
Improving Problem Reduction for 0–1 Multidimensional
Knapsack Problems with Valid Inequalities

Hanyu Gu∗

School of Mathematical and Physical Sciences, University of Technology Sydney
15 Broadway Ultimo NSW 2007, Australia

Abstract

This paper investigates the problem reduction heuristic for the Multidimensional

Knapsack Problem (MKP). The MKP formulation is first strengthened by the

Global Lifted Cover Inequalities (GLCI) using the cutting plane approach. The

dynamic core problem heuristic is then applied to find good solutions. The

GLCI is described in the general lifting framework and several variants are

introduced. A two-level core problem heuristic is also proposed to tackle large

instances. Computational experiments were carried out on classic benchmark

problems to demonstrate the effectiveness of this new method.

Keywords: multidimensional knapsack problem, core problem, global lifted

cover inequalities, heuristic algorithm

1. Introduction

The Multidimensional Knapsack Problem (MKP) is an extension of the clas-

sic Knapsack Problem (KP) with more than one knapsack constraints. Given m

knapsacks with capacities bi, i = 1, . . . ,m, and n items which require resource

consumption of ai,j units in the i-th knapsack (i = 1, . . . ,m), and yield cj units

of profit upon inclusion for item j, j = 1, . . . , n, the goal is to find a subset

of items that yields maximum profit, denoted by z∗, without exceeding the

knapsack capacities. The MKP can be defined by the following Integer Linear

∗Corresponding author: +61 2 9514 2281
Email address: hanyu.gu@uts.edu.au (Hanyu Gu)

Preprint submitted to Computers & Operations Research December 9, 2015

Programming (ILP):

(MKP) z∗ = max{cTx : Ax ≤ b, x ∈ {0, 1}n} (1)

where c = [c1, c2, . . . , cn]T is an n-dimensional vector of profits, x = [x1, x2, . . . , xn]T

is an n-dimensional vector of 0-1 decision variables indicating whether an item is

included or not, A = [ai,j], i = 1, 2, . . . ,m, j = 1, 2, . . . , n is an m×n coefficient

matrix of resource requirements, and b = [b1, b2, . . . , bm]T is an m-dimensional5

vector of resource capacities. It is further assumed that all parameters are

non-negative integers.

The MKP is a well-studied, strongly NP-hard combinatorial optimisation

problem, and has found applications in many practical areas involving resource

allocation. An early review of the MKP was given by [1], and a comprehensive10

overview of practical and theoretical results can be found in the monograph

on knapsack problems [2]. Excellent reviews on solution methods and practical

applications can be found in [3] [4]. In spite of the tremendous progress made by

commercial ILP solvers, the methods currently yielding the best results, at least

for commonly used benchmark instances in [5], are mainly from the specialised15

algorithms [6][7][8][9][10]. The main drawback of these approaches is, however,

the huge running time for the large instances in the OR-Library [11].

Among the fast heuristics aiming for satisfactory solutions, the core prob-

lem based approach has been shown to be very competitive for its simplicity

and efficiency. The core concept was first presented for the classical knapsack20

problem in [12], and extended later for MKP in [13]. The main idea is to

reduce the original problem to a core of items for which it is hard to decide

whether or not they will occur in an optimal solution, whereas all variables

corresponding to items outside the core are fixed to their presumably optimal

values. The core problem based heuristics typically determine an approximate25

core by calculating some simple efficiency measures for each variable. Various

efficiency measures were proposed and compared in [14] in terms of core size

and accuracy. It concluded that the core problem heuristic, especially with the

efficiency measures exploiting the dual values of the Linear Programming (LP)

2

relaxation of MKP, can yield highly competitive results in significantly shorter30

run-times. Recently a new efficiency measure based on the reduced cost of the

LP relaxation of MKP was proposed in [15]. Instead of fixed core sizes com-

monly used in previous literature, this novel approach can adaptively change

core size for each instance. Comprehensive experimentation demonstrates that

this approach performs consistently well on well-designed sets of test cases.35

Since the LP relaxation plays an important role in the most successful core

problem based heuristics for MKP, this inspires us to investigate in this paper the

effectiveness of strengthening the LP relaxation of MKP with valid inequalities,

in the hope for better performance on the hard instances. Although cuts are

commonly used in the branch and cut algorithms for general ILP solvers, our40

application allows for classes of cuts with more expensive computational costs.

Lifted Cover Inequalities (LCI), among other valid inequalities for 0-1 knap-

sack polytopes, have proven useful when tackling hard 0-1 Integer Programming

problems including the MKP [16][17]. Recently the Global LCI (GLCI) [18]

was proposed for MKP to take into consideration multiple knapsack constraints45

simultaneously by solving LPs to lift the coefficients of a valid inequality. Al-

though the GLCI may not even define a face of MKP, it can still be stronger

than LCI, especially for MKP with many knapsack constraints. Nevertheless

the GLCI was not evaluated for the effectiveness in the branch and bound algo-

rithm. In this paper we apply the GLCI and its variants to MKP, and test the50

adaptive problem reduction heuristic in [15] on hard instances of MKP.

The paper is organised as follows. We first describe the problem reduc-

tion method introduced in [15] in Section 2. The rationale for applying valid

inequalities is also discussed. The GLCI and some variants are described in

the framework of general lifting principles [19] in Section 3. A two-level core55

problem heuristic is proposed in Section 4 to tackle large MKP instances. Com-

putational results are presented in Section 5. The conclusion is given in Section

6.

3

2. Problem Reduction Heuristic Strengthened by Valid Inequalities

In the core problem reduction heuristic, an efficiency measure e is employed

to rearrange the items into the order (i1, i2, . . . , in), so that

e(ik) ≥ e(ik+1) (2)

The items with higher efficiency values are regarded to be more likely included

into the knapsacks, and the items with lower efficiency values are regarded to

be more likely excluded from the knapsacks. An interval [ae, be] is therefore

determined so that xik is fixed to 1 if ik ∈ F 1
e = {ik|0 < k < ae}, and xik

is fixed to 0 if ik ∈ F 0
e = {ik|n ≥ k > be}. The remaining undecided items

Ce = {ik|ae ≤ k ≤ be} form the reduced problem defined as

MKPC max z =
∑
j∈Ce

cjxj + z̃

s. t.
∑
j∈Ce

aijxj ≤ b̃i, i = 1, . . . ,m

xj ∈ {0, 1}, j ∈ Ce

with z̃ =
∑
j∈F 1

e
cj and b̃i = bi −

∑
j∈F 1

e
aij , i = 1, . . . ,m.60

The Ce with the smallest cardinality that leads to the optimal solution to

the original MKP by solving the reduced MKPC is called the core, and the

reduced MKPC is called the core problem accordingly [14].

The exact identification of the core problem requires solving the MKP to

optimality. In practice only an approximate core is calculated to include hope-65

fully the actual unknown core with high probability. The core size is a crucial

parameter in most core problem heuristics, which is used to balance the ac-

curacy of the approximate core and the computational effort required to solve

the core problem. It is typically just a predefined constant in the core based

heuristics [20]. Some empirical rules are also suggested in the literature which70

normally only depends on the number of items [14].

Recently a novel core based heuristic [15] is proposed which is based on the

Lagrangian Relaxation (LR) method. The Lagrangian relaxation of MKP can

4

be written as

LR(λ) = max{(c− λTA)Tx+ λT b : x ∈ {0, 1}n}

where λ ∈ Rm+ are the Lagrangian multipliers associated with the relaxed knap-

sack constraints. LR(λ) provides an upper bound for the MKP problem, and

can be further strengthened by solving the Lagrangian dual problem

LD = min
λ
LR(λ) (3)

which is a non-smooth convex optimisation problem, and can be solved by the

subgradient algorithm [21].

Let λ̄ be the optimal multipliers to LD. The modified profit of each item in

LR(λ̄) is

ri = ci − λ̄Tai, i = 1, . . . , n

where ai is the i-th column of A. The set of optimal solutions of LR(λ̄) is

S = {x ∈ {0, 1}n : (2xi − 1)ri ≥ 0, i = 1, . . . , n}

Based on the observation that xi tends to be 1 in the optimal solution of

MKP if the modified profit ri takes large positive values, while it tends to be 0

if it takes large negative values, the efficiency measure is chosen as

e(i) = ri, i = 1, . . . , n (4)

The approximate core is identified as follows. Let rmax = max{|ri| : i =

1, . . . , n}. Given ε ∈ R+, the core interval is defined as

ae(ε) = max{k|rik ≥ εrmax}+ 1, be(ε) = min{k| − rik ≥ εrmax} − 1 (5)

Therefore the set of variables fixed to 1 is

F 1
e (ε) = {ik|0 < k < ae(ε)} = {k|rk ≥ εrmax}, (6)

the set of core variables is

Ce(ε) = {ik|ae ≤ k ≤ be(ε)} = {i : |ri| < εrmax}, (7)

5

and the set of variables fixed to 0 is

F 0
e (ε) = {ik|n ≥ k > be} = {k| − rk ≥ εrmax} (8)

One unique feature of this core identification approach is that the core size

is not pre-determined and can dynamically adapt to the characteristics of each75

instance. This Dynamically reduced Core Heuristic (DCH) has been comprehen-

sively tested [15] on problems featuring varied coefficient correlation structures

and constraint slackness levels. It was found that, by setting ε = 0.15, DCH

compared well with other problem reduction heuristics in terms of solution qual-

ity and estimated core problem sizes, and showed robust effectiveness as problem80

difficulty increased.

It is well-known [22] that the set of optimal multipliers of LD coincides with

the set of optimal solutions of the dual of the LP relaxation of MKP

(MKP-LP) z̄ = max{cTx : Ax ≤ b, x ∈ [0, 1]n} (9)

Accordingly, the efficiency measure (4) is just the reduced cost of each item,

which can be efficiently calculated even for large problems using LP solvers.

Since the LP relaxation can be weak for hard problems, ε may have to be

large that results in a large core. Intuitively, if the LP can be strengthened by85

valid inequalities, the identification of the core may be more accurate. Here we

will consider the ideal case that the polytope of MKP-LP, P = {x ∈ [0, 1]n :

Ax ≤ b}, is the complete description of the convex hull of the MKP polytope

PI = Conv{x ∈ {0, 1}n : Ax ≤ b}.

Theorem 1. If P = PI , the core problem defined by DCH according to (6),(7),(8)90

solves the original MKP problem for any εrmax > 0.

Proof. Given the optimal multipliers λ̄, we can define, from the definition of

LR(λ̄) and LD, a valid inequality of [0, 1]n

(c− λ̄TA)Tx+ λ̄T b ≤ LD (10)

Then we have

Conv(S) = {x ∈ [0, 1]n|(c− λ̄TA)Tx+ λ̄T b = LD} (11)

6

which shows that Conv(S) is a face of [0, 1]n defined by (10).

Let L be the face of P defined by the set of optimal LP solutions. Since

P = PI , all the extreme points of L are binary vectors. It is known from [23][24]

that there exists x̂ ∈ Conv(S) ∩ L. Therefore (10) also defines a proper face of95

L, which has the set of extreme points O ⊂ S. This means that at least one

of the optimal solutions to LR(λ̄) is the optimal solution of MKP. Since every

member in S is a feasible solution to the core problem with εrmax > 0, the core

problem solves the original MKP problem .

Based on the insight from Theorem 1, we designed the Cut strengthened100

Core problem Heuristic (CCH) as detailed in Algorithm 1. First, the cutting

plane approach [19] is employed to strengthen the LP relaxation. By solving the

MKP-LP at the k-th iteration, an optimal continuous solution xk is obtained.

Then an attempt is made to generate a cut (valid inequality) that separates xk

from the convex hull of MKP polytope. If successful, the cut is added to MKP-105

LP and the process is repeated. The equivalence of optimisation and separation

[25] implies that it is strongly NP-hard to derive a complete description of the

0-1 MKP polytope. In practice the cut generation is usually terminated when

it enters the tailing-off phase. Hopefully, the strengthened LP can improve the

accuracy of the core identification, which leads to good solutions of MKP.110

Algorithm 1: Cut strengthened Core problem Heuristic (CCH)

Input: MKP, ε

Output: a feasible solution of MKP

k = 1;1

repeat2

solve the cut strengthened MKP-LP and the optimal solution is xk;3

generate cuts for xk with separation algorithms;4

if no cut then break;5

add cuts to MKP;6

until enough cuts or time limit reached ;7

Identify the core problem for the strengthened MKP according to DCH using ε;8

solve the reduced problem MKPC and return the solution for MKP;9

7

3. Variants of Global LCI

In this section we describe the separation algorithm for GLCI [18], which has

been shown to be effective for hard benchmark problems of MKP. Some variants115

of GLCI are also introduced to generate stronger valid inequalities. Similar to

LCI, GLCI applies lifting procedures on the cover inequalities to generate valid

inequalities of the form

∑
j∈C\D

xj +
∑

j∈N\C

αjxj +
∑
j∈D

βjxj ≤ |C \D|+
∑
j∈D

βj − 1, (12)

where C ⊆ N = {1, . . . , n} is a cover of a single knapsack constraint in the MKP,

αj , j ∈ N \ C, is computed from the uplifting procedure, and βj , j ∈ D ⊂ C,120

is computed from the downlifting procedure. C is a cover of the i-th knapsack

constraint of MKP if
∑
j∈C aij > bi. C is minimal if no subset of C is also a

cover.

The details of the GLCI Separation Algorithm (GSA) are given in Algorithm

2. The items are sorted in the non-increasing order of their values in the current125

MKP-LP solution x̄ in step 1. From step 2 to step 7 a minimal cover C is

identified for the current row i along with the set of variables for downlifting

D, and the sets of variables for uplifting, i.e., L1, Lf and L0. These steps are

similar to the LCI separation heuristic in [16]. In step 8 the variables in L1∪Lf
are uplifted sequentially according to the general uplifting procedure [19]. Let130

S(U, V) = PI ∩ {x ∈ {0, 1}n|xj = 0, ∀j ∈ N \ (U ∪ V), xj = 1, ∀j ∈ V }.

Proposition 1. Given
∑
j∈U πjxj ≤ π0 is valid for S(U, V). For i ∈ N \ (U ∪

V), αixi +
∑
j∈U πjxj ≤ π0 is valid for S(U ∪ {i}, V) for any αi satisfying αi ≤ π0 − ζ if S(U, V ∪ {i}) 6= ∅

αi <∞ otherwise
(13)

where

ζ = max{
∑
j∈U

πjxj |xi = 1, x ∈ S(U ∪ {i}, V)} (14)

8

In step 8, starting from the valid cover inequality for S(C \D,D)∑
j∈C\D

xj ≤ |C \D| − 1, (15)

the variables in L1 ∪Lf are sequentially uplifted to obtain a valid inequality for

S((C \D) ∪ L1 ∪ Lf , D), which is∑
j∈C\D

xj +
∑

j∈L1∪Lf

αjxj ≤ |C \D| − 1. (16)

If the optimisation problem in equation (14) becomes infeasible when lifting xj ,

we simply set αj = |C \D|.

The violation of the GLCI inequality (12) can be calculated as

v =
∑

j∈C\D

x̄j +
∑

j∈L1∪Lf∪L0

αj x̄j +
∑
j∈D

βj x̄j − |C \D| −
∑
j∈D

βj + 1

=
∑

j∈C\D

x̄j +
∑

j∈L1∪Lf

αj x̄j − |C \D|+ 1 (17)

Since downlifting variables in D and uplifting variables in L0 do not contribute135

in the violation, we can check if the GLCI inequality (12) will be a cut in step 9.

If a cut can be produced, the variables in D are downlifted in step 10 according

to the general downlifting procedure [19].

Proposition 2. Given
∑
j∈U πjxj ≤ π0 is valid for S(U, V). For i ∈ V , if

S(U ∪ {i}, V \ {i}) 6= ∅, then γixi +
∑
j∈U πjxj ≤ π0 + γi is valid for S(U ∪

{i}, V \ {i}) for any γi ≥ ζ − π0, where

ζ = max{
∑
j∈U

πjxj |xi = 0, x ∈ S(U ∪ {i}, V \ {i})} (18)

Starting from (16), the variables in D are sequentially downlifted resulting

in a valid inequality for S((C ∪ L1 ∪ Lf , ∅), which is∑
j∈C\D

xj +
∑

j∈L1∪Lf

αjxj +
∑
j∈D

βjxj ≤ |C \D|+
∑
j∈D

βj − 1. (19)

Next, the variables in L0 are uplifted according to Proposition 1 in step 11 to

9

derive the GLCI in (12).140

Algorithm 2: General GLCI Separation Algorithm (GSA)

Input: Given the current LP solution x̄ of the strengthened MKP

Output: cuts for MKP separating x̄

sort the items in the order such that x̄sk ≥ x̄sk+1 , k = 1, . . . , n− 1;1

for i from 1 to m do2

find u that
∑u

k=1 ai,sk > bi and
∑u−1

k=1 ai,sk ≤ bi;3

C = {s1, . . . , su}, L1 = ∅;4

for k from u to 1 do5

if
∑

j∈C\(L1∪{sk})
ai,j > bi then L1 = L1 ∪ {sk};6

let C = C \ L1, D = {j|x̄j = 1, j ∈ C}, Lf = {j|0 < x̄j < 1, j /∈ C ∪ L1},7

and L0 = {j|x̄j = 0, j ∈ N};

calculate uplifting coefficient αj in (12) for j ∈ L1 ∪ Lf sequentially in the8

non-increasing order of x̄j ;

if constraint violation v > 0 according to (17) then9

calculate downlifting coefficient βj in (12) for j ∈ D;10

calculate uplifting coefficient αj in (12) for j ∈ L0;11

store the cut;12

return stored cuts;13

Calculating ζ in Proposition 1 and 2 exactly can be very expensive because a

sequence of ILPs need to be solved. The original GLCI [18] instead takes the LP

relaxation values of (14) and (18) to significantly reduce the computation time145

for lifting. We denote the GSA with this approximation scheme by GSA-LP.

Since our CCH can accommodate more computational burden for cut gen-

eration compared with the branch and bound approach, we can employ tighter

approximation for the calculation of ζ. Based on the observation from (17)

that only lifting on L1 ∪ Lf may increase the violation of the GLCI cut, we150

can calculate the uplifting coefficients in step 8 of Algorithm 2 exactly, while

approximating the other lifting coefficients with LP values. The GSA with this

approximation scheme is denoted by GSA-IP.

Inspired by the extended cover inequality [26], we also consider the variant

of GLCI that the lifted coefficients can be either 1 or 0.155

10

Proposition 3. Given
∑
j∈U πjxj ≤ π0 is valid for S(U, V), πj ∈ Z, ∀j ∈ U ,

π0 ∈ Z. For i ∈ N \ (U ∪ V), let

B(U, V, i) = {x ∈ {0, 1}n|x ∈ S(U, V ∪ {i}),
∑
j∈U

πjxj ≥ π0} (20)

If S(U ∪ {i}, V) 6= ∅, then αixi +
∑
j∈U πjxj ≤ π0 is valid for S(U ∪ {i}, V),

where αi = 1 if B(U, V, i) = ∅, and 0 otherwise.

Similar to GSA-IP, we can approximate the uplifting coefficients in step 8

of Algorithm 2 by solving the feasibility problem (20), while approximating the

other lifting coefficients with LP values. The GSA with this approximation160

scheme is denoted by GSA-UP1.

If the lifting on j ∈ L1 ∪ Lf fails, i.e., αj = 0, we can record the reason of

failure as the vector of excess capacities u ∈ Zm which is

ui = bi −
∑
j∈N

aijx
∗
j , i = 1, . . . ,m, (21)

where x∗ is the optimal solution to (14) in GSA-IP, or any feasible solution of

(20) in GSA-UP1.

Proposition 4. If lifting on j ∈ L1 ∪ Lf fails in step 8 with the reason u, any

subsequent lifting on v ∈ L1 ∪ Lf will also fail if av ≤ u.165

When lifting v ∈ L1∪Lf , we check av against all the stored reasons of failure

for the current row of MKP.

4. Two-level Core Problem Heuristic

For large MKP problems the GLCI cuts are very weak in terms of closing

the integrality gaps as can be seen in Section 5. The identified core problem is170

also too big to be solved efficiently by an ILP solver. Therefore we propose a

Two-level Core problem Heuristic (TCH) to tackle these problems. At the first

level the core problem is identified by DCH without adding any cuts, and is

denoted by MKPC-1. We then apply CCH on MKPC-1 at the second level to

11

generate a good feasible solution of MKP. The size of the core problem at level175

two is further reduced at the risk of more non-optimal decisions. Hopefully the

added cuts can help to improve the accuracy of the twicely reduced core. The

details of TCH is given in Algorithm 3.

Algorithm 3: Two-level Core problem Heuristic (TCH)

Input: ε1, ε2, MKP

Output: A feasible solution of MKP

Identify the first level core problem MKPC-1 of MKP by DCH using ε1 ;1

solve MKPC-1 using CCH with ε2, and the solution is x̂;2

combine the fixed decisions of MKP-1 with x̂ and return it as a feasible3

solution of MKP;
180

5. Computational Results

We first compare our implementations of GLCI and its variants to evaluate

the performance of the various valid inequalities and separation routine. The

effects of GLCIs on the core reduction heuristics are investigated thereafter. All

experiments are carried out on the widely used Chu and Beasley MKP test set185

in [11], and the Cho test set in [27]. The Chu and Beasley test set contains classes

of randomly generated instances for each combination of n ∈ {100, 250, 500}

items, m ∈ {5, 10, 25} constraints, and tightness ratios α ∈ {0.25, 0.5, 0.75}.

Ten different instances are available for each class, i.e., for each combination

of n, m, and α. The Cho test set also contains classes of randomly generated190

instances for each combination of n ∈ {50, 100, 250} items and m ∈ {5, 10, 30}

constraints. The Cho test set employed a systematic and explicit correlation

induction problem generation scheme. It covers the full range of correlation

values of the correlation structure of MKP, while the Chu and Beasley test set

has a quite narrow correlation range which further reduces as the problem size195

increases [28].

All the algorithms were implemented in C++ and run on a cluster of 2.3GHz

AMD Opteron(tm) Processor 6376. The reduced core problems are solved by

12

the IBM ILOG CPLEX Callable Library version 12.5 with a time limit of 500

seconds. The maximum number of threads for CPLEX is limited to 8.200

5.1. GLCI and its variants

We compare the performance of GSA-LP, GSA-IP and GSA-UP1 in the

cutting plane stage of CCH. The total number of cuts is limited to 100. The

results for the Chu and Beasley test set are reported in Table 1 for test cases

with 100 items, in Table 2 for test cases with 250 items, and in Table 3 for test205

cases with 500 items. The class of test cases is named in the format of m.α.

Each number in the table is an average over the 10 instances of the belonging

class. The columns are explained as follows: z∗ is the best known objective

value for the MKP; z̄ is the objective value of the LP relaxation; ∆D is the

relative integrality gap calculated as 100(z̄−z∗)/z̄%; IK , IG, IIP and I1 are the210

percentage of the integrality gap closed by the GSA-LP implemented in [17],

the GSA-LP implemented in this paper, the GSA-IP and GSA-UP1; Nc is the

number of cuts generated in total; Tv is the total time to generate the cuts in

seconds, but is replaced with “-” if the time is smaller than 0.1 second.

In Table 1 the closed integrality gap by our implementation of GSA-LP, IG,215

is comparable to IK . The results of GSA-LP for n = 250, 500 are new. GSA-LP

is comparable to GSA-IP and GSA-UP1 when m = 5, but becomes inferior in

terms of closed integrality gap when the number of constraints increases.

GSA-UP1 performs similarly to GSA-IP for m = 5, 10, but has noticeable

improvements for m = 30. For example, for the class 30.25 of 100 items, the220

closed integrality gap is improved from 6.49% of GSA-IP to 10.49% of GSA-UP1,

which is much higher than the 2.74% of GSA-LP.

GSA-LP is the fastest and scales well to the largest instances. Surprisingly

the GSA-IP and GSA-UP1 are also computationally efficient when m = 5, 10.

However the computation times increase tremendously when m = 30.225

GSA-IP and GSA-UP1 generate more cuts than GSA-LP when m increases,

and the differences become significant when m = 30. GSA-UP1 generates more

cuts than GSA-IP when m = 30, and this partially explains why GSA-UP1

13

performs the strongest for m = 30.

14

Table 1: Comparison of GLCIs on 100-item instances from Chu and Beasley test set [11]

GSA-LP GSA-IP GSA-UP1

m.α z∗ z̄ ∆D IK IG Nc Tv IIP Nc Tv I1 Nc Tv

5.25 24197.2 24438.4 0.99 7.92 6.99 15.8 - 6.80 16.3 0.4 6.39 15 0.2

5.5 43252.9 43449.5 0.45 6.96 6.11 13 - 6.38 14.4 0.2 6.64 15.4 0.3

5.75 60470.9 60663.8 0.32 5.83 6.50 12.7 - 7.46 12.7 0.2 7.31 13.5 0.3

10.25 22601.9 22960.5 1.56 5.59 6.49 19 - 8.78 37.3 9.1 9.62 36.2 7.7

10.50 42660.6 43000.8 0.79 6.46 6.96 21.8 - 10.3 30 4.5 9.01 25 2.8

10.75 59555.4 59844.2 0.48 3.12 4.18 13.2 - 5.07 14.8 2 6.13 19 1.8

30.25 21660.4 22305.3 2.89 2.74 2.74 15.5 1.1 6.49 73.1 269 10.5 96.1 399

30.50 41440.4 41994.8 1.32 4.89 5.30 33.5 2.3 7.79 90.5 233 10.3 98.6 211

30.75 59201.8 59693.6 0.82 3.9 4.84 28.4 2.5 11.3 86.7 231 13.1 92.2 164

15

Table 2: Comparison of GLCIs on 250-item instances from Chu and Beasley test set [11]

GSA-LP GSA-IP GSA-UP1

m.α z∗ z̄ ∆D IG Nc Tv IIP Nc Tv I1 Nc Tv

5.25 60413.5 60547.41 0.22 2.69 12 - 2.84 13 0.4 2.73 11.5 0.3

5.5 109292.8 109411.8 0.11 3.71 13.5 0.2 4.42 13.2 0.4 4.24 12.8 0.6

5.75 151560.3 151676.5 0.08 3.86 12.4 - 4.32 13.7 0.8 4.25 13.9 0.7

10.25 59021.6 59290.15 0.45 1.72 11.2 0.2 2.72 16.4 3.5 2.93 17.1 3.1

10.50 108729.3 108980.9 0.23 1.22 8.1 0.3 1.78 10.1 1.5 1.81 10 1.1

10.75 151346.2 151560.1 0.14 1.67 11.9 0.4 2.17 14.1 1.9 2.22 14.1 1.7

30.25 56940.6 57554.07 1.07 0.73 3.2 0.6 2.43 59.2 425 4.42 85.4 477

30.50 106712.9 107229.9 0.48 0.94 10.1 2.4 3.03 60.3 259 3.53 57.3 205

30.75 150482.5 150903.7 0.28 1.11 10.6 2.5 3.76 62.4 275 4.50 67.2 258

16

Table 3: Comparison of GLCIs on 500-item instances from Chu and Beasley test set [11]

GSA-LP GSA-IP GSA-UP1

m.α z∗ z̄ ∆D IG Nc Tv IIP Nc Tv I1 Nc Tv

5.25 120630.3 120717 0.07 3.61 12.9 0.5 3.68 13.1 0.9 3.51 12.7 0.7

5.5 219512.7 219595.8 0.04 2.91 11.7 0.4 3.34 13.4 1.2 3.34 13.5 1.2

5.75 302360.9 302435 0.02 2.66 11.7 0.5 2.80 12.3 1 2.80 12.6 1

10.25 118608.8 118835.8 0.19 0.76 5.5 0.4 1.10 7.9 2 1.07 7.6 1.7

10.50 217321.7 217503.8 0.08 0.86 4.9 0.5 1.07 7.2 1.9 1.07 6.9 1.5

10.75 302596.7 302776 0.06 0.67 5.7 0.5 0.98 7.9 2 0.98 8.1 1.4

30.25 115584.8 116184.4 0.52 0.33 1.5 0.9 1.37 42.7 399 1.80 34.2 233

30.50 216237.5 216729.7 0.23 0.45 6.8 5.2 1.05 23.2 158 1.15 22.8 122

30.75 302423.3 302855.6 0.14 0.44 3.7 2.6 1.16 16 105 1.66 23.1 132

17

The results for the Cho test set are reported in Table 4. The closed integrality230

gaps are much higher than those of the Chu and Beasley test set. The three

GLCIs all achieved over 20% closed gap even on the largest class with n = 250

and m = 25. This partly explains why the Cho test set is relatively easier to

solve for CPLEX. GSA-IP outperforms GSA-LP on all the classes except when

n = 50 and m = 5 in terms of closed integrality gaps, which is at the cost of235

much higher CPU time. GSA-UP1 even performs worse than GSA-LP on all

the classes except when n = 100 and m = 5, which is very different from the

observations from the Chu and Beasley test set. GSA-LP is still the fastest and

scales well to the largest instances. Since the Cho test set has the most diverse

correlation structures, it would be practical to use GSA-IP and GSA-UP1 only240

when GSA-LP fails.

18

Table 4: Comparison of GLCIs on the Cho test set [27]

GSA-LP GSA-IP GSA-UP1

n.m z∗ z̄ ∆D IG Nc Tv IIP Nc Tv I1 Nc Tv

50.5 1481.6 1494.6 0.91 51.9 13.0 - 49.5 12.9 0.2 47.8 10.7 0.3

50.10 1199.2 1214.9 1.32 50.2 19.9 0.1 53.4 22.6 1.3 42.5 15.1 0.4

50.25 968.7 984.6 1.63 46.9 29.8 0.2 49.6 37.9 7.4 43.8 25.8 3.1

100.5 2824.7 2830.8 0.22 41.8 9.2 - 44.2 10.0 0.5 42.0 9.7 0.3

100.10 2548.2 2558.8 0.42 33.3 15.8 - 33.5 18.6 1.9 31.5 13.5 0.6

100.25 1959.5 1972.3 0.64 34.1 23.6 0.2 37.4 30.0 8.2 33.4 19.0 2.4

250.5 7036.3 7040.2 0.05 41.2 9.1 0.1 42.3 9.3 0.7 38.4 9.3 0.4

250.10 6097.8 6103.2 0.09 26.2 12.5 0.2 28.2 13.2 2.2 25.1 13.0 1.1

250.25 4874.6 4882.7 0.16 22.0 17.7 0.6 23.9 22.2 17.5 20.8 17.5 5.0

19

5.2. Dynamically reduced Core Heuristics (DCH)

DCH has been tested on a comprehensive test suite [15], but the quality of the

identified cores are not explicitly analysed for the Chu and Beasley test set since

the core problems are solved heuristically. Here we compare the performance of245

DCH with different ε , and also compare with the widely cited Genetic Algorithm

(GA) approach in [11]. The results are presented in Table 5. The class of

test cases is named in the format of n.m.α. Each number in the table is an

average over the 10 instances of the belonging class. The columns are explained

as follows: ∆r = 100(z̄ − zf)/z̄% is the average relative error where zf is the250

objective value of the feasible solution found by the heuristics; ∆a is the average

difference between the objective value of the core reduction heuristic solution

and the best known solution value; |Ce| is the size of the reduced core; # is the

number of times the optimum (or best known) was reached; Tc is the average

CPU-time for solving the MKPC with a time limit of 500s.255

For the smaller cases with n = 100, GA performs the best on all classes

except for the class 100.30.25. Nevertheless the relative error values are all

close. For the larger classes with n = 250 and 500, even DCH with ε = 0.1

outperforms GA on 16 out of the 18 classes, and on a par for the remaining two

classes although the core problem sizes are greatly reduced. With ε = 0.15 DCH260

solves eight classes to optimality. This clearly shows the effectiveness of DCH

in identifying high quality core problems of MKP, especially for large instances.

According to (5), the set of core items for ε = 0.1 is a subset of the core

items for ε = 0.15. Therefore the solution values for ε = 0.15 should be always

larger than those for ε = 0.1. However DCH achieved better solution values on265

most cases when n = 500 and m ≥ 10. The reason is that the core problems for

ε = 0.15 are so big that CPLEX can only find inferior solutions within the 500s

time limit.

5.3. Effects of GLCIs on the core reduction heuristic

Here we report the results of CCHs with different separation routines, i.e.,270

the GSA-LP, GSA-IP and GSA-UP1 in Table 6 for the Chu and Beasley test

20

set. The ε is set to 0.1 in CCH so that we can compare the effects of GLCIs

with the results of DCH in Table 5. The results for n = 500 are not reported

since the added cuts are not helpful in most cases.

For the cases with n = 100 and m = 5, adding GLCI cuts significantly275

reduced the average absolute difference ∆a for DCH with ε = 0.1. The solution

quality is even better than DCH with ε = 0.15 for α ≥ 0.5, although the average

core size is smaller.

For the cases with n = 100 and m = 10, CCH with GSA-IP and GSA-

UP1 significantly improve on the average absolute difference ∆a for DCH with280

ε = 0.1. CCH with GSA-UP1 found optimal solutions for all the cases in

α = 0.25 which is much better than DCH with ε = 0.15.

For the cases with n = 100 and m = 30, CCH with GSA-UP1 solved 29

cases to optimality out of the 30 test cases. Even CCH with GSA-LP found 4

more optimal solutions than DCH with ε = 0.15, although the core sizes are285

similar.

CCH with GSA-LP performs the best for most of the classes with n = 250.

It improved on the solution quality on all the test cases compared with DCH

with ε = 0.1, and found all the optimal solutions for m = 10. CCH with GSA-IP

and GSA-UP1 have similar performance as CCH with GSA-LP on cases with290

m = 5, 10. This may be because the cuts from the different separating routines

have similar strength, which leads to similar core sizes. The core sizes from

CCH with GSA-IP and GSA-UP1 are much larger on the cases with m = 30.

The inferior solution quality to CCH with GSA-LP may be due to the difficulty

faced by the CPLEX solver for larger MKPC.295

21

Table 5: Comparison of DCH for different ε on the Chu and Beasley test set[11]

GA ε = 0.1 ε = 0.15

n.m.α ∆r ∆r ∆a |Ce| # Tc ∆r ∆a |Ce| # Tc

100.5.25 0.99 1.07 19.1 20.7 6 0.2 1.01 5.3 28.5 8 0.6

100.5.50 0.45 0.50 21.8 18.9 4 0.1 0.46 5.8 26.5 7 0.2

100.5.75 0.32 0.36 23.8 19.6 6 0.1 0.33 9.4 27.3 8 0.2

100.10.25 1.56 1.73 38.4 27.1 4 0.9 1.56 0.0 36 10 2.9

100.10.50 0.79 0.91 50.0 24.7 4 0.2 0.84 20.3 30.3 7 0.7

100.10.75 0.48 0.50 13.1 26 7 0.2 0.49 6.9 33.9 9 1.1

100.30.25 2.91 2.98 20.0 37.3 7 7.9 2.90 3.0 45.2 9 34.7

100.30.50 1.34 1.42 42.4 33.9 2 4.1 1.36 18.0 41.1 5 15.3

100.30.75 0.83 0.86 19.1 34 6 2.8 0.85 15.9 40.9 6 7.3

250.5.25 0.23 0.22 2.2 49.5 8 28.3 0.22 0.0 72.4 10 25.6

250.5.50 0.12 0.11 2.7 46 7 19.5 0.11 0.0 64.1 10 25.3

250.5.75 0.08 0.08 0.8 46.4 9 8.2 0.08 0.0 68.5 10 11.5

250.10.25 0.51 0.47 7.9 55.9 8 335 0.45 0.0 74.4 10 449

250.10.50 0.25 0.23 2.1 49.8 8 126 0.23 0.0 70.7 10 444

250.10.75 0.15 0.14 4.6 55.5 9 178 0.14 0.0 76.4 9 330

250.30.25 1.19 1.13 36.0 68.6 3 461 1.08 8.9 86.3 5 502

250.30.50 0.53 0.49 12.9 62.8 2 467 0.48 2.6 82.3 4 502

250.30.75 0.31 0.29 12.3 65.1 6 485 0.29 9.8 85.8 5 502

500.5.25 0.09 0.07 0.3 110 9 408 0.07 1.1 156 9 417

500.5.50 0.04 0.04 0.0 82.6 10 350 0.04 0.0 123 10 368

500.5.75 0.03 0.02 0.6 90.3 9 237 0.02 0.0 133 10 208

500.10.25 0.24 0.20 38.1 108 0 502 0.20 41.7 152 0 502

500.10.50 0.11 0.08 7.6 85.3 5 502 0.09 28.1 123 2 502

500.10.75 0.07 0.06 14.3 94.2 4 502 0.07 29.4 140 0 502

500.30.25 0.61 0.54 76.6 121 2 502 0.58 119. 166 0 502

500.30.50 0.26 0.23 55.1 97.2 2 502 0.24 68.1 134 0 502

500.30.75 0.17 0.15 46.1 113 1 502 0.15 50.0 157 0 502

22

Table 6: Comparison of CCHs with ε = 0.1 on the Chu and Beasley test set [11]

GSA-LP GSA-IP GSA-UP1

n.m.α ∆a |Ce| # Tc ∆a |Ce| # Tc ∆a |Ce| # Tc

100.5.25 6.8 27 8 0.6 6.8 27.8 8 0.6 6.8 27.5 8 0.4

100.5.50 3.9 24.2 7 0.3 3.9 25.4 7 0.2 3.9 25.6 7 0.2

100.5.75 6.2 25.7 9 0.1 6.2 26.4 9 0.2 6.2 26.7 9 0.1

100.10.25 8.4 33.9 8 2 5 38.2 9 3.1 0 37.8 10 3.3

100.10.50 6.6 30.9 8 1.3 6.6 33.9 8 1.6 6.6 32.8 8 1.2

100.10.75 15.7 30.5 8 0.5 7.2 31.7 8 1 7.2 32.7 8 1

100.30.25 0 43.2 10 21.9 0 49.3 10 48.3 0 55.3 10 85

100.30.50 7.4 45.4 8 25.8 1.7 52 9 50.5 1.7 57.6 9 67

100.30.75 19.1 40.3 6 6.9 3 50.8 9 20.4 0 53.5 10 20.3

250.5.25 1.8 52.9 9 31.6 1.8 53.5 9 31.9 1.8 53.5 9 29.1

250.5.50 1.9 51.9 8 23.7 1.9 51.1 8 24 1.9 51.1 8 20.8

250.5.75 0.6 51.1 9 10.6 0.6 51.8 9 12.2 0.6 51.8 9 9.9

250.10.25 0 60.1 10 374 0 62.2 10 376 0.3 62.9 9 362

250.10.50 0 53.1 10 204 2.1 55 8 252 2.1 54.9 8 241

250.10.75 0 58.8 10 211 0 60.3 10 253 0 59.7 10 228

250.30.25 17.4 71.9 6 470 27.2 81.4 4 502 22.6 91.5 5 502

250.30.50 9.7 69.7 2 502 13.4 79.8 3 502 5.3 83 4 502

250.30.75 8.3 71.1 7 502 2.2 80 8 502 16.5 85.2 3 502

23

The results for the Cho test set are shown in Table 7. The average CPU time

to solve the core problems of all the classes is no more than one second. The

relative error in Table 7 is ∆r = 100(z∗−zf)/z∗% as in [15]. As expected, DCH

with ε = 0.15 outperforms DCH with ε = 0.1 and solves 19 more instances to

optimality. However, by adding GLCI cuts, even CCH with GSA-LP obtained300

average relative errors comparable with DCH with ε = 0.15. CCH with GSA-IP

can solve 3 more instances to optimality. The CCHs achieved the performance

improvement with significantly smaller core sizes on all the large instances with

n = 250 than DCH with ε = 0.15.

24

Table 7: Comparison of CCHs with ε = 0.1 on the Cho test set [27]

DCH ε = 0.1 DCH ε = 0.15 GSA-LP GSA-IP

n.m ∆r # |Ce| ∆r # |Ce| ∆r # |Ce| ∆r # |Ce|

50.5 0.03 24 9.8 0.01 28 13.8 0.02 28 16.7 0.0 29 16.7

50.10 0.27 21 11.3 0.08 26 15.4 0.02 27 18.4 0.01 28 19.8

50.25 0.10 23 12.2 0.07 26 16.6 0.01 28 21.0 0.01 28 22.5

100.5 0.0 28 22.7 0.0 30 32.7 0.0 27 29.1 0.0 28 29.4

100.10 0.05 27 21.8 0.0 30 31.6 0.0 30 29.1 0.0 30 29.9

100.25 0.01 26 23.7 0.0 28 34.3 0.0 29 34.1 0.0 29 35.6

250.5 0.0 30 54.1 0.0 30 77.0 0.0 29 59.7 0.0 29 60.1

250.10 0.0 30 55.7 0.0 30 80.5 0.0 30 62.2 0.0 30 62.6

250.25 0.0 30 58.2 0.0 30 84.3 0.0 30 67.0 0.0 30 68.1

Total 239 258 258 261

25

5.4. Two-level Core Problem Heuristic305

The effects of GLCIs diminish in CCH as the problem size increases, and the

core problem itself becomes big and time-consuming to solve. In the following

tests on TCH, we use ε = 0.2 for the first level, and use ε = 0.15 for the

second level on the Chu and Beasley test set. In the second level, we compare

the performance of DCH with CCHs and report the results in Table 8. All310

the numbers corresponding to the smallest average absolute difference ∆a are

highlighted in bold.

In the second level of TCH, CCHs outperform DCH on all cases in terms

of solution quality. GSA-UP1 performs best on 8 classes, GSA-IP performs

best on another 8 classes, and the three CCHs have a draw on the remaining315

2 classes. GSA-UP1 performs no worse than GSP-LP on all cases, and the

biggest improvements from GSA-UP1 are about 47 on the classes 250.30.25 and

250.30.50 compared with GSP-LP.

The improvements from CCHs come at the cost of longer solution time for

solving MKPC, however, all TCHs are still efficient when m = 5, 10. TCHs320

with GSA-IP and GSA-UP1 normally take more time than TCH with GSA-LP

due to larger core sizes.

The solution quality from TCH deteriorates on most cases compared with

the results of DCH in Table 5. However TCH is much faster, in many cases

more than 10 times faster, than DCH. TCH even achieved better results on the325

two difficult classes 500.10.25 and 500.30.75.

26

Table 8: Comparison of Core Problem Heuristics at the second level of TCH on the Chu and Beasley test set [11]

TCH-DCH TCH-GSA-LP TCH-GSA-IP TCH-GSA-UP1

n.m.α z̄∗ ∆a |Ce| Tc ∆a |Ce| Tc ∆a |Ce| Tc ∆a |Ce| Tc

250.5.25 60414 87.2 18.9 0.4 68.6 22.2 0.7 63.4 22.3 0.6 64.9 22 0.7

250.5.50 109293 119 17.1 0 45.4 22.7 0.4 49.3 22.8 0.3 42.7 24.1 0.4

250.5.75 151560 78.9 16.9 0 27.2 22.9 0.7 16.1 24.5 0.9 15.9 24.6 1.2

250.10.25 59022 123 24.3 0.4 69.3 30.3 2 37.7 34.3 16.4 40.5 34.4 9.7

250.10.50 108729 141 20.5 0.1 88.5 25.5 0.5 58.2 30.2 3.2 48.7 30.8 5.9

250.10.75 151346 70.5 24.5 0.8 32.6 30.8 2.4 18.3 35.2 8.5 23.2 34 6.5

250.30.25 56948 114 39.4 30.3 84.8 43.5 75.9 42.8 53 240 37.5 64.5 502

250.30.50 106721 99.7 34.9 6.6 71.9 43 45.8 27.6 54.2 378 25.2 63.1 466

250.30.75 150485 61.6 37.2 7.1 30.2 43.5 55 18.3 53.2 260 15.8 60.4 390

500.5.25 120630 11.1 38.9 86.7 3.4 45.4 194 3.4 47.3 229 3.4 45.5 187

500.5.50 219513 24.3 28.3 5.8 14.4 32.6 30.2 16.6 33.8 37.1 8.5 34.7 40.6

500.5.75 302363 14 30.8 19.9 5.6 35.9 36 5.6 35.9 39.1 5.6 36.6 39.7

500.10.25 118639 68.2 38.6 84.4 38.6 42.7 174 34.5 45.1 204 34.6 44.8 202

500.10.50 217334 80.3 35.2 54.7 40.3 39.3 70.6 26.7 41.9 177 28.9 41.6 176

500.10.75 302606 58.8 34.4 12.2 37.7 37.4 23.7 34.4 39.7 73.6 34.8 38.6 38.3

500.30.25 115635 100 56.3 365 97.3 61.3 432 80.7 73.8 502 87.5 81.2 502

500.30.50 216278 122 48.2 167 91.4 55.1 347 70.2 62.3 451 58.4 66.8 479

500.30.75 302447 70.5 52.4 375 44.3 57.6 398 31.8 67.9 502 36.9 75.6 502

27

6. Conclusion

In this paper we investigated how the GLCI cuts can improve on the core

problem heuristic for the multidimensional knapsack problem. The GLCIs are

presented in the general lifting framework and several variants are proposed. A330

two-level core problem heuristic is also proposed to tackle very large instances

of MKP. Experiments on the classic benchmark problems show that adding

GLCI cuts can significantly improve the performance and robustness of the core

problem heuristic.

References335

[1] A. Fréville, The multidimensional 0 - 1 knapsack problem: An overview,

European Journal of Operational Research 155 (1) (2004) 1–21.

[2] H. Kellerer, U. Pferschy, D. Pisinger, Knapsack problems, Springer, 2004.

[3] A. Fréville, S. Hanafi, The multidimensional 0-1 knapsack problem - bounds

and computational aspects, Annals of Operations Research 139 (1) (2005)340

195–227.

[4] C. Wilbaut, S. Hanafi, S. Salhi, A survey of effective heuristics and their

application to a variety of knapsack problems, IMA Journal of Management

Mathematics 19 (3) (2008) 227–244.

[5] J. Drake, Or library mkp - best known solutions.345

URL http://www.cs.nott.ac.uk/~jqd/mkp/bestresults.html

[6] Y. Vimont, S. Boussier, M. Vasquez, Reduced costs propagation in an effi-

cient implicit enumeration for the 01 multidimensional knapsack problem,

Journal of Combinatorial Optimization 15 (2) (2008) 165–178.

[7] S. Boussier, M. Vasquez, Y. Vimont, S. Hanafi, P. Michelon, A multi-level350

search strategy for the 0–1 multidimensional knapsack problem, Discrete

Applied Mathematics 158 (2) (2010) 97–109.

28

http://www.cs.nott.ac.uk/~jqd/mkp/bestresults.html
http://www.cs.nott.ac.uk/~jqd/mkp/bestresults.html

[8] C. Wilbaut, S. Hanafi, New convergent heuristics for 0–1 mixed integer

programming, European Journal of Operational Research 195 (1) (2009)

62–74.355

[9] F. Della Croce, A. Grosso, Improved core problem based heuristics for the

0/1 multi-dimensional knapsack problem, Computers & Operations Re-

search 39 (1) (2012) 27–31.

[10] M. Vasquez, Y. Vimont, Improved results on the 0-1 multidimensional

knapsack problem., European Journal of Operational Research 165 (1)360

(2005) 70–81.

[11] P. C. Chu, J. E. Beasley, A genetic algorithm for the multidimensional

knapsack problem, J. Heuristics 4 (1) (1998) 63–86.

[12] E. Balas, E. Zemel, An algorithm for large zero-one knapsack problems,

Oper. Res. 28 (1980) 1130–1154.365

[13] J. Puchinger, G. R. Raidl, U. Pferschy, The core concept for the multidi-

mensional knapsack problem, in: J. Gottlieb, G. R. Raidl (Eds.), Evolu-

tionary Computation in Combinatorial Optimization, Vol. 3906 of Lecture

Notes in Computer Science, Springer Berlin Heidelberg, 2006, pp. 195–208.

[14] J. Puchinger, G. R. Raidl, U. Pferschy, The multidimensional knapsack370

problem: Structure and algorithms, INFORMS Journal on Computing

22 (2) (2010) 250–265.

[15] R. R. Hill, Y. Kun Cho, J. T. Moore, Problem reduction heuristic for the

0-1 multidimensional knapsack problem, Comput. Oper. Res. 39 (1) (2012)

19–26. doi:10.1016/j.cor.2010.06.009.375

URL http://dx.doi.org/10.1016/j.cor.2010.06.009

[16] Z. Gu, G. L. Nemhauser, M. W. P. Savelsbergh, Lifted cover inequalities

for 0-1 integer programs: Computation, INFORMS Journal on Computing

10 (4) (1998) 427437.

29

http://dx.doi.org/10.1016/j.cor.2010.06.009
http://dx.doi.org/10.1016/j.cor.2010.06.009
http://dx.doi.org/10.1016/j.cor.2010.06.009
http://dx.doi.org/10.1016/j.cor.2010.06.009
http://dx.doi.org/10.1016/j.cor.2010.06.009

[17] K. Kaparis, A. N. Letchford, Separation algorithms for 0-1 knapsack poly-380

topes, Mathematical Programming 124 (1-2) (2010) 69–91. doi:10.1007/

s10107-010-0359-5.

URL http://dx.doi.org/10.1007/s10107-010-0359-5

[18] K. Kaparis, A. N. Letchford, Local and global lifted cover inequalities for

the 01 multidimensional knapsack problem, European Journal of Opera-385

tional Research 186 (1) (2008) 91–103.

[19] L. A. Wolsey, G. L. Nemhauser, Integer and Combinatorial Optimization,

Wiley Series in Discrete Mathematics and Optimization, Wiley, 1999.

[20] S. Martello, P. Toth, A new algorithm for the 0-1 knapsack problem, Man-

agement Science 34 (1988) 633644.390

[21] M. Fisher, The lagrangian relaxation method for solving integer program-

ming problems, Management Science 27 (1981) 1–18.

[22] A. Geoffrion, Lagrangian relaxation for integer programming, Mathemati-

cal Programming Study 2 (1974) 82–114.

[23] C. Lemaréchal, A. Renaud, A geometric study of duality gaps, with appli-395

cations, Mathematical Programming 90 (2001) 399–427.

[24] A. Frangioni, About lagrangian methods in integer optimization, Annals of

Operations Research 139 (2005) 163–193,.

[25] M. Grötschel, L. Lovász, A. Schrijver, Geometric Algorithms and Combi-

natorial Optimization, Vol. 2 of Algorithms and Combinatorics, Springer,400

1988.

[26] E. Balas, Facets of the knapsack polytope, Mathematical Programming 8

(1975) 146–164.

[27] Y. K. Cho, J. T. Moore, R. R. Hill, C. H. Reilly, Exploiting empirical

knowledge for bi-dimensional knapsack problem heuristics, International405

Journal of Industrial and Systems Engineering 3 (5) (2008) 530–548.

30

http://dx.doi.org/10.1007/s10107-010-0359-5
http://dx.doi.org/10.1007/s10107-010-0359-5
http://dx.doi.org/10.1007/s10107-010-0359-5
http://dx.doi.org/10.1007/s10107-010-0359-5
http://dx.doi.org/10.1007/s10107-010-0359-5
http://dx.doi.org/10.1007/s10107-010-0359-5
http://dx.doi.org/10.1007/s10107-010-0359-5

[28] R. R. Hill, J. T. Moore, C. Hiremath, Y. K. Cho, Test problem genera-

tion of binary knapsack problem variants and the implications of their use,

International Journal of Operations and Quantitative Management 18 (2)

(2011) 105–128.410

31

	Introduction
	Problem Reduction Heuristic Strengthened by Valid Inequalities
	Variants of Global LCI
	Two-level Core Problem Heuristic
	Computational Results
	GLCI and its variants
	Dynamically reduced Core Heuristics (DCH)
	Effects of GLCIs on the core reduction heuristic
	Two-level Core Problem Heuristic

	Conclusion

