
“© 2015 IEEE. Personal use of this material is permitted. Permission from IEEE must be

obtained for all other uses, in any current or future media, including

reprinting/republishing this material for advertising or promotional purposes, creating

new collective works, for resale or redistribution to servers or lists, or reuse of any

copyrighted component of this work in other works.”

Solving Tri-level Programming Problems Using a

Particle Swarm Optimization Algorithm

Jialin Han
1,2

, Guangquan Zhang
1
, Yaoguang Hu

2
, Jie Lu

1

1
Centre for Quantum Computation & Intelligent Systems, Faculty of Engineering and Information Technology, University of

Technology Sydney, Australia
2
School of Mechanical Engineering, Beijing Institute of Technology, China

hjl@bit.edu.cn, Guangquan.Zhang@uts.edu.au, hyg@bit.edu.cn, Jie.Lu@uts.edu.au

Abstract—Tri-level programming, a special case of multilevel

programming, arises to deal with decentralized decision-making

problems that feature interacting decision entities distributed

throughout three hierarchical levels. As tri-level programming

problems are strongly NP-hard and the existing solution

approaches lack universality in solving such problems, the

purpose of this study is to propose an intelligence-based heuristic

algorithm to solve tri-level programming problems involving

linear and nonlinear versions. In this paper, we first propose a

general tri-level programming problem and discuss related

theoretical properties. A particle swarm optimization (PSO)

algorithm is then developed to solve the tri-level programming

problem. Lastly, a numerical example is adopted to illustrate the

effectiveness of the proposed PSO algorithm.

Keywords—tri-level programming; bi-level programming;

computational intelligence; particle swarm optimization; Kuhn-

Tucker conditions.

I. INTRODUCTION

Tri-level programming (also known as tri-level decision-
making), has been developed to address compromises among
interacting decision entities that are distributed throughout
three hierarchical levels, which is a subfamily of multilevel
programming [1] motivated by Stackelberg game theory [2].
Decision entities at the three hierarchical levels are
respectively termed the top-level leader, the middle-level
follower and the bottom-level follower [3]. In a tri-level
decision-making process, the decision entities make their
individual decisions in sequence from the top level to the
middle level and then to the bottom level with the aim of
optimizing their respective objectives. The decision process
means that the higher-level decision entity has priority in
making decisions to optimize its own objectives and the
lower-level decision entity reacts in view of decisions made by
the higher level. However, the decision of each entity is
affected by actions of the others. The decision process is
repeatedly executed until the Stackelberg equilibrium among
them is achieved. This hierarchical decision-making process
often appears in many decentralized decision problems in the
real world, such as supply chain management [4], resource
allocation [5, 6] and hierarchical production operations [7].

Whereas the majority of studies on multi-level
programming were focused on bi-level programming, research

on tri-level programming problems has attracted increasingly
investigations into solution approaches since it can be used to
deal with many decentralized decision problems in the real
world. Bard [8] first presented an investigation of linear tri-
level programming and designed a cutting plane algorithm to
solve such problems, based on which White [9] proposed a
penalty function approach for linear tri-level programming
problems. Anandalingam [10] and Sinha [11] developed
Kuhn-Tucker transformation methods to find local optimal
solutions for linear tri-level programming problems. Ruan, et
al. [12] discussed optimality conditions and related geometric
properties of a linear tri-level programming problem with
dominated objective functions. Faísca, et al. [13] studied a
multi-parametric programming approach to solve tri-level
hierarchical and decentralized optimization problems based on
parametric global optimization for bi-level programming [14].
Zhang, et al. [3] developed a tri-level Kth-Best algorithm to
solve linear tri-level programming problems. Lai [15], Shih, et
al. [16] and Sinha [17, 18] developed fuzzy approaches to find
solutions to linear multilevel programming problems
involving tri-level programming problems, and further,
Pramanik and Roy [19] proposed another fuzzy approach
using linear goal programming to solve such problems.
However, the existing solution approaches are limited to
solving tri-level programming problems in the linear version
or in a special situation where all decision entities share the
same constraint conditions. In particular, the fuzzy approaches
can only solve the tri-level programming problems in which
decision entities from different levels prefer to cooperate with
one another. In this way, the fuzzy approaches can only used
to find some satisfactory solutions rather than the optimal
solutions, because the cooperation is inhibited in classical
multilevel programming problems. Consequently, further
investigation into solution approaches for solving tri-level
programming problems is necessary.

Since tri-level programming problems are strongly NP-
hard and the existing solution approaches lack universality in
solving such problems, intelligent heuristic algorithms may be
used to generate an alternative for solving such problems.
Particle swarm optimization (PSO) is a population-based
heuristic algorithm first proposed by Kennedy and Eberhart
[20], which is inspired by the social behavior of organisms
such as fish schooling and bird flocking. As PSO requires only
primitive mathematical operators, and is computationally

mailto:Guangquan.Zhang@uts.edu.au

inexpensive in terms of both memory requirements and speed,
it has a good convergence performance and has been
successfully employed to solve bi-level programming
problems [21-23]. In this study, we will try to develop a PSO
algorithm to solve tri-level programming problems.

The main contribution of this paper is the provision of a
PSO algorithm to solve tri-level programming problems
involving linear and nonlinear versions. This paper first
presents a general tri-level programming problem and
discusses related theoretical properties. It then develops a PSO
algorithm based on the Kuhn-Tucker conditions to solve the
proposed tri-level programming problem. Lastly, a numerical
example is used to illustrate the effectiveness of the proposed
PSO algorithm.

II. THE TRI-LEVEL PROGRAMMING PROBLEM AND RELATED

THEORETICAL PROPERTIES

In this section, we will propose the tri-level programming
problem and discuss related theoretical properties.

A. The Tri-level Programming Problem and Solution

Concepts

The general tri-level programming problem presented by
Faísca, et al. [13] is defined as follows.

Definition 1 [13] For
pRXx  , qRYy  , rRZz  , a

general tri-level programming problem is defined as:

),,(min 1 zyxf
Xx

 (1st level)

s.t. ,0),,(1 zyxg

 where y, z solve

),,(min 2 zyxf
Yy

 (2nd level) (1)

 s.t. ,0),,(2 zyxg

 where z solves

),,(min 3 zyxf
Zz

 (3rd level)

 s.t. ,0),,(3 zyxg

where x, y, z are the decision variables of the three levels

respectively; RRRRfff rqp :,, 321 are the objective

functions of the three levels respectively;

3,2,1,:  iRRRRg ikrqp
i are the constraint conditions

of the three levels respectively.

To find an optimal solution (also called a Stackelberg
solution) for the tri-level programming problem (1), relevant
solution concepts are proposed as follows based on the nested
hierarchical structure of multilevel programming and the
existing research on bi-level programming.

Definition 2

1) The constraint region of the tri-level programming problem:

}.3,2,1,0),,(:),,{( izyxgZYXzyxS i

2) The feasible set of the second level for each fixed x:

}.3,2,0),,(:),{()( izyxgZYzyxS i

3) The feasible set of the third level for each fixed (x, y):

}.0),,(:{),(3  zyxgZzyxS

4) The rational reaction set of the third level:

)]}.,(:),,(min[arg:{),(3 yxSzzyxfzZzyxP 

4) The rational reaction set of the second level:

),(),(:),,(min[arg),(:),{()(2 xSzyzyxfzyZYzyxP 

)]}.,(yxPz

5) The inducible region of the tri-level programming problem:

)}.(),(,),,(:),,{(xPzySzyxzyxIR 

6) The optimal solution set of the tri-level programming
problem:

]}.),,(:),,(min[arg),,(:),,{(1 IRzyxzyxfzyxzyxOS 

B. Related Theoretical Properties

For the sake of developing an efficient algorithm to solve
the tri-level programming problem (1), we now turn our
attention to the geometry of the solution space and related
theoretical properties. To ensure the problem (1) is well posed,
it is common to make the following assumptions based on
Definition 2.

Assumption 1 321321 ,,,,, gggfff are continuous functions,

whereas 32 , ff , 32 , gg are continuously differentiable.

Assumption 2 3f is strictly convex in z for),(yxSz where

S(x, y) is a compact convex set, while 2f is strictly convex in

(y, z) for)(),(xSzy  where S(x) is a compact convex set.

Assumption 3 1f is continuous convex in x, y, and z.

Under the assumptions 1 and 2, the rational reaction sets of
the third level and the second level P(x, y) and P(x) are point-
to-point maps and closed, which implies that IR is compact.
Thus, under the assumption 3 solving the tri-level
programming problem (1) is equivalent to optimizing the

leader's continuous function 1f over the compact set IR. It is

well known that the solution to such a problem is guaranteed
to exist.

It is noticeable that, if the third-level problem is convex
parametric programming problem that satisfies the
Manasarian-Fromowitz constraint qualification (MFCQ) for
each fixed (x, y) [24, 25], the third-level problem is equivalent
to the following Kuhn-Tucker conditions (2-5):

),,,(),,(),,,(33 zyxguzyxfuzyxL zzz  (2)

,0),,(3 zyxug (3)

,0),,(3 zyxg (4)

,0u (5)

where),,(),,(),,,(33 zyxugzyxfuzyxL  is the Lagrangian

function of the third level,),,,(uzyxLz denotes the gradient

of the function),,,(uzyxL with respect to z, and u is the

vector of Lagrangian multipliers.

Theorem 1 [25] A necessary and sufficient condition that

)(),(xPzy  is that there exists the row vector u such that (x,

y, z, u) satisfies the Kuhn-Tucker conditions (2-5).

Based on Theorem 1, the tri-level programming problem
(1) can be transformed into the bi-level programming problem
(6) by replacing the third-level problem with the Kuhn-Tucker
conditions (2-5).

),,(min 1 zyxf
x

 (1st level)

s.t. ,0),,(1 zyxg

 where y, z solve

),,(min 2
,,

zyxf
uzy

 (2nd level) (6)

 s.t. ,0),,(2 zyxg

 ,0),,(),,(33  zyxguzyxf zz

 ,0),,(3 zyxug

 ,0),,(3 zyxg

 .0u

Therefore, we have the following theorem.

Theorem 2 (x, y, z) solves the tri-level programming problem
(1) if and only if (x, y, z, u) solves the bi-level programming
problem (6).

In this study, we will develop a PSO algorithm to find a
solution (x, y, z) for the tri-level programming problem (1)
based on Theorems 1 and 2.

III. THE PARTICLE SWARM OPTIMIZATION ALGORITHM

Particle swarm optimization (PSO) is a category of
population-based heuristic algorithm that is motivated by the
social behavior of organisms such as fish schooling and bird
flocking. The population of PSO is known as swarm, while
each particle in the swarm is termed particle. In a swarm with
the size N, the position vector of each particle with index

),,2,1(Nii  is denoted as),,(t
i

t
i

t
i

t
i zyxX  at iteration t,

which represents a potential solution to the problem (1). For
the sake of convenient discussion, we let

),,(),,(321
t
i

t
i

t
i

t
i

t
i

t
i

t
i xxxzyxX  . At iteration t, each particle i

moves from
t
iX to

1t
iX in the search space at a velocity

),,(1
3

1
2

1
1

1   t
i

t
i

t
i

t
i vvvV along each dimension. Each particle

keeps track of its coordinates in hyperspace which are
associated with the best solution (fitness), called pbest

(),,(321 iiii pppp ), it has achieved so far; while the PSO

algorithm is divided into two versions, respectively known as
the GBEST version and the LBEST version, due to different
definitions of the global best solution [26]. In the GBEST
version, the particle swarm optimizer keeps track of the

overall best value, called gbest (),,(321 gggg pppp ), and its

location obtained thus far by any particle in the population,
known as the global neighborhood. For the LBEST version,
particles have information only of their own and their nearest
array neighbors’ best within a local topological neighborhood,
rather than that of the entire group. However, in either PSO
version, the PSO concept always consists of, at each iteration,
an aggregated acceleration of each particle towards its pbest
and gbest position. In this paper, the GBEST version of PSO is
followed, and detailed procedures for solving the problem (1)
will be developed in this section based on Theorems 1 and 2.

1) Initial population

In an initial population of particles with the number N,

each particle),,2,1(Nii  can be represented

as),,(),,(0
3

0
2

0
1

0000
iiiiiii xxxzyxX  . As an initial population is

randomly constructed for the PSO algorithm, we propose a
random method to construct an initial population with the size
N.

First, we randomly generate the required number of the

first level decision variables 0
ix),,2,1(Ni  . Second, we

solve the following problem (7) under 0
ixx  using the branch

and bound algorithm [24] or interior point method (in Matlab)

and obtain the corresponding solution),,(000
iii uzy . In this

way, we complete the construction of initial population and

),,(),,(0
3

0
2

0
1

0000
iiiiiii xxxzyxX  .

),,(min 2
,,

zyxf
uzy

 s.t. ,0),,(2 zyxg

 ,0),,(),,(33  zyxguzyxf zz (7)

 ,0),,(3 zyxug

 ,0),,(3 zyxg

 .0u

Note that some particles of the initial population may
occur outside the constraint region S although the constraint
region S is a convex set, but the particles will be tugged to
return towards the constraint region S at following iterations if
there exist better solutions in S [26]; this is an advantage of the
PSO algorithm in constructing the initial population.

2) The updating rules of particles

In the PSO algorithm, each particle i moves toward

),,(),,(1
3

1
2

1
1

1111   t
i

t
i

t
i

t
i

t
i

t
i

t
i xxxzyxX in the search space

at a velocity),,(1
3

1
2

1
1

1   t
i

t
i

t
i

t
i vvvV at each iteration t. In this

paper, the velocity and position of each particle i are updated
as follows for Nij ,,2,1,3,2,1  based on related

definitions proposed by Shi and Eberhart [27]:

)()(2211
1 t

ij
t
gj

t
ij

t
ij

t
ij

t
ij xprcxprcwvv 

, (8)

11   t
ij

t
ij

t
ij vxx . (9)

We now determine the selection of parameters involved in
the formula (10). For the updating velocity, there are usually

maximum and minimum velocity levels maxv and minv . If the

current velocity max
1 vvt

ij 
, we set max

1 vvt
ij 

; while

min
1 vvt

ij 
 if min

1 vvt
ij 

. In the beginning, we set max
0 vvij  .

w is inertia weight, which controls the impact of the

previous velocities on the current velocity. The inclusion of
the inertia weight involves two definitions proposed by Shi
and Eberhart [27]: a fixed constant and a decreasing function
with time. In our PSO algorithm, we use the latter to define
the inertia weight, because large inertial weight can be used to
possess more exploitation ability at the beginning to find a
good seed while it is reduced for better local exploitation later
on in the search [27]. The inertia weight is represented as:

t
Iter

ww
ww 




max_

minmax
max , (10)

where maxw and minw are the upper and lower bounds on the

inertia weight, which are determined by the practical problem;
Iter_max is the maximum number of PSO iterations while t
represents the current iteration number.

1c and 2c are known as learning factors or acceleration

coefficients, which control the maximum step size that the

particle can do. A recommended choice for constant 1c and

2c is integer 2 as proposed by Kennedy and Eberhart [20].

1r and 2r are uniform random numbers between 0 and 1.

3) Fitness evaluation

For each particle i at the iteration t),,(t
i

t
i

t
i

t
i zyxX  , solve

the problem (7) under
t
ixx  using the branch and bound

algorithm [24] or interior point method (in Matlab) and obtain

the solution),,,( uzyxt
i .

If the solution Szyxt
i ),,(, update ),,(t

i
t
i

t
i

t
i zyxX

),,( zyxt
i . The pbest solution is ),,(321 iiii pppp

),,(t
i

t
i

t
i zyx , if),,(),,(32111 iii

t
i

t
i

t
i pppfzyxf  where we set

),,(),,(000
321 iiiiiii zyxpppp  and ),,(000

1 iii zyxf at

the beginning. The global best solution gbest of the swarm at

the iteration t is),,(321 gggg pppp  where

},,2,1),,,(min{),,(32113211 Nipppfpppf iiiggg  .

4) Termination criterion

The PSO algorithm will be terminated after a maximum
number of iterations Iter_max or with achieving a maximum
CPU time.

5) Computational procedures of the PSO algorithm

Based on the theoretical basis proposed above, we will
present the complete computational procedures of the PSO
algorithm for solving the tri-level programming problem (1).

Step 1: Initialization.

a) Construct the population size N and generate the initial

population of particles NizyxX iiii ,,2,1),,,(0000  by

solving the problem (7);

b) Initialize the pbest solution as ),,(321 iiii pppp

),,(000
iii zyx and the fitness ),,(000

1 iii zyxf ;

c) Set the maximum and minimum velocity levels maxv

and minv , and initialize max
0 vvij  ;

d) Set the upper and lower bounds on the inertia weight

maxw and minw , acceleration coefficients 1c and 2c , and the

maximum iteration number Iter_max;

e) Set the current iteration number t=1 and go to Step 2.

Step 2: Compute the fitness value and update the pbest
solution of each particle. Set i=1 and go to Step 2.1.

Step 2.1: Under
t
ixx  , solve the problem (7) using the

branch and bound algorithm or interior point method (in

Matlab) and obtain the solution),,,( uzyxt
i . Go to Step

2.2.

Step 2.2: If the solution Szyxt
i ),,(, update

),,(),,( zyxzyxX t
i

t
i

t
i

t
i

t
i . Go to Step 2.3.

Step 2.3: If),,(),,(32111 iii
t
i

t
i

t
i pppfzyxf  ,

),,(321 iiii pppp),,(t
i

t
i

t
i zyx . If i<N, set i=i+1 and go to

Step 2.1; otherwise, go to Step 3.

Step 3: Update the gbest solution. Set),,(321 gggg pppp 

where },,2,1),,,(min{),,(32113211 Nipppfpppf iiiggg  .

Go to Step 4.

Step 4: Termination criterion. If t<Iter_max, go to Step 5;

otherwise, stop and),,(321 gggg pppp  is a solution for the

tri-level programming problem (1).

Step 5: Update the inertia weight, and the velocity and the
position of each particle, respectively by the formulas (8), (9)

and (10). If the current velocity max
1 vvt

ij 
, set max

1 vvt
ij 

;

while min
1 vvt

ij 
 if min

1 vvt
ij 

. Set t=t+1 and go to Step 2.

IV. A NUMERICAL EXAMPLE

In this section, we will first illustrate how the proposed
PSO algorithm works through solving a nonlinear tri-level
programming problem.

Fig.1. The converged curve of the leader's objective value.

Fig.2. The objective values of the 2nd level (f2) and the 3rd level (f3).

Consider the following nonlinear tri-level programming
problem:

)5(),,(min 22
1  zzyxzyxf

x
 (1st level)

s.t. ,10 zyx

 ,150  x

 where y, z solve

 22
2)10()(),,(min 


zyxzyxf

Yy
 (2nd level) (11)

 s.t. ,0)20(22  yx

 ,022  zy

 ,180  y

 where z solves

 22
3)302(),,(min  zyxzyxf

z
 (3rd level)

 s.t. ,20 zyx

 .012-2 zz

TABLE I. PARAMETERS EMPLOYED IN THE PSO ALGORITHM

N vmax vmin wmax wmin
c1 c2 Iter_max

20 1 -1 1.0 0.01 2.0 2.0 30

While the existing solution approaches cannot be used to

solve the nonlinear tri-level programming problem, we will
use the proposed PSO algorithm to find a solution for the
problem. Based on the PSO procedures developed in Section
III, related parameters are initialized in TABLE I.

The computational procedures proposed in Section III are
implemented by Matlab R2014a. The experiment results imply
that we can obtain a converged solution under the parameters
shown in TABLE I. The converged curve of the 1st level

(leader)'s objective value),,(1 zyxf is shown in Fig. 1.

It can be seen from Fig.1 that the leader's objective value

has converged to 9583.98),,(1 zyxf since the 20th iteration,

while the objective values of the 2nd level and the 3rd level

converge to 3673.175),,(2 zyxf and 6383.110),,(3 zyxf ,

as shown in Fig. 2. In this way, we can obtain a converged

gbest solution)0827.7,0827.7,8346.5(),,(321  gggg pppp

for the nonlinear tri-level programming problem (11). Clearly,
the PSO algorithm provides a practical way to solve tri-level
programming problems.

V. CONCLUSIONS AND FURTHER STUDY

This study developed a PSO-based intelligent algorithm to
solve tri-level programming problems. First, we proposed the
general tri-level programming problem and discussed related
theoretical properties. Second, we presented the procedures of
the PSO algorithm, based on the Kuhn-Tucker conditions, for
solving tri-level programming problems. Lastly, we illustrated
how the PSO algorithm works through a numerical example.
The computational results show that the PSO algorithm
provides a practical way to solve tri-level programming
problems involve linear and nonlinear versions. In the future,
we will extend the PSO algorithm to solve large-scale tri-level
programming problems in applications and explore the
execution efficiency of the algorithm.

Acknowledgment
This work is supported by the Australian Research Council

(ARC) under discovery grant DP140101366 and the National
High Technology Research and Development Program of
China (NO. 2013AA040402).

References
[1] L. Vicente and P. Calamai, "Bilevel and multilevel programming: A

bibliography review," Journal of Global Optimization, vol. 5, pp. 291-
306, 1994.

[2] H. V. Stackelberg, The Theory of Market Economy. Oxford: Oxford
University Press, 1952.

[3] G. Zhang, J. Lu, J. Montero, and Y. Zeng, "Model, Solution concept and
the Kth-best algorithm for linear tri-level programming," Information
Sciences vol. 180, pp. 481-492, 2010.

[4] X. Xu, Z. Meng, and R. Shen, "A tri-level programming model based on
Conditional Value-at-Risk for three-stage supply chain management,"
Computers & Industrial Engineering, vol. 66, pp. 470-475, 2013.

[5] Y. Yao, T. Edmunds, D. Papageorgiou, and R. Alvarez, "Trilevel
optimization in power network defense," IEEE Transactions on Systems,
Man, and Cybernetics, vol. 37, pp. 712-718, 2007.

[6] S. Mitiku, "A multilevel programming approach to decentralized (or
hierarchical) resource allocation systems," Proceedings in Applied
Mathematics and Mechanics, vol. 7, pp. 2060003-2060004, 2007.

[7] S. A. Torabi, M. Ebadian, and R. Tanha, "Fuzzy hierarchical production
planning (with a case study)," Fuzzy Sets and Systems, vol. 161, pp.
1511-1529, 2010.

[8] J. F. Bard, "An investigation of the linear three level programming
problem," IEEE Transactions on Systems, Man, and Cybernetics, vol.
SMC-14, pp. 711-717, 1984.

[9] D. J. White, "Penalty function approach to linear trilevel programming,"
Journal of Optimization Theory and Applications, vol. 93, pp. 183-197,
1997.

[10] G. Anandalingam, "A mathematical programming model of
decentralized multi-level systems" Journal of Operational Research
Society, vol. 39, pp. 1021-1033, 1988.

[11] S. Sinha, "A comment on Anandalingam (1988). A mathematical
programming model of decentralized multi-level systems. Journal of
Operational Research Society, vol. 52, pp. 594-596, 2001.

[12] G. Z. Ruan, S. Y. Wang, Y. Yamamoto, and S. S. Zhu, "Optimality
Conditions and Geometric Properties of a Linear Multilevel
Programming Problem with Dominated Objective Functions," Journal of
Optimization Theory and Applications, vol. 123, pp. 409-429, 2004.

[13] N. P. Faísca, P. M. Saraiva, B. Rustem, and E. N. Pistikopoulos, "A
multi-parametric programming approach for multilevel hierarchical and
decentralised optimisation problems," Computational Management
Science, vol. 6, pp. 377-397, 2007.

[14] N. Faísca, V. Dua, B. Rustem, P. Saraiva, and E. Pistikopoulos,
"Parametric global optimisation for bilevel programming," Journal of
Global Optimization, vol. 38, pp. 609-623, 2007.

[15] Y.-J. Lai, "Hierarchical optimization: A satisfactory solution," Fuzzy
Sets and Systems, vol. 77, pp. 321-335, 1996.

[16] H.-S. Shih, Y.-J. Lai, and E. S. Lee, "Fuzzy approach for multi-level
programming problems," Computers & Operations Research, vol. 23, pp.
73-91, 1996.

[17] S. Sinha, "Fuzzy programming approach to multi-level programming
problems," Fuzzy Sets and Systems, vol. 136, pp. 189-202, 2003.

[18] S. Sinha, "Fuzzy mathematical programming applied to multi-level
programming problems," Computers & Operations Research, vol. 30, pp.
1259-1268, 2003.

[19] Pramanik and T. K. Roy, "Fuzzy goal programming approach to
multilevel programming problems," European Journal of Operational
Research, vol. 176, pp. 1151-1166, 2007.

[20] J. Kennedy and R. Eberhart, "Particle swarm optimization," in
Proceedings of IEEE International Conference on Neural Networks,
vol.4, pp. 1942-1948, 1995.

[21] R. J. Kuo and C. C. Huang, "Application of particle swarm optimization
algorithm for solving bi-level linear programming problem," Computers
& Mathematics with Applications, vol. 58, pp. 678-685, 2009.

[22] Y. Gao, G. Zhang, J. Lu, and H. M. Wee, "Particle swarm optimization
for bi-level pricing problems in supply chains," Journal of Global
Optimization, vol. 51, pp. 245-254, 2011.

[23] T. Zhang, T. Hu, X. Guo, Z. Chen, and Y. Zheng, "Solving high
dimensional bilevel multiobjective programming problem using a hybrid
particle swarm optimization algorithm with crossover operator,"
Knowledge-Based Systems, vol. 53, pp. 13-19, 2013.

[24] J. F. Bard, Practical Bilevel Optimization: Algorithms and Applications.
Dordrecht, The Netherlands: Kluwer Academic Publishers, 1998.

[25] S. Dempe, Foundations of Bilevel Programming. Dordrecht, The
Netherlands: Kluwer Academic Publishers, 2002.

[26] R. Eberhart and J. Kennedy, "A new optimizer using particle swarm
theory," in Proceedings of the Sixth International Symposium on Micro
Machine and Human Science, pp. 39-43, 1995.

[27] C. Shi and R. Eberhart, "A modified particle swarm optimizer," IEEE
World Congress on Computational Intelligence, pp. 69-73, 1998.

