Service Repository for Cloud Service Consumer Life
Cycle Management

Hong Thai Trahand George Feuerlicht® 3

! Faculty of Engineering and Information Technologpjversity of Technology, Sydney,
hongthai.tran@uts.edu.au, george.feuerlicht@utsaedu
2Unicorn College, V Kapslown2767/2,130 00 Prague 3, Czech Republic,
% Department of Information Technology, Universitylfonomics, Prague, W. Churchill Sq. 4,
Prague 3, Czech Republic

Abstract: With the rapid uptake of various types of cloud/g®s many organ-
izations are facing issues arising from dependencexternally provided cloud
services. In order to support operation in thisidigpevolving environment,
end-user organizations need to develop new metandgools that support the
entire life-cycle of cloud services from the vievwnmoof service consumers.
Service repositories play a key role in supporsagrice consumer SDLC (Sys-
tems Development Life-Cycle) maintaining informatithat is used during the
various development phases. In this paper we prikfscribe service consumer
SDLC and propose a design of service repositorypmart the information re-
quirements of the various life-cycle phases.

Keywords: Service Repository, Cloud Services, Service Lifegycl

1 I ntroduction

Cloud computing is a novel approach for implementanterprise IT (Information
Technology) solutions that has the promise of iaseel agility, flexibility, elasticity
and cost savings. The rapid growth of various tygfedoud services provides oppor-
tunities for the implementation of innovative eptgse applications. As a result, or-
ganizations are increasingly relying on externaludl providers to deliver a signifi-
cant part of enterprise infrastructure and appbeat Unlike in on-premise situations,
in cloud computing environments service consumerbs service providers are typi-
cally different entities with different roles andsponsibilities during the service life
cycle. Consequently, traditional system developnidetcycle used in on-premise
development is not appropriate cloud consumer gbntghere cloud services are
implemented by cloud service providers and depldygdervice consumers in their
enterprise applications [1]. More specifically, floeus of cloud service consumers is
changing from implementation of on-premise entegrapplications to integration
and management of cloud services [2], with cloudise providers taking responsi-
ble for IT infrastructure and a significant parttbé application portfolio. This situa-

tion requires a new approach to service life-cyoEnagement and the management
of cloud services at runtime.

With increasing availability of cloud services, tbeme type of services are availa-
ble from various cloud providers with different eénfaces, protocols and Quality of
Service (QoS) attributes [3]. The Programmable Vdebkctory [4] currently lists
more than eleven thousand APIs (Application Progngminterfaces) for various
types of services, making the identification oftabie services a significant chal-
lenge. Similarly, the integration of cloud serviagish on-premise enterprise applica-
tions requires a significant effort. A key archti@e component that addresses these
issues is the service repository that stores indtion about available services and
related QoS attributes, providing a database afrinétion about certified services
that can be shared among different projects.

In our earlier work [5], we have focused on desodithe SDLC (Systems Devel-
opment Life-Cycle) for cloud services as viewednira service consumer perspec-
tive, and we have specified SDLC phases and destrévchitectural components
required to support life-cycle activities. This pagocuses on defining the structure
and properties of the service repository. In tea&trsection (section 2) we review
research literature on service life-cycle managensewn service repositories. The
following section (section 3) is a description bé tproposed service repository struc-
ture for cloud service consumer life-cycle managamend section 4 contains our
conclusions and proposals for future work.

2 Related work

The life-cycle of a cloud service oriented systewoives different stakeholders that
include service providers and service consumersphgicipate in delivering cloud-
based enterprise applications and their runtimeagament. Generally, service life-
cycle management includes three phases of actvitiesign time, runtime and
change time. Although cloud service life-cycle Imag been standardised, there are
some numerous publications dealing with cloud sesiife-cycle and service reposi-
tory to support for life-cycle activities.

In early research, Yelmo, et al. [6] describe wmmrtric service life-cycle man-
agement in Telecom Services. The authors focusemvicg Lifecycle Manager and
the Service Execution Environment modules of th&JOB platform (Open Platform
for User-centric service Creation and Execution)OPUCE, a service repository is
used to store service description including alhted attributes e.g. service type, de-
scriptions, and the terms and conditions of usevi&ss are specified using three sets
of facets (i.e. description of a specific aspect of a sefviéanctional facets, Non-
functional facets and Management facets. Vitharand Jain [7] introduce a
Knowledge Based Component Repository (KBCR) forbéing requirements analy-
sis. The repository includes basic information absrrvices (name, version, func-
tionalities, and QoS attributes), facet informatibmisiness process templates, rela-
tionships among components, and supports a seapabitity. Yu, et al. [8] propose
a semantically enhanced service repository for-osatric service discovery and

management. The repository consists of two mainpamants: a service registry for
storing and managing service metadata (i.e. semdgee, service version, provider
and service descriptions) and a service discovenyponent that allows discovery of
services. Lakshmi and Mohanty [9] describe thegtesi a scalable service reposito-
ry implemented using a relational database supppelgebraic operators for service
composition using Composition Search Trees. Thabdase service includes five
tables: Providers, Services, Parameters, Servipat land Service Output. Service
providers are categorized by reputation (usinggmates Best, Good, Average and
Below Average), and services are classified usio§ @ttributes. This information is
used to search for services in registry and to asmfusiness process.

Shetty and D'Mello [3] review service repositoryagtgies and service discovery
techniques with the aim to support diversity ofutlservices. The cloud service dis-
covery feature supports search and browsing ofcesbased on functional and non-
functional properties. Authors classify discovergthods according to different ar-
chitectures of the cloud service repository intotcaized architectures and distribut-
ed architectures. They also describe the variondcgediscovery algorithms used in
the literature for cloud service discovery suchagctional description based meth-
ods: keyword (syntactic) based discovery, semabéised discovery and hybrid
matching. Non-functional description method inésdatic QoS based methods and
dynamic QoS based method. A method for managing an integi#eedycle of cloud
services is proposed by Joshi, et al. [10]. Thén@gt have identified performance
metrics associated for each life-cycle phase inotpdata quality, cost, and security
metrics based on (Service Level Agreement) QoS l{Qua Service), and consumer
satisfaction, and proposed a service repository digcovery capability for managing
cloud services life cycle [1]. They divide the atbservice life-cycle into five phases:
requirements specification, discovery, negotiatioomposition, and consumption. In
service discovery phase, service consumers searcefvice description and provid-
er policies in a simple service database. Servif@mation is stored asRequest for
Service (RFS) that contains functional specifications, technical specifications, human
agent policy, security policy, and data quality policy.

Field, et al. [11] present a European Middlewanigdtive (EMI) Registry that us-
es a decentralised architecture to support sedigxvery for both hierarchical and
peering topologies. The objective of the EMI Ragis$ to provide robust and scala-
ble service discovery that contains two componddtsnain Service Registry (DSR)
and Global Service Registry (GSR). Service discpiebased on service information
stored in service records that contain mandatdribates such as service name, type
of service, service endpoint, service interface] aarvice expiry date. Vukojevic-
Haupt, et al. [12] proposed a service selectionhogktfor on-demand provisioned
services. Provisioned services are provided byrd rarty provider, and service con-
sumer has no knowledge about the implementationtbadinderlying middleware
and infrastructure. Author develop an entity relaship diagram of the service regis-
try that contains service information and metadateluding functional and non-
functional properties, service configuration partere service provider, functional
description of the service, and QoS attributesa Imecent publication Bauer, et al.
[13] present the design of an advanced SOA repgséoriched with analysis capa-

bilities. The repository contains various typessefvices and their relationships. Au-
thors propose a meta-model for repositories toyaraservice dependency and the
impact of changes.

Most of the research publications reviewed in #@stion focus on service selec-
tion and discovery. Our service repository desigactdibed in this paper aims to cov-
er the entire life-cycle of cloud services from ferspective of service consumers,
including requirements specification, service idfergtion, service integration, ser-
vice monitoring and service optimization.

3 Repository support for service consumer SDLC

As noted in our previous work [5], traditional SG#stems development methodolo-
gy does not explicitly differentiate between seevjgrovider and service consumer
SDLC cycles. In the context of cloud computing,vear providers and service con-
sumers are separate entities that perform diffetasks throughout their SDLC cy-
cles. Service providers are responsible for theléempntation and delivery of cloud
services and service consumers are primarily ireain the selection and integration

irements

Specification

Service
Identification

Service
Ophimization

Service

Service
hionitoring Integration

Fig. 1. Cloud service consumer life-cycle

of suitable cloud services into their enterprispligations. As illustrated in Figure 1,
we have identified five SDLC phases of the sergieesumer life-cycle: requirements
specification, service identification, service otation, service monitoring and ser-
vice optimization. These phases can be classifienl design-time activities that in-
clude requirements specification, service iderdiftin and service integration, and
run-time activities that involve service monitorjngnd service optimization. The

information held in the service repository is usednanage services and to define
service compositions that are executed by the WaskEngine at runtime. In the
following sections we consider the information riegments for individual life-cycle
phases and define the structure and propertidgedfdrvice repository.

3.1 Requirements Specification

The servicerequirements specification phase involves desoriptif functional and
non-functional requirements that a given servicedseo fulfil. Functional specifica-
tions of the service describe what functions thwise should provide. While there
are differences in the specification accordinghe type of service (e.g. application
service, infrastructure service, etc.), typicalig tspecification includes technical de-
tails of the service interface (e.g. WSDL interfegaad may also include details of the
technological environment (e.g. specific hardwdetfprms, programming languages,
etc. in the case of infrastructure and platfornvises). The non-functional attributes
include service availability, response time, andusiéy requirements, and may also
include requirements regarding data location, sgcaertification and the maximum
cost of the service. Once the service is fully desd and classified, the service con-
sumer creates a Request for Service (RFS) anddzte information in the service

Service
+ ServiceName
ServiceCategory + ServiceDescription ServiceProvider
+SLA
+ CategorylName + SupportURL + ProviderName
+ SuperCategory 1 [+ ServiceCost |~ Website
+ SubCategones 0| 4 ServiceSecurity .n 1| + Phone i
+ ServiceStatus + SupportEmail
+ ServiceType
+ ServiceSubstitution
-+ Notify{stams)
I f.n
ServiceVersion
T U ServiceLog
. Endpomtl]
Dperatis L 1 | + Version 1 g.n | + ExecutionStart Time
+ OperationName : +WSDL l4— | +ExecutionEndTime
+ Parameters A+ Availability + Loghessage
+ ResponseTime + AunditStatus
+ AdaptorUrl
-+ Invoke(request)
+ WriteLog(message)
+ Analyze{log)

;

EnterprizeApplication

+ ApplicationName
+ Specifications
+ UsingServices

+ SearchService()
+ SelectService()

Fig. 2. Service Repository UML diagram

repository [10].

Table 1. List of repository attributes

Attribute Description
Service
ServiceName The unique identifier of the service

ServiceDescription
SLA

SupportUrl
ServiceCost
ServiceSecurity
ServiceStatus
ServiceType
ServiceSubstitution

Description of the service
Service level agreement
URL of the support page of the service
Cost usage plan of service
Security characteristics of theise
Service status, e.g. online, offlineetired
The type of service (on-premise, cloudomposite)
List of alternative services

Serviceversion

EnpointUrl Network location of the service

Version Service version number

WSDL WSDL specification of the service

Availability Service availability (estimated)

ResponseTime Service response time (estimated)

AdaptorUrl Network location of the service adaptor
Operation

OperationName Service method name

ServiceParamater Service method parameters

EnterpriseApplication
ApplicationName
Specifications
UsingServices

Name of application
Application specification requirerte
List of services are using in tipigli@ation

Servicel og
ExecutionStartTime
ExecutionEndTime

The start time of service exiecu
The end time of service execution

LogMessage Log message (e.g. error message)

AuditStatus Service outcome (i.e. success orrigilu
ServiceCategory

CategoryName Service Category

SuperCategory The upper category

SubCategories List of sub categories
ServiceProvider

ProviderName Service provider name

Website Service home page or customer support page

Phone Customer service hotline

SupportEmail Customer support email

Figure 2 show the initial version of service reparsi Unified Modeling Language
(UML) diagram, and Table 1 is list of repositoryrénutes derived from this UML

diagram.Service is a central entity of service repository and s attributes that
describe registered services and includes serdamtification, a range of functional,
non-functional attributes, and SLA description.olider to manage service evolution
and keep track of the changes of service functignahformation aboutervice Ver-
sionsis stored in the repositor@perations are associated with service versions as it
is possible for different versions of the servicehave different operations as the
service evolvesService Categories are used to categorize services according to ser-
vice type using a service type hierarchy as ilatetl in Figure 3. The conceptsf-

vice substitution identifies services with same functionality (etggo payment ser-
vices with identical functionality) that providet@lnatives that can be used to im-
prove service availability, or to replace serviteseduce the cost and improve per-
formance. Service substitution information is uaedesign time to provide load bal-
ancing and failover featureService Provider entity represents the service provide
and contains the service provider attributed listedable 1. Service Log records
store runtime execution information about the sEnand include the actual response
time, results of service invocation, and other funmctional attributes collected at
run-time and used for analysis of service perforreaftach service can be used in a
number ofEnterprise Applications, and each enterprise application can use a number
of registered services.

3.2 Serviceidentification

Service identification is constrained by the fuaotl and non-functional require-
ments documented in the previous phase (requirensgrgcification phase). Service
repository has a web-based user interface whicwallconsumers to search for ser-
vices based on its category and QoS informatiorviSeidentification phase begins
by searching the service repository to attempt abctmthe requirements specified in

SERVICE

INFRASTRUCTURE SOFTWARE PLATFORM
STORAGE COMPUTE SaaS API
CRM AR PAYMENT DELIVERY

Fig. 3. Partial service category hierarchy

previous phase with services that are alreadytexgd in the repository and certified
for use. Service identification uses the servidegary hierarchy (Figure 3), and the
functional and non-functional attributes of thevées identified during the service

requirements phase. If no existing service matthesequirements, the service con-
sumer will need to search for the candidate sesvéaailable from cloud service pro-
viders, or contact a preferred service provideedly to locate a suitable cloud ser-
vice. In addition to selecting a suitable the saidentification phase involves ser-
vice testing and approval. Service approval isrgarnal certification process that
certifies cloud services for use in enterprise @pfibns within the organization. Giv-
en the large number of available cloud services stection of suitable services can
be time consuming, in particular if this task isfpemed multiple times in the context
of different projects that require similar servicelsing the consumer service reposi-
tory to store information on approved cloud sersieasures that services are shared
among different projects and that the service sieleand approval process is not
unnecessarily repeated. In some instances, theucmmismay be able to negotiate
details of the SLA with the service provider, alilgh this will depend on the type and
volume of services involved.

3.3 Servicelntegration

Following service identification phase cloud seegmeed to be integrated into con-
sumer enterprise applications. Following the regiiin of the enterprise application,
relevant services are identified and composed pement the desired business func-
tionality using the services that have been alrezfiified and are available in the
repository. The service substitution informationused to compose services. The
design of a composite service involves searchimgafomic services that match the

@ - 4 Composited payment service F f
PayPal
Order list 1 Order

Payment
Message

SecurePay

eWAY

‘ Delivery list '7 FedEx e

Fig. 4. Composite payment service for online shopping gsec

requirements of enterprise applications and conmgoiiese services to define a suit-
able execution sequence at runtime. For exampdepttine shopping process illus-
trated in Figure 4 includes a composite paymenticercomposed of three different

(atomic) payment services: PayPal, SecurePay anayeWhis composite payment

service is used to load-balance PayPal and Sequre®éy services, and at the same
time has a failover function that handles situatiorhen individual services become
unavailable, improving both availability and reli#ly of the enterprise application.

34 Service Monitoring

The service monitoring phase involves monitorintjvitees that take place at runtime
and includes the management of service utilizatioypically, both the service pro-
vider and service consumer perform service momigpimdependently, and both par-
ties are responsible for resolving service quabsues that may arise. The service
repository includes information that records rumtiperformance of services (i.e.
response time, availability information, and vasdype of error messages) generated
by the Notification Centre that records servicdustaf cloud services in the runtime
service log. This information is used by applicatadministrators to monitor service
utilization, plan maintenance activities, and tofgen statistical analysis of response
times and throughput for individual cloud servic&his information is also used to
maintain accurate QoS statistics in the servicesigry, and to review the QoS at-
tributes stated in the SLA against the actual Qal8es.

3.5 Service Optimization

Service optimization phase is concerned with camtirs service improvement. This
can be done by replacing existing services with mensions when they become
available, or by identifying substitute servicesnfra different provider with the same
functionality. For example, the payment service Rdycould be replaced by the Se-
curePay service, based on information stored irrépesitory during the monitoring
phase. Service repository supports the processruice optimization allowing ser-
vice replacement without impacting on existing gmtise applications. In addition to
optimizing individual services, entire businessgasses can be optimized by rede-
signing corresponding composite services.

4 Conclusion

The main difference between the service providelLGi.e. traditional service

lifecycle as described in the literature) and tbevise consumer SDLC is that the
focus shifts to service integration and runtime aggment of services. Cloud service
integration is a design-time activity that relies iaformation that includes accurate
description of the service interface and its QdBbattes to allow service composition
and definition of service execution sequences ithatement specific business func-
tions. Run-time activities include failover managamand maintaining satisfactory
levels of service quality to ensure continuity gfecation. To achieve these objec-
tives, designers must be able to match the de§@d attributes values against in-

formation stored in the repository and to defirne plhocessing rules that determine the
sequence of service execution at run-time [14].

Well-designed service repository is critical to gog the various activities
throughout the consumer service life-cycle. In téper, we have described the de-
sign of service repository that supports the infation requirements of the life-cycle
phases: requirement specifications, service ideatibn, service integration, service
monitoring and service optimization. Service refwyi structure includes both func-
tional and non-functional attributes allowing al fdéscription of the service for the
purpose of creating RFS (Request for Service).c8iring service specification using
service category hierarchy allows accurate matchfrgervices based on service type
and QoS attributes. During the service integrapbase, service designer use this
information to implement composite services witlsided run-time properties (i.e.
failover capability and load balancing).

In conclusion, our service repository design sufgpboth design time and runtime
activities throughout the service consumer SDLC. ak&ecurrently implementing the
service repository using the Microsoft SQL Servatattase and further enhancing the
design of the repository.

References

1. Joshi, K. P., Yesha, Y., Finin, T.: Automating Cldservices Life Cycle through Semantic
Technologies, IEEE Transactions on Services Comgutiol. 7, pp. 109-122 (2014).

2. Farrell, K.: Cloud Lifecycle Management: Managing @loServices from Request to
Retirement. http://www.bmc.com/blogs/hybrid-cloudelidery-managing-cloud-services-
from- request-to-retirement

3. Shetty, J., D'Mello, D. A.: Repository Design Stgaés and Discovery Techniques for
Cloud Computing, In: 2013 International Conference &reen Computing,
Communication and Conservation of Energy (ICGCE),761-766 (2013)

4. ProgrammableWeb: The World's Largest APl Repositor@growing Daily.
http://www.programmableweb.com/apis/directory

5. Feuerlicht, G., Tran, H. T.: Adapting Service Deghent Life-cycle for Cloud, In: The
17th International Conference on Enterprise InforomSystems (ICEIS), Spain (2015)

6. Yelmo, J., Trapero, R., del Alamo, J., Sienel, Yevhiok, M., Ordas, J.et al.: User-
Driven Service Lifecycle Management — Adopting fntt Paradigms in Telecom
Services, In: The 5th International Conference orvi6e-Oriented Computing (ICSOC),
Austria (2007).

7. Vitharana, P., Jain, H.: A Knowledge Based Compoemtice Repository to Enhance
Analysts’ Domain Knowledge for Requirements Analydisformation & Management,
vol. 49, pp. 24-35 (2012).

8. Yu, J,, Sheng, Q. Z., Han, J., Wu, Y., Liu, C.: An@atically Enhanced Service
Repository for User-centric Service Discovery andnifgement, Data & Knowledge
Engineering, vol. 72, pp. 202-218 (2012).

9. Lakshmi, H., Mohanty, H.: RDBMS for Service Reposjtand Composition, In: The 4th
International Conference on Advanced Computing (ICoAP) 13-15 (2012)

10. Joshi, K., Finin, T., Yesha, Y.: Integrated Lifetyycof IT Services in A Cloud
Environment, In: The 3rd International Conferencetba Virtual Computing Initiative
(ICVCI), USA (2009)

11.

12.

13.

14.

Field, L., Memon, S., Marton, |., Szigeti, G.: TE®I Registry: Discovering Services in a
Federated World, Journal of Grid Computing, vol. 42, 29-40 (2014).

Vukojevic-Haupt, K., Haupt, F., Karastoyanova, Deymann, F.: Service Selection for
On-demand Provisioned Services, In: The 18th latwnal Enterprise Distributed Object
Computing Conference (EDOC), Germany, pp. 120-1274p01

Bauer, T., Buchwald, S., Tiedeken, J., Reichert, MS®@A Repository with Advanced
Analysis Capabilities-Improving the Maintenance aRkxibility of Service-Oriented
Applications, (2015).

Feuerlicht, G., Tran, H. T.: Service Consumer FraotewManaging Service Evolution
from a Consumer Perspective, In: The 16th InternatiocConference on Enterprise
Information Systems (ICEIS), Portugal (2014)

