties, namely, power-law de-
gree distribution, average path length, and clustering coef-
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ficient. The results are consist with the complexity analysis
shown in Theorem 4 and Theorem 5 for the two algorithms
respectively, as well as the property analysis shown in Sec-
tion 8.3.

9.5 Case Study

9.5.1 Identifying Ambiguous Names

Name ambiguity has long been viewed as a challenging prob-
lem in social network analysis. For example, when we search
a person named “Wei Wang” from the DBLP website, there
are at least 52 distinct persons with the same name. Our
top-k structural diversity search method provides a novel
approach for identifying ambiguous names in a social net-
work, which is the first and important step for name disam-
biguation. In this case study, we build a collaboration net-
work from the DBLP dataset2. A vertex represents an author
name and an edge is added between two authors if they have
co-authored 3 times or more. The network contains 234,879
vertices and 541,814 edges.

We first apply the component-based structural diversi-
ty measure on the DBLP network for finding top-5 authors
with the highest number of connected components of size
over 2. The result is shown in Table 4. As we can see, these
five names are indeed popular but ambiguous ones which
can correspond to different distinct persons in the real world.
For comparison, we select five famous authors who have a
large degree, i.e., a large number of collaborators, and re-
port their structural diversity score. Despite the large degree,
their structural diversity score is far smaller than that of the
ambiguous names. Intuitively, we can imagine that an am-
biguous name corresponds to different distinct persons, each
of who has his/her own research communities. This leads
to a large number of non-overlapping research communities
associated with an ambiguous name. In addition, we also
observe that many of such communities are tiny and loosely
connected. This is because the component-based structural
diversity does not enforce a cohesive structure in the com-
ponents.

We also apply the core-based structural diversity mea-
sure on the DBLP network for finding top-5 authors using
2-core subgraphs, and report the result in Table 5. By def-
inition, the 2-core based measure discards all tree-shaped
components, and counts the remaining cohesive components
into the score. As a result, the obtained scores in Table 5 are
smaller than the component-based scores in Table 4. More-
over, we observe that the core-based top-5 ambiguous names
are different from the component-based top-5 names in Ta-
ble 4. This suggests that these two diversity measures can
complement each other.

2 http://dblp.uni-trier.de/xml/

This case study shows that our top-k structural diversity
search provides an effective mechanism for finding ambigu-
ous names in a social network.

9.5.2 Words with Diverse Meanings

In this case study, we apply the two structural diversity mea-
sures on a word association network3. The expected result
is to find words with the most diverse meanings, and to an-
alyze and understand the different meanings of these words
in different contexts. In this network, a vertex represents a
word, and an edge between two words indicates that they are
meaningfully related or strongly associated. The network
contains 7,207 vertices and 31,784 edges.

We first query top-1 vertex in the word association net-
work by counting the number of connected components of
size over 2. The result is depicted in Figure 23. The word
“black” has the highest structural diversity score as 9, indi-
cating 9 distinct connected components in the neighborhood
induced subgraph of “black”, and each distinct component
represents a certain meaning of “black”. The largest con-
nected component (depicted in red) contains 22 words, and
most of those words can be roughly summarized by three
words as “color”, “race” and “dark”. For example, “black”
is a “color”, and “black” is related to other colors such as
“white”, “red”, “blue”, “yellow”, etc. For the other 8 con-
nected components, each contains 2-3 words, and represents
a distinct context of words associated with “black”, such as,
{“penguin”, “tuxedo” }, {“panther”, “cat” }, {“death”,
“widow”, “funeral” }, and so on.

Next, we query top-2 vertices in the word association
network using 2-core subgraphs. Two words “word” and
“Christmas” have the highest two structural diversity scores
of 4 and 3, which are shown in Figure 24. As we can see,
each vertex in the 2-core component in Figure 24 has at
least two neighbor words. Specifically, the word “word” in
Figure 24 (a) has 4 distinct contexts of associated word-
s with different meanings. For example, {“swear”, “oath”,
“promise” } represent the synonym of “words” as “promise”,
and {“verb”, “noun”, “pronoun” } are different types of
“word”. The word “Christmas” has three distinct contexts
of associated words, as shown in Figure 24 (b), {“reindeer”,
“sleigh”, “Santa” } describe the “Santa”, {“present”, “gift”,
“package” } represent the “Christmas gifts” and {“tree”,
“ornament”, “decoration” } are related to the “Christmas
tree”.

When we compare Figure 19 and Figure 20, using the
component-based structural diversity, we can find words with
many different meanings. However, the terms in a certain
context may be loosely related to each other (e.g., “hair”
and “blue” in the same connected component in Figure 19).
On the other hand, using the core-based structural diversity,

3 http://www.netcom-analyzer.org/datasets/166
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Table 4 Ambiguous names (Top-5 structural diversity result based on size-2 connected component) and selected famous authors in DBLP
network. Ambiguous names obviously have much higher structural diversity scores than famous authors.

Ambiguous Name Famous Authors
Name Degree Score Name Degree Score

Yang Liu 126 33 Christos Faloutsos 97 10
Xin Li 150 31 Philip S. Yu 140 5

Yan Zhang 157 29 Jiawei Han 132 4
Wei Wang 117 29 H. V. Jagadish 62 4
Wei Liu 151 28 Gerhard Weikum 103 2

Table 5 Ambiguous names (Top-5 structural diversity result based on 2-core) and selected famous authors in DBLP network. Ambiguous
names obviously have much higher structural diversity scores than famous authors.

Ambiguous Name Famous Authors
Name Degree Score Name Degree Score

Yang Yang 107 15 Christos Faloutsos 97 6
Yu Zhang 105 15 Philip S. Yu 140 3
Ming Li 149 15 H. V. Jagadish 62 3

Peng Wang 80 14 Jiawei Han 132 2
Xin Li 150 13 Gerhard Weikum 103 2
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Fig. 23 Top-1 structural diversity based on size-2 connected component in word association network. Here “black” has the highest structural
diversity score as 9.
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the terms in each component are highly related to each oth-
er. But the core-based measure may discard some loosely
connected components, thus fail to extract the correspond-
ing meanings of a word.

This case study shows that our top-k structural diversity
search can be applied for finding different meanings of a
word, which is a fundamental problem in natural language
understanding.

10 Related Work

To the best of our knowledge, top-k structural diversity search
has not been studied before. In the following, we briefly re-
view the existing work that are related to ours.

First, our work is closely related to the work on top-
k query processing. The goal of top-k query processing is
to find k objects with the highest rank based on some pre-
defined ranking function. A commonly used framework for
this problem is to examine the candidates in a heuristic or-
der and prune the search space using an upper bound. After
the seminal work by Fagin et al. [12,13], a large number of
studies on top-k query processing have been done for dif-
ferent application scenarios, such as processing distributed
preference queries [5], keyword queries [20], set similarity
join queries [27]. Recently, many studies take the diversi-
ty into consideration in top-k query processing, in order to
return diversified ranking results [28,21,1,19,2,29]. A com-
prehensive survey of top-k query processing can be found in
[15].

Second, our proposed techniques are related to the algo-
rithms for the triangle listing problem, which is to find all
triangles in a graph. Itai and Rodeh in [16] first proposed
an O(m1.5) algorithm for the triangle listing problem. In
[18], Latapy proved that the time complexity O(m1.5) is op-
timal. Subsequently, Schank and Wagner [24,23] proposed a
simpler and particularly fast solution with the optimal com-
plexity based on the vertex ordering and efficient lookup of
the adjacency lists for neighborhood testing. Recently, Chu
and Cheng [8] proposed an I/O-efficient algorithm for tri-
angle listing in a massive graph, which cannot fit into the
main memory. In this paper, we study the top-k structural
diversity search problem. The complexity of our algorithm
is proved to be O(m1.5).

11 Conclusions

In this paper, we study the top-k structural diversity search
problem motivated by a number of network analysis applica-
tions. We develop a novel Top-k-search framework to tackle
this issue. Specifically, we design a Union-Find-Isolate data
structure to keep track of the known structural information
of each vertex, and an effective upper bound for pruning. For

further speeding up the structural diversity evaluation, sever-
al well-designed search strategies are proposed. Our Top-k-
search framework can be generalized to handle both the con-
nected component based measure and the core base measure
for structural diversity search. We evaluate the proposed al-
gorithms on real-world large networks and synthetic graphs,
and the results demonstrate the effectiveness and efficiency
of the proposed algorithms.
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