
Service Repository for Cloud Service Consumer Life
Cycle Management

Hong Thai Tran1 and George Feuerlicht 1, 2, 3

1 Faculty of Engineering and Information Technology, University of Technology, Sydney,
hongthai.tran@uts.edu.au, george.feuerlicht@uts.edu.au

2 Unicorn College, V Kapslovně 2767/2,130 00 Prague 3, Czech Republic,
3 Department of Information Technology, University of Economics, Prague, W. Churchill Sq. 4,

Prague 3, Czech Republic

Abstract: With the rapid uptake of various types of cloud services many organ-
izations are facing issues arising from dependence on externally provided cloud
services. In order to support operation in this rapidly evolving environment,
end-user organizations need to develop new methods and tools that support the
entire life-cycle of cloud services from the viewpoint of service consumers.
Service repositories play a key role in supporting service consumer SDLC (Sys-
tems Development Life-Cycle) maintaining information that is used during the
various development phases. In this paper we briefly describe service consumer
SDLC and propose a design of service repository to support the information re-
quirements of the various life-cycle phases.

Keywords: Service Repository, Cloud Services, Service Lifecycle

1 Introduction

Cloud computing is a novel approach for implementing enterprise IT (Information
Technology) solutions that has the promise of increased agility, flexibility, elasticity
and cost savings. The rapid growth of various types of cloud services provides oppor-
tunities for the implementation of innovative enterprise applications. As a result, or-
ganizations are increasingly relying on external cloud providers to deliver a signifi-
cant part of enterprise infrastructure and applications. Unlike in on-premise situations,
in cloud computing environments service consumers and service providers are typi-
cally different entities with different roles and responsibilities during the service life
cycle. Consequently, traditional system development life-cycle used in on-premise
development is not appropriate cloud consumer context, where cloud services are
implemented by cloud service providers and deployed by service consumers in their
enterprise applications [1]. More specifically, the focus of cloud service consumers is
changing from implementation of on-premise enterprise applications to integration
and management of cloud services [2], with cloud service providers taking responsi-
ble for IT infrastructure and a significant part of the application portfolio. This situa-

tion requires a new approach to service life-cycle management and the management
of cloud services at runtime.

With increasing availability of cloud services, the same type of services are availa-
ble from various cloud providers with different interfaces, protocols and Quality of
Service (QoS) attributes [3]. The Programmable Web directory [4] currently lists
more than eleven thousand APIs (Application Programing Interfaces) for various
types of services, making the identification of suitable services a significant chal-
lenge. Similarly, the integration of cloud services with on-premise enterprise applica-
tions requires a significant effort. A key architecture component that addresses these
issues is the service repository that stores information about available services and
related QoS attributes, providing a database of information about certified services
that can be shared among different projects.

In our earlier work [5], we have focused on describing the SDLC (Systems Devel-
opment Life-Cycle) for cloud services as viewed from a service consumer perspec-
tive, and we have specified SDLC phases and described architectural components
required to support life-cycle activities. This paper focuses on defining the structure
and properties of the service repository. In the next section (section 2) we review
research literature on service life-cycle management and service repositories. The
following section (section 3) is a description of the proposed service repository struc-
ture for cloud service consumer life-cycle management, and section 4 contains our
conclusions and proposals for future work.

2 Related work

The life-cycle of a cloud service oriented system involves different stakeholders that
include service providers and service consumers that participate in delivering cloud-
based enterprise applications and their runtime management. Generally, service life-
cycle management includes three phases of activities: design time, runtime and
change time. Although cloud service life-cycle has not been standardised, there are
some numerous publications dealing with cloud services life-cycle and service reposi-
tory to support for life-cycle activities.

In early research, Yelmo, et al. [6] describe user-centric service life-cycle man-
agement in Telecom Services. The authors focus on Service Lifecycle Manager and
the Service Execution Environment modules of the OPUCE platform (Open Platform
for User-centric service Creation and Execution). In OPUCE, a service repository is
used to store service description including all related attributes e.g. service type, de-
scriptions, and the terms and conditions of use. Services are specified using three sets
of facets (i.e. description of a specific aspect of a service): Functional facets, Non-
functional facets and Management facets. Vitharana and Jain [7] introduce a
Knowledge Based Component Repository (KBCR) for enabling requirements analy-
sis. The repository includes basic information about services (name, version, func-
tionalities, and QoS attributes), facet information, business process templates, rela-
tionships among components, and supports a search capability. Yu, et al. [8] propose
a semantically enhanced service repository for user-centric service discovery and

management. The repository consists of two main components: a service registry for
storing and managing service metadata (i.e. service name, service version, provider
and service descriptions) and a service discovery component that allows discovery of
services. Lakshmi and Mohanty [9] describe the design of a scalable service reposito-
ry implemented using a relational database supporting algebraic operators for service
composition using Composition Search Trees. The database service includes five
tables: Providers, Services, Parameters, Service Input and Service Output. Service
providers are categorized by reputation (using categories Best, Good, Average and
Below Average), and services are classified using QoS attributes. This information is
used to search for services in registry and to compose business process.

Shetty and D'Mello [3] review service repository strategies and service discovery
techniques with the aim to support diversity of cloud services. The cloud service dis-
covery feature supports search and browsing of services based on functional and non-
functional properties. Authors classify discovery methods according to different ar-
chitectures of the cloud service repository into centralized architectures and distribut-
ed architectures. They also describe the various service discovery algorithms used in
the literature for cloud service discovery such as functional description based meth-
ods: keyword (syntactic) based discovery, semantic based discovery and hybrid
matching. Non-functional description method includes static QoS based methods and
dynamic QoS based method. A method for managing an integrated life-cycle of cloud
services is proposed by Joshi, et al. [10]. The authors have identified performance
metrics associated for each life-cycle phase including data quality, cost, and security
metrics based on (Service Level Agreement) QoS (Quality of Service), and consumer
satisfaction, and proposed a service repository with discovery capability for managing
cloud services life cycle [1]. They divide the cloud service life-cycle into five phases:
requirements specification, discovery, negotiation, composition, and consumption. In
service discovery phase, service consumers search for service description and provid-
er policies in a simple service database. Service information is stored as a Request for

Service (RFS) that contains functional specifications, technical specifications, human

agent policy, security policy, and data quality policy.
 Field, et al. [11] present a European Middleware Initiative (EMI) Registry that us-

es a decentralised architecture to support service discovery for both hierarchical and
peering topologies. The objective of the EMI Registry is to provide robust and scala-
ble service discovery that contains two components: Domain Service Registry (DSR)
and Global Service Registry (GSR). Service discovery is based on service information
stored in service records that contain mandatory attributes such as service name, type
of service, service endpoint, service interface, and service expiry date. Vukojevic-
Haupt, et al. [12] proposed a service selection method for on-demand provisioned
services. Provisioned services are provided by a third party provider, and service con-
sumer has no knowledge about the implementation and the underlying middleware
and infrastructure. Author develop an entity relationship diagram of the service regis-
try that contains service information and metadata, including functional and non-
functional properties, service configuration parameters, service provider, functional
description of the service, and QoS attributes. In a recent publication Bauer, et al.
[13] present the design of an advanced SOA repository enriched with analysis capa-

bilities. The repository contains various types of services and their relationships. Au-
thors propose a meta-model for repositories to analyse service dependency and the
impact of changes.

Most of the research publications reviewed in this section focus on service selec-
tion and discovery. Our service repository design described in this paper aims to cov-
er the entire life-cycle of cloud services from the perspective of service consumers,
including requirements specification, service identification, service integration, ser-
vice monitoring and service optimization.

3 Repository support for service consumer SDLC

As noted in our previous work [5], traditional SOA systems development methodolo-
gy does not explicitly differentiate between service provider and service consumer
SDLC cycles. In the context of cloud computing, service providers and service con-
sumers are separate entities that perform different tasks throughout their SDLC cy-
cles. Service providers are responsible for the implementation and delivery of cloud
services and service consumers are primarily involved in the selection and integration

of suitable cloud services into their enterprise applications. As illustrated in Figure 1,
we have identified five SDLC phases of the service consumer life-cycle: requirements
specification, service identification, service integration, service monitoring and ser-
vice optimization. These phases can be classified into design-time activities that in-
clude requirements specification, service identification and service integration, and
run-time activities that involve service monitoring, and service optimization. The

Fig. 1. Cloud service consumer life-cycle

information held in the service repository is used to manage services and to define
service compositions that are executed by the workflow engine at runtime. In the
following sections we consider the information requirements for individual life-cycle
phases and define the structure and properties of the service repository.

3.1 Requirements Specification

The service requirements specification phase involves description of functional and
non-functional requirements that a given service needs to fulfil. Functional specifica-
tions of the service describe what functions the service should provide. While there
are differences in the specification according to the type of service (e.g. application
service, infrastructure service, etc.), typically the specification includes technical de-
tails of the service interface (e.g. WSDL interface) and may also include details of the
technological environment (e.g. specific hardware platforms, programming languages,
etc. in the case of infrastructure and platform services). The non-functional attributes
include service availability, response time, and security requirements, and may also
include requirements regarding data location, security certification and the maximum
cost of the service. Once the service is fully described and classified, the service con-
sumer creates a Request for Service (RFS) and records the information in the service

Fig. 2. Service Repository UML diagram

repository [10].

Table 1. List of repository attributes

Attribute Description
Service
 ServiceName The unique identifier of the service
 ServiceDescription Description of the service
 SLA Service level agreement
 SupportUrl URL of the support page of the service
 ServiceCost Cost usage plan of service
 ServiceSecurity Security characteristics of the service
 ServiceStatus Service status, e.g. online, offline or retired
 ServiceType The type of service (on-premise, cloud or composite)
 ServiceSubstitution List of alternative services

Service version
 EnpointUrl Network location of the service
 Version Service version number
 WSDL WSDL specification of the service
 Availability Service availability (estimated)
 ResponseTime Service response time (estimated)
 AdaptorUrl Network location of the service adaptor

Operation
 OperationName Service method name
 ServiceParamater Service method parameters

EnterpriseApplication
 ApplicationName Name of application
 Specifications Application specification requirements
 UsingServices List of services are using in this application

ServiceLog
 ExecutionStartTime The start time of service execution
 ExecutionEndTime The end time of service execution
 LogMessage Log message (e.g. error message)
 AuditStatus Service outcome (i.e. success or failure)

ServiceCategory
 CategoryName Service Category
 SuperCategory The upper category
 SubCategories List of sub categories

ServiceProvider
 ProviderName Service provider name
 Website Service home page or customer support page
 Phone Customer service hotline
 SupportEmail Customer support email

Figure 2 show the initial version of service repository Unified Modeling Language

(UML) diagram, and Table 1 is list of repository attributes derived from this UML

diagram. Service is a central entity of service repository and includes attributes that
describe registered services and includes service identification, a range of functional,
non-functional attributes, and SLA description. In order to manage service evolution
and keep track of the changes of service functionality, information about Service Ver-
sions is stored in the repository. Operations are associated with service versions as it
is possible for different versions of the service to have different operations as the
service evolves. Service Categories are used to categorize services according to ser-
vice type using a service type hierarchy as illustrated in Figure 3. The concept of ser-
vice substitution identifies services with same functionality (e.g. two payment ser-
vices with identical functionality) that provide alternatives that can be used to im-
prove service availability, or to replace services to reduce the cost and improve per-
formance. Service substitution information is used at design time to provide load bal-
ancing and failover features. Service Provider entity represents the service provide
and contains the service provider attributed listed in Table 1. Service Log records
store runtime execution information about the service and include the actual response
time, results of service invocation, and other non-functional attributes collected at
run-time and used for analysis of service performance. Each service can be used in a
number of Enterprise Applications, and each enterprise application can use a number
of registered services.

3.2 Service identification

Service identification is constrained by the functional and non-functional require-
ments documented in the previous phase (requirements specification phase). Service
repository has a web-based user interface which allows consumers to search for ser-
vices based on its category and QoS information. Service identification phase begins
by searching the service repository to attempt to match the requirements specified in

previous phase with services that are already registered in the repository and certified
for use. Service identification uses the service category hierarchy (Figure 3), and the
functional and non-functional attributes of the service identified during the service

Fig. 3. Partial service category hierarchy

requirements phase. If no existing service matches the requirements, the service con-
sumer will need to search for the candidate services available from cloud service pro-
viders, or contact a preferred service provider directly to locate a suitable cloud ser-
vice. In addition to selecting a suitable the service identification phase involves ser-
vice testing and approval. Service approval is an internal certification process that
certifies cloud services for use in enterprise applications within the organization. Giv-
en the large number of available cloud services, the selection of suitable services can
be time consuming, in particular if this task is performed multiple times in the context
of different projects that require similar services. Using the consumer service reposi-
tory to store information on approved cloud services ensures that services are shared
among different projects and that the service selection and approval process is not
unnecessarily repeated. In some instances, the consumer may be able to negotiate
details of the SLA with the service provider, although this will depend on the type and
volume of services involved.

3.3 Service Integration

Following service identification phase cloud services need to be integrated into con-
sumer enterprise applications. Following the registration of the enterprise application,
relevant services are identified and composed to implement the desired business func-
tionality using the services that have been already certified and are available in the
repository. The service substitution information is used to compose services. The
design of a composite service involves searching for atomic services that match the

requirements of enterprise applications and composing these services to define a suit-
able execution sequence at runtime. For example, the online shopping process illus-
trated in Figure 4 includes a composite payment service composed of three different

Fig. 4. Composite payment service for online shopping process

(atomic) payment services: PayPal, SecurePay and eWay. This composite payment
service is used to load-balance PayPal and SecurePay, eWay services, and at the same
time has a failover function that handles situations when individual services become
unavailable, improving both availability and reliability of the enterprise application.

3.4 Service Monitoring

The service monitoring phase involves monitoring activities that take place at runtime
and includes the management of service utilization. Typically, both the service pro-
vider and service consumer perform service monitoring independently, and both par-
ties are responsible for resolving service quality issues that may arise. The service
repository includes information that records runtime performance of services (i.e.
response time, availability information, and various type of error messages) generated
by the Notification Centre that records service status of cloud services in the runtime
service log. This information is used by application administrators to monitor service
utilization, plan maintenance activities, and to perform statistical analysis of response
times and throughput for individual cloud services. This information is also used to
maintain accurate QoS statistics in the service repository, and to review the QoS at-
tributes stated in the SLA against the actual QoS values.

3.5 Service Optimization

Service optimization phase is concerned with continuous service improvement. This
can be done by replacing existing services with new versions when they become
available, or by identifying substitute services from a different provider with the same
functionality. For example, the payment service PayPal could be replaced by the Se-
curePay service, based on information stored in the repository during the monitoring
phase. Service repository supports the process of service optimization allowing ser-
vice replacement without impacting on existing enterprise applications. In addition to
optimizing individual services, entire business processes can be optimized by rede-
signing corresponding composite services.

4 Conclusion

The main difference between the service provider SDLC (i.e. traditional service
lifecycle as described in the literature) and the service consumer SDLC is that the
focus shifts to service integration and runtime management of services. Cloud service
integration is a design-time activity that relies on information that includes accurate
description of the service interface and its QoS attributes to allow service composition
and definition of service execution sequences that implement specific business func-
tions. Run-time activities include failover management and maintaining satisfactory
levels of service quality to ensure continuity of operation. To achieve these objec-
tives, designers must be able to match the desired QoS attributes values against in-

formation stored in the repository and to define the processing rules that determine the
sequence of service execution at run-time [14].

Well-designed service repository is critical to support the various activities
throughout the consumer service life-cycle. In this paper, we have described the de-
sign of service repository that supports the information requirements of the life-cycle
phases: requirement specifications, service identification, service integration, service
monitoring and service optimization. Service repository structure includes both func-
tional and non-functional attributes allowing a full description of the service for the
purpose of creating RFS (Request for Service). Structuring service specification using
service category hierarchy allows accurate matching of services based on service type
and QoS attributes. During the service integration phase, service designer use this
information to implement composite services with desired run-time properties (i.e.
failover capability and load balancing).

In conclusion, our service repository design supports both design time and runtime
activities throughout the service consumer SDLC. We are currently implementing the
service repository using the Microsoft SQL Server database and further enhancing the
design of the repository.

References

1. Joshi, K. P., Yesha, Y., Finin, T.: Automating Cloud Services Life Cycle through Semantic
Technologies, IEEE Transactions on Services Computing, vol. 7, pp. 109-122 (2014).

2. Farrell, K.: Cloud Lifecycle Management: Managing Cloud Services from Request to
Retirement. http://www.bmc.com/blogs/hybrid-cloud- delivery-managing-cloud-services-
from- request-to-retirement

3. Shetty, J., D'Mello, D. A.: Repository Design Strategies and Discovery Techniques for
Cloud Computing, In: 2013 International Conference on Green Computing,
Communication and Conservation of Energy (ICGCE), pp. 761-766 (2013)

4. ProgrammableWeb: The World's Largest API Repository, Growing Daily.
http://www.programmableweb.com/apis/directory

5. Feuerlicht, G., Tran, H. T.: Adapting Service Development Life-cycle for Cloud, In: The
17th International Conference on Enterprise Information Systems (ICEIS), Spain (2015)

6. Yelmo, J., Trapero, R., del Álamo, J., Sienel, J., Drewniok, M., Ordás, I., et al.: User-
Driven Service Lifecycle Management – Adopting Internet Paradigms in Telecom
Services, In: The 5th International Conference on Service-Oriented Computing (ICSOC),
Austria (2007).

7. Vitharana, P., Jain, H.: A Knowledge Based Component/Service Repository to Enhance
Analysts’ Domain Knowledge for Requirements Analysis, Information & Management,
vol. 49, pp. 24-35 (2012).

8. Yu, J., Sheng, Q. Z., Han, J., Wu, Y., Liu, C.: A Semantically Enhanced Service
Repository for User-centric Service Discovery and Management, Data & Knowledge
Engineering, vol. 72, pp. 202-218 (2012).

9. Lakshmi, H., Mohanty, H.: RDBMS for Service Repository and Composition, In: The 4th
International Conference on Advanced Computing (ICoAC), pp. 13-15 (2012)

10. Joshi, K., Finin, T., Yesha, Y.: Integrated Lifecycle of IT Services in A Cloud
Environment, In: The 3rd International Conference on the Virtual Computing Initiative
(ICVCI), USA (2009)

11. Field, L., Memon, S., Márton, I., Szigeti, G.: The EMI Registry: Discovering Services in a
Federated World, Journal of Grid Computing, vol. 12, pp. 29-40 (2014).

12. Vukojevic-Haupt, K., Haupt, F., Karastoyanova, D., Leymann, F.: Service Selection for
On-demand Provisioned Services, In: The 18th International Enterprise Distributed Object
Computing Conference (EDOC), Germany, pp. 120-127 (2014)

13. Bauer, T., Buchwald, S., Tiedeken, J., Reichert, M.: A SOA Repository with Advanced
Analysis Capabilities-Improving the Maintenance and Flexibility of Service-Oriented
Applications, (2015).

14. Feuerlicht, G., Tran, H. T.: Service Consumer Framework: Managing Service Evolution
from a Consumer Perspective, In: The 16th International Conference on Enterprise
Information Systems (ICEIS), Portugal (2014)

