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Abstract—Tri-level programming, a special case of multilevel 

programming, arises to deal with decentralized decision-making 

problems that feature interacting decision entities distributed 

throughout three hierarchical levels. As tri-level programming 

problems are strongly NP-hard and the existing solution 

approaches lack universality in solving such problems, the 

purpose of this study is to propose an intelligence-based heuristic 

algorithm to solve tri-level programming problems involving 

linear and nonlinear versions. In this paper, we first propose a 

general tri-level programming problem and discuss related 

theoretical properties. A particle swarm optimization (PSO) 

algorithm is then developed to solve the tri-level programming 

problem. Lastly, a numerical example is adopted to illustrate the 

effectiveness of the proposed PSO algorithm. 
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I.  INTRODUCTION 

Tri-level programming (also known as tri-level decision-
making), has been developed to address compromises among 
interacting decision entities that are distributed throughout 
three hierarchical levels, which is a subfamily of multilevel 
programming [1] motivated by Stackelberg game theory [2]. 
Decision entities at the three hierarchical levels are 
respectively termed the top-level leader, the middle-level 
follower and the bottom-level follower [3]. In a tri-level 
decision-making process, the decision entities make their 
individual decisions in sequence from the top level to the 
middle level and then to the bottom level with the aim of 
optimizing their respective objectives. The decision process 
means that the higher-level decision entity has priority in 
making decisions to optimize its own objectives and the 
lower-level decision entity reacts in view of decisions made by 
the higher level. However, the decision of each entity is 
affected by actions of the others. The decision process is 
repeatedly executed until the Stackelberg equilibrium among 
them is achieved. This hierarchical decision-making process 
often appears in many decentralized decision problems in the 
real world, such as supply chain management [4], resource 
allocation [5, 6] and hierarchical production operations [7]. 

Whereas the majority of studies on multi-level 
programming were focused on bi-level programming, research 

on tri-level programming problems has attracted increasingly 
investigations into solution approaches since it can be used to 
deal with many decentralized decision problems in the real 
world. Bard [8] first presented an investigation of linear tri-
level programming and designed a cutting plane algorithm to 
solve such problems, based on which White [9] proposed a 
penalty function approach for linear tri-level programming 
problems. Anandalingam [10] and Sinha [11] developed 
Kuhn-Tucker transformation methods to find local optimal 
solutions for linear tri-level programming problems. Ruan, et 
al. [12] discussed optimality conditions and related geometric 
properties of a linear tri-level programming problem with 
dominated objective functions. Faísca, et al. [13] studied a 
multi-parametric programming approach to solve tri-level 
hierarchical and decentralized optimization problems based on 
parametric global optimization for bi-level programming [14]. 
Zhang, et al. [3] developed a tri-level Kth-Best algorithm to 
solve linear tri-level programming problems. Lai [15], Shih, et 
al. [16] and Sinha [17, 18] developed fuzzy approaches to find 
solutions to linear multilevel programming problems 
involving tri-level programming problems, and further, 
Pramanik and Roy [19] proposed another fuzzy approach 
using linear goal programming to solve such problems. 
However, the existing solution approaches are limited to 
solving tri-level programming problems in the linear version 
or in a special situation where all decision entities share the 
same constraint conditions. In particular, the fuzzy approaches 
can only solve the tri-level programming problems in which 
decision entities from different levels prefer to cooperate with 
one another. In this way, the fuzzy approaches can only used 
to find some satisfactory solutions rather than the optimal 
solutions, because the cooperation is inhibited in classical 
multilevel programming problems. Consequently, further 
investigation into solution approaches for solving tri-level 
programming problems is necessary. 

Since tri-level programming problems are strongly NP-
hard and the existing solution approaches lack universality in 
solving such problems, intelligent heuristic algorithms may be 
used to generate an alternative for solving such problems. 
Particle swarm optimization (PSO) is a population-based 
heuristic algorithm first proposed by Kennedy and Eberhart 
[20], which is inspired by the social behavior of organisms 
such as fish schooling and bird flocking. As PSO requires only 
primitive mathematical operators, and is computationally 
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inexpensive in terms of both memory requirements and speed, 
it has a good convergence performance and has been 
successfully employed to solve bi-level programming 
problems [21-23]. In this study, we will try to develop a PSO 
algorithm to solve tri-level programming problems. 

The main contribution of this paper is the provision of a 
PSO algorithm to solve tri-level programming problems 
involving linear and nonlinear versions. This paper first 
presents a general tri-level programming problem and 
discusses related theoretical properties. It then develops a PSO 
algorithm based on the Kuhn-Tucker conditions to solve the 
proposed tri-level programming problem. Lastly, a numerical 
example is used to illustrate the effectiveness of the proposed 
PSO algorithm. 

II. THE TRI-LEVEL PROGRAMMING PROBLEM AND RELATED 

THEORETICAL PROPERTIES 

In this section, we will propose the tri-level programming 
problem and discuss related theoretical properties. 

A. The Tri-level Programming Problem and Solution 

Concepts 

The general tri-level programming problem presented by 
Faísca, et al. [13] is defined as follows. 

Definition 1 [13] For 
pRXx  , qRYy  , rRZz  , a 

general tri-level programming problem is defined as:  

),,(min 1 zyxf
Xx

                             (1st level) 

s.t. ,0),,(1 zyxg  

      where y, z solve 

     ),,(min 2 zyxf
Yy

                      (2nd level)                      (1) 

      s.t. ,0),,(2 zyxg  

            where z solves 

           ),,(min 3 zyxf
Zz

                (3rd level) 

            s.t. ,0),,(3 zyxg  

where x, y, z are the decision variables of the three levels 

respectively; RRRRfff rqp :,, 321 are the objective 

functions of the three levels respectively; 

3,2,1,:  iRRRRg ikrqp
i  are the constraint conditions 

of the three levels respectively. 

To find an optimal solution (also called a Stackelberg 
solution) for the tri-level programming problem (1), relevant 
solution concepts are proposed as follows based on the nested 
hierarchical structure of multilevel programming and the 
existing research on bi-level programming. 

Definition 2  

1) The constraint region of the tri-level programming problem: 

}.3,2,1,0),,(:),,{(  izyxgZYXzyxS i  

2) The feasible set of the second level for each fixed x: 

}.3,2,0),,(:),{()(  izyxgZYzyxS i  

3) The feasible set of the third level for each fixed (x, y): 

}.0),,(:{),( 3  zyxgZzyxS  

4) The rational reaction set of the third level: 

)]}.,(:),,(min[arg:{),( 3 yxSzzyxfzZzyxP   

4) The rational reaction set of the second level: 

),(),(:),,(min[arg),(:),{()( 2 xSzyzyxfzyZYzyxP 

)]}.,( yxPz  

5) The inducible region of the tri-level programming problem: 

)}.(),(,),,(:),,{( xPzySzyxzyxIR   

6) The optimal solution set of the tri-level programming 
problem: 

]}.),,(:),,(min[arg),,(:),,{( 1 IRzyxzyxfzyxzyxOS   

B. Related Theoretical Properties 

For the sake of developing an efficient algorithm to solve 
the tri-level programming problem (1), we now turn our 
attention to the geometry of the solution space and related 
theoretical properties. To ensure the problem (1) is well posed, 
it is common to make the following assumptions based on 
Definition 2. 

Assumption 1 321321 ,,,,, gggfff are continuous functions, 

whereas 32 , ff , 32 , gg  are continuously differentiable. 

Assumption 2 3f  is strictly convex in z for ),( yxSz  where 

S(x, y) is a compact convex set, while 2f  is strictly convex in 

(y, z) for )(),( xSzy   where S(x) is a compact convex set. 

Assumption 3 1f  is continuous convex in x, y, and z. 

Under the assumptions 1 and 2, the rational reaction sets of 
the third level and the second level P(x, y) and P(x) are point-
to-point maps and closed, which implies that IR is compact. 
Thus, under the assumption 3 solving the tri-level 
programming problem (1) is equivalent to optimizing the 

leader's continuous function 1f  over the compact set IR. It is 

well known that the solution to such a problem is guaranteed 
to exist. 

It is noticeable that, if the third-level problem is convex 
parametric programming problem that satisfies the 
Manasarian-Fromowitz constraint qualification (MFCQ) for 
each fixed (x, y) [24, 25], the third-level problem is equivalent 
to the following Kuhn-Tucker conditions (2-5): 

),,,(),,(),,,( 33 zyxguzyxfuzyxL zzz                 (2) 

,0),,(3 zyxug                                                                  (3) 

,0),,(3 zyxg                                                                   (4) 



,0u                                                                                  (5) 

where ),,(),,(),,,( 33 zyxugzyxfuzyxL  is the Lagrangian 

function of the third level, ),,,( uzyxLz  denotes the gradient 

of the function ),,,( uzyxL  with respect to z, and u is the 

vector of Lagrangian multipliers. 

Theorem 1 [25] A necessary and sufficient condition that 

)(),( xPzy   is that there exists the row vector u  such that (x, 

y, z, u) satisfies the Kuhn-Tucker conditions (2-5). 

Based on Theorem 1, the tri-level programming problem 
(1) can be transformed into the bi-level programming problem 
(6) by replacing the third-level problem with the Kuhn-Tucker 
conditions (2-5). 

),,(min 1 zyxf
x

                             (1st level) 

s.t. ,0),,(1 zyxg  

      where y, z solve 

     ),,(min 2
,,

zyxf
uzy

                      (2nd level)                      (6) 

      s.t. ,0),,(2 zyxg  

            ,0),,(),,( 33  zyxguzyxf zz  

            ,0),,(3 zyxug  

            ,0),,(3 zyxg  

            .0u  

Therefore, we have the following theorem. 

Theorem 2 (x, y, z) solves the tri-level programming problem 
(1) if and only if (x, y, z, u) solves the bi-level programming 
problem (6).  

In this study, we will develop a PSO algorithm to find a 
solution (x, y, z) for the tri-level programming problem (1) 
based on Theorems 1 and 2. 

III. THE PARTICLE SWARM OPTIMIZATION ALGORITHM 

Particle swarm optimization (PSO) is a category of 
population-based heuristic algorithm that is motivated by the 
social behavior of organisms such as fish schooling and bird 
flocking. The population of PSO is known as swarm, while 
each particle in the swarm is termed particle. In a swarm with 
the size N, the position vector of each particle with index 

),,2,1( Nii  is denoted as ),,( t
i

t
i

t
i

t
i zyxX  at iteration t, 

which represents a potential solution to the problem (1). For 
the sake of convenient discussion, we let 

),,(),,( 321
t
i

t
i

t
i

t
i

t
i

t
i

t
i xxxzyxX  . At iteration t, each particle i 

moves from 
t
iX  to 

1t
iX  in the search space at a velocity 

),,( 1
3

1
2

1
1

1   t
i

t
i

t
i

t
i vvvV  along each dimension. Each particle 

keeps track of its coordinates in hyperspace which are 
associated with the best solution (fitness), called pbest 

( ),,( 321 iiii pppp  ), it has achieved so far; while the PSO 

algorithm is divided into two versions, respectively known as 
the GBEST version and the LBEST version, due to different 
definitions of the global best solution [26]. In the GBEST 
version, the particle swarm optimizer keeps track of the 

overall best value, called gbest ( ),,( 321 gggg pppp  ), and its 

location obtained thus far by any particle in the population, 
known as the global neighborhood. For the LBEST version, 
particles have information only of their own and their nearest 
array neighbors’ best within a local topological neighborhood, 
rather than that of the entire group. However, in either PSO 
version, the PSO concept always consists of, at each iteration, 
an aggregated acceleration of each particle towards its pbest 
and gbest position. In this paper, the GBEST version of PSO is 
followed, and detailed procedures for solving the problem (1) 
will be developed in this section based on Theorems 1 and 2. 

1) Initial population 

In an initial population of particles with the number N, 

each particle ),,2,1( Nii   can be represented 

as ),,(),,( 0
3

0
2

0
1

0000
iiiiiii xxxzyxX  . As an initial population is 

randomly constructed for the PSO algorithm, we propose a 
random method to construct an initial population with the size 
N. 

First, we randomly generate the required number of the 

first level decision variables 0
ix ),,2,1( Ni  . Second, we 

solve the following problem (7) under 0
ixx   using the branch 

and bound algorithm [24] or interior point method (in Matlab) 

and obtain the corresponding solution ),,( 000
iii uzy . In this 

way, we complete the construction of initial population and 

),,(),,( 0
3

0
2

0
1

0000
iiiiiii xxxzyxX  . 

    ),,(min 2
,,

zyxf
uzy

                                                            

      s.t. ,0),,(2 zyxg  

            ,0),,(),,( 33  zyxguzyxf zz                        (7) 

            ,0),,(3 zyxug  

            ,0),,(3 zyxg  

            .0u  

Note that some particles of the initial population may 
occur outside the constraint region S although the constraint 
region S is a convex set, but the particles will be tugged to 
return towards the constraint region S at following iterations if 
there exist better solutions in S [26]; this is an advantage of the 
PSO algorithm in constructing the initial population. 

2) The updating rules of particles 

In the PSO algorithm, each particle i moves toward 

),,(),,( 1
3

1
2

1
1

1111   t
i

t
i

t
i

t
i

t
i

t
i

t
i xxxzyxX  in the search space 

at a velocity ),,( 1
3

1
2

1
1

1   t
i

t
i

t
i

t
i vvvV at each iteration t. In this 

paper, the velocity and position of each particle i are updated 
as follows for Nij ,,2,1,3,2,1  based on related 

definitions proposed by Shi and Eberhart [27]: 



)()( 2211
1 t

ij
t
gj

t
ij

t
ij

t
ij

t
ij xprcxprcwvv 

,                    (8) 

11   t
ij

t
ij

t
ij vxx .                                                              (9) 

We now determine the selection of parameters involved in 
the formula (10). For the updating velocity, there are usually 

maximum and minimum velocity levels maxv  and minv . If the 

current velocity max
1 vvt

ij 
, we set max

1 vvt
ij 

; while 

min
1 vvt

ij 
 if min

1 vvt
ij 

. In the beginning, we set max
0 vvij  . 

w  is inertia weight, which controls the impact of the 

previous velocities on the current velocity. The inclusion of 
the inertia weight involves two definitions proposed by Shi 
and Eberhart [27]: a fixed constant and a decreasing function 
with time. In our PSO algorithm, we use the latter to define 
the inertia weight, because large inertial weight can be used to 
possess more exploitation ability at the beginning to find a 
good seed while it is reduced for better local exploitation later 
on in the search [27]. The inertia weight is represented as: 

t
Iter

ww
ww 




max_

minmax
max ,                                   (10) 

where maxw and minw  are the upper and lower bounds on the 

inertia weight, which are determined by the practical problem; 
Iter_max is the maximum number of PSO iterations while t 
represents the current iteration number. 

1c  and 2c  are known as learning factors or acceleration 

coefficients, which control the maximum step size that the 

particle can do. A recommended choice for constant 1c  and 

2c  is integer 2 as proposed by Kennedy and Eberhart [20]. 

1r  and 2r  are uniform random numbers between 0 and 1. 

3) Fitness evaluation 

For each particle i at the iteration t ),,( t
i

t
i

t
i

t
i zyxX  , solve 

the problem (7) under 
t
ixx   using the branch and bound 

algorithm [24] or interior point method (in Matlab)  and obtain 

the solution ),,,(  uzyxt
i . 

If the solution Szyxt
i  ),,( , update  ),,( t

i
t
i

t
i

t
i zyxX  

),,(  zyxt
i . The pbest solution is  ),,( 321 iiii pppp  

),,( t
i

t
i

t
i zyx , if ),,(),,( 32111 iii

t
i

t
i

t
i pppfzyxf   where we set 

),,(),,( 000
321 iiiiiii zyxpppp   and ),,( 000

1 iii zyxf  at 

the beginning. The global best solution gbest of the swarm at 

the iteration t is ),,( 321 gggg pppp   where 

},,2,1),,,(min{),,( 32113211 Nipppfpppf iiiggg  . 

4) Termination criterion 

The PSO algorithm will be terminated after a maximum 
number of iterations Iter_max or with achieving a maximum 
CPU time. 

5) Computational procedures of the PSO algorithm 

Based on the theoretical basis proposed above, we will 
present the complete computational procedures of the PSO 
algorithm for solving the tri-level programming problem (1). 

Step 1: Initialization. 

a) Construct the population size N and generate the initial 

population of particles NizyxX iiii ,,2,1),,,( 0000   by 

solving the problem (7); 

b) Initialize the pbest solution as  ),,( 321 iiii pppp  

),,( 000
iii zyx  and the fitness ),,( 000

1 iii zyxf ; 

c) Set the maximum and minimum velocity levels maxv  

and minv , and initialize max
0 vvij  ; 

d) Set the upper and lower bounds on the inertia weight 

maxw and minw , acceleration coefficients 1c  and 2c , and the 

maximum iteration number Iter_max; 

e) Set the current iteration number t=1 and go to Step 2. 

Step 2: Compute the fitness value and update the pbest 
solution of each particle. Set i=1 and go to Step 2.1. 

Step 2.1: Under 
t
ixx  , solve the problem (7) using the 

branch and bound algorithm or interior point method (in 

Matlab)  and obtain the solution ),,,(  uzyxt
i . Go to Step 

2.2. 

Step 2.2: If the solution Szyxt
i  ),,( , update 

),,(),,(  zyxzyxX t
i

t
i

t
i

t
i

t
i . Go to Step 2.3. 

Step 2.3: If ),,(),,( 32111 iii
t
i

t
i

t
i pppfzyxf  , 

 ),,( 321 iiii pppp  ),,( t
i

t
i

t
i zyx . If i<N, set i=i+1 and go to 

Step 2.1; otherwise, go to Step 3. 

Step 3: Update the gbest solution. Set ),,( 321 gggg pppp   

where },,2,1),,,(min{),,( 32113211 Nipppfpppf iiiggg  . 

Go to Step 4. 

Step 4: Termination criterion. If t<Iter_max, go to Step 5; 

otherwise, stop and ),,( 321 gggg pppp   is a solution for the 

tri-level programming problem (1). 

Step 5: Update the inertia weight, and the velocity and the 
position of each particle, respectively by the formulas (8), (9) 

and (10). If the current velocity max
1 vvt

ij 
, set max

1 vvt
ij 

; 

while min
1 vvt

ij 
 if min

1 vvt
ij 

. Set t=t+1 and go to Step 2. 

IV. A NUMERICAL EXAMPLE 

In this section, we will first illustrate how the proposed 
PSO algorithm works through solving a nonlinear tri-level 
programming problem. 



 

Fig.1. The converged curve of the leader's objective value. 

 

Fig.2. The objective values of the 2nd level (f2) and the 3rd level (f3). 

Consider the following nonlinear tri-level programming 
problem: 

)5(),,(min 22
1  zzyxzyxf

x
              (1st level) 

s.t. ,10 zyx  

      ,150  x  

      where y, z solve 

     22
2 )10()(),,(min 


zyxzyxf

Yy
     (2nd level)   (11) 

      s.t. ,0)20( 22  yx  

            ,022  zy  

            ,180  y  

            where z solves 

           22
3 )302(),,(min  zyxzyxf

z
 (3rd level) 

            s.t. ,20 zyx  

                  .012-2 zz  

TABLE I.  PARAMETERS EMPLOYED IN THE PSO ALGORITHM 

N vmax vmin wmax wmin 
c1 c2 Iter_max 

20 1 -1 1.0 0.01 2.0 2.0 30 

 
While the existing solution approaches cannot be used to 

solve the nonlinear tri-level programming problem, we will 
use the proposed PSO algorithm to find a solution for the 
problem. Based on the PSO procedures developed in Section 
III, related parameters are initialized in TABLE I. 

The computational procedures proposed in Section III are 
implemented by Matlab R2014a. The experiment results imply 
that we can obtain a converged solution under the parameters 
shown in TABLE I. The converged curve of the 1st level 

(leader)'s objective value ),,(1 zyxf is shown in Fig. 1. 

It can be seen from Fig.1 that the leader's objective value 

has converged to 9583.98),,(1 zyxf  since the 20th iteration, 

while the objective values of the 2nd level and the 3rd level 

converge to 3673.175),,(2 zyxf  and 6383.110),,(3 zyxf , 

as shown in Fig. 2. In this way, we can obtain a converged 

gbest solution )0827.7,0827.7,8346.5(),,( 321  gggg pppp  

for the nonlinear tri-level programming problem (11). Clearly, 
the PSO algorithm provides a practical way to solve tri-level 
programming problems. 

V. CONCLUSIONS AND FURTHER STUDY 

This study developed a PSO-based intelligent algorithm to 
solve tri-level programming problems. First, we proposed the 
general tri-level programming problem and discussed related 
theoretical properties. Second, we presented the procedures of 
the PSO algorithm, based on the Kuhn-Tucker conditions, for 
solving tri-level programming problems. Lastly, we illustrated 
how the PSO algorithm works through a numerical example. 
The computational results show that the PSO algorithm 
provides a practical way to solve tri-level programming 
problems involve linear and nonlinear versions. In the future, 
we will extend the PSO algorithm to solve large-scale tri-level 
programming problems in applications and explore the 
execution efficiency of the algorithm. 
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